101
|
Nikolakis G, Makrantonaki E, Zouboulis CC. Skin mirrors human aging. Horm Mol Biol Clin Investig 2015; 16:13-28. [PMID: 25436743 DOI: 10.1515/hmbci-2013-0018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 06/18/2013] [Indexed: 01/13/2023]
Abstract
Abstract Aged skin exhibits disturbed lipid barrier, angiogenesis, production of sweat, immune functions, and calcitriol synthesis as well as the tendency towards development of certain benign or malignant diseases. These complex biological processes comprise endogenous and exogenous factors. Ethnicity also markedly influences the phenotype of skin aging. The theories of cellular senescence, telomere shortening and decreased proliferative capacity, mitochondrial DNA single mutations, the inflammation theory, and the free radical theory try to explain the biological background of the global aging process, which is mirrored in the skin. The development of advanced glycation end-products and the declining hormonal levels are major factors influencing intrinsic aging. Chronic photodamage of the skin is the prime factor leading to extrinsic skin aging. The deterioration of important skin functions, due to intrinsic and extrinsic aging, leads to clinical manifestations, which mirror several internal age-associated diseases such as diabetes, arterial hypertension and malignancies.
Collapse
|
102
|
Janeczek AA, Scarpa E, A. Newman T, Oreffo ROC, S. Tare R, Evans ND. Skeletal Stem Cell Niche of the Bone Marrow. TISSUE-SPECIFIC STEM CELL NICHE 2015. [DOI: 10.1007/978-3-319-21705-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
103
|
Castellana D, Paus R, Perez-Moreno M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol 2014; 12:e1002002. [PMID: 25536657 PMCID: PMC4275176 DOI: 10.1371/journal.pbio.1002002] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/10/2014] [Indexed: 12/17/2022] Open
Abstract
Castellana, Paus, and Perez-Moreno discover that skin resident macrophages signal to skin stem cells via Wnt ligands to activate the hair follicle life cycle. Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. The cyclic life of hair follicles consists of recurring phases of growth, decay, and rest. Previous studies have identified signals that prompt a new phase of hair growth through the activation of resting hair follicle stem cells (HF-SCs). In addition to these signals, recent findings have shown that cues arising from the neighboring skin environment, in which hair follicles dwell, also participate in controlling hair follicle growth. Here we show that skin resident macrophages surround and signal to resting HF-SCs, regulating their entry into a new phase of hair follicle growth. This process involves the death and activation of a fraction of resident macrophages— resulting in Wnt ligand release —that in turn activate HF-SCs. These findings reveal additional mechanisms controlling endogenous stem cell pools that are likely to be relevant for modulating stem cell regenerative capabilities. The results provide new insights that may have implications for the development of technologies with potential applications in regeneration, aging, and cancer.
Collapse
Affiliation(s)
- Donatello Castellana
- Epithelial Cell Biology Group, BBVA Foundation-CNIO Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ralf Paus
- Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Münster, Münster, Germany
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group, BBVA Foundation-CNIO Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
104
|
MiR-29b controls fetal mouse neurogenesis by regulating ICAT-mediated Wnt/β-catenin signaling. Cell Death Dis 2014; 5:e1473. [PMID: 25321480 PMCID: PMC4237260 DOI: 10.1038/cddis.2014.439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/24/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
β-Catenin has been widely implicated in the regulation of mammalian development and cellular homeostasis. However, the mechanisms by which Wnt/β-catenin signaling components regulate physiological events during brain development remain undetermined. Inactivation of glycogen synthase kinase (GSK)-3β leads to β-catenin accumulation in the nucleus, where it couples with T-cell factor (TCF), an association that is disrupted by ICAT (inhibitor of β-catenin and T cell factor). In this study, we sought to determine whether regulation of ICAT by members of the microRNA-29 family plays a role during neurogenesis and whether deregulation of ICAT results in defective neurogenesis due to impaired β-catenin-mediated signaling. We found that miR-29b, but not miR-29a or 29c, is significantly upregulated in three-dimensionally cultured neural stem cells (NSCs), whereas ICAT is reduced as aged. Treatment with a miR-29b reduced the reporter activity of a luciferase-ICAT 3'-UTR construct whereas a control (scrambled) miRNA oligonucleotide did not, indicating that miR-29b directly targets the 3'-UTR of ICAT. We also found that treatment with miR-29b diminished NSC self-renewal and proliferation, and controlled their fate, directing their differentiation along certain cell lineages. Furthermore, our in vivo results showed that inhibition of miR-29b by in utero electroporation induced a profound defect in corticogenesis during mouse development. Taken together, our results demonstrate that miR-29b plays a pivotal role in fetal mouse neurogenesis by regulating ICAT-mediated Wnt/β-catenin signaling.
Collapse
|
105
|
Leri A, Rota M, Hosoda T, Goichberg P, Anversa P. Cardiac stem cell niches. Stem Cell Res 2014; 13:631-46. [PMID: 25267073 DOI: 10.1016/j.scr.2014.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/07/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023] Open
Abstract
The critical role that stem cell niches have in cardiac homeostasis and myocardial repair following injury is the focus of this review. Cardiac niches represent specialized microdomains where the quiescent and activated state of resident stem cells is regulated. Alterations in niche function with aging and cardiac diseases result in abnormal sites of cardiomyogenesis and inadequate myocyte formation. The relevance of Notch1 signaling, gap-junction formation, HIF-1α and metabolic state in the regulation of stem cell growth and differentiation within the cardiac niches are discussed.
Collapse
Affiliation(s)
- Annarosa Leri
- Departments of Anesthesia and Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Marcello Rota
- Departments of Anesthesia and Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toru Hosoda
- Departments of Anesthesia and Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Polina Goichberg
- Departments of Anesthesia and Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Piero Anversa
- Departments of Anesthesia and Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
106
|
Adams TNG, Turner PA, Janorkar AV, Zhao F, Minerick AR. Characterizing the dielectric properties of human mesenchymal stem cells and the effects of charged elastin-like polypeptide copolymer treatment. BIOMICROFLUIDICS 2014; 8:054109. [PMID: 25332746 PMCID: PMC4191366 DOI: 10.1063/1.4895756] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/04/2014] [Indexed: 05/05/2023]
Abstract
HUMAN MESENCHYMAL STEM CELLS (HMSCS) HAVE THREE KEY PROPERTIES THAT MAKE THEM DESIRABLE FOR STEM CELL THERAPEUTICS: differentiation capacity, trophic activity, and ability to self-renew. However, current separation techniques are inefficient, time consuming, expensive, and, in some cases, alter hMSCs cellular function and viability. Dielectrophoresis (DEP) is a technique that uses alternating current electric fields to spatially separate biological cells based on the dielectric properties of their membrane and cytoplasm. This work implements the first steps toward the development of a continuous cell sorting microfluidic device by characterizing native hMSCs dielectric signatures and comparing them to hMSCs morphologically standardized with a polymer. A quadrapole Ti-Au electrode microdevice was used to observe hMSC DEP behaviors, and quantify frequency spectra and cross-over frequency of hMSCs from 0.010-35 MHz in dextrose buffer solutions (0.030 S/m and 0.10 S/m). This combined approach included a systematic parametric study to fit a core-shell model to the DEP spectra over the entire tested frequency range, adding robustness to the analysis technique. The membrane capacitance and permittivity were found to be 2.2 pF and 2.0 in 0.030 S/m and 4.5 pF and 4.1 in 0.10 S/m, respectively. Elastin-like polypeptide (ELP-) polyethyleneimine (PEI) copolymer was used to control hMSCs morphology to spheroidal cells and aggregates. Results demonstrated that ELP-PEI treatment controlled hMSCs morphology, increased experiment reproducibility, and concurrently increased hMSCs membrane permittivity to shift the cross-over frequency above 35 MHz. Therefore, ELP-PEI treatment may serve as a tool for the eventual determination of biosurface marker-dependent DEP signatures and hMSCs purification.
Collapse
Affiliation(s)
- T N G Adams
- Department of Chemical Engineering, Michigan Technological University , Houghton, Michigan 49931, USA
| | - P A Turner
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center , Jackson, Mississippi 39216, USA
| | - A V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center , Jackson, Mississippi 39216, USA
| | - F Zhao
- Department of Biomedical Engineering, Michigan Technological University , Houghton, Michigan 49931, USA
| | - A R Minerick
- Department of Chemical Engineering, Michigan Technological University , Houghton, Michigan 49931, USA
| |
Collapse
|
107
|
Amcheslavsky A, Nie Y, Li Q, He F, Tsuda L, Markstein M, Ip YT. Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila. Development 2014; 141:2621-32. [PMID: 24961799 DOI: 10.1242/dev.106237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intestinal stem cells (ISCs) in the adult Drosophila midgut can respond to tissue damage and support repair. We used genetic manipulation to increase the number of ISC-like cells in the adult midgut and performed gene expression profiling to identify potential ISC regulators. A detailed analysis of one of these potential regulators, the zinc-finger protein Charlatan, was carried out. MARCM clonal analysis and RNAi in precursor cells showed that loss of Chn function caused severe ISC division defects, including loss of EdU incorporation, phosphorylated histone 3 staining and expression of the mitotic protein Cdc2. Loss of Charlatan also led to a much reduced histone acetylation staining in precursor cells. Both the histone acetylation and ISC division defects could be rescued by the simultaneous decrease of the Histone Deacetylase 2. The overexpression of Charlatan blocked differentiation reversibly, but loss of Charlatan did not lead to automatic differentiation. The results together suggest that Charlatan does not simply act as an anti-differentiation factor but instead functions to maintain a chromatin structure that is compatible with stem cell properties, including proliferation.
Collapse
Affiliation(s)
- Alla Amcheslavsky
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Leo Tsuda
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Michele Markstein
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
108
|
Hu S, Cucinotta FA. Epidermal homeostasis and radiation responses in a multiscale tissue modeling framework. Integr Biol (Camb) 2014; 6:76-89. [PMID: 24270511 DOI: 10.1039/c3ib40141c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface of the skin is lined with several thin layers of epithelial cells that are maintained throughout a lifetime by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is very similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indices comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. This integrated model allows us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhances our understanding of the pathophysiological effects of ionizing radiation on the skin.
Collapse
Affiliation(s)
- Shaowen Hu
- Universities Space Research Association, Division of Space Life Sciences, Houston, TX 77058, USA
| | | |
Collapse
|
109
|
Kruitwagen HS, Spee B, Schotanus BA. Hepatic progenitor cells in canine and feline medicine: potential for regenerative strategies. BMC Vet Res 2014; 10:137. [PMID: 24946932 PMCID: PMC4089933 DOI: 10.1186/1746-6148-10-137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022] Open
Abstract
New curative therapies for severe liver disease are urgently needed in both the human and veterinary clinic. It is important to find new treatment modalities which aim to compensate for the loss of parenchymal tissue and to repopulate the liver with healthy hepatocytes. A prime focus in regenerative medicine of the liver is the use of adult liver stem cells, or hepatic progenitor cells (HPCs), for functional recovery of liver disease. This review describes recent developments in HPC research in dog and cat and compares these findings to experimental rodent studies and human pathology. Specifically, the role of HPCs in liver regeneration, key components of the HPC niche, and HPC activation in specific types of canine and feline liver disease will be reviewed. Finally, the potential applications of HPCs in regenerative medicine of the liver are discussed and a potential role is suggested for dogs as first target species for HPC-based trials.
Collapse
Affiliation(s)
- Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, The Netherlands.
| | | | | |
Collapse
|
110
|
Rattan SIS. Aging is not a disease: implications for intervention. Aging Dis 2014; 5:196-202. [PMID: 24900942 PMCID: PMC4037311 DOI: 10.14336/ad.2014.0500196] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/22/2013] [Accepted: 11/01/2013] [Indexed: 12/23/2022] Open
Abstract
Aging of biological systems occurs in spite of numerous complex pathways of maintenance, repair and defense. There are no gerontogenes which have the specific evolutionary function to cause aging. Although aging is the common cause of all age-related diseases, aging in itself cannot be considered a disease. This understanding of aging as a process should transform our approach towards interventions from developing illusory anti-aging treatments to developing realistic and practical methods for maintaining health throughout the lifespan. The concept of homeodynamic space can be a useful one in order to identify a set of measurable, evidence-based and demonstratable parameters of health, robustness and resilience. Age-induced health problems, for which there are no other clear-cut causative agents, may be better tackled by focusing on health mechanisms and their maintenance, rather than only disease management and treatment. Continuing the disease-oriented research and treatment approaches, as opposed to health-oriented and preventive strategies, are economically, socially and psychologically unsustainable.
Collapse
Affiliation(s)
- Suresh I. S. Rattan
- Laboratory of Cellular Ageing, Department of Molecular Biology and Genetics, Aarhus University, Denmark
| |
Collapse
|
111
|
Graziano BR, Yu HYE, Alioto SL, Eskin JA, Ydenberg CA, Waterman DP, Garabedian M, Goode BL. The F-BAR protein Hof1 tunes formin activity to sculpt actin cables during polarized growth. Mol Biol Cell 2014; 25:1730-43. [PMID: 24719456 PMCID: PMC4038500 DOI: 10.1091/mbc.e14-03-0850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 11/23/2022] Open
Abstract
Asymmetric cell growth and division rely on polarized actin cytoskeleton remodeling events, the regulation of which is poorly understood. In budding yeast, formins stimulate the assembly of an organized network of actin cables that direct polarized secretion. Here we show that the Fer/Cip4 homology-Bin amphiphysin Rvs protein Hof1, which has known roles in cytokinesis, also functions during polarized growth by directly controlling the activities of the formin Bnr1. A mutant lacking the C-terminal half of Hof1 displays misoriented and architecturally altered cables, along with impaired secretory vesicle traffic. In vitro, Hof1 inhibits the actin nucleation and elongation activities of Bnr1 without displacing the formin from filament ends. These effects depend on the Src homology 3 domain of Hof1, the formin homology 1 (FH1) domain of Bnr1, and Hof1 dimerization, suggesting a mechanism by which Hof1 "restrains" the otherwise flexible FH1-FH2 apparatus. In vivo, loss of inhibition does not alter actin levels in cables but, instead, cable shape and functionality. Thus Hof1 tunes formins to sculpt the actin cable network.
Collapse
Affiliation(s)
- Brian R Graziano
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Hoi-Ying E Yu
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Salvatore L Alioto
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Julian A Eskin
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Casey A Ydenberg
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - David P Waterman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Mikael Garabedian
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| | - Bruce L Goode
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
112
|
Kruitwagen HS, Spee B, Viebahn CS, Venema HB, Penning LC, Grinwis GCM, Favier RP, van den Ingh TSGAM, Rothuizen J, Schotanus BA. The canine hepatic progenitor cell niche: molecular characterisation in health and disease. Vet J 2014; 201:345-52. [PMID: 24923752 DOI: 10.1016/j.tvjl.2014.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 05/07/2014] [Accepted: 05/17/2014] [Indexed: 12/24/2022]
Abstract
Hepatic progenitor cells (HPCs) are an adult stem cell compartment in the liver that contributes to liver regeneration when replication of mature hepatocytes is insufficient. In this study, laser microdissection was used to isolate HPC niches from the livers of healthy dogs and dogs with lobular dissecting hepatitis (LDH), in which HPCs are massively activated. Gene expression of HPC, hepatocyte and biliary markers was determined by quantitative reverse transcriptase PCR. Expression and localisation of selected markers were further studied at the protein level by immunohistochemistry and immunofluorescent double staining in samples of normal liver and liver from dogs with LDH, acute and chronic hepatitis, and extrahepatic cholestasis. Activated HPC niches had higher gene expression of the hepatic progenitor markers OPN, FN14, CD29, CD44, CD133, LIF, LIFR and BMI1 compared to HPCs from normal liver. There was lower expression of albumin, but activated HPC niches were positive for the biliary markers SOX9, HNF1β and keratin 19 by immunohistochemistry and immunofluorescence. Laminin, activated stellate cells and macrophages are abundant extracellular matrix and cellular components of the canine HPC niche. This study demonstrates that the molecular and cellular characteristics of canine HPCs are similar to rodent and human HPCs, and that canine HPCs are distinctively activated in different types of liver disease.
Collapse
Affiliation(s)
- H S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - B Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - C S Viebahn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - H B Venema
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - L C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - G C M Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - R P Favier
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | | | - J Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - B A Schotanus
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
113
|
Abstract
The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
114
|
Wang Y, Ahmad AA, Sims CE, Magness ST, Allbritton NL. In vitro generation of colonic epithelium from primary cells guided by microstructures. LAB ON A CHIP 2014; 14:1622-31. [PMID: 24647645 PMCID: PMC4037563 DOI: 10.1039/c3lc51353j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The proliferative compartment of the colonic epithelium in vivo is located in the basal crypt where colonic stem cells and transit-amplifying cells reside and fuel the rapid renewal of non-proliferative epithelial cells as they migrate toward the gut lumen. To mimic this tissue polarity, microstructures composed of polydimethylsiloxane (PDMS) microwells and Matrigel micropockets were used to guide a combined 2-dimensional (2D) and 3-dimensional (3D) hybrid culture of primary crypts isolated from the murine colon. The 2D and 3D culture of crypts on a planar PDMS surface was first investigated in terms of cell proliferation and stem cell activity. 3D culture of crypts with overlaid Matrigel generated enclosed, but highly proliferative spheroids (termed colonoids). 2D culture of crypts produced a spreading monolayer of cells, which were non-proliferative. A combined 2D/3D hybrid culture was generated in a PDMS microwell platform on which crypts were loaded by centrifugation into microwells (diameter = 150 μm, depth = 150 μm) followed by addition of Matrigel that formed micropockets locking the crypts within the microwells. Embedded crypts first underwent 3D expansion inside the wells. After the cells filled the microwells, they migrated onto the surrounding surface forming a 2D monolayer in the array regions without Matrigel. This unique 2D/3D hybrid culture generated a continuous, millimeter-scale colonic epithelial tissue in vitro, which resembled the polarized architecture (i.e. distinct proliferative and non-proliferative zones) and geometry of the colonic epithelium in vivo. This work initiates the construction of a "colon-on-a-chip" using primary cells/tissues with the ultimate goal of producing the physiologic structure and organ-level function of the colon.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
115
|
Yamaguchi DT. “Ins” and “Outs” of mesenchymal stem cell osteogenesis in regenerative medicine. World J Stem Cells 2014; 6:94-110. [PMID: 24772237 PMCID: PMC3999785 DOI: 10.4252/wjsc.v6.i2.94] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Repair and regeneration of bone requires mesenchymal stem cells that by self-renewal, are able to generate a critical mass of cells with the ability to differentiate into osteoblasts that can produce bone protein matrix (osteoid) and enable its mineralization. The number of human mesenchymal stem cells (hMSCs) diminishes with age and ex vivo replication of hMSCs has limited potential. While propagating hMSCs under hypoxic conditions may maintain their ability to self-renew, the strategy of using human telomerase reverse transcriptase (hTERT) to allow for hMSCs to prolong their replicative lifespan is an attractive means of ensuring a critical mass of cells with the potential to differentiate into various mesodermal structural tissues including bone. However, this strategy must be tempered by the oncogenic potential of TERT-transformed cells, or their ability to enhance already established cancers, the unknown differentiating potential of high population doubling hMSCs and the source of hMSCs (e.g., bone marrow, adipose-derived, muscle-derived, umbilical cord blood, etc.) that may provide peculiarities to self-renewal, differentiation, and physiologic function that may differ from non-transformed native cells. Tissue engineering approaches to use hMSCs to repair bone defects utilize the growth of hMSCs on three-dimensional scaffolds that can either be a base on which hMSCs can attach and grow or as a means of sequestering growth factors to assist in the chemoattraction and differentiation of native hMSCs. The use of whole native extracellular matrix (ECM) produced by hMSCs, rather than individual ECM components, appear to be advantageous in not only being utilized as a three-dimensional attachment base but also in appropriate orientation of cells and their differentiation through the growth factors that native ECM harbor or in simulating growth factor motifs. The origin of native ECM, whether from hMSCs from young or old individuals is a critical factor in “rejuvenating” hMSCs from older individuals grown on ECM from younger individuals.
Collapse
|
116
|
Donati G, Proserpio V, Lichtenberger BM, Natsuga K, Sinclair R, Fujiwara H, Watt FM. Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. Proc Natl Acad Sci U S A 2014; 111:E1501-9. [PMID: 24706781 PMCID: PMC3992657 DOI: 10.1073/pnas.1312880111] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It has long been recognized that the hair follicle growth cycle and oscillation in the thickness of the underlying adipocyte layer are synchronized. Although factors secreted by adipocytes are known to regulate the hair growth cycle, it is unclear whether the epidermis can regulate adipogenesis. We show that inhibition of epidermal Wnt/β-catenin signaling reduced adipocyte differentiation in developing and adult mouse dermis. Conversely, ectopic activation of epidermal Wnt signaling promoted adipocyte differentiation and hair growth. When the Wnt pathway was activated in the embryonic epidermis, there was a dramatic and premature increase in adipocytes in the absence of hair follicle formation, demonstrating that Wnt activation, rather than mature hair follicles, is required for adipocyte generation. Epidermal and dermal gene expression profiling identified keratinocyte-derived adipogenic factors that are induced by β-catenin activation. Wnt/β-catenin signaling-dependent secreted factors from keratinocytes promoted adipocyte differentiation in vitro, and we identified ligands for the bone morphogenetic protein and insulin pathways as proadipogenic factors. Our results indicate epidermal Wnt/β-catenin as a critical initiator of a signaling cascade that induces adipogenesis and highlight the role of epidermal Wnt signaling in synchronizing adipocyte differentiation with the hair growth cycle.
Collapse
Affiliation(s)
- Giacomo Donati
- Centre for Stem Cells and Regenerative Medicine, Kings College London, London SE1 9RT, United Kingdom
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, United Kingdom
| | - Valentina Proserpio
- European Bioinformatics Institute, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Beate Maria Lichtenberger
- Centre for Stem Cells and Regenerative Medicine, Kings College London, London SE1 9RT, United Kingdom
| | - Ken Natsuga
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, United Kingdom
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Rodney Sinclair
- University of Melbourne and Epworth Hospital, Melbourne, VIC, Australia; and
| | - Hironobu Fujiwara
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, United Kingdom
- Laboratory for Tissue Microenvironment, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Fiona M. Watt
- Centre for Stem Cells and Regenerative Medicine, Kings College London, London SE1 9RT, United Kingdom
| |
Collapse
|
117
|
Dittmer J, Leyh B. Paracrine effects of stem cells in wound healing and cancer progression (Review). Int J Oncol 2014; 44:1789-98. [PMID: 24728412 PMCID: PMC4063537 DOI: 10.3892/ijo.2014.2385] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/21/2014] [Indexed: 12/18/2022] Open
Abstract
Stem cells play an important role in tissue repair and cancer development. The capacity to self-renew and to differentiate to specialized cells allows tissue-specific stem cells to rebuild damaged tissue and cancer stem cells to initiate and promote cancer. Mesenchymal stem cells, attracted to wounds and cancer, facilitate wound healing and support cancer progression primarily by secreting bioactive factors. There is now growing evidence that, like mesenchymal stem cells, also tissue-specific and cancer stem cells manipulate their environment by paracrine actions. Soluble factors and microvesicles released by these stem cells have been shown to protect recipient cells from apoptosis and to stimulate neovascularization. These paracrine mechanisms may allow stem cells to orchestrate wound healing and cancer progression. Hence, understanding these stem cell-driven paracrine effects may help to improve tissue regeneration and cancer treatment.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, University of Halle, Halle/Saale, Germany
| | - Benjamin Leyh
- Clinic for Gynecology, University of Halle, Halle/Saale, Germany
| |
Collapse
|
118
|
Purba TS, Haslam IS, Poblet E, Jiménez F, Gandarillas A, Izeta A, Paus R. Human epithelial hair follicle stem cells and their progeny: current state of knowledge, the widening gap in translational research and future challenges. Bioessays 2014; 36:513-25. [PMID: 24665045 DOI: 10.1002/bies.201300166] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelial hair follicle stem cells (eHFSCs) are required to generate, maintain and renew the continuously cycling hair follicle (HF), supply cells that produce the keratinized hair shaft and aid in the reepithelialization of injured skin. Therefore, their study is biologically and clinically important, from alopecia to carcinogenesis and regenerative medicine. However, human eHFSCs remain ill defined compared to their murine counterparts, and it is unclear which murine eHFSC markers really apply to the human HF. We address this by reviewing current concepts on human eHFSC biology, their immediate progeny and their molecular markers, focusing on Keratin 15 and 19, CD200, CD34, PHLDA1, and EpCAM/Ber-EP4. After delineating how human eHFSCs may be selectively targeted experimentally, we close by defining as yet unmet key challenges in human eHFSC research. The ultimate goal is to transfer emerging concepts from murine epithelial stem cell biology to human HF physiology and pathology.
Collapse
Affiliation(s)
- Talveen S Purba
- The Dermatology Centre, Salford Royal NHS Foundation Trust and Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
119
|
Strikoudis A, Guillamot M, Aifantis I. Regulation of stem cell function by protein ubiquitylation. EMBO Rep 2014; 15:365-82. [PMID: 24652853 DOI: 10.1002/embr.201338373] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue homeostasis depends largely on the ability to replenish impaired or aged cells. Thus, tissue-resident stem cells need to provide functional progeny throughout the lifetime of an organism. Significant work in the past years has characterized how stem cells integrate signals from their environment to shape regulatory transcriptional networks and chromatin-regulating factors that control stem cell differentiation or maintenance. There is increasing interest in how post-translational modifications, and specifically ubiquitylation, control these crucial decisions. Ubiquitylation modulates the stability and function of important factors that regulate key processes in stem cell behavior. In this review, we analyze the role of ubiquitylation in embryonic stem cells and different adult multipotent stem cell systems and discuss the underlying mechanisms that control the balance between quiescence, self-renewal, and differentiation. We also discuss deregulated processes of ubiquitin-mediated protein degradation that lead to the development of tumor-initiating cells.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- Howard Hughes Medical Institute New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
120
|
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta Gen Subj 2014; 1840:2506-19. [PMID: 24418517 PMCID: PMC4081568 DOI: 10.1016/j.bbagen.2014.01.010] [Citation(s) in RCA: 865] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 02/08/2023]
Abstract
Background Extracellular matrix (ECM) is a dynamic and complex environment characterized by biophysical, mechanical and biochemical properties specific for each tissue and able to regulate cell behavior. Stem cells have a key role in the maintenance and regeneration of tissues and they are located in a specific microenvironment, defined as niche. Scope of review We overview the progresses that have been made in elucidating stem cell niches and discuss the mechanisms by which ECM affects stem cell behavior. We also summarize the current tools and experimental models for studying ECM–stem cell interactions. Major conclusions ECM represents an essential player in stem cell niche, since it can directly or indirectly modulate the maintenance, proliferation, self-renewal and differentiation of stem cells. Several ECM molecules play regulatory functions for different types of stem cells, and based on its molecular composition the ECM can be deposited and finely tuned for providing the most appropriate niche for stem cells in the various tissues. Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior. General significance ECM is a key component of stem cell niches and is involved in various aspects of stem cell behavior, thus having a major impact on tissue homeostasis and regeneration under physiological and pathological conditions. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Stem cells have a key role in the maintenance and regeneration of tissues. The extracellular matrix is a critical regulator of stem cell function. Stem cells reside in a dynamic and specialized microenvironment denoted as niche. The extracellular matrix represents an essential component of stem cell niches. Bioengineered niches can be used for investigating stem cell–matrix interactions.
Collapse
Affiliation(s)
- Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Anna Urciuolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
121
|
Hartwig FP, Nedel F, Collares T, Tarquinio SBC, Nör JE, Demarco FF. Oncogenic somatic events in tissue-specific stem cells: a role in cancer recurrence? Ageing Res Rev 2014; 13:100-6. [PMID: 24374269 DOI: 10.1016/j.arr.2013.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 01/15/2023]
Abstract
Tissue-specific stem cells (TSSCs) are a very unique cell type, with critical and well-defined roles for the homeostasis of high turnover tissues (such as the blood and the skin). Emerging evidence suggests that TSSCs are implicated in malignancies, with several theories being proposed and tested, including many attempts to identify the cells of origin and studies deigned to understand how TSSCs participate in age-related increase in cancer risk. A currently unexplored possibility in this respect is the plausible theory that an oncogenic event that arises at a TSSC would promote tissue replenishment by cells containing these mutations, with progressive propagation of such mutated TSSCs in the niche. Therefore, the effect of a somatic oncogenic event in a single TSSC may have more important implications than previously anticipated, resulting in sustained and progressively higher cancer risk. This model could have important implications for tumor recurrence, since in some cases the underlying cause might be the development of a new tumor originated from daughter cells of the TSSC that suffered the first oncogenic hit, rather than proliferation of residual cancer cells. In this review, we present and discuss approaches for testing the proposed theory of tumorigenesis and cancer risk, as well as practical implications for biomedical research and clinical practice.
Collapse
Affiliation(s)
- F P Hartwig
- Post-Graduate Program in Epidemiology, Federal University of Pelotas, Rio Grande do Sul, Brazil.
| | - F Nedel
- Biotechnology Unit, Technology Development Center, Federal Universityof Pelotas, Rio Grande do Sul, Brazil
| | - T Collares
- Biotechnology Unit, Technology Development Center, Federal Universityof Pelotas, Rio Grande do Sul, Brazil
| | - S B C Tarquinio
- Post-Graduate Program in Dentistry, Federal Universityof Pelotas, Rio Grande do Sul, Brazil
| | - J E Nör
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, MI, USA
| | - F F Demarco
- Post-Graduate Program in Dentistry, Federal Universityof Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
122
|
Batista LFZ. Telomere biology in stem cells and reprogramming. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:67-88. [PMID: 24993698 DOI: 10.1016/b978-0-12-397898-1.00003-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomerase expression in humans is restricted to different populations of stem and progenitor cells, being silenced in most somatic tissues. Efficient telomere homeostasis is essential for embryonic and adult stem cell function and therefore essential for tissue homeostasis throughout organismal life. Accordingly, the mutations in telomerase culminate in reduced stem cell function both in vivo and in vitro and have been associated with tissue dysfunction in human patients. Despite the importance of telomerase for stem cell biology, the mechanisms behind telomerase regulation during development are still poorly understood, mostly due to difficulties in acquiring and maintaining pluripotent stem cell populations in culture. In this chapter, we will analyze recent developments in this field, including the importance of efficient telomere homeostasis in different stem cell types and the role of telomerase in different techniques used for cellular reprogramming.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
123
|
Maher GJ, Goriely A, Wilkie AOM. Cellular evidence for selfish spermatogonial selection in aged human testes. Andrology 2013; 2:304-14. [PMID: 24357637 DOI: 10.1111/j.2047-2927.2013.00175.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 12/22/2022]
Abstract
Owing to a recent trend for delayed paternity, the genomic integrity of spermatozoa of older men has become a focus of increased interest. Older fathers are at higher risk for their children to be born with several monogenic conditions collectively termed paternal age effect (PAE) disorders, which include achondroplasia, Apert syndrome and Costello syndrome. These disorders are caused by specific mutations originating almost exclusively from the male germline, in genes encoding components of the tyrosine kinase receptor/RAS/MAPK signalling pathway. These particular mutations, occurring randomly during mitotic divisions of spermatogonial stem cells (SSCs), are predicted to confer a selective/growth advantage on the mutant SSC. This selective advantage leads to a clonal expansion of the mutant cells over time, which generates mutant spermatozoa at levels significantly above the background mutation rate. This phenomenon, termed selfish spermatogonial selection, is likely to occur in all men. In rare cases, probably because of additional mutational events, selfish spermatogonial selection may lead to spermatocytic seminoma. The studies that initially predicted the clonal nature of selfish spermatogonial selection were based on DNA analysis, rather than the visualization of mutant clones in intact testes. In a recent study that aimed to identify these clones directly, we stained serial sections of fixed testes for expression of melanoma antigen family A4 (MAGEA4), a marker of spermatogonia. A subset of seminiferous tubules with an appearance and distribution compatible with the predicted mutant clones were identified. In these tubules, termed 'immunopositive tubules', there is an increased density of spermatogonia positive for markers related to selfish selection (FGFR3) and SSC self-renewal (phosphorylated AKT). Here we detail the properties of the immunopositive tubules and how they relate to the predicted mutant clones, as well as discussing the utility of identifying the potential cellular source of PAE mutations.
Collapse
Affiliation(s)
- G J Maher
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
124
|
Wang Y, Ahmad AA, Shah PK, Sims CE, Magness ST, Allbritton NL. Capture and 3D culture of colonic crypts and colonoids in a microarray platform. LAB ON A CHIP 2013; 13:4625-34. [PMID: 24113577 PMCID: PMC3841105 DOI: 10.1039/c3lc50813g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Crypts are the basic structural and functional units of colonic epithelium and can be isolated from the colon and cultured in vitro into multi-cell spheroids termed "colonoids". Both crypts and colonoids are ideal building blocks for construction of an in vitro tissue model of the colon. Here we proposed and tested a microengineered platform for capture and in vitro 3D culture of colonic crypts and colonoids. An integrated platform was fabricated from polydimethylsiloxane which contained two fluidic layers separated by an array of cylindrical microwells (150 μm diameter, 150 μm depth) with perforated bottoms (30 μm opening, 10 μm depth) termed "microstrainers". As fluid moved through the array, crypts or colonoids were retained in the microstrainers with a >90% array-filling efficiency. Matrigel as an extracellular matrix was then applied to the microstrainers to generate isolated Matrigel pockets encapsulating the crypts or colonoids. After supplying the essential growth factors, epidermal growth factor, Wnt-3A, R-spondin 2 and noggin, 63 ± 13% of the crypts and 77 ± 8% of the colonoids cultured in the microstrainers over a 48-72 h period formed viable 3D colonoids. Thus colonoid growth on the array was similar to that under standard culture conditions (78 ± 5%). Additionally the colonoids displayed the same morphology and similar numbers of stem and progenitor cells as those under standard culture conditions. Immunofluorescence staining confirmed that the differentiated cell-types of the colon, goblet cells, enteroendocrine cells and absorptive enterocytes, formed on the array. To demonstrating the utility of the array in tracking the colonoid fate, quantitative fluorescence analysis was performed on the arrayed colonoids exposed to reagents such as Wnt-3A and the γ-secretase inhibitor LY-411575. The successful formation of viable, multi-cell type colonic tissue on the microengineered platform represents a first step in the building of a "colon-on-a-chip" with the goal of producing the physiologic structure and organ-level function of the colon for controlled experiments.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
125
|
Tsai SY, Sennett R, Rezza A, Clavel C, Grisanti L, Zemla R, Najam S, Rendl M. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation. Dev Biol 2013; 385:179-88. [PMID: 24309208 DOI: 10.1016/j.ydbio.2013.11.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022]
Abstract
Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18(Cre) knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2(+) dermal condensates initiate normally; however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events.
Collapse
Affiliation(s)
- Su-Yi Tsai
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Amélie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Carlos Clavel
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Laura Grisanti
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Roland Zemla
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Sara Najam
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.
| |
Collapse
|
126
|
EGFR-ras-raf signaling in epidermal stem cells: roles in hair follicle development, regeneration, tissue remodeling and epidermal cancers. Int J Mol Sci 2013; 14:19361-84. [PMID: 24071938 PMCID: PMC3821561 DOI: 10.3390/ijms141019361] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
The mammalian skin is the largest organ of the body and its outermost layer, the epidermis, undergoes dynamic lifetime renewal through the activity of somatic stem cell populations. The EGFR-Ras-Raf pathway has a well-described role in skin development and tumor formation. While research mainly focuses on its role in cutaneous tumor initiation and maintenance, much less is known about Ras signaling in the epidermal stem cells, which are the main targets of skin carcinogenesis. In this review, we briefly discuss the properties of the epidermal stem cells and review the role of EGFR-Ras-Raf signaling in keratinocyte stem cells during homeostatic and pathological conditions.
Collapse
|
127
|
Coulombe PA, Caterina MJ. The incidental pore: CaV1.2 and stem cell activation in quiescent hair follicles. Genes Dev 2013; 27:1315-7. [PMID: 23788620 DOI: 10.1101/gad.223172.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hair follicle undergoes a lifelong developmental cycle that depends on the integration between activating and inhibitory signals acting to regulate and guide the proliferation and differentiation of pluripotent epithelial stem cells. The effectors and mechanisms responsible for re-entry of quiescent telogen hair follicles into the hair-producing anagen stage in mature skin remain incompletely understood. In the June 1, 2013, issue of Genes & Development, Yucel and colleagues (pp. 1217-1222) reported the unexpected finding that CaV1.2, the pore-forming subunit in a well-characterized voltage-gated, L-type calcium channel, is expressed in hair follicle stem cells and contributes to anagen re-entry but does so in a calcium flux-independent fashion.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | |
Collapse
|
128
|
Affiliation(s)
- J D Berndt
- Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | |
Collapse
|