101
|
Yakushev EY, Sokolova OA, Gvozdev VA, Klenov MS. Multifunctionality of PIWI proteins in control of germline stem cell fate. BIOCHEMISTRY (MOSCOW) 2014; 78:585-91. [PMID: 23980885 DOI: 10.1134/s0006297913060047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PIWI proteins interacting with specific type of small RNAs (piRNAs) repress transposable elements in animals. Besides, they have been shown to participate in various cellular processes: in the regulation of heterochromatin formation including telomere structures, in the control of translation and the cell cycle, and in DNA rearrangements. PIWI proteins were first identified by their roles in the self-renewal of germline stem cells. PIWI protein functions are not limited to gonadogenesis, but the role in determining the fate of stem cells is their specific feature conserved throughout the evolution of animals. Molecular mechanisms underlying these processes are far from being understood. This review focuses on the role of PIWI proteins in the control of maintenance and proliferation of germinal stem cells and its relation to the known function of PIWI in transposon repression.
Collapse
Affiliation(s)
- E Y Yakushev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | | | |
Collapse
|
102
|
Ma X, Wang S, Do T, Song X, Inaba M, Nishimoto Y, Liu LP, Gao Y, Mao Y, Li H, McDowell W, Park J, Malanowski K, Peak A, Perera A, Li H, Gaudenz K, Haug J, Yamashita Y, Lin H, Ni JQ, Xie T. Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary. PLoS One 2014; 9:e90267. [PMID: 24658126 PMCID: PMC3962343 DOI: 10.1371/journal.pone.0090267] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/12/2022] Open
Abstract
The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to its known role in somatic cap cells to maintain germline stem cells (GSCs), this study has demonstrated that Piwi has novel functions in somatic cells and germ cells of the Drosophila ovary to promote germ cell differentiation. Piwi knockdown in escort cells causes a reduction in escort cell (EC) number and accumulation of undifferentiated germ cells, some of which show active BMP signaling, indicating that Piwi is required to maintain ECs and promote germ cell differentiation. Simultaneous knockdown of dpp, encoding a BMP, in ECs can partially rescue the germ cell differentiation defect, indicating that Piwi is required in ECs to repress dpp. Consistent with its key role in piRNA production, TE transcripts increase significantly and DNA damage is also elevated in the piwi knockdown somatic cells. Germ cell-specific knockdown of piwi surprisingly causes depletion of germ cells before adulthood, suggesting that Piwi might control primordial germ cell maintenance or GSC establishment. Finally, Piwi inactivation in the germ line of the adult ovary leads to gradual GSC loss and germ cell differentiation defects, indicating the intrinsic role of Piwi in adult GSC maintenance and differentiation. This study has revealed new germline requirement of Piwi in controlling GSC maintenance and lineage differentiation as well as its new somatic function in promoting germ cell differentiation. Therefore, Piwi is required in multiple cell types to control GSC lineage development in the Drosophila ovary.
Collapse
Affiliation(s)
- Xing Ma
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Su Wang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Trieu Do
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Xiaoqing Song
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mayu Inaba
- Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yoshiya Nishimoto
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Lu-ping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yuan Gao
- School of Medicine, Tsinghua University, Beijing, China
| | - Ying Mao
- School of Medicine, Tsinghua University, Beijing, China
| | - Hui Li
- School of Medicine, Tsinghua University, Beijing, China
| | - William McDowell
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jungeun Park
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kate Malanowski
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Karin Gaudenz
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Yukiko Yamashita
- Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United Sates of America
| | - Jian-quan Ni
- School of Medicine, Tsinghua University, Beijing, China
| | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
103
|
Affiliation(s)
- Amit Anand
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore
| | | |
Collapse
|
104
|
Fu Q, Wang PJ. Mammalian piRNAs: Biogenesis, function, and mysteries. SPERMATOGENESIS 2014; 4:e27889. [PMID: 25077039 DOI: 10.4161/spmg.27889] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/23/2013] [Accepted: 01/16/2014] [Indexed: 12/20/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a distinct class of small non-coding RNAs specifically expressed in the germline of many species. They are most notably required for transposon silencing. Loss of piRNAs results in defects in germ cell development, and thus, infertility. Most studies of piRNAs have been done in Drosophila, but much progress has also been made on piRNAs in the germline of mammals and other species in the past few years. This review provides a summary of our current knowledge of the biogenesis and functions of piRNAs during mouse spermatogenesis and discusses challenges in the mammalian piRNA field.
Collapse
Affiliation(s)
- Qi Fu
- Department of Animal Biology; University of Pennsylvania School of Veterinary Medicine; Philadelphia, PA USA
| | - P Jeremy Wang
- Department of Animal Biology; University of Pennsylvania School of Veterinary Medicine; Philadelphia, PA USA
| |
Collapse
|
105
|
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505:353-359. [PMID: 24429634 PMCID: PMC4265809 DOI: 10.1038/nature12987] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
The discovery of millions of PIWI-interacting RNAs revealed a fascinating and unanticipated dimension of biology. The PIWI-piRNA pathway has been commonly perceived as germline-specific, even though the somatic function of PIWI proteins was documented when they were first discovered. Recent studies have begun to re-explore this pathway in somatic cells in diverse organisms, particularly lower eukaryotes. These studies have illustrated the multifaceted somatic functions of the pathway not only in transposon silencing but also in genome rearrangement and epigenetic programming, with biological roles in stem-cell function, whole-body regeneration, memory and possibly cancer.
Collapse
Affiliation(s)
- Robert J Ross
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Molly M Weiner
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| |
Collapse
|
106
|
Clark JP, Lau NC. Piwi Proteins and piRNAs step onto the systems biology stage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:159-97. [PMID: 25201106 PMCID: PMC4248790 DOI: 10.1007/978-1-4939-1221-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal germ cells are totipotent because they maintain a highly unique and specialized epigenetic state for its genome. To accomplish this, germ cells express a rich repertoire of specialized RNA-binding protein complexes such as the Piwi proteins and Piwi-interacting RNAs (piRNAs): a germ-cell branch of the RNA interference (RNAi) phenomenon which includes microRNA and endogenous small interfering RNA pathways. Piwi proteins and piRNAs are deeply conserved in animal evolution and play essential roles in fertility and regeneration. Molecular mechanisms for how these ribonucleoproteins act upon the transcriptome and genome are only now coming to light with the application of systems-wide approaches in both invertebrates and vertebrates. Systems biology studies on invertebrates have revealed that transcriptional and heritable silencing is a main mechanism driven by Piwi proteins and piRNA complexes. In vertebrates, Piwi-targeting mechanisms and piRNA biogenesis have progressed, while the discovery that the nuclease activity of Piwi protein is essential for vertebrate germ cell development but not completely required in invertebrates highlights the many complexities of this pathway in different animals. This review recounts how recent systems-wide approaches have rapidly accelerated our appreciation for the broad reach of the Piwi pathway on germline genome regulation and what questions facing the field await to be unraveled.
Collapse
Affiliation(s)
- Josef P. Clark
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
107
|
Pek JW, Patil VS, Kai T. piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Dev Growth Differ 2013; 54:66-77. [PMID: 23741748 DOI: 10.1111/j.1440-169x.2011.01316.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The accurate transfer of genetic material in germline cells during the formation of gametes is important for the continuity of the species. However, animal germline cells face challenges from transposons, which seek to spread themselves in the genome. This review focuses on studies in Drosophila melanogaster on how the genome protects itself from such a mutational burden via a class of gonad-specific small interfering RNAs, known as piRNAs (Piwi-interacting RNAs). In addition to silencing transposons, piRNAs also regulate other processes, such as chromosome segregation, mRNA degradation and germline differentiation. Recent studies revealed two modes of piRNA processing – primary processing and secondary processing (also known as ping-pong amplification). The primary processing pathway functions in both germline and somatic cells in the Drosophila ovaries by processing precursor piRNAs into 23–29 nt piRNAs. In contrast, the secondary processing pathway functions only in the germline cells where piRNAs are amplified in a feed-forward loop and require the Piwi-family proteins Aubergine and Argonaute3. Aubergine and Argonaute3 localize to a unique structure found in animal germline cells, the nuage, which has been proposed to function as a compartmentalized site for the ping-pong cycle. The nuage and the localized proteins are well-conserved, implying the importance of the piRNA amplification loop in animal germline cells. Nuage components include various types of proteins that are known to interact both physically and genetically, and therefore appear to be assembled in a sequential order to exert their function, resulting in a macromolecular RNA-protein complex dedicated to the silencing of transposons.
Collapse
Affiliation(s)
- Jun Wei Pek
- Department of Biological Sciences and Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|
108
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
109
|
Dönertas D, Sienski G, Brennecke J. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev 2013; 27:1693-705. [PMID: 23913922 DOI: 10.1101/gad.221150.113] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a small RNA silencing system that keeps selfish genetic elements such as transposons under control in animal gonads. Several lines of evidence indicate that nuclear PIWI family proteins guide transcriptional silencing of their targets, yet the composition of the underlying silencing complex is unknown. Here we demonstrate that the double CHHC zinc finger protein gametocyte-specific factor 1 (Gtsf1) is an essential factor for Piwi-mediated transcriptional repression in Drosophila. Cells lacking Gtsf1 contain nuclear Piwi loaded with piRNAs, yet Piwi's silencing capacity is ablated. Gtsf1 interacts directly with a small subpool of nuclear Piwi, and loss of Gtsf1 phenocopies loss of Piwi in terms of deregulation of transposons, loss of H3K9 trimethylation (H3K9me3) marks at euchromatic transposon insertions, and deregulation of genes in proximity to repressed transposons. We propose that only a small fraction of nuclear Piwi is actively engaged in target silencing and that Gtsf1 is an essential component of the underlying Piwi-centered silencing complex.
Collapse
Affiliation(s)
- Derya Dönertas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences IMBA, 1030 Vienna, Austria
| | | | | |
Collapse
|
110
|
Honda S, Kirino Y, Maragkakis M, Alexiou P, Ohtaki A, Murali R, Mourelatos Z, Kirino Y. Mitochondrial protein BmPAPI modulates the length of mature piRNAs. RNA (NEW YORK, N.Y.) 2013; 19:1405-18. [PMID: 23970546 PMCID: PMC3854531 DOI: 10.1261/rna.040428.113] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/08/2013] [Indexed: 05/18/2023]
Abstract
PIWI proteins and their associated PIWI-interacting RNAs (piRNAs) protect genome integrity by silencing transposons in animal germlines. The molecular mechanisms and components responsible for piRNA biogenesis remain elusive. PIWI proteins contain conserved symmetrical dimethylarginines (sDMAs) that are specifically targeted by TUDOR domain-containing proteins. Here we report that the sDMAs of PIWI proteins play crucial roles in PIWI localization and piRNA biogenesis in Bombyx mori-derived BmN4 cells, which harbor fully functional piRNA biogenesis machinery. Moreover, RNAi screenings for Bombyx genes encoding TUDOR domain-containing proteins identified BmPAPI, a Bombyx homolog of Drosophila PAPI, as a factor modulating the length of mature piRNAs. BmPAPI specifically recognized sDMAs and interacted with PIWI proteins at the surface of the mitochondrial outer membrane. BmPAPI depletion resulted in 3'-terminal extensions of mature piRNAs without affecting the piRNA quantity. These results reveal the BmPAPI-involved piRNA precursor processing mechanism on mitochondrial outer membrane scaffolds.
Collapse
Affiliation(s)
- Shozo Honda
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Yoriko Kirino
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Akashi Ohtaki
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yohei Kirino
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Corresponding authorE-mail
| |
Collapse
|
111
|
Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proc Natl Acad Sci U S A 2013; 110:16492-7. [PMID: 24067652 DOI: 10.1073/pnas.1316316110] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are gonad-specific small RNAs that provide defense against transposable genetic elements called transposons. Our knowledge of piRNA biogenesis is sketchy, partly due to an incomplete inventory of the factors involved. Here, we identify Tudor domain-containing 12 (TDRD12; also known as ECAT8) as a unique piRNA biogenesis factor in mice. TDRD12 is detected in complexes containing Piwi protein MILI (PIWIL2), its associated primary piRNAs, and TDRD1, all of which are already implicated in secondary piRNA biogenesis. Male mice carrying either a nonsense point mutation (reproductive mutant 23 or repro23 mice) or a targeted deletion in the Tdrd12 locus are infertile and derepress retrotransposons. We find that TDRD12 is dispensable for primary piRNA biogenesis but essential for production of secondary piRNAs that enter Piwi protein MIWI2 (PIWIL4). Cell-culture studies with the insect ortholog of TDRD12 suggest a role for the multidomain protein in mediating complex formation with other participants during secondary piRNA biogenesis.
Collapse
|
112
|
|
113
|
Vagin VV, Yu Y, Jankowska A, Luo Y, Wasik KA, Malone CD, Harrison E, Rosebrock A, Wakimoto BT, Fagegaltier D, Muerdter F, Hannon GJ. Minotaur is critical for primary piRNA biogenesis. RNA (NEW YORK, N.Y.) 2013; 19:1064-77. [PMID: 23788724 PMCID: PMC3708527 DOI: 10.1261/rna.039669.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur.
Collapse
Affiliation(s)
- Vasily V. Vagin
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Yang Yu
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Anna Jankowska
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Yicheng Luo
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- College of Pharmaceutical Science, Jilin University, Changchun, Jilin 130021, China P.R
| | - Kaja A. Wasik
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Colin D. Malone
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Emily Harrison
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Adam Rosebrock
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Barbara T. Wakimoto
- Department of Biology and Center for Developmental Biology, University of Washington, Seattle, Washington 98195, USA
| | - Delphine Fagegaltier
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Felix Muerdter
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Corresponding authorE-mail
| |
Collapse
|
114
|
Smibert P, Yang JS, Azzam G, Liu JL, Lai EC. Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol 2013; 20:789-95. [PMID: 23708604 PMCID: PMC3702675 DOI: 10.1038/nsmb.2606] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/10/2013] [Indexed: 12/18/2022]
Abstract
Homeostatic mechanisms regulate the abundance of several components in small-RNA pathways. We used Drosophila and mammalian systems to demonstrate a conserved homeostatic system in which the status of miRNA biogenesis controls Argonaute protein stability. Clonal analyses of multiple mutants of core Drosophila miRNA factors revealed that stability of the miRNA effector AGO1 is dependent on miRNA biogenesis. Reciprocally, ectopic transcription of miRNAs within in vivo clones induced accumulation of AGO1, as did genetic interference with the ubiquitin-proteasome system. In mouse cells, we found that the stability of Ago2 declined in Dicer-knockout cells and was rescued by proteasome blockade or introduction of either Dicer plasmid or Dicer-independent miRNA constructs. Notably, Dicer-dependent miRNA constructs generated pre-miRNAs that bound Ago2 but did not rescue Ago2 stability. We conclude that Argonaute levels are finely tuned by cellular availability of mature miRNAs and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York, USA
| | | | | | | | | |
Collapse
|
115
|
Mani SR, Juliano CE. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 2013; 80:632-64. [PMID: 23712694 DOI: 10.1002/mrd.22195] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function.
Collapse
Affiliation(s)
- Sneha Ramesh Mani
- Yale Stem Cell Center, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
116
|
Czech B, Preall JB, McGinn J, Hannon GJ. A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell 2013; 50:749-61. [PMID: 23665227 DOI: 10.1016/j.molcel.2013.04.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 02/02/2023]
Abstract
The Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two interrelated branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborate pathway centered on the three gonad-specific Argonaute proteins (Piwi, Aubergine, and Argonaute 3). While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals key factors of piRNA-mediated transposon silencing, including the piRNA biogenesis factors CG2183 (GASZ) and Deadlock. Our data uncover a previously unanticipated set of factors preferentially required for repression of different transposon types.
Collapse
Affiliation(s)
- Benjamin Czech
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | | | | |
Collapse
|
117
|
Handler D, Meixner K, Pizka M, Lauss K, Schmied C, Gruber FS, Brennecke J. The genetic makeup of the Drosophila piRNA pathway. Mol Cell 2013; 50:762-77. [PMID: 23665231 PMCID: PMC3679447 DOI: 10.1016/j.molcel.2013.04.031] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 01/25/2023]
Abstract
The piRNA (PIWI-interacting RNA) pathway is a small RNA silencing system that acts in animal gonads and protects the genome against the deleterious influence of transposons. A major bottleneck in the field is the lack of comprehensive knowledge of the factors and molecular processes that constitute this pathway. We conducted an RNAi screen in Drosophila and identified ∼50 genes that strongly impact the ovarian somatic piRNA pathway. Many identified genes fall into functional categories that indicate essential roles for mitochondrial metabolism, RNA export, the nuclear pore, transcription elongation, and chromatin regulation in the pathway. Follow-up studies on two factors demonstrate that components acting at distinct hierarchical levels of the pathway were identified. Finally, we define CG2183/Gasz as an essential primary piRNA biogenesis factor in somatic and germline cells. Based on the similarities between insect and vertebrate piRNA pathways, our results have far-reaching implications for the understanding of this conserved genome defense system. Systematic identification of somatic piRNA pathway factors in Drosophila Identification of functional links between piRNA biology and major cellular processes Characterization of CG2183/Gasz as an essential primary piRNA biogenesis factor
Collapse
Affiliation(s)
- Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr Bohrgasse 3, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
118
|
Carter JM, Baker SC, Pink R, Carter DRF, Collins A, Tomlin J, Gibbs M, Breuker CJ. Unscrambling butterfly oogenesis. BMC Genomics 2013; 14:283. [PMID: 23622113 PMCID: PMC3654919 DOI: 10.1186/1471-2164-14-283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 12/16/2022] Open
Abstract
Background Butterflies are popular model organisms to study physiological mechanisms
underlying variability in oogenesis and egg provisioning in response to
environmental conditions. Nothing is known, however, about; the
developmental mechanisms governing butterfly oogenesis, how polarity in the
oocyte is established, or which particular maternal effect genes regulate
early embryogenesis. To gain insights into these developmental mechanisms
and to identify the conserved and divergent aspects of butterfly oogenesis,
we analysed a de novo ovarian transcriptome of the Speckled Wood
butterfly Pararge aegeria (L.), and compared the results with known
model organisms such as Drosophila melanogaster and Bombyx
mori. Results A total of 17306 contigs were annotated, with 30% possibly novel or highly
divergent sequences observed. Pararge aegeria females expressed
74.5% of the genes that are known to be essential for D.
melanogaster oogenesis. We discuss the genes involved in all
aspects of oogenesis, including vitellogenesis and choriogenesis, plus those
implicated in hormonal control of oogenesis and transgenerational hormonal
effects in great detail. Compared to other insects, a number of significant
differences were observed in; the genes involved in stem cell maintenance
and differentiation in the germarium, establishment of oocyte polarity, and
in several aspects of maternal regulation of zygotic development. Conclusions This study provides valuable resources to investigate a number of divergent
aspects of butterfly oogenesis requiring further research. In order to fully
unscramble butterfly oogenesis, we also now also have the resources to
investigate expression patterns of oogenesis genes under a range of
environmental conditions, and to establish their function.
Collapse
Affiliation(s)
- Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
Transposable elements and their fossil sequences occupy about half of the genome in mammals. While most of these selfish mobile elements have been inactivated by truncations and mutations during evolution, some copies remain competent to transpose and/or amplify, posing an ongoing genetic threat. To control such mutagenic sequences, host genomes have developed multiple layers of defence mechanisms, including epigenetic regulation and RNA silencing. Germ cells, in particular, employ the piwi-small RNA pathway, which plays a central and adaptive role in safeguarding the germline genome from retrotransposons. Recent studies have revealed that a class of developmentally regulated genes, which have long been implicated in germ cell specification and differentiation, such as vasa and tudor family genes, play key roles in the piwi pathway to suppress retrotransposons, indicating that the piwi-mediated genome protection is at the core of germline development. Furthermore, while the piwi system primarily operates post-transcriptionally at the RNA level, it also affects the epigenetics of cognate genome loci, offering an intriguing link between small RNAs and transcriptional control in mammals. In this review, we summarize our current understanding of the piwi pathway in mice, which is emerging as a fundamental component of spermatogenesis that ensures male fertility and genome integrity.
Collapse
Affiliation(s)
- Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
120
|
Ewen-Campen B, Jones TEM, Extavour CG. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect. Biol Open 2013; 2:556-68. [PMID: 23789106 PMCID: PMC3683158 DOI: 10.1242/bio.20134390] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 01/23/2023] Open
Abstract
Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this "germ plasm" acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | | | | |
Collapse
|
121
|
Akkouche A, Grentzinger T, Fablet M, Armenise C, Burlet N, Braman V, Chambeyron S, Vieira C. Maternally deposited germline piRNAs silence the tirant retrotransposon in somatic cells. EMBO Rep 2013; 14:458-64. [PMID: 23559065 DOI: 10.1038/embor.2013.38] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 01/17/2023] Open
Abstract
Transposable elements (TEs), whose propagation can result in severe damage to the host genome, are silenced in the animal gonad by Piwi-interacting RNAs (piRNAs). piRNAs produced in the ovaries are deposited in the embryonic germline and initiate TE repression in the germline progeny. Whether the maternally transmitted piRNAs play a role in the silencing of somatic TEs is however unknown. Here we show that maternally transmitted piRNAs from the tirant retrotransposon in Drosophila are required for the somatic silencing of the TE and correlate with an increase in histone H3K9 trimethylation an active tirant copy.
Collapse
Affiliation(s)
- Abdou Akkouche
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Li XZ, Roy CK, Dong X, Bolcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng Z, Zamore PD. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell 2013; 50:67-81. [PMID: 23523368 PMCID: PMC3671569 DOI: 10.1016/j.molcel.2013.02.016] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/17/2013] [Accepted: 02/12/2013] [Indexed: 02/07/2023]
Abstract
Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during postnatal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feedforward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals.
Collapse
Affiliation(s)
- Xin Zhiguo Li
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, Hur JK, Aravin AA, Tóth KF. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev 2013; 27:390-9. [PMID: 23392610 DOI: 10.1101/gad.209841.112] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the metazoan germline, piwi proteins and associated piwi-interacting RNAs (piRNAs) provide a defense system against the expression of transposable elements. In the cytoplasm, piRNA sequences guide piwi complexes to destroy complementary transposon transcripts by endonucleolytic cleavage. However, some piwi family members are nuclear, raising the possibility of alternative pathways for piRNA-mediated regulation of gene expression. We found that Drosophila Piwi is recruited to chromatin, colocalizing with RNA polymerase II (Pol II) on polytene chromosomes. Knockdown of Piwi in the germline increases expression of transposable elements that are targeted by piRNAs, whereas protein-coding genes remain largely unaffected. Derepression of transposons upon Piwi depletion correlates with increased occupancy of Pol II on their promoters. Expression of piRNAs that target a reporter construct results in a decrease in Pol II occupancy and an increase in repressive H3K9me3 marks and heterochromatin protein 1 (HP1) on the reporter locus. Our results indicate that Piwi identifies targets complementary to the associated piRNA and induces transcriptional repression by establishing a repressive chromatin state when correct targets are found.
Collapse
Affiliation(s)
- Adrien Le Thomas
- California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Guzzardo PM, Muerdter F, Hannon GJ. The piRNA pathway in flies: highlights and future directions. Curr Opin Genet Dev 2013; 23:44-52. [PMID: 23317515 DOI: 10.1016/j.gde.2012.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
Abstract
Piwi proteins, together with their bound Piwi-interacting RNAs, constitute an evolutionarily conserved, germline-specific innate immune system. The piRNA pathway is one of the key mechanisms for silencing transposable elements in the germline, thereby preserving genome integrity between generations. Recent work from several groups has significantly advanced our understanding of how piRNAs arise from discrete genomic loci, termed piRNA clusters, and how these Piwi-piRNA complexes enforce transposon silencing. Here, we discuss these recent findings, as well as highlight some aspects of piRNA biology that continue to escape our understanding.
Collapse
Affiliation(s)
- Paloma M Guzzardo
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
| | | | | |
Collapse
|
125
|
Wang CI, Alekseyenko AA, LeRoy G, Elia AEH, Gorchakov AA, Britton LMP, Elledge SJ, Kharchenko PV, Garcia BA, Kuroda MI. Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat Struct Mol Biol 2013; 20:202-9. [PMID: 23295261 DOI: 10.1038/nsmb.2477] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/21/2012] [Indexed: 12/28/2022]
Abstract
X-chromosome dosage compensation by the MSL (male-specific lethal) complex is required in Drosophila melanogaster to increase gene expression from the single male X to equal that of both female X chromosomes. Instead of focusing solely on protein complexes released from DNA, here we used chromatin-interacting protein MS (ChIP-MS) to identify MSL interactions on cross-linked chromatin. We identified MSL-enriched histone modifications, including histone H4 Lys16 acetylation and histone H3 Lys36 methylation, and CG4747, a putative Lys36-trimethylated histone H3 (H3K36me3)-binding protein. CG4747 is associated with the bodies of active genes, coincident with H3K36me3, and is mislocalized in the Set2 mutant lacking H3K36me3. CG4747 loss of function in vivo results in partial mislocalization of the MSL complex to autosomes, and RNA interference experiments confirm that CG4747 and Set2 function together to facilitate targeting of the MSL complex to active genes, validating the ChIP-MS approach.
Collapse
Affiliation(s)
- Charlotte I Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Barckmann B, Simonelig M. Control of maternal mRNA stability in germ cells and early embryos. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:714-24. [PMID: 23298642 DOI: 10.1016/j.bbagrm.2012.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/21/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
mRNA regulation is essential in germ cells and early embryos. In particular, late oogenesis and early embryogenesis occur in the absence of transcription and rely on maternal mRNAs stored in oocytes. These maternal mRNAs subsequently undergo a general decay in embryos during the maternal-to-zygotic transition in which the control of development switches from the maternal to the zygotic genome. Regulation of mRNA stability thus plays a key role during these early stages of development and is tightly interconnected with translational regulation and mRNA localization. A common mechanism in these three types of regulation implicates variations in mRNA poly(A) tail length. Recent advances in the control of mRNA stability include the widespread and essential role of regulated deadenylation in early developmental processes, as well as the mechanisms regulating mRNA stability which involve RNA binding proteins, microRNAs and interplay between the two. Also emerging are the roles that other classes of small non-coding RNAs, endo-siRNAs and piRNAs play in the control of mRNA decay, including connections between the regulation of transposable elements and cellular mRNA regulation through the piRNA pathway. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Bridlin Barckmann
- mRNA Regulation and Development, Institute of Human Genetics, Montpellier Cedex 5, France
| | | |
Collapse
|
127
|
Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 2013; 26:2361-73. [PMID: 23124062 DOI: 10.1101/gad.203786.112] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are endogenous small noncoding RNAs that act as guardians of the genome, protecting it from invasive transposable elements in the germline. Animals lacking piRNA functions show defects in gametogenesis and exhibit sterility. Their descendants are also predisposed to inheriting mutations. Thus, the piRNA pathway has evolved to repress transposons post-transcriptionally and/or transcriptionally. A growing number of studies on piRNAs have investigated piRNA-mediated gene silencing, including piRNA biogenesis. However, piRNAs remain the most enigmatic among all of the silencing-inducing small RNAs because of their complexity and uniqueness. Although piRNAs have been previously suggested to be germline-specific, recent studies have shown that piRNAs also play crucial roles in nongonadal cells. Furthermore, piRNAs have also recently been shown to have roles in multigenerational epigenetic phenomena in worms. The purpose of this review is to highlight new piRNA factors and novel insights in the piRNA world.
Collapse
Affiliation(s)
- Hirotsugu Ishizu
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
128
|
Kawaoka S, Hara K, Shoji K, Kobayashi M, Shimada T, Sugano S, Tomari Y, Suzuki Y, Katsuma S. The comprehensive epigenome map of piRNA clusters. Nucleic Acids Res 2012; 41:1581-90. [PMID: 23258708 PMCID: PMC3561999 DOI: 10.1093/nar/gks1275] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PIWI-interacting RNA (piRNA) clusters act as anti-transposon/retrovirus centers. Integration of selfish jumping elements into piRNA clusters generates de novo piRNAs, which in turn exert trans-silencing activity against these elements in animal gonads. To date, neither genome-wide chromatin modification states of piRNA clusters nor a mode for piRNA precursor transcription have been well understood. Here, to understand the chromatin landscape of piRNA clusters and how piRNA precursors are generated, we analyzed the transcriptome, transcription start sites (TSSs) and the chromatin landscape of the BmN4 cell line, which harbors the germ-line piRNA pathway. Notably, our epigenomic map demonstrated the highly euchromatic nature of unique piRNA clusters. RNA polymerase II was enriched for TSSs that transcribe piRNA precursors. piRNA precursors possessed 5'-cap structures as well as 3'-poly A-tails. Collectively, we envision that the euchromatic, opened nature of unique piRNA clusters or piRNA cluster-associated TSSs allows piRNA clusters to capture new insertions efficiently.
Collapse
Affiliation(s)
- Shinpei Kawaoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Hybrids of two Drosophila species show transposable element derepression and piRNA pathway malfunction, revealing adaptive evolution of piRNA pathway components. The Piwi-interacting RNA (piRNA) pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs) through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation. However, many protein components of the Drosophila piRNA pathway exhibit signatures of positive selection, suggesting that they also contribute to the evolution of host genome defense. Here we investigate piRNA pathway function and TE regulation in the F1 hybrids of interspecific crosses between D. melanogaster and D. simulans and compare them with intraspecific control crosses of D. melanogaster. We confirm previous reports showing that intraspecific crosses are characterized by derepression of paternally inherited TE families that are rare or absent from the maternal genome and piRNA pool, consistent with the role of maternally deposited piRNAs in shaping TE silencing. In contrast to the intraspecific cross, we discover that interspecific hybrids are characterized by widespread derepression of both maternally and paternally inherited TE families. Furthermore, the pattern of derepression of TE families in interspecific hybrids cannot be attributed to their paucity or absence from the piRNA pool of the maternal species. Rather, we demonstrate that interspecific hybrids closely resemble piRNA effector-protein mutants in both TE misregulation and aberrant piRNA production. We suggest that TE derepression in interspecific hybrids largely reflects adaptive divergence of piRNA pathway genes rather than species-specific differences in TE-derived piRNAs. Eukaryotic genomes contain large quantities of transposable elements (TEs), short self-replicating DNA sequences that can move within the genome. The selfish replication of TEs has potentially drastic consequences for the host, such as disruption of gene function, induction of sterility, and initiation or exacerbation of some cancers. Like the adaptive immune system that defends our bodies against pathogens, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful effects of TEs. Fundamental to piRNA-mediated defense is the production of small noncoding RNAs that act like antibodies to target replicating TEs for destruction by piRNA-effector proteins. piRNAs are expected to diverge rapidly between species in response to genome infection by increasingly disparate TEs. Here, we tested this hypothesis by examining how differences in piRNAs between two species of fruit fly relate to TE “immunity” in their hybrid offspring. Because piRNAs are maternally deposited, we expected excessive replication of paternal TEs in hybrids. Surprisingly, we observe increased activity of both maternal and paternal TEs, together with defects in piRNA production that are reminiscent of piRNA effector-protein mutants. Our observations reveal that piRNA effector-proteins do not function properly in hybrids, and we propose that adaptive evolution among piRNA effector-proteins contributes to host genome defense and leads to the functional incompatibilities that we observe in hybrids.
Collapse
MESH Headings
- Adaptation, Biological
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Crosses, Genetic
- DNA Transposable Elements
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Evolution, Molecular
- Female
- Genetic Complementation Test
- Genome, Insect
- Hybridization, Genetic
- Immunohistochemistry
- Inheritance Patterns
- Male
- Mutation
- Ovary/cytology
- Ovary/metabolism
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Phenotype
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Selection, Genetic
- Species Specificity
Collapse
Affiliation(s)
- Erin S. Kelleher
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (ESK); (DAB)
| | | | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (ESK); (DAB)
| |
Collapse
|
130
|
Gao M, Arkov AL. Next generation organelles: structure and role of germ granules in the germline. Mol Reprod Dev 2012; 80:610-23. [PMID: 23011946 DOI: 10.1002/mrd.22115] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022]
Abstract
Germ cells belong to a unique class of stem cells that gives rise to eggs and sperm, and ultimately to an entire organism after gamete fusion. In many organisms, germ cells contain electron-dense structures that are also known as nuage or germ granules. Although germ granules were discovered more than 100 years ago, their composition, structure, assembly, and function are not fully understood. Germ granules contain non-coding RNAs, mRNAs, and proteins required for germline development. Here we review recent studies that highlight the importance of several protein families in germ granule assembly and function, including germ granule inducers, which initiate the granule formation, and downstream components, such as RNA helicases and Tudor domain-Piwi protein-piRNA complexes. Assembly of these components into one granule is likely to result in a highly efficient molecular machine that ensures translational control and protects germline DNA from mutations caused by mobile genetic elements. Furthermore, recent studies have shown that different somatic cells, including stem cells and neurons, produce germ granule components that play a crucial role in stem cell maintenance and memory formation, indicating a much more diverse functional repertoire for these organelles than previously thought.
Collapse
Affiliation(s)
- Ming Gao
- Department of Biological Sciences, Murray State University, Murray, Kentucky 42071, USA
| | | |
Collapse
|
131
|
Mathioudakis N, Palencia A, Kadlec J, Round A, Tripsianes K, Sattler M, Pillai RS, Cusack S. The multiple Tudor domain-containing protein TDRD1 is a molecular scaffold for mouse Piwi proteins and piRNA biogenesis factors. RNA (NEW YORK, N.Y.) 2012; 18:2056-2072. [PMID: 22996915 PMCID: PMC3479395 DOI: 10.1261/rna.034181.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/31/2012] [Indexed: 06/01/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are small noncoding RNAs expressed in the germline of animals. They associate with Argonaute proteins of the Piwi subfamily, forming ribonucleoprotein complexes that are involved in maintaining genome integrity. The N-terminal region of some Piwi proteins contains symmetrically dimethylated arginines. This modification is thought to enable recruitment of Tudor domain-containing proteins (TDRDs), which might serve as platforms mediating interactions between various proteins in the piRNA pathway. We measured the binding affinity of the four individual extended Tudor domains (TDs) of murine TDRD1 protein for three different methylarginine-containing peptides from murine Piwi protein MILI. The results show a preference of TD2 and TD3 for consecutive MILI peptides, whereas TD4 and TD1 have, respectively, lower and very weak affinity for any peptide. The affinity of TD1 for methylarginine peptides can be restored by a single-point mutation back to the consensus aromatic cage sequence. These observations were confirmed by pull-down experiments with endogenous Piwi and Piwi-associated proteins. The crystal structure of TD3 bound to a methylated MILI peptide shows an unexpected orientation of the bound peptide, with additional contacts of nonmethylated residues being made outside of the aromatic cage, consistent with solution NMR titration experiments. Finally, the molecular envelope of the four tandem Tudor domains of TDRD1, derived from small angle scattering data, reveals a flexible, elongated shape for the protein. Overall, the results show that TDRD1 can accommodate different peptides from different proteins, and can therefore act as a scaffold protein for complex assembly in the piRNA pathway.
Collapse
Affiliation(s)
- Nikolas Mathioudakis
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| | - Andres Palencia
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| | - Jan Kadlec
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| | | | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ramesh S. Pillai
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, BP181, 38042 Grenoble Cedex 9, France
| |
Collapse
|
132
|
Olivieri D, Senti KA, Subramanian S, Sachidanandam R, Brennecke J. The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Mol Cell 2012; 47:954-69. [PMID: 22902557 PMCID: PMC3463805 DOI: 10.1016/j.molcel.2012.07.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/12/2022]
Abstract
In animal gonads, PIWI proteins and their bound 23–30 nt piRNAs guard genome integrity by the sequence specific silencing of transposons. Two branches of piRNA biogenesis, namely primary processing and ping-pong amplification, have been proposed. Despite an overall conceptual understanding of piRNA biogenesis, identity and/or function of the involved players are largely unknown. Here, we demonstrate an essential role for the female sterility gene shutdown in piRNA biology. Shutdown, an evolutionarily conserved cochaperone collaborates with Hsp90 during piRNA biogenesis, potentially at the loading step of RNAs into PIWI proteins. We demonstrate that Shutdown is essential for both primary and secondary piRNA populations in Drosophila. An extension of our study to previously described piRNA pathway members revealed three distinct groups of biogenesis factors. Together with data on how PIWI proteins are wired into primary and secondary processing, we propose a unified model for piRNA biogenesis.
Collapse
Affiliation(s)
- Daniel Olivieri
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
133
|
Preall JB, Czech B, Guzzardo PM, Muerdter F, Hannon GJ. shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA (NEW YORK, N.Y.) 2012; 18:1446-57. [PMID: 22753781 PMCID: PMC3404366 DOI: 10.1261/rna.034405.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 05/03/2023]
Abstract
In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors, which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown (shu), a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown.
Collapse
Affiliation(s)
- Jonathan B. Preall
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Benjamin Czech
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paloma M. Guzzardo
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Felix Muerdter
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gregory J. Hannon
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
134
|
Michalik KM, Böttcher R, Förstemann K. A small RNA response at DNA ends in Drosophila. Nucleic Acids Res 2012; 40:9596-603. [PMID: 22848104 PMCID: PMC3479179 DOI: 10.1093/nar/gks711] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small RNAs have been implicated in numerous cellular processes, including effects on chromatin structure and the repression of transposons. We describe the generation of a small RNA response at DNA ends in Drosophila that is analogous to the recently reported double-strand break (DSB)-induced RNAs or Dicer- and Drosha-dependent small RNAs in Arabidopsis and vertebrates. Active transcription in the vicinity of the break amplifies this small RNA response, demonstrating that the normal messenger RNA contributes to the endogenous small interfering RNAs precursor. The double-stranded RNA precursor forms with an antisense transcript that initiates at the DNA break. Breaks are thus sites of transcription initiation, a novel aspect of the cellular DSB response. This response is specific to a double-strand break since nicked DNA structures do not trigger small RNA production. The small RNAs are generated independently of the exact end structure (blunt, 3'- or 5'-overhang), can repress homologous sequences in trans and may therefore--in addition to putative roles in repair--exert a quality control function by clearing potentially truncated messages from genes in the vicinity of the break.
Collapse
Affiliation(s)
- Katharina M Michalik
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, München, Germany
| | | | | |
Collapse
|
135
|
Abstract
Tudor domain proteins function as molecular adaptors, binding methylated arginine or lysine residues on their substrates to promote physical interactions and the assembly of macromolecular complexes. Here, we discuss the emerging roles of Tudor domain proteins during development, most notably in the Piwi-interacting RNA pathway, but also in other aspects of RNA metabolism, the DNA damage response and chromatin modification.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Amit Anand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Toshie Kai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117604
| |
Collapse
|
136
|
Grentzinger T, Armenise C, Brun C, Mugat B, Serrano V, Pelisson A, Chambeyron S. piRNA-mediated transgenerational inheritance of an acquired trait. Genome Res 2012; 22:1877-88. [PMID: 22555593 PMCID: PMC3460183 DOI: 10.1101/gr.136614.111] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The maintenance of genome integrity is an essential trait to the successful transmission of genetic information. In animal germ cells, piRNAs guide PIWI proteins to silence transposable elements (TEs) in order to maintain genome integrity. In insects, most TE silencing in the germline is achieved by secondary piRNAs that are produced by a feed-forward loop (the ping-pong cycle), which requires the piRNA-directed cleavage of two types of RNAs: mRNAs of functional euchromatic TEs and heterochromatic transcripts that contain defective TE sequences. The first cleavage that initiates such an amplification loop remains poorly understood. Taking advantage of the existence of strains that are devoid of functional copies of the LINE-like I-element, we report here that in such Drosophila ovaries, the initiation of a ping-pong cycle is exclusively achieved by secondary I-element piRNAs that are produced in the ovary and deposited in the embryonic germline. This unusual secondary piRNA biogenesis, detected in the absence of functional I-element copies, results from the processing of sense and antisense transcripts of several different defective I-element. Once acquired, for instance after ancestor aging, this capacity to produce heterochromatic-only secondary piRNAs is partially transmitted through generations via maternal piRNAs. Furthermore, such piRNAs acting as ping-pong initiators in a chromatin-independent manner confer to the progeny a high capacity to repress the I-element mobility. Our study explains, at the molecular level, the basis for epigenetic memory of maternal immunity that protects females from hybrid dysgenesis caused by transposition of paternally inherited functional I-element.
Collapse
|
137
|
|
138
|
Pillai RS, Chuma S. piRNAs and their involvement in male germline development in mice. Dev Growth Differ 2012; 54:78-92. [PMID: 22221002 DOI: 10.1111/j.1440-169x.2011.01320.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs expressed in the animal gonads. They are implicated in silencing the genome instability threat posed by mobile genetic elements called transposons. Unlike other small RNAs, which use double-stranded precursors, piRNAs seem to arise from long single-stranded precursor transcripts expressed from discrete genomic regions. In mice, the Piwi pathway is essential for male fertility, and its loss-of-function mutations affect several distinct stages of spermatogenesis. While this small RNA pathway primarily operates post-transcriptionally, it also impacts DNA methylation of target retrotransposon loci, representing an intriguing model of RNA-directed epigenetic control in mammals. Remarkably the Piwi pathway components are specifically localized at germinal granule/nuage, an evolutionarily conserved but still enigmatic ribonucleoprotein compartment in the germline. The inaccessibility of the germline for easy experimental manipulation has meant that this class of RNAs has remained enigmatic. However, recent advances in the use of cell culture models and cell-free systems have greatly advanced our understanding. In this review, we briefly summarize our current understanding of the Piwi pathway, focusing on its developmental regulation, piRNA biogenesis and key function in male germline development from fetal spermatogonial stem cell stage to postnatal haploid spermiogenesis in mice.
Collapse
Affiliation(s)
- Ramesh S Pillai
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, BP 181 CNRS-UJF-EMBL International Unit (UMI 3265) for Virus Host Cell Interactions (UVHCI), 38042 Grenoble, France.
| | | |
Collapse
|
139
|
Arensburger P, Hice RH, Wright JA, Craig NL, Atkinson PW. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs. BMC Genomics 2011; 12:606. [PMID: 22171608 PMCID: PMC3259105 DOI: 10.1186/1471-2164-12-606] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The piRNA pathway has been shown in model organisms to be involved in silencing of transposons thereby providing genome stability. In D. melanogaster the majority of piRNAs map to these sequences. The medically important mosquito species Aedes aegypti has a large genome size, a high transposon load which includes Miniature Inverted repeat Transposable Elements (MITES) and an expansion of the piRNA biogenesis genes. Studies of transgenic lines of Ae. aegypti have indicated that introduced transposons are poorly remobilized and we sought to explore the basis of this. We wished to analyze the piRNA profile of Ae. aegypti and thereby determine if it is responsible for transposon silencing in this mosquito. RESULTS Estimated piRNA sequence diversity was comparable between Ae. aegypti and D. melanogaster, but surprisingly only 19% of mosquito piRNAs mapped to transposons compared to 51% for D. melanogaster. Ae. aegypti piRNA clusters made up a larger percentage of the total genome than those of D. melanogaster but did not contain significantly higher percentages of transposon derived sequences than other regions of the genome. Ae. aegypti contains a number of protein coding genes that may be sources of piRNA biogenesis with two, traffic jam and maelstrom, implicated in this process in model organisms. Several genes of viral origin were also targeted by piRNAs. Examination of six mosquito libraries that had previously been transformed with transposon derived sequence revealed that new piRNA sequences had been generated to the transformed sequences, suggesting that they may have stimulated a transposon inactivation mechanism. CONCLUSIONS Ae. aegypti has a large piRNA complement that maps to transposons but primarily gene sequences, including many viral-derived sequences. This, together the more uniform distribution of piRNA clusters throughout its genome, suggest that some aspects of the piRNA system differ between Ae. aegypti and D. melanogaster.
Collapse
Affiliation(s)
- Peter Arensburger
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Robert H Hice
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Jennifer A Wright
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Nancy L Craig
- Department of Molecular Biology & Genetics and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 20742,USA
| | - Peter W Atkinson
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| |
Collapse
|