101
|
Mozgova I, Köhler C, Hennig L. Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:121-32. [PMID: 25762111 DOI: 10.1111/tpj.12828] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 05/08/2023]
Abstract
Plant ontogeny relies on the correct timing and sequence of transitions between individual developmental phases. These are specified by gene expression patterns that are established by the balanced action of activators and repressors. Polycomb repressive complexes (PRCs) represent an evolutionarily conserved system of epigenetic gene repression that governs the establishment and maintenance of cell, tissue and organ identity, contributing to the correct execution of the developmental programs. PRC2 is a four-subunit histone methyltransferase complex that catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), which contributes to the change of chromatin structure and long-lasting gene repression. Here, we review the composition and molecular function of the different known PRC2 complexes in plants, and focus on the role of PRC2 in mediating the establishment of different developmental phases and transitions between them.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| |
Collapse
|
102
|
Berry S, Dean C. Environmental perception and epigenetic memory: mechanistic insight through FLC. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:133-48. [PMID: 25929799 PMCID: PMC4691321 DOI: 10.1111/tpj.12869] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/13/2015] [Accepted: 04/20/2015] [Indexed: 05/18/2023]
Abstract
Chromatin plays a central role in orchestrating gene regulation at the transcriptional level. However, our understanding of how chromatin states are altered in response to environmental and developmental cues, and then maintained epigenetically over many cell divisions, remains poor. The floral repressor gene FLOWERING LOCUS C (FLC) in Arabidopsis thaliana is a useful system to address these questions. FLC is transcriptionally repressed during exposure to cold temperatures, allowing studies of how environmental conditions alter expression states at the chromatin level. FLC repression is also epigenetically maintained during subsequent development in warm conditions, so that exposure to cold may be remembered. This memory depends on molecular complexes that are highly conserved among eukaryotes, making FLC not only interesting as a paradigm for understanding biological decision-making in plants, but also an important system for elucidating chromatin-based gene regulation more generally. In this review, we summarize our understanding of how cold temperature induces a switch in the FLC chromatin state, and how this state is epigenetically remembered. We also discuss how the epigenetic state of FLC is reprogrammed in the seed to ensure a requirement for cold exposure in the next generation.
Collapse
Affiliation(s)
- Scott Berry
- John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
- * For correspondence (e-mail )
| |
Collapse
|
103
|
Functions of plants long non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:155-62. [PMID: 26112461 DOI: 10.1016/j.bbagrm.2015.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been emerged as important players for various biological pathways, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing and nuclear organization. A large number of lncRNAs had already been identified by different approaches in plants, while the functions of only a few of them have been investigated. This review will summarize our current understanding of a wide range of plant lncRNAs functions, and highlight their roles in the regulation of diverse pathways in plants. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
104
|
Ariel F, Romero-Barrios N, Jégu T, Benhamed M, Crespi M. Battles and hijacks: noncoding transcription in plants. TRENDS IN PLANT SCIENCE 2015; 20:362-71. [PMID: 25850611 DOI: 10.1016/j.tplants.2015.03.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 05/08/2023]
Abstract
Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription.
Collapse
Affiliation(s)
- Federico Ariel
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Natali Romero-Barrios
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Teddy Jégu
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Martin Crespi
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|
105
|
Zhang C, Cao L, Rong L, An Z, Zhou W, Ma J, Shen WH, Zhu Y, Dong A. The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:655-68. [PMID: 25832737 DOI: 10.1111/tpj.12840] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 05/10/2023]
Abstract
INO80 is a conserved chromatin-remodeling factor in eukaryotes. While a previous study reported that the Arabidopsis thaliana INO80 (AtINO80) is required for somatic homologous recombination (HR), the role of AtINO80 in plant growth and development remains obscure. Here, we identified and characterized two independent atino80 mutant alleles, atino80-5 and atino80-6, which display similar and pleiotropic phenotypes, including smaller plant and organ size, and late flowering. Under standard growth conditions, atino80-5 showed decreased HR; however, after genotoxic treatment, HR in the mutant increased, accompanied by more DNA double-strand breaks and stronger cellular responses. Transcription analysis showed that many developmental and environmental responsive genes are overrepresented in the perturbed genes in atino80-5. These genes significantly overlapped with the category of H2A.Z body-enriched genes. AtINO80 also interacts with H2A.Z, and facilitates the enrichment of H2A.Z at the ends of the key flowering repressor genes FLC and MAF4/5. Our characterization of the atino80-5 and atino80-6 mutants confirms and extends the previous AtINO80 study, and provides perspectives for linking studies of epigenetic mechanisms involved in plant chromatin stability with plant response to developmental and environmental cues.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Lin Cao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Liang Rong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Wangbin Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cédex, France
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| |
Collapse
|
106
|
Xiao J, Wagner D. Polycomb repression in the regulation of growth and development in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:15-24. [PMID: 25449722 DOI: 10.1016/j.pbi.2014.10.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 05/18/2023]
Abstract
Chromatin state is critical for cell identity and development in multicellular eukaryotes. Among the regulators of chromatin state, Polycomb group (PcG) proteins stand out because of their role in both establishment and maintenance of cell identity. PcG proteins act in two major complexes in metazoans and plants. These complexes function to epigenetically-in a mitotically heritable manner-prevent expression of important developmental regulators at the wrong stage of development or in the wrong tissue. In Arabidopsis, PcG function is required throughout the life cycle from seed germination to embryo formation. Recent studies have expanded our knowledge regarding the biological roles and the regulation of the activity of PcG complexes. In this review, we discuss novel functions of Polycomb repression in plant development as well as advances in understanding PcG complex recruitment, activity regulation and removal in Arabidopsis and other plant species.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
107
|
Helliwell CA, Anderssen RS, Robertson M, Finnegan EJ. How is FLC repression initiated by cold? TRENDS IN PLANT SCIENCE 2015; 20:76-82. [PMID: 25600480 DOI: 10.1016/j.tplants.2014.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 05/07/2023]
Abstract
Vernalization is the promotion of flowering in response to prolonged exposure to low temperatures. In Arabidopsis, FLOWERING LOCUS C (FLC), a suppressor of flowering, is repressed by low temperatures but the mechanism leading to the initial decrease in FLC transcription remains a mystery. No mutants that block the repression of FLC at low temperatures have been identified to date. If the failure to identify such a mutant is assumed to imply that no such mutant exists, then it follows that the first response to the drop in temperature is physical, not genetic. In this Opinion article we propose that the drop in temperature first causes a simple change in the topology of the chromatin polymer, which in turn initiates the repression of FLC transcription.
Collapse
Affiliation(s)
- Chris A Helliwell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia
| | | | - Masumi Robertson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia
| | - E Jean Finnegan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia.
| |
Collapse
|
108
|
Abstract
Polycomb group (PcG) proteins are conserved chromatin regulators involved in the control of key developmental programs in eukaryotes. They collectively provide the transcriptional memory unique to each cell identity by maintaining transcriptional states of developmental genes. PcG proteins form multi-protein complexes, known as Polycomb repressive complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2). PRC1 and PRC2 contribute to the stable gene silencing in part through catalyzing covalent histone modifications. Components of PRC1 and PRC2 are well conserved from plants to animals. PcG-mediated gene silencing has been extensively investigated in efforts to understand molecular mechanisms underlying developmental programs in eukaryotes. Here, we describe our current knowledge on PcG-mediated gene repression which dictates developmental programs by dynamic layers of regulatory activities, with an emphasis given to the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712,
USA
| | - Sibum Sung
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712,
USA
| |
Collapse
|
109
|
Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 2014; 515:587-90. [PMID: 25219852 PMCID: PMC4247276 DOI: 10.1038/nature13722] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/29/2014] [Indexed: 01/29/2023]
Abstract
The reprogramming of epigenetic states in gametes and embryos is essential for correct development in plants and mammals. In plants, the germ line arises from somatic tissues of the flower, necessitating the erasure of chromatin modifications that have accumulated at specific loci during development or in response to external stimuli. If this process occurs inefficiently, it can lead to epigenetic states being inherited from one generation to the next. However, in most cases, accumulated epigenetic modifications are efficiently erased before the next generation. An important example of epigenetic reprogramming in plants is the resetting of the expression of the floral repressor locus FLC in Arabidopsis thaliana. FLC is epigenetically silenced by prolonged cold in a process called vernalization. However, the locus is reactivated before the completion of seed development, ensuring the requirement for vernalization in every generation. In contrast to our detailed understanding of the polycomb-mediated epigenetic silencing induced by vernalization, little is known about the mechanism involved in the reactivation of FLC. Here we show that a hypomorphic mutation in the jumonji-domain-containing protein ELF6 impaired the reactivation of FLC in reproductive tissues, leading to the inheritance of a partially vernalized state. ELF6 has H3K27me3 demethylase activity, and the mutation reduced this enzymatic activity in planta. Consistent with this, in the next generation of mutant plants, H3K27me3 levels at the FLC locus stayed higher, and FLC expression remained lower, than in the wild type. Our data reveal an ancient role for H3K27 demethylation in the reprogramming of epigenetic states in plant and mammalian embryos.
Collapse
|
110
|
Schubert V, Rudnik R, Schubert I. Chromatin associations in Arabidopsis interphase nuclei. Front Genet 2014; 5:389. [PMID: 25431580 PMCID: PMC4230181 DOI: 10.3389/fgene.2014.00389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/23/2014] [Indexed: 11/30/2022] Open
Abstract
The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analyzed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fiber movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns. Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its 10 centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben Stadt Seeland, Germany
| | - Radoslaw Rudnik
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben Stadt Seeland, Germany ; Faculty of Science and Central European Institute of Technology, Masaryk University Brno, Czech Republic
| |
Collapse
|
111
|
Wang JW. Regulation of flowering time by the miR156-mediated age pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4723-30. [PMID: 24958896 DOI: 10.1093/jxb/eru246] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Precise flowering time is critical to reproductive success. In response to diverse exogenous and endogenous cues including age, hormones, photoperiod, and temperature, the floral transition is controlled by a complex regulatory network, which involves extensive crosstalks, feedback, or feedforward loops between the components within flowering time pathways. The newly identified age pathway, which is controlled by microRNA156 (miR156) and its target SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors, ensures plants flower under non-inductive conditions. In this review, I summarize the recent advance in understanding of the age pathway, focusing on the regulatory basis of the developmental decline in miR156 level by age and the molecular mechanism by which the age pathway is integrated into other flowering time pathways.
Collapse
Affiliation(s)
- Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology (SIPPE), Shanghai Institutes for Biological Sciences (SIBS), Shanghai 200032, P. R. China
| |
Collapse
|
112
|
Zhu D, Rosa S, Dean C. Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J Mol Biol 2014; 427:659-69. [PMID: 25180639 DOI: 10.1016/j.jmb.2014.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Changes in nuclear organization are considered an important complement to trans-acting factors, histone modifications and non-coding RNAs in robust and stable epigenetic silencing. However, how these multiple layers interconnect mechanistically to reinforce each other's activity is still unclear. A system providing long timescales facilitating analysis of these interconnections is vernalization. This involves the Polycomb-mediated epigenetic silencing of flowering locus C (FLC) that occurs as Arabidopsis plants are exposed to prolonged cold. Analysis of changes in nuclear organization during vernalization has revealed that disruption of a gene loop and physical clustering of FLC loci are part of the vernalization mechanism. These events occur at different times and thus contribute to distinct aspects of the silencing mechanism. The physical clustering of FLC loci is tightly correlated with the accumulation of specific Polycomb complexes/H3K27me3 at a localized intragenic site during the cold. Since the quantitative nature of vernalization is a reflection of a bistable cell autonomous switch in an increasing number of cells, this correlation suggests a tight connection between the switching mechanism and changes in nuclear organization. This integrated picture is likely to be informative for many epigenetic mechanisms.
Collapse
Affiliation(s)
- Danling Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stefanie Rosa
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
113
|
Luo C, Dong J, Zhang Y, Lam E. Decoding the role of chromatin architecture in development: coming closer to the end of the tunnel. FRONTIERS IN PLANT SCIENCE 2014; 5:374. [PMID: 25191327 PMCID: PMC4140164 DOI: 10.3389/fpls.2014.00374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Form and function in biology are intimately related aspects that are often difficult to untangle. While the structural aspects of chromatin organization were apparent from early cytological observations long before the molecular details of chromatin functions were deciphered, the extent to which genome architecture may impact its output remains unclear. A major roadblock to resolve this issue is the divergent scales, both temporal and spatial, of the experimental approaches for examining these facets of chromatin biology. Recent advances in high-throughput sequencing and informatics to model and monitor genome-wide chromatin contact sites provide the much-needed platform to close this gap. This mini-review will focus on discussing recent efforts applying new technologies to elucidate the roles of genome architecture in coordinating global gene expression output. Our discussion will emphasize the potential roles of differential genome 3-D structure as a driver for cell fate specification of multicellular organisms. An integrated approach that combines multiple new methodologies may finally have the necessary temporal and spatial resolution to provide clarity on the roles of chromatin architecture during development.
Collapse
Affiliation(s)
- Chongyuan Luo
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
| | - Juan Dong
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
- The Waksman Institute of Microbiology, Rutgers the State University of New JerseyPiscataway, NJ, USA
| | - Yi Zhang
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
| | - Eric Lam
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
| |
Collapse
|
114
|
Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 2014; 55:694-707. [PMID: 25132175 DOI: 10.1016/j.molcel.2014.07.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/02/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022]
Abstract
Chromosomes form 3D structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals but, instead, contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome.
Collapse
Affiliation(s)
- Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shawn J Cokus
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Jixian Zhai
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
115
|
Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives. Nat Commun 2014; 5:4457. [PMID: 25030056 PMCID: PMC4109010 DOI: 10.1038/ncomms5457] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/19/2014] [Indexed: 11/11/2022] Open
Abstract
Antisense RNA (asRNA) COOLAIR is expressed at A. thaliana FLOWERING LOCUS C (FLC) in response to winter temperatures. Its contribution to cold-induced silencing of FLC was proposed but its functional and evolutionary significance remain unclear. Here we identify a highly conserved block containing the COOLAIR first exon and core promoter at the 3′ end of several FLC orthologues. Furthermore, asRNAs related to COOLAIR are expressed at FLC loci in the perennials A. alpina and A. lyrata, although some splicing variants differ from A. thaliana. Study of the A. alpina orthologue, PERPETUAL FLOWERING 1 (PEP1), demonstrates that AaCOOLAIR is induced each winter of the perennial life cycle. Introduction of PEP1 into A. thaliana reveals that AaCOOLAIR cis-elements confer cold-inducibility in this heterologous species while the difference between PEP1 and FLC mRNA patterns depends on both cis-elements and species-specific trans-acting factors. Thus, expression of COOLAIR is highly conserved, supporting its importance in FLC regulation. FLOWERING LOCUS C (FLC) is thought to control the flowering time of A. thaliana in response to winter temperatures, in a process known as vernalization. Here, the authors suggest that the COOLAIR antisense RNA, which is conserved across plant species, acts to repress the expression of FLC during vernalization.
Collapse
|
116
|
Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A, Benhamed M, Crespi M. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 2014; 55:383-96. [PMID: 25018019 DOI: 10.1016/j.molcel.2014.06.011] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/29/2014] [Accepted: 06/04/2014] [Indexed: 11/19/2022]
Abstract
The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes.
Collapse
Affiliation(s)
- Federico Ariel
- CNRS, Institut des Sciences du Végétal, Saclay Plant Sciences, 91198 Gif-sur-Yvette and Université Paris Diderot-Paris 7, 75013 Paris, France
| | - Teddy Jegu
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, SPS Saclay Plant Sciences, 91405 Orsay, France
| | - David Latrasse
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, SPS Saclay Plant Sciences, 91405 Orsay, France
| | - Natali Romero-Barrios
- CNRS, Institut des Sciences du Végétal, Saclay Plant Sciences, 91198 Gif-sur-Yvette and Université Paris Diderot-Paris 7, 75013 Paris, France
| | - Aurélie Christ
- CNRS, Institut des Sciences du Végétal, Saclay Plant Sciences, 91198 Gif-sur-Yvette and Université Paris Diderot-Paris 7, 75013 Paris, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, SPS Saclay Plant Sciences, 91405 Orsay, France; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Martin Crespi
- CNRS, Institut des Sciences du Végétal, Saclay Plant Sciences, 91198 Gif-sur-Yvette and Université Paris Diderot-Paris 7, 75013 Paris, France.
| |
Collapse
|
117
|
Grzechnik P, Tan-Wong SM, Proudfoot NJ. Terminate and make a loop: regulation of transcriptional directionality. Trends Biochem Sci 2014; 39:319-27. [PMID: 24928762 PMCID: PMC4085477 DOI: 10.1016/j.tibs.2014.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 01/28/2023]
Abstract
Transcriptional directionality is controlled by premature transcription termination. Transcriptional directionality is enforced by gene looping. mRNA-specific termination signals and factors are required for gene looping.
Bidirectional promoters are a common feature of many eukaryotic organisms from yeast to humans. RNA Polymerase II that is recruited to this type of promoter can start transcribing in either direction using alternative DNA strands as the template. Such promiscuous transcription can lead to the synthesis of unwanted transcripts that may have negative effects on gene expression. Recent studies have identified transcription termination and gene looping as critical players in the enforcement of promoter directionality. Interestingly, both mechanisms share key components. Here, we focus on recent findings relating to the transcriptional output of bidirectional promoters.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sue Mei Tan-Wong
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
118
|
Franklin KA, Toledo-Ortiz G, Pyott DE, Halliday KJ. Interaction of light and temperature signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2859-71. [PMID: 24569036 DOI: 10.1093/jxb/eru059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Light and temperature are arguably two of the most important signals regulating the growth and development of plants. In addition to their direct energetic effects on plant growth, light and temperature provide vital immediate and predictive cues for plants to ensure optimal development both spatially and temporally. While the majority of research to date has focused on the contribution of either light or temperature signals in isolation, it is becoming apparent that an understanding of how the two interact is essential to appreciate fully the complex and elegant ways in which plants utilize these environmental cues. This review will outline the diverse mechanisms by which light and temperature signals are integrated and will consider why such interconnected systems (as opposed to entirely separate light and temperature pathways) may be evolutionarily favourable.
Collapse
Affiliation(s)
- Keara A Franklin
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Gabriela Toledo-Ortiz
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| | - Douglas E Pyott
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| | - Karen J Halliday
- SynthSys, University of Edinburgh, C.H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| |
Collapse
|
119
|
Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor. Proc Natl Acad Sci U S A 2014; 111:7468-73. [PMID: 24799695 DOI: 10.1073/pnas.1406635111] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppressor mutagenesis aimed at understanding the importance of this sense-antisense transcriptional circuitry has identified a role for Arabidopsis cyclin-dependent kinase C (CDKC;2) in FLC repression. CDKC;2 functions in an Arabidopsis positive transcription elongation factor b (P-TEFb) complex and influences global RNA polymerase II (Pol II) Ser(2) phosphorylation levels. CDKC;2 activity directly promotes COOLAIR transcription but does not affect an FLC transgene missing the COOLAIR promoter. In the endogenous gene context, however, the reduction of COOLAIR transcription by cdkc;2 disrupts a COOLAIR-mediated repression mechanism that increases FLC expression. This disruption then feeds back to indirectly increase COOLAIR expression. This tight interconnection between sense and antisense transcription, together with differential promoter sensitivity to P-TEFb, is central to quantitative regulation of this important floral repressor gene.
Collapse
|
120
|
Abstract
Plants have to cope with constantly changing conditions and need to respond to environmental stresses and seasonal changes in temperature and photoperiod. Alignment of their development with particular seasons requires memory mechanisms and an ability to integrate noisy temperature signals over long time scales. An increasingly well understood example of how seasonal changes influence development is vernalization, the acceleration of flowering by prolonged cold. Vernalization has been dissected in Arabidopsis thaliana and shown to involve a Polycomb-based epigenetic memory system. This minireview summarizes our current understanding of this mechanism and its modulation through adaptation. A key concept that has emerged is that cell-autonomous switching between epigenetic states can provide the basis for quantitative accumulation of environmental memory.
Collapse
Affiliation(s)
- Jie Song
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | | | | |
Collapse
|
121
|
A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3-GENES GENOMES GENETICS 2014; 4:805-12. [PMID: 24607887 PMCID: PMC4025479 DOI: 10.1534/g3.114.010686] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One of the major quantitative trait loci for flowering time in maize, the Vegetative to generative transition 1 (Vgt1) locus, corresponds to an upstream (70 kb) noncoding regulatory element of ZmRap2.7, a repressor of flowering. At Vgt1, a miniature transposon (MITE) insertion into a conserved noncoding sequence was previously found to be highly associated with early flowering in independent studies. Because cytosine methylation is known to be associated with transposons and to influence gene expression, we aimed to investigate how DNA methylation patterns in wild-type and mutant Vgt1 correlate with ZmRap2.7 expression. The methylation state at Vgt1 was assayed in leaf samples of maize inbred and F1 hybrid samples, and at the syntenic region in sorghum. The Vgt1-linked conserved noncoding sequence was very scarcely methylated both in maize and sorghum. However, in the early maize Vgt1 allele, the region immediately flanking the highly methylated MITE insertion was significantly more methylated and showed features of methylation spreading. Allele-specific expression assays revealed that the presence of the MITE and its heavy methylation appear to be linked to altered ZmRap2.7 transcription. Although not providing proof of causative connection, our results associate transposon-linked differential methylation with allelic state and gene expression at a major flowering time quantitative trait locus in maize.
Collapse
|
122
|
Appels R, Nystrom-Persson J, Keeble-Gagnere G. Advances in genome studies in plants and animals. Funct Integr Genomics 2014; 14:1-9. [PMID: 24626952 PMCID: PMC3968518 DOI: 10.1007/s10142-014-0364-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 01/30/2023]
Abstract
The area of plant and animal genomics covers the entire suite of issues in biology because it aims to determine the structure and function of genetic material. Although specific issues define research advances at an organism level, it is evident that many of the fundamental features of genome structure and the translation of encoded information to function share common ground. The Plant and Animal Genome (PAG) conference held in San Diego (California), in January each year provides an overview across all organisms at the genome level, and often it is evident that investments in the human area provide leadership, applications, and discoveries for researchers studying other organisms. This mini-review utilizes the plenary lectures as a basis for summarizing the trends in the genome-level studies of organisms, and the lectures include presentations by Ewan Birney (EBI, UK), Eric Green (NIH, USA), John Butler (NIST, USA), Elaine Mardis (Washington, USA), Caroline Dean (John Innes Centre, UK), Trudy Mackay (NC State University, USA), Sue Wessler (UC Riverside, USA), and Patrick Wincker (Genoscope, France). The work reviewed is based on published papers. Where unpublished information is cited, permission to include the information in this manuscript was obtained from the presenters.
Collapse
Affiliation(s)
- R Appels
- Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, Perth, WA, 6150, Australia,
| | | | | |
Collapse
|
123
|
Jégu T, Latrasse D, Delarue M, Hirt H, Domenichini S, Ariel F, Crespi M, Bergounioux C, Raynaud C, Benhamed M. The BAF60 subunit of the SWI/SNF chromatin-remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis. THE PLANT CELL 2014; 26:538-51. [PMID: 24510722 PMCID: PMC3967024 DOI: 10.1105/tpc.113.114454] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus.
Collapse
Affiliation(s)
- Teddy Jégu
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - David Latrasse
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Marianne Delarue
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Heribert Hirt
- Institut des Sciences du Végétal, UPR CNRS, F-91190 Gif-sur-Yvette, France
| | - Séverine Domenichini
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Federico Ariel
- Unité de Recherche en Génomique Végétale Plant Genomics, INRA/CNRS/University of Evry, F-91057 Evry, France
| | - Martin Crespi
- Unité de Recherche en Génomique Végétale Plant Genomics, INRA/CNRS/University of Evry, F-91057 Evry, France
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
- Address correspondence to
| |
Collapse
|
124
|
Guo T, Fang Y. Functional organization and dynamics of the cell nucleus. FRONTIERS IN PLANT SCIENCE 2014; 5:378. [PMID: 25161658 PMCID: PMC4130368 DOI: 10.3389/fpls.2014.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/16/2014] [Indexed: 05/16/2023]
Abstract
The eukaryotic cell nucleus enclosed within the nuclear envelope harbors organized chromatin territories and various nuclear bodies as sub-nuclear compartments. This higher-order nuclear organization provides a unique environment to regulate the genome during replication, transcription, maintenance, and other processes. In this review, we focus on the plant four-dimensional nuclear organization, its dynamics and function in response to signals during development or stress.
Collapse
Affiliation(s)
| | - Yuda Fang
- *Correspondence: Yuda Fang, National key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China e-mail:
| |
Collapse
|
125
|
Grob S, Schmid MW, Luedtke NW, Wicker T, Grossniklaus U. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol 2013; 14:R129. [PMID: 24267747 PMCID: PMC4053840 DOI: 10.1186/gb-2013-14-11-r129] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/24/2013] [Indexed: 12/22/2022] Open
Abstract
Background The packaging of long chromatin fibers in the nucleus poses a major challenge, as it must fulfill both physical and functional requirements. Until recently, insights into the chromosomal architecture of plants were mainly provided by cytogenetic studies. Complementary to these analyses, chromosome conformation capture technologies promise to refine and improve our view on chromosomal architecture and to provide a more generalized description of nuclear organization. Results Employing circular chromosome conformation capture, this study describes chromosomal architecture in Arabidopsis nuclei from a genome-wide perspective. Surprisingly, the linear organization of chromosomes is reflected in the genome-wide interactome. In addition, we study the interplay of the interactome and epigenetic marks and report that the heterochromatic knob on the short arm of chromosome 4 maintains a pericentromere-like interaction profile and interactome despite its euchromatic surrounding. Conclusion Despite the extreme condensation that is necessary to pack the chromosomes into the nucleus, the Arabidopsis genome appears to be packed in a predictive manner, according to the following criteria: heterochromatin and euchromatin represent two distinct interactomes; interactions between chromosomes correlate with the linear position on the chromosome arm; and distal chromosome regions have a higher potential to interact with other chromosomes.
Collapse
|
126
|
Rosa S, De Lucia F, Mylne JS, Zhu D, Ohmido N, Pendle A, Kato N, Shaw P, Dean C. Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes Dev 2013; 27:1845-50. [PMID: 24013499 PMCID: PMC3778238 DOI: 10.1101/gad.221713.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
How nuclear organization influences chromatin changes at individual loci is poorly understood. Vernalization, the promotion of flowering by cold, involves Polycomb-mediated silencing of FLOWERING LOCUS C (FLC). Here, Rosa et al. use live-cell imaging to monitor nuclear organization and FLC dynamics during vernalization. The data reveal that Polycomb-dependent clustering of FLC alleles is a cold-induced step in gene silencing. This study suggests that physical clustering of target genes may be a common feature of Polycomb-mediated epigenetic silencing mechanisms. Vernalization, the promotion of flowering by cold, involves Polycomb-mediated epigenetic silencing of FLOWERING LOCUS C (FLC). Cold progressively promotes cell-autonomous switching to a silenced state. Here, we used live-cell imaging of FLC-lacO to monitor changes in nuclear organization during vernalization. FLC-lacO alleles physically cluster during the cold and generally remain so after plants are returned to warm. Clustering is dependent on the Polycomb trans-factors necessary for establishment of the FLC silenced state but not on LIKE HETEROCHROMATIN PROTEIN 1, which functions to maintain silencing. These data support the view that physical clustering may be a common feature of Polycomb-mediated epigenetic switching mechanisms.
Collapse
Affiliation(s)
- Stefanie Rosa
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Sun Q, Csorba T, Skourti-Stathaki K, Proudfoot NJ, Dean C. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 2013; 340:619-21. [PMID: 23641115 PMCID: PMC5144995 DOI: 10.1126/science.1234848] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Roles for long noncoding RNAs (lncRNAs) in gene expression are emerging, but regulation of the lncRNA itself is poorly understood. We have identified a homeodomain protein, AtNDX, that regulates COOLAIR, a set of antisense transcripts originating from the 3' end of Arabidopsis FLOWERING LOCUS C (FLC). AtNDX associates with single-stranded DNA rather than double-stranded DNA non-sequence-specifically in vitro, and localizes to a heterochromatic region in the COOLAIR promoter in vivo. Single-stranded DNA was detected in vivo as part of an RNA-DNA hybrid, or R-loop, that covers the COOLAIR promoter. R-loop stabilization mediated by AtNDX inhibits COOLAIR transcription, which in turn modifies FLC expression. Differential stabilization of R-loops could be a general mechanism influencing gene expression in many organisms.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chromatin/metabolism
- DNA, Plant/chemistry
- DNA, Plant/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/metabolism
- Gene Expression Regulation, Plant
- Homeodomain Proteins/chemistry
- Homeodomain Proteins/metabolism
- MADS Domain Proteins/genetics
- MADS Domain Proteins/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Transcription Termination, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Qianwen Sun
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tibor Csorba
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
128
|
Mukundan B, Ansari A. Srb5/Med18-mediated termination of transcription is dependent on gene looping. J Biol Chem 2013; 288:11384-94. [PMID: 23476016 PMCID: PMC3630880 DOI: 10.1074/jbc.m112.446773] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/21/2013] [Indexed: 11/06/2022] Open
Abstract
We have earlier demonstrated the involvement of Mediator subunit Srb5/Med18 in the termination of transcription for a subset of genes in yeast. Srb5/Med18 could affect termination either indirectly by modulating CTD-Ser(2) phosphorylation near the 3' end of a gene or directly by physically interacting with the cleavage and polyadenylation factor or cleavage factor 1 (CF1) complex and facilitating their recruitment to the terminator region. Here, we show that the CTD-Ser(2) phosphorylation pattern on Srb5/Med18-dependent genes remains unchanged in the absence of Srb5 in cells. Coimmunoprecipitation analysis revealed the physical interaction of Srb5/Med18 with the CF1 complex. No such interaction of Srb5/Med18 with the cleavage and polyadenylation factor complex, however, could be detected. The Srb5/Med18-CF1 interaction was not observed in the looping defective sua7-1 strain. Srb5/Med18 cross-linking to the 3' end of genes was also abolished in the sua7-1 strain. Chromosome conformation capture analysis revealed that the looped architecture of Srb5/Med18-dependent genes was abrogated in srb5(-) cells. Furthermore, Srb5-dependent termination of transcription was compromised in the looping defective sua7-1 cells. The overall conclusion of these results is that gene looping plays a crucial role in Srb5/Med18 facilitated termination of transcription, and the looped gene architecture may have a general role in termination of transcription in budding yeast.
Collapse
Affiliation(s)
- Banupriya Mukundan
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Athar Ansari
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|