101
|
Rare recombination events generate sequence diversity among balancer chromosomes in Drosophila melanogaster. Proc Natl Acad Sci U S A 2016; 113:E1352-61. [PMID: 26903656 DOI: 10.1073/pnas.1601232113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown. To map inversion breakpoints and study potential diversity in descendants of a structurally identical balancer chromosome, we sequenced a panel of laboratory stocks containing the most widely used X chromosome balancer, First Multiple 7 (FM7). We mapped the locations of FM7 breakpoints to precise euchromatic coordinates and identified the flanking sequence of breakpoints in heterochromatic regions. Analysis of SNP variation revealed megabase-scale blocks of sequence divergence among currently used FM7 stocks. We present evidence that this divergence arose through rare double-crossover events that replaced a female-sterile allele of the singed gene (sn(X2)) on FM7c with a sequence from balanced chromosomes. We propose that although double-crossover events are rare in individual crosses, many FM7c chromosomes in the Bloomington Drosophila Stock Center have lost sn(X2) by this mechanism on a historical timescale. Finally, we characterize the original allele of the Bar gene (B(1)) that is carried on FM7, and validate the hypothesis that the origin and subsequent reversion of the B(1) duplication are mediated by unequal exchange. Our results reject a simple nonrecombining, clonal mode for the laboratory evolution of balancer chromosomes and have implications for how balancer chromosomes should be used in the design and interpretation of genetic experiments in Drosophila.
Collapse
|
102
|
Settepani V, Bechsgaard J, Bilde T. Phylogenetic analysis suggests that sociality is associated with reduced effectiveness of selection. Ecol Evol 2016; 6:469-77. [PMID: 26843931 PMCID: PMC4729245 DOI: 10.1002/ece3.1886] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 11/07/2022] Open
Abstract
The evolution of sociality in spiders is associated with female bias, reproductive skew and an inbreeding mating system, factors that cause a reduction in effective population size and increase effects of genetic drift. These factors act to decrease the effectiveness of selection, thereby increasing the fixation probability of deleterious mutations. Comparative studies of closely related species with contrasting social traits and mating systems provide the opportunity to test consequences of low effective population size on the effectiveness of selection empirically. We used phylogenetic analyses of three inbred social spider species and seven outcrossing subsocial species of the genus Stegodyphus, and compared dN/dS ratios and codon usage bias between social Inbreeding and subsocial outcrossing mating systems to assess the effectiveness of selection. The overall results do not differ significantly between the social inbreeding and outcrossing species, but suggest a tendency for lower codon usage bias and higher dN/dS ratios in the social inbreeding species compared with their outcrossing congeners. The differences in dN/dS ratio and codon usage bias between social and subsocial species are modest but consistent with theoretical expectations of reduced effectiveness of selection in species with relatively low effective population size. The modest differences are consistent with relatively recent evolution of social mating systems. Additionally, the short terminal branches and lack of speciation of the social lineages, together with low genetic diversity lend support for the transient state of permanent sociality in spiders.
Collapse
Affiliation(s)
- Virginia Settepani
- Department of BioscienceAarhus UniversityNy Munkegade 116, Building 15408000Aarhus CDenmark
| | - Jesper Bechsgaard
- Department of BioscienceAarhus UniversityNy Munkegade 116, Building 15408000Aarhus CDenmark
| | - Trine Bilde
- Department of BioscienceAarhus UniversityNy Munkegade 116, Building 15408000Aarhus CDenmark
| |
Collapse
|
103
|
Keith N, Tucker AE, Jackson CE, Sung W, Lucas Lledó JI, Schrider DR, Schaack S, Dudycha JL, Ackerman M, Younge AJ, Shaw JR, Lynch M. High mutational rates of large-scale duplication and deletion in Daphnia pulex. Genome Res 2016; 26:60-9. [PMID: 26518480 PMCID: PMC4691751 DOI: 10.1101/gr.191338.115] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023]
Abstract
Knowledge of the genome-wide rate and spectrum of mutations is necessary to understand the origin of disease and the genetic variation driving all evolutionary processes. Here, we provide a genome-wide analysis of the rate and spectrum of mutations obtained in two Daphnia pulex genotypes via separate mutation-accumulation (MA) experiments. Unlike most MA studies that utilize haploid, homozygous, or self-fertilizing lines, D. pulex can be propagated ameiotically while maintaining a naturally heterozygous, diploid genome, allowing the capture of the full spectrum of genomic changes that arise in a heterozygous state. While base-substitution mutation rates are similar to those in other multicellular eukaryotes (about 4 × 10(-9) per site per generation), we find that the rates of large-scale (>100 kb) de novo copy-number variants (CNVs) are significantly elevated relative to those seen in previous MA studies. The heterozygosity maintained in this experiment allowed for estimates of gene-conversion processes. While most of the conversion tract lengths we report are similar to those generated by meiotic processes, we also find larger tract lengths that are indicative of mitotic processes. Comparison of MA lines to natural isolates reveals that a majority of large-scale CNVs in natural populations are removed by purifying selection. The mutations observed here share similarities with disease-causing, complex, large-scale CNVs, thereby demonstrating that MA studies in D. pulex serve as a system for studying the processes leading to such alterations.
Collapse
Affiliation(s)
- Nathan Keith
- School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Abraham E Tucker
- Biology Department, Southern Arkansas University, Magnolia, Arkansas 71753, USA
| | - Craig E Jackson
- School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Way Sung
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | - Daniel R Schrider
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Sarah Schaack
- Biology Department, Reed College, Portland, Oregon 97202, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Matthew Ackerman
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Andrew J Younge
- School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405, USA
| | - Joseph R Shaw
- School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA; School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
104
|
McLeish TCB. Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence. Interface Focus 2015; 5:20150041. [PMID: 26640648 DOI: 10.1098/rsfs.2015.0041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.
Collapse
Affiliation(s)
- Tom C B McLeish
- Department of Physics and Chemistry , Durham University , Durham DH1 3LE , UK ; Biophysical Sciences Institute , Durham University , Durham DH1 3LE , UK
| |
Collapse
|
105
|
Castellano D, Coronado-Zamora M, Campos JL, Barbadilla A, Eyre-Walker A. Adaptive Evolution Is Substantially Impeded by Hill-Robertson Interference in Drosophila. Mol Biol Evol 2015; 33:442-55. [PMID: 26494843 PMCID: PMC4794616 DOI: 10.1093/molbev/msv236] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hill-Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald-Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect.
Collapse
Affiliation(s)
- David Castellano
- Genomics, Bioinformatics and Evolution Group, Institut de Biotecnologia i de Biomedicina (IBB) and Department de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marta Coronado-Zamora
- Genomics, Bioinformatics and Evolution Group, Institut de Biotecnologia i de Biomedicina (IBB) and Department de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jose L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Antonio Barbadilla
- Genomics, Bioinformatics and Evolution Group, Institut de Biotecnologia i de Biomedicina (IBB) and Department de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Adam Eyre-Walker
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
106
|
Marchini GL, Sherlock NC, Ramakrishnan AP, Rosenthal DM, Cruzan MB. Rapid purging of genetic load in a metapopulation and consequences for range expansion in an invasive plant. Biol Invasions 2015. [DOI: 10.1007/s10530-015-1001-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
107
|
Simultaneous Estimation of Additive and Mutational Genetic Variance in an Outbred Population of Drosophila serrata. Genetics 2015; 201:1239-51. [PMID: 26384357 DOI: 10.1534/genetics.115.178632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/13/2015] [Indexed: 01/16/2023] Open
Abstract
How new mutations contribute to genetic variation is a key question in biology. Although the evolutionary fate of an allele is largely determined by its heterozygous effect, most estimates of mutational variance and mutational effects derive from highly inbred lines, where new mutations are present in homozygous form. In an attempt to overcome this limitation, middle-class neighborhood (MCN) experiments have been used to assess the fitness effect of new mutations in heterozygous form. However, because MCN populations harbor substantial standing genetic variance, estimates of mutational variance have not typically been available from such experiments. Here we employ a modification of the animal model to analyze data from 22 generations of Drosophila serrata bred in an MCN design. Mutational heritability, measured for eight cuticular hydrocarbons, 10 wing-shape traits, and wing size in this outbred genetic background, ranged from 0.0006 to 0.006 (with one exception), a similar range to that reported from studies employing inbred lines. Simultaneously partitioning the additive and mutational variance in the same outbred population allowed us to quantitatively test the ability of mutation-selection balance models to explain the observed levels of additive and mutational genetic variance. The Gaussian allelic approximation and house-of-cards models, which assume real stabilizing selection on single traits, both overestimated the genetic variance maintained at equilibrium, but the house-of-cards model was a closer fit to the data. This analytical approach has the potential to be broadly applied, expanding our understanding of the dynamics of genetic variance in natural populations.
Collapse
|
108
|
Similar Efficacies of Selection Shape Mitochondrial and Nuclear Genes in Both Drosophila melanogaster and Homo sapiens. G3-GENES GENOMES GENETICS 2015; 5:2165-76. [PMID: 26297726 PMCID: PMC4592998 DOI: 10.1534/g3.114.016493] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deleterious mutations contribute to polymorphism even when selection effectively prevents their fixation. The efficacy of selection in removing deleterious mitochondrial mutations from populations depends on the effective population size (Ne) of the mitochondrial DNA and the degree to which a lack of recombination magnifies the effects of linked selection. Using complete mitochondrial genomes from Drosophila melanogaster and nuclear data available from the same samples, we reexamine the hypothesis that nonrecombining animal mitochondrial DNA harbor an excess of deleterious polymorphisms relative to the nuclear genome. We find no evidence of recombination in the mitochondrial genome, and the much-reduced level of mitochondrial synonymous polymorphism relative to nuclear genes is consistent with a reduction in Ne. Nevertheless, we find that the neutrality index, a measure of the excess of nonsynonymous polymorphism relative to the neutral expectation, is only weakly significantly different between mitochondrial and nuclear loci. This difference is likely the result of the larger proportion of beneficial mutations in X-linked relative to autosomal loci, and we find little to no difference between mitochondrial and autosomal neutrality indices. Reanalysis of published data from Homo sapiens reveals a similar lack of a difference between the two genomes, although previous studies have suggested a strong difference in both species. Thus, despite a smaller Ne, mitochondrial loci of both flies and humans appear to experience similar efficacies of purifying selection as do loci in the recombining nuclear genome.
Collapse
|
109
|
Effects of Interference Between Selected Loci on the Mutation Load, Inbreeding Depression, and Heterosis. Genetics 2015; 201:745-57. [PMID: 26269503 DOI: 10.1534/genetics.115.178533] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
A classical prediction from single-locus models is that inbreeding increases the efficiency of selection against partially recessive deleterious alleles (purging), thereby decreasing the mutation load and level of inbreeding depression. However, previous multilocus simulation studies found that increasing the rate of self-fertilization of individuals may not lead to purging and argued that selective interference among loci causes this effect. In this article, I derive simple analytical approximations for the mutation load and inbreeding depression, taking into account the effects of interference between pairs of loci. I consider two classical scenarios of nonrandomly mating populations: a single population undergoing partial selfing and a subdivided population with limited dispersal. In the first case, correlations in homozygosity between loci tend to reduce mean fitness and increase inbreeding depression. These effects are stronger when deleterious alleles are more recessive, but only weakly depend on the strength of selection against deleterious alleles and on recombination rates. In subdivided populations, interference increases inbreeding depression within demes, but decreases heterosis between demes. Comparisons with multilocus, individual-based simulations show that these analytical approximations are accurate as long as the effects of interference stay moderate, but fail for high deleterious mutation rates and low dominance coefficients of deleterious alleles.
Collapse
|
110
|
Rogers RL, Cridland JM, Shao L, Hu TT, Andolfatto P, Thornton KR. Tandem Duplications and the Limits of Natural Selection in Drosophila yakuba and Drosophila simulans. PLoS One 2015; 10:e0132184. [PMID: 26176952 PMCID: PMC4503668 DOI: 10.1371/journal.pone.0132184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022] Open
Abstract
Tandem duplications are an essential source of genetic novelty, and their variation in natural populations is expected to influence adaptive walks. Here, we describe evolutionary impacts of recently-derived, segregating tandem duplications in Drosophila yakuba and Drosophila simulans. We observe an excess of duplicated genes involved in defense against pathogens, insecticide resistance, chorion development, cuticular peptides, and lipases or endopeptidases associated with the accessory glands across both species. The observed agreement is greater than expectations on chance alone, suggesting large amounts of convergence across functional categories. We document evidence of widespread selection on the D. simulans X, suggesting adaptation through duplication is common on the X. Despite the evidence for positive selection, duplicates display an excess of low frequency variants consistent with largely detrimental impacts, limiting the variation that can effectively facilitate adaptation. Standing variation for tandem duplications spans less than 25% of the genome in D. yakuba and D. simulans, indicating that evolution will be strictly limited by mutation, even in organisms with large population sizes. Effective whole gene duplication rates are low at 1.17 × 10-9 per gene per generation in D. yakuba and 6.03 × 10-10 per gene per generation in D. simulans, suggesting long wait times for new mutations on the order of thousands of years for the establishment of sweeps. Hence, in cases where adaptation depends on individual tandem duplications, evolution will be severely limited by mutation. We observe low levels of parallel recruitment of the same duplicated gene in different species, suggesting that the span of standing variation will define evolutionary outcomes in spite of convergence across gene ontologies consistent with rapidly evolving phenotypes.
Collapse
Affiliation(s)
- Rebekah L. Rogers
- Ecology and Evolutionary Biology, University of California, Berkeley, California, United States of America
| | - Julie M. Cridland
- Ecology and Evolutionary Biology, University of California, Davis, Davis, California, United States of America
| | - Ling Shao
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, United States of America
| | - Tina T. Hu
- Ecology and Evolutionary Biology and the Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Peter Andolfatto
- Ecology and Evolutionary Biology and the Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Kevin R. Thornton
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
111
|
Latta LC, Peacock M, Civitello DJ, Dudycha JL, Meik JM, Schaack S. The phenotypic effects of spontaneous mutations in different environments. Am Nat 2015; 185:243-52. [PMID: 25616142 DOI: 10.1086/679501] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Understanding the context dependence of mutation represents the current frontier of mutation research. In particular, understanding how traits vary in their abilities to accrue mutational variation and how the environment influences expression of mutant phenotypes yields insight into evolutionary processes. We conducted phenotypic assays in four environments using a set of Daphnia pulex mutation accumulation lines to examine the context dependence of mutation. Life-history traits accrued mutational variance faster than morphological traits when considered in individual environments. Across environments, the mutational variance in plasticity was also greater for life-history traits than for morphological traits, although this pattern was less robust. In addition, the expression of mutational variance depended on the environment, which resulted in changes in the rank order of genotype performance across environments in some cases. Such cryptic genetic variation resulting from mutation may maintain genetic diversity and allow for rapid adaptation in spatially or temporally variable environments.
Collapse
Affiliation(s)
- Leigh C Latta
- Department of Biology, Reed College, Portland, Oregon 97202
| | | | | | | | | | | |
Collapse
|
112
|
Influences of dominance and evolution of sex in finite diploid populations. PLoS One 2015; 10:e0128459. [PMID: 26011082 PMCID: PMC4444274 DOI: 10.1371/journal.pone.0128459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/27/2015] [Indexed: 11/19/2022] Open
Abstract
Most eukaryotes reproduce sexually. Although the benefits of sex in diploids mainly stem from recombination and segregation, the relative effects of recombination and segregation are relatively less known. In this study, we adopt an infinite loci model to illustrate how dominance coefficient of mutations affects the above-mentioned genetic events. However, we assume mutational effects to be independent and also ignore the effects of epistasis within loci. Our simulations show that with different levels of dominance, segregation and recombination may play different roles. In particular, recombination more commonly has a major impact on the evolution of sex when deleterious mutations are partially recessive. In contrast, when deleterious mutations are dominant, segregation becomes more important than recombination, a finding that is consistent with previous studies stating that segregation, rather than recombination, is more likely to drive the evolution of sex. Moreover, beneficial mutations alone remarkably increases the effects of recombination. We also note that populations favor sexual reproduction when deleterious mutations become more dominant or beneficial mutations become more recessive. Overall, these results illustrate that the existence of dominance is an important mechanism that affects the evolution of sex.
Collapse
|
113
|
Corbett-Detig RB, Hartl DL, Sackton TB. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol 2015; 13:e1002112. [PMID: 25859758 PMCID: PMC4393120 DOI: 10.1371/journal.pbio.1002112] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, we estimate the degree to which natural selection reduces linked neutral diversity for 40 species of obligately sexual eukaryotes. We then show that the magnitude of the impact of natural selection is positively correlated with Nc, based on body size and species range as proxies for census population size. These results demonstrate that natural selection removes more variation at linked neutral sites in species with large Nc than those with small Nc and provides direct empirical evidence that natural selection constrains levels of neutral genetic diversity across many species. This implies that natural selection may provide an explanation for this longstanding paradox of population genetics.
Collapse
Affiliation(s)
- Russell B. Corbett-Detig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge Massachusetts, United States of America
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge Massachusetts, United States of America
| | - Timothy B. Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge Massachusetts, United States of America
| |
Collapse
|
114
|
|
115
|
Molak M, Ho SYW. Prolonged decay of molecular rate estimates for metazoan mitochondrial DNA. PeerJ 2015; 3:e821. [PMID: 25780773 PMCID: PMC4358697 DOI: 10.7717/peerj.821] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/16/2015] [Indexed: 01/07/2023] Open
Abstract
Evolutionary timescales can be estimated from genetic data using the molecular clock, often calibrated by fossil or geological evidence. However, estimates of molecular rates in mitochondrial DNA appear to scale negatively with the age of the clock calibration. Although such a pattern has been observed in a limited range of data sets, it has not been studied on a large scale in metazoans. In addition, there is uncertainty over the temporal extent of the time-dependent pattern in rate estimates. Here we present a meta-analysis of 239 rate estimates from metazoans, representing a range of timescales and taxonomic groups. We found evidence of time-dependent rates in both coding and non-coding mitochondrial markers, in every group of animals that we studied. The negative relationship between the estimated rate and time persisted across a much wider range of calibration times than previously suggested. This indicates that, over long time frames, purifying selection gives way to mutational saturation as the main driver of time-dependent biases in rate estimates. The results of our study stress the importance of accounting for time-dependent biases in estimating mitochondrial rates regardless of the timescale over which they are inferred.
Collapse
Affiliation(s)
- Martyna Molak
- School of Biological Sciences, University of Sydney , Sydney , Australia ; Museum and Institute of Zoology, Polish Academy of Sciences , Warsaw , Poland
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney , Sydney , Australia
| |
Collapse
|
116
|
Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc Natl Acad Sci U S A 2015; 112:1662-9. [PMID: 25572964 DOI: 10.1073/pnas.1423275112] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequencing has revealed high levels of variability within most species. Statistical methods based on population genetics theory have been applied to the resulting data and suggest that most mutations affecting functionally important sequences are deleterious but subject to very weak selection. Quantitative genetic studies have provided information on the extent of genetic variation within populations in traits related to fitness and the rate at which variability in these traits arises by mutation. This paper attempts to combine the available information from applications of the two approaches to populations of the fruitfly Drosophila in order to estimate some important parameters of genetic variation, using a simple population genetics model of mutational effects on fitness components. Analyses based on this model suggest the existence of a class of mutations with much larger fitness effects than those inferred from sequence variability and that contribute most of the standing variation in fitness within a population caused by the input of mildly deleterious mutations. However, deleterious mutations explain only part of this standing variation, and other processes such as balancing selection appear to make a large contribution to genetic variation in fitness components in Drosophila.
Collapse
|
117
|
Williams AB. Spontaneous mutation rates come into focus in Escherichia coli. DNA Repair (Amst) 2014; 24:73-79. [DOI: 10.1016/j.dnarep.2014.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 11/15/2022]
|
118
|
Maharjan R, Ferenci T. Mutational signatures indicative of environmental stress in bacteria. Mol Biol Evol 2014; 32:380-91. [PMID: 25389207 DOI: 10.1093/molbev/msu306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evolutionary innovations are dependent on mutations. Mutation rates are increased by adverse conditions in the laboratory, but there is no evidence that stressful environments that do not directly impact on DNA leave a mutational imprint on extant genomes. Mutational spectra in the laboratory are normally determined with unstressed cells but are unavailable with stressed bacteria. To by-pass problems with viability, selection effects, and growth rate differences due to stressful environments, in this study we used a set of genetically engineered strains to identify the mutational spectrum associated with nutritional stress. The strain set members each had a fixed level of the master regulator protein, RpoS, which controls the general stress response of Escherichia coli. By assessing mutations in cycA gene from 485 cycloserine resistant mutants collected from as many independent cultures with three distinct perceived stress (RpoS) levels, we were able establish a dose-dependent relationship between stress and mutational spectra. The altered mutational patterns included base pair substitutions, single base pair indels, longer indels, and transpositions of different insertion sequences. The mutational spectrum of low-RpoS cells closely matches the genome-wide spectrum previously generated in laboratory environments, while the spectra of high RpoS, high perceived stress cells more closely matches spectra found in comparisons of extant genomes. Our results offer an explanation of the uneven mutational profiles such as the transition-transversion biases observed in extant genomes and provide a framework for assessing the contribution of stress-induced mutagenesis to evolutionary transitions and the mutational emergence of antibiotic resistance and disease states.
Collapse
Affiliation(s)
- Ram Maharjan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Thomas Ferenci
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
119
|
Keightley PD, Pinharanda A, Ness RW, Simpson F, Dasmahapatra KK, Mallet J, Davey JW, Jiggins CD. Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol Biol Evol 2014; 32:239-43. [PMID: 25371432 PMCID: PMC4271535 DOI: 10.1093/molbev/msu302] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We estimated the spontaneous mutation rate in Heliconius melpomene by genome sequencing of a pair of parents and 30 of their offspring, based on the ratio of number of de novo heterozygotes to the number of callable site-individuals. We detected nine new mutations, each one affecting a single site in a single offspring. This yields an estimated mutation rate of 2.9 × 10(-9) (95% confidence interval, 1.3 × 10(-9)-5.5 × 10(-9)), which is similar to recent estimates in Drosophila melanogaster, the only other insect species in which the mutation rate has been directly estimated. We infer that recent effective population size of H. melpomene is about 2 million, a substantially lower value than its census size, suggesting a role for natural selection reducing diversity. We estimate that H. melpomene diverged from its Müllerian comimic H. erato about 6 Ma, a somewhat later date than estimates based on a local molecular clock.
Collapse
Affiliation(s)
- Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Pinharanda
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Rob W Ness
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Fraser Simpson
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Kanchon K Dasmahapatra
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom Department of Biology, University of York, York, United Kingdom
| | - James Mallet
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom Department of Organismic and Evolutionary Biology, Harvard University
| | - John W Davey
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
120
|
The genetics of monarch butterfly migration and warning colouration. Nature 2014; 514:317-21. [PMID: 25274300 PMCID: PMC4331202 DOI: 10.1038/nature13812] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/01/2014] [Indexed: 12/30/2022]
Abstract
The monarch butterfly, Danaus plexippus, is famous for its spectacular annual migration across North America, recent worldwide dispersal, and orange warning coloration. Despite decades of study and broad public interest, we know little about the genetic basis of these hallmark traits. By sequencing 101 monarch genomes from around the globe, we uncover the history of the monarch's evolutionary origin and global dispersal, characterize the genes and pathways associated with migratory behavior, and identify the discrete genetic basis of warning coloration. The results rewrite our understanding of this classic system, showing that D. plexippus was ancestrally migratory and dispersed out of North America to occupy its broad distribution. We find the strongest signatures of selection associated with migration center on flight muscle function, resulting in greater flight efficiency among migratory monarchs, and that variation in monarch warning coloration is controlled by a single myosin gene not previously implicated in insect pigmentation.
Collapse
|
121
|
Wollstein A, Stephan W. Adaptive fixation in two-locus models of stabilizing selection and genetic drift. Genetics 2014; 198:685-97. [PMID: 25091496 PMCID: PMC4196621 DOI: 10.1534/genetics.114.168567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/20/2014] [Indexed: 12/14/2022] Open
Abstract
The relationship between quantitative genetics and population genetics has been studied for nearly a century, almost since the existence of these two disciplines. Here we ask to what extent quantitative genetic models in which selection is assumed to operate on a polygenic trait predict adaptive fixations that may lead to footprints in the genome (selective sweeps). We study two-locus models of stabilizing selection (with and without genetic drift) by simulations and analytically. For symmetric viability selection we find that ∼16% of the trajectories may lead to fixation if the initial allele frequencies are sampled from the neutral site-frequency spectrum and the effect sizes are uniformly distributed. However, if the population is preadapted when it undergoes an environmental change (i.e., sits in one of the equilibria of the model), the fixation probability decreases dramatically. In other two-locus models with general viabilities or an optimum shift, the proportion of adaptive fixations may increase to >24%. Similarly, genetic drift leads to a higher probability of fixation. The predictions of alternative quantitative genetics models, initial conditions, and effect-size distributions are also discussed.
Collapse
Affiliation(s)
- Andreas Wollstein
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152 Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
122
|
Trotter MV, Weissman DB, Peterson GI, Peck KM, Masel J. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations. Evolution 2014; 68:3357-67. [PMID: 25178652 DOI: 10.1111/evo.12517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 08/25/2014] [Indexed: 12/15/2022]
Abstract
The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations.
Collapse
Affiliation(s)
- Meredith V Trotter
- Department of Biology, Stanford University, Stanford, California, 95306; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | | | | | | | | |
Collapse
|
123
|
Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat Commun 2014; 5:4611. [PMID: 25118180 PMCID: PMC4164542 DOI: 10.1038/ncomms5611] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/08/2014] [Indexed: 12/30/2022] Open
Abstract
The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarctic eukaryote to be sequenced. At 99 megabases, B. antarctica has the smallest insect genome sequenced thus far. Although it has a similar number of genes as other Diptera, the midge genome has very low repeat density and a reduction in intron length. Environmental extremes appear to constrain genome architecture, not gene content. The few transposable elements present are mainly ancient, inactive retroelements. An abundance of genes associated with development, regulation of metabolism and responses to external stimuli may reflect adaptations for surviving in this harsh environment.
Collapse
|
124
|
Background selection as baseline for nucleotide variation across the Drosophila genome. PLoS Genet 2014; 10:e1004434. [PMID: 24968283 PMCID: PMC4072542 DOI: 10.1371/journal.pgen.1004434] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/28/2014] [Indexed: 11/21/2022] Open
Abstract
The constant removal of deleterious mutations by natural selection causes a reduction in neutral diversity and efficacy of selection at genetically linked sites (a process called Background Selection, BGS). Population genetic studies, however, often ignore BGS effects when investigating demographic events or the presence of other types of selection. To obtain a more realistic evolutionary expectation that incorporates the unavoidable consequences of deleterious mutations, we generated high-resolution landscapes of variation across the Drosophila melanogaster genome under a BGS scenario independent of polymorphism data. We find that BGS plays a significant role in shaping levels of variation across the entire genome, including long introns and intergenic regions distant from annotated genes. We also find that a very large percentage of the observed variation in diversity across autosomes can be explained by BGS alone, up to 70% across individual chromosome arms at 100-kb scale, thus indicating that BGS predictions can be used as baseline to infer additional types of selection and demographic events. This approach allows detecting several outlier regions with signal of recent adaptive events and selective sweeps. The use of a BGS baseline, however, is particularly appropriate to investigate the presence of balancing selection and our study exposes numerous genomic regions with the predicted signature of higher polymorphism than expected when a BGS context is taken into account. Importantly, we show that these conclusions are robust to the mutation and selection parameters of the BGS model. Finally, analyses of protein evolution together with previous comparisons of genetic maps between Drosophila species, suggest temporally variable recombination landscapes and, thus, local BGS effects that may differ between extant and past phases. Because genome-wide BGS and temporal changes in linkage effects can skew approaches to estimate demographic and selective events, future analyses should incorporate BGS predictions and capture local recombination variation across genomes and along lineages. The removal of deleterious mutations from natural populations has potential consequences on patterns of variation across genomes. Population genetic analyses, however, often assume that such effects are negligible across recombining regions of species like Drosophila. We use simple models of purifying selection and current knowledge of recombination rates and gene distribution across the genome to obtain a baseline of variation predicted by the constant input and removal of deleterious mutations. We find that purifying selection alone can explain a major fraction of the observed variance in nucleotide diversity across the genome. The use of a baseline of variation predicted by linkage to deleterious mutations as null expectation exposes genomic regions under other selective regimes, including more regions showing the signature of balancing selection than would be evident when using traditional approaches. Our study also indicates that most, if not all, nucleotides across the D. melanogaster genome are significantly influenced by the removal of deleterious mutations, even when located in the middle of highly recombining regions and distant from genes. Additionally, the study of rates of protein evolution confirms previous analyses suggesting that the recombination landscape across the genome has changed in the recent history of D. melanogaster. All these reported factors can skew current analyses designed to capture demographic events or estimate the strength and frequency of adaptive mutations, and illustrate the need for new and more realistic theoretical and modeling approaches to study naturally occurring genetic variation.
Collapse
|
125
|
Llopart A, Herrig D, Brud E, Stecklein Z. Sequential adaptive introgression of the mitochondrial genome in Drosophila yakuba and Drosophila santomea. Mol Ecol 2014; 23:1124-36. [PMID: 24460929 PMCID: PMC4260671 DOI: 10.1111/mec.12678] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 01/29/2023]
Abstract
Interspecific hybridization provides the unique opportunity for species to tap into genetic variation present in a closely related species and potentially take advantage of beneficial alleles. It has become increasingly clear that when hybridization occurs, mitochondrial DNA (mtDNA) often crosses species boundaries, raising the possibility that it could serve as a recurrent target of natural selection and source of species' adaptations. Here we report the sequences of 46 complete mitochondrial genomes of Drosophila yakuba and Drosophila santomea, two sister species known to produce hybrids in nature (∼3%). At least two independent events of mtDNA introgression are uncovered in this study, including an early invasion of the D. yakuba mitochondrial genome that fully replaced the D. santomea mtDNA native haplotypes and a more recent, ongoing event centred in the hybrid zone. Interestingly, this recent introgression event bears the signature of Darwinian natural selection, and the selective haplotype can be found at low frequency in Africa mainland populations of D. yakuba. We put forward the possibility that, because the effective population size of D. santomea is smaller than that of D. yakuba, the faster accumulation of mildly deleterious mutations associated with Muller's ratchet in the former species may have facilitated the replacement of the mutationally loaded mitochondrial genome of D.
Collapse
Affiliation(s)
- Ana Llopart
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | |
Collapse
|
126
|
Abstract
Mutation is the ultimate source of genetic variation. The most direct and unbiased method of studying spontaneous mutations is via mutation accumulation (MA) lines. Until recently, MA experiments were limited by the cost of sequencing and thus provided us with small numbers of mutational events and therefore imprecise estimates of rates and patterns of mutation. We used whole-genome sequencing to identify nearly 1,000 spontaneous mutation events accumulated over ∼311,000 generations in 145 diploid MA lines of the budding yeast Saccharomyces cerevisiae. MA experiments are usually assumed to have negligible levels of selection, but even mild selection will remove strongly deleterious events. We take advantage of such patterns of selection and show that mutation classes such as indels and aneuploidies (especially monosomies) are proportionately much more likely to contribute mutations of large effect. We also provide conservative estimates of indel, aneuploidy, environment-dependent dominant lethal, and recessive lethal mutation rates. To our knowledge, for the first time in yeast MA data, we identified a sufficiently large number of single-nucleotide mutations to measure context-dependent mutation rates and were able to (i) confirm strong AT bias of mutation in yeast driven by high rate of mutations from C/G to T/A and (ii) detect a higher rate of mutation at C/G nucleotides in two specific contexts consistent with cytosine methylation in S. cerevisiae.
Collapse
|
127
|
Yang G, Fattash I, Lee CN, Liu K, Cavinder B. Birth of three stowaway-like MITE families via microhomology-mediated miniaturization of a Tc1/Mariner element in the yellow fever mosquito. Genome Biol Evol 2014; 5:1937-48. [PMID: 24068652 PMCID: PMC3814204 DOI: 10.1093/gbe/evt146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Eukaryotic genomes contain numerous DNA transposons that move by a cut-and-paste mechanism. The majority of these elements are self-insufficient and dependent on their autonomous relatives to transpose. Miniature inverted repeat transposable elements (MITEs) are often the most numerous nonautonomous DNA elements in a higher eukaryotic genome. Little is known about the origin of these MITE families as few of them are accompanied by their direct ancestral elements in a genome. Analyses of MITEs in the yellow fever mosquito identified its youngest MITE family, designated as Gnome, that contains at least 116 identical copies. Genome-wide search for direct ancestral autonomous elements of Gnome revealed an elusive single copy Tc1/Mariner-like element, named as Ozma, that encodes a transposase with a DD37E triad motif. Strikingly, Ozma also gave rise to two additional MITE families, designated as Elf and Goblin. These three MITE families were derived at different times during evolution and bear internal sequences originated from different regions of Ozma. Upon close inspection of the sequence junctions, the internal deletions during the formation of these three MITE families always occurred between two microhomologous sites (6–8 bp). These results suggest that multiple MITE families may originate from a single ancestral autonomous element, and formation of MITEs can be mediated by sequence microhomology. Ozma and its related MITEs are exceptional candidates for the long sought-after endogenous active transposon tool in genetic control of mosquitoes.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
- *Corresponding author: E-mail:
| | - Isam Fattash
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Chia-Ni Lee
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Kun Liu
- Department of Botany and Plant Sciences, University of California Riverside
| | - Brad Cavinder
- Department of Plant Pathology and Microbiology, University of California Riverside
| |
Collapse
|
128
|
Jia F, Lo N, Ho SYW. The impact of modelling rate heterogeneity among sites on phylogenetic estimates of intraspecific evolutionary rates and timescales. PLoS One 2014; 9:e95722. [PMID: 24798481 PMCID: PMC4010409 DOI: 10.1371/journal.pone.0095722] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/28/2014] [Indexed: 12/23/2022] Open
Abstract
Phylogenetic analyses of DNA sequence data can provide estimates of evolutionary rates and timescales. Nearly all phylogenetic methods rely on accurate models of nucleotide substitution. A key feature of molecular evolution is the heterogeneity of substitution rates among sites, which is often modelled using a discrete gamma distribution. A widely used derivative of this is the gamma-invariable mixture model, which assumes that a proportion of sites in the sequence are completely resistant to change, while substitution rates at the remaining sites are gamma-distributed. For data sampled at the intraspecific level, however, biological assumptions involved in the invariable-sites model are commonly violated. We examined the use of these models in analyses of five intraspecific data sets. We show that using 6-10 rate categories for the discrete gamma distribution of rates among sites is sufficient to provide a good approximation of the marginal likelihood. Increasing the number of gamma rate categories did not have a substantial effect on estimates of the substitution rate or coalescence time, unless rates varied strongly among sites in a non-gamma-distributed manner. The assumption of a proportion of invariable sites provided a better approximation of the asymptotic marginal likelihood when the number of gamma categories was small, but had minimal impact on estimates of rates and coalescence times. However, the estimated proportion of invariable sites was highly susceptible to changes in the number of gamma rate categories. The concurrent use of gamma and invariable-site models for intraspecific data is not biologically meaningful and has been challenged on statistical grounds; here we have found that the assumption of a proportion of invariable sites has no obvious impact on Bayesian estimates of rates and timescales from intraspecific data.
Collapse
Affiliation(s)
- Fangzhi Jia
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Nathan Lo
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y. W. Ho
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
129
|
Honma H, Hirai M, Nakamura S, Hakimi H, Kawazu SI, Palacpac NMQ, Hisaeda H, Matsuoka H, Kawai S, Endo H, Yasunaga T, Ohashi J, Mita T, Horii T, Furusawa M, Tanabe K. Generation of rodent malaria parasites with a high mutation rate by destructing proofreading activity of DNA polymerase δ. DNA Res 2014; 21:439-46. [PMID: 24670267 PMCID: PMC4131837 DOI: 10.1093/dnares/dsu009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plasmodium falciparum malaria imposes a serious public health concern throughout the tropics. Although genetic tools are principally important to fully investigate malaria parasites, currently available forward and reverse tools are fairly limited. It is expected that parasites with a high mutation rate can readily acquire novel phenotypes/traits; however, they remain an untapped tool for malaria biology. Here, we generated a mutator malaria parasite (hereinafter called a ‘malaria mutator’), using site-directed mutagenesis and gene transfection techniques. A mutator Plasmodium berghei line with a defective proofreading 3′ → 5′ exonuclease activity in DNA polymerase δ (referred to as PbMut) and a control P. berghei line with wild-type DNA polymerase δ (referred to as PbCtl) were maintained by weekly passage in ddY mice for 122 weeks. High-throughput genome sequencing analysis revealed that two PbMut lines had 175–178 mutations and a 86- to 90-fold higher mutation rate than that of a PbCtl line. PbMut, PbCtl, and their parent strain, PbWT, showed similar course of infection. Interestingly, PbMut lost the ability to form gametocytes during serial passages. We believe that the malaria mutator system could provide a novel and useful tool to investigate malaria biology.
Collapse
Affiliation(s)
- Hajime Honma
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Hirai
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Shota Nakamura
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hassan Hakimi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Nirianne M Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hajime Hisaeda
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiroyuki Matsuoka
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Satoru Kawai
- Laboratory of Tropical Medicine and Parasitology, Institute of International Education and Research, Dokkyo Medical University, Shimotsuga, Tochigi 321-0293, Japan
| | - Hiroyoshi Endo
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University School of Medicine, Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Teruo Yasunaga
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jun Ohashi
- Faculty of Medicine, University of Tsukuba, Ibaragi 305-8575, Japan
| | - Toshihiro Mita
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University School of Medicine, Kawada-cho, Shinjuku, Tokyo 162-8666, Japan Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuru Furusawa
- Neo-Morgan Laboratory, Inc., Nogawa, Miyamae, Kawasaki, Kanagawa 216-0001, Japan
| | - Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
130
|
Flagel LE, Bansal R, Kerstetter RA, Chen M, Carroll M, Flannagan R, Clark T, Goldman BS, Michel AP. Western corn rootworm (Diabrotica virgifera virgifera) transcriptome assembly and genomic analysis of population structure. BMC Genomics 2014; 15:195. [PMID: 24628835 PMCID: PMC4004143 DOI: 10.1186/1471-2164-15-195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/04/2014] [Indexed: 02/04/2023] Open
Abstract
Background Western corn rootworm (WCR) is one of the most significant insect pests of maize in North America. WCR has dramatically increased its range in the last century, invading key maize production areas in the US and abroad. In addition, this species has a history of evolving traits that allow it to escape various control options. Improved genetic and genomic resources are crucial tools for understanding population history and the genetic basis of trait evolution. Here we produce and analyze a transcriptome assembly for WCR. We also perform whole genome population resequencing, and combine these resources to better understand the evolutionary history of WCR. Results The WCR transcriptome assembly presented here contains approximately 16,000 unigenes, many of which have high similarity to other insect species. Among these unigenes we found several gene families that have been implicated in insecticide resistance in other species. We also identified over 500,000 unigene based SNPs among 26 WCR populations. We used these SNPs to scan for outliers among the candidate genes, and to understand how population processes have shaped genetic variation in this species. Conclusions This study highlights the utility of transcriptomic and genomic resources as foundational tools for dealing with highly adaptive pest species. Using these tools we identified candidate gene families for insecticide resistance and reveal aspects of WCR population history in light of the species’ recent range expansion. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-195) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Barry S Goldman
- Monsanto Company, 700 Chesterfield Parkway W, Chesterfield, MO 63017, USA.
| | | |
Collapse
|
131
|
Mockett RJ, Matsumoto Y. Effect of prolonged coldness on survival and fertility of Drosophila melanogaster. PLoS One 2014; 9:e92228. [PMID: 24632815 PMCID: PMC3954892 DOI: 10.1371/journal.pone.0092228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
The laboratory fruit fly, Drosophila melanogaster, is used widely in biological research, but the requirement to maintain stocks with a roughly biweekly generation time imposes substantial burdens of labor, potential cross-contamination and mutation accumulation. The purpose of this study was to assess the impact of prolonged cold stress or milder cooling on survivorship and fertility. The hypothesis was that cold storage would result in postponement of reproduction and a longer generation time. Flies of several genotypes were maintained continuously at 4–11°C; recovery rates and subsequent yields of adult progeny were recorded. Adults and pupae of a relatively long-lived y w lineage were more resistant to severe cold stress than embryos and larvae. Adults exhibited minimal mortality up to at least 5 d at 4°C, 20 d at 8°C and 12 weeks at 11°C. Reproduction did not occur at these temperatures, but progeny were obtained after recovery at 25°C. At all temperatures, chilling caused a rapid, severe and progressive decrease in fertility during the first 2 d of recovery. The impact on fertility during the subsequent 2–4 d was much milder and it occurred only after prolonged incubation at low temperatures. The total reproductive output during the first 6 d of recovery was sufficient to replace the parental population after 12 weeks at 11°C. Food spoilage had an unexpectedly low impact on survivorship and fertility, and the reproductive output of F1 progeny was not affected by storing parental flies at 11°C for 8–10 weeks. In the case of w1118 flies, replacement of the parents within 6 d of recovery was possible for up to 60 d at 11°C. Among less fertile genotypes, replacement of the parents was possible within 18 d after 4–10 weeks at 11°C. These results show that the 2-week maintenance interval of stocks of D. melanogaster can be extended 3–7 fold, at least for 1 generation, by storing adult flies at 11°C.
Collapse
Affiliation(s)
- Robin J. Mockett
- Department of Biomedical Sciences, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| | - Yuri Matsumoto
- Department of Biomedical Sciences, University of South Alabama, Mobile, Alabama, United States of America
| |
Collapse
|
132
|
Cassidy JJ, Jha AR, Posadas DM, Giri R, Venken KJT, Ji J, Jiang H, Bellen HJ, White KP, Carthew RW. miR-9a minimizes the phenotypic impact of genomic diversity by buffering a transcription factor. Cell 2014; 155:1556-67. [PMID: 24360277 DOI: 10.1016/j.cell.2013.10.057] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/16/2013] [Accepted: 10/29/2013] [Indexed: 12/22/2022]
Abstract
Gene expression has to withstand stochastic, environmental, and genomic perturbations. For example, in the latter case, 0.5%-1% of the human genome is typically variable between any two unrelated individuals. Such diversity might create problematic variability in the activity of gene regulatory networks and, ultimately, in cell behaviors. Using multigenerational selection experiments, we find that for the Drosophila proneural network, the effect of genomic diversity is dampened by miR-9a-mediated regulation of senseless expression. Reducing miR-9a regulation of the Senseless transcription factor frees the genomic landscape to exert greater phenotypic influence. Whole-genome sequencing identified genomic loci that potentially exert such effects. A larger set of sequence variants, including variants within proneural network genes, exhibits these characteristics when miR-9a concentration is reduced. These findings reveal that microRNA-target interactions may be a key mechanism by which the impact of genomic diversity on cell behavior is dampened.
Collapse
Affiliation(s)
- Justin J Cassidy
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Aashish R Jha
- Institute for Genomics and Systems Biology, Departments of Human Genetics and Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Diana M Posadas
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ritika Giri
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Koen J T Venken
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingran Ji
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Hongmei Jiang
- Department of Statistics, Northwestern University, Evanston, IL 60208, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology, Departments of Human Genetics and Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
133
|
Abstract
The nature and extent of mutational pleiotropy remain largely unknown, despite the central role that pleiotropy plays in many areas of biology, including human disease, agricultural production, and evolution. Here, we investigate the variation in 11,604 gene expression traits among 41 mutation accumulation (MA) lines of Drosophila serrata. We first confirmed that these expression phenotypes were heritable, detecting genetic variation in 96% of them in an outbred, natural population of D. serrata. Among the MA lines, 3385 (29%) of expression traits were variable, with a mean mutational heritability of 0.0005. In most traits, variation was generated by mutations of relatively small phenotypic effect; putative mutations with effects of greater than one phenotypic standard deviation were observed for only 8% of traits. With most (71%) traits unaffected by any mutation, our data provide no support for universal pleiotropy. We further characterized mutational pleiotropy in the 3385 variable traits, using sets of 5, randomly assigned, traits. Covariance among traits chosen at random with respect to their biological function is expected only if pleiotropy is extensive. Taking an analytical approach in which the variance unique to each trait in the random 5-trait sets was partitioned from variance shared among traits, we detected significant (at 5% false discovery rate) mutational covariance in 21% of sets. This frequency of statistically supported covariance implied that at least some mutations must pleiotropically affect a substantial number of traits (>70; 0.6% of all measured traits).
Collapse
|
134
|
Keightley PD, Ness RW, Halligan DL, Haddrill PR. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 2014; 196:313-20. [PMID: 24214343 PMCID: PMC3872194 DOI: 10.1534/genetics.113.158758] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/06/2013] [Indexed: 01/06/2023] Open
Abstract
We employed deep genome sequencing of two parents and 12 of their offspring to estimate the mutation rate per site per generation in a full-sib family of Drosophila melanogaster recently sampled from a natural population. Sites that were homozygous for the same allele in the parents and heterozygous in one or more offspring were categorized as candidate mutations and subjected to detailed analysis. In 1.23 × 10(9) callable sites from 12 individuals, we confirmed six single nucleotide mutations. We estimated the false negative rate in the experiment by generating synthetic mutations using the empirical distributions of numbers of nonreference bases at heterozygous sites in the offspring. The proportion of synthetic mutations at callable sites that we failed to detect was <1%, implying that the false negative rate was extremely low. Our estimate of the point mutation rate is 2.8 × 10(-9) (95% confidence interval = 1.0 × 10(-9) - 6.1 × 10(-9)) per site per generation, which is at the low end of the range of previous estimates, and suggests an effective population size for the species of ∼1.4 × 10(6). At one site, point mutations were present in two individuals, indicating that there had been a premeiotic mutation cluster, although surprisingly one individual had a G→A transition and the other a G→T transversion, possibly associated with error-prone mismatch repair. We also detected three short deletion mutations and no insertions, giving a deletion mutation rate of 1.2 × 10(-9) (95% confidence interval = 0.7 × 10(-9) - 11 × 10(-9)).
Collapse
Affiliation(s)
- Peter D. Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Rob W. Ness
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Daniel L. Halligan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Penelope R. Haddrill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
135
|
Hsu CC, Lee HC, Wei YH. Mitochondrial DNA alterations and mitochondrial dysfunction in the progression of hepatocellular carcinoma. World J Gastroenterol 2013; 19:8880-8886. [PMID: 24379611 PMCID: PMC3870539 DOI: 10.3748/wjg.v19.i47.8880] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and is ranked third in mortality among cancer-related diseases. Mitochondria are intracellular organelles that are responsible for energy metabolism and cellular homeostasis, and mitochondrial dysfunction has been regarded as a hallmark of cancer. Over the past decades, several types of mitochondrial DNA (mtDNA) alterations have been identified in human cancers, including HCC. However, the role of these mtDNA alterations in cancer progression is unclear. In this review, we summarize the recent findings on the somatic mtDNA alterations identified in HCC and their relationships with the clinicopathological features of HCC. Recent advances in understanding the potential roles of somatic mtDNA alterations in the progression of HCC are also discussed. We suggest that somatic mtDNA mutations and a decrease in the mtDNA copy number are common events in HCC and that a mitochondrial dysfunction-activated signaling cascade may play an important role in the progression of HCC. Elucidation of the retrograde signaling pathways in HCC and the quest for strategies to block some of these pathways will be instrumental for the development of novel treatments for this and other malignancies.
Collapse
|
136
|
Katju V, Bergthorsson U. Copy-number changes in evolution: rates, fitness effects and adaptive significance. Front Genet 2013; 4:273. [PMID: 24368910 PMCID: PMC3857721 DOI: 10.3389/fgene.2013.00273] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/18/2013] [Indexed: 11/13/2022] Open
Abstract
Gene copy-number differences due to gene duplications and deletions are rampant in natural populations and play a crucial role in the evolution of genome complexity. Per-locus analyses of gene duplication rates in the pre-genomic era revealed that gene duplication rates are much higher than the per nucleotide substitution rate. Analyses of gene duplication and deletion rates in mutation accumulation lines of model organisms have revealed that these high rates of copy-number mutations occur at a genome-wide scale. Furthermore, comparisons of the spontaneous duplication and deletion rates to copy-number polymorphism data and bioinformatic-based estimates of duplication rates from sequenced genomes suggest that the vast majority of gene duplications are detrimental and removed by natural selection. The rate at which new gene copies appear in populations greatly influences their evolutionary dynamics and standing gene copy-number variation in populations. The opportunity for mutations that result in the maintenance of duplicate copies, either through neofunctionalization or subfunctionalization, also depends on the equilibrium frequency of additional gene copies in the population, and hence on the spontaneous gene duplication (and loss) rate. The duplication rate may therefore have profound effects on the role of adaptation in the evolution of duplicated genes as well as important consequences for the evolutionary potential of organisms. We further discuss the broad ramifications of this standing gene copy-number variation on fitness and adaptive potential from a population-genetic and genome-wide perspective.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | | |
Collapse
|
137
|
Ellison CE, Bachtrog D. Dosage compensation via transposable element mediated rewiring of a regulatory network. Science 2013; 342:846-50. [PMID: 24233721 DOI: 10.1126/science.1239552] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transposable elements (TEs) may contribute to evolutionary innovations through the rewiring of networks by supplying ready-to-use cis regulatory elements. Genes on the Drosophila X chromosome are coordinately regulated by the male specific lethal (MSL) complex to achieve dosage compensation in males. We show that the acquisition of dozens of MSL binding sites on evolutionarily new X chromosomes was facilitated by the independent co-option of a mutant helitron TE that attracts the MSL complex (TE domestication). The recently formed neo-X recruits helitrons that provide dozens of functional, but suboptimal, MSL binding sites, whereas the older XR chromosome has ceased acquisition and appears to have fine-tuned the binding affinities of more ancient elements for the MSL complex. Thus, TE-mediated rewiring of regulatory networks through domestication and amplification may be followed by fine-tuning of the cis-regulatory element supplied by the TE and erosion of nonfunctional regions.
Collapse
Affiliation(s)
- Christopher E Ellison
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
138
|
Zhong Y, Jia Y, Gao Y, Tian D, Yang S, Zhang X. Functional requirements driving the gene duplication in 12 Drosophila species. BMC Genomics 2013; 14:555. [PMID: 23945147 PMCID: PMC3751352 DOI: 10.1186/1471-2164-14-555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 08/13/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. RESULTS In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. CONCLUSIONS This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.
Collapse
Affiliation(s)
- Yan Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Rd, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
139
|
Leushkin EV, Bazykin GA, Kondrashov AS. Strong mutational bias toward deletions in the Drosophila melanogaster genome is compensated by selection. Genome Biol Evol 2013; 5:514-24. [PMID: 23395983 PMCID: PMC3622295 DOI: 10.1093/gbe/evt021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Insertions and deletions (collectively indels) obviously have a major impact on genome evolution. However, before large-scale data on indel polymorphism became available, it was difficult to estimate the strength of selection acting on indel mutations. Here, we analyze indel polymorphism and divergence in different compartments of the Drosophila melanogaster genome: exons, introns of different lengths, and intergenic regions. Data on low-frequency polymorphisms indicate that 0.036–0.039 short (1–30 nt) insertion mutations and 0.085–0.092 short deletion mutations, with mean lengths 3.23 and 4.78, respectively, occur per single-nucleotide substitution. The excess of short deletion over short insertion mutations implies that indel mutations of these lengths should lead to a loss of approximately 0.30 nt per single-nucleotide replacement. However, polymorphism and divergence data show that this deletion bias is almost completely compensated by selection: Negative selection is stronger against deletions, whereas insertions are more likely to be favored by positive selection. Among the inframe low-frequency polymorphic mutations in exons, long introns, and intergenic regions, selection prevents a larger fraction of deletions (80–87%, depending on the type of the compartment) than of insertions (70–82%) or single-nucleotide substitutions (49–73%), from reaching high frequencies. The corresponding fractions were the lowest in short introns: 66%, 47%, and 15%, respectively, consistent with the weakest selective constraint in them. The McDonald–Kreitman test shows that 32–46% of the deletions and 60–73% of the insertions that were fixed in the recent evolution of D. melanogaster are adaptive, whereas this fraction is only 0–29% for single-nucleotide substitutions.
Collapse
Affiliation(s)
- Evgeny V Leushkin
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
| | | | | |
Collapse
|
140
|
Charlesworth B. Stabilizing selection, purifying selection, and mutational bias in finite populations. Genetics 2013; 194:955-71. [PMID: 23709636 PMCID: PMC3730922 DOI: 10.1534/genetics.113.151555] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/18/2013] [Indexed: 12/16/2022] Open
Abstract
Genomic traits such as codon usage and the lengths of noncoding sequences may be subject to stabilizing selection rather than purifying selection. Mutations affecting these traits are often biased in one direction. To investigate the potential role of stabilizing selection on genomic traits, the effects of mutational bias on the equilibrium value of a trait under stabilizing selection in a finite population were investigated, using two different mutational models. Numerical results were generated using a matrix method for calculating the probability distribution of variant frequencies at sites affecting the trait, as well as by Monte Carlo simulations. Analytical approximations were also derived, which provided useful insights into the numerical results. A novel conclusion is that the scaled intensity of selection acting on individual variants is nearly independent of the effective population size over a wide range of parameter space and is strongly determined by the logarithm of the mutational bias parameter. This is true even when there is a very small departure of the mean from the optimum, as is usually the case. This implies that studies of the frequency spectra of DNA sequence variants may be unable to distinguish between stabilizing and purifying selection. A similar investigation of purifying selection against deleterious mutations was also carried out. Contrary to previous suggestions, the scaled intensity of purifying selection with synergistic fitness effects is sensitive to population size, which is inconsistent with the general lack of sensitivity of codon usage to effective population size.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| |
Collapse
|
141
|
Relative effects of segregation and recombination on the evolution of sex in finite diploid populations. Heredity (Edinb) 2013; 111:505-12. [PMID: 23900397 DOI: 10.1038/hdy.2013.72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 05/19/2013] [Accepted: 06/18/2013] [Indexed: 11/08/2022] Open
Abstract
The mechanism of reproducing more viable offspring in response to selection is a major factor influencing the advantages of sex. In diploids, sexual reproduction combines genotype by recombination and segregation. Theoretical studies of sexual reproduction have investigated the advantage of recombination in haploids. However, the potential advantage of segregation in diploids is less studied. This study aimed to quantify the relative contribution of recombination and segregation to the evolution of sex in finite diploids by using multilocus simulations. The mean fitness of a sexually or asexually reproduced population was calculated to describe the long-term effects of sex. The evolutionary fate of a sex or recombination modifier was also monitored to investigate the short-term effects of sex. Two different scenarios of mutations were considered: (1) only deleterious mutations were present and (2) a combination of deleterious and beneficial mutations. Results showed that the combined effects of segregation and recombination strongly contributed to the evolution of sex in diploids. If deleterious mutations were only present, segregation efficiently slowed down the speed of Muller's ratchet. As the recombination level was increased, the accumulation of deleterious mutations was totally inhibited and recombination substantially contributed to the evolution of sex. The presence of beneficial mutations evidently increased the fixation rate of a recombination modifier. We also observed that the twofold cost of sex was easily to overcome in diploids if a sex modifier caused a moderate frequency of sex.
Collapse
|
142
|
Charlesworth B. Why we are not dead one hundred times over. Evolution 2013; 67:3354-61. [PMID: 24152012 DOI: 10.1111/evo.12195] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/14/2013] [Indexed: 12/25/2022]
Abstract
The possibility of pervasive weak selection at tens or hundreds of millions of sites across the genome, suggested by recent studies of silent site DNA sequence variation and divergence, raises the problem of the survival of the population in the face of the large genetic load that may result. Two alternative resolutions of this problem are presented for populations where recombination is sufficiently frequent that different sites under selection evolve independently. One invokes weak stabilizing selection, of the magnitude compatible with abundant silent site variability. This can be shown to produce only a modest genetic load, due to the effectiveness of even weak stabilizing selection in keeping the trait mean close to the optimum. The other invokes soft selection, whereby individuals compete for a limiting resource whose abundance determines the absolute fitness of the population. Weak purifying selection at a large number of sites produces only a small variance in fitness among individuals within the population, due to the fact that most sites are fixed rather than polymorphic. Even when it produces a large genetic load, it is compatible with the observations on fitness variance when selection is soft. It may be very difficult to distinguish between these two possibilities.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom.
| |
Collapse
|
143
|
Abstract
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious--making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise.
Collapse
|
144
|
Coron C, Méléard S, Porcher E, Robert A. Quantifying the Mutational Meltdown in Diploid Populations. Am Nat 2013; 181:623-36. [DOI: 10.1086/670022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
145
|
Greenspoon PB, M'Gonigle LK. The evolution of mutation rate in an antagonistic coevolutionary model with maternal transmission of parasites. Proc Biol Sci 2013; 280:20130647. [PMID: 23760645 DOI: 10.1098/rspb.2013.0647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
By constantly selecting for novel genotypes, coevolution between hosts and parasites can favour elevated mutation rates. Models of this process typically assume random encounters. However, offspring are often more likely to encounter their mother's parasites. Because parents and offspring are genetically similar, they may be susceptible to the same parasite strains and thus, in hosts, maternal transmission should select for mechanisms that decrease intergenerational genetic similarity. In parasites, however, maternal transmission should select for genetic similarity. We develop and analyse a model of host and parasite mutation rate evolution when parasites are maternally inherited. In hosts, we find that maternal transmission has two opposing effects. First, it eliminates coevolutionary cycles that previous work shows select for higher mutation. Second, it independently selects for higher mutation rates, because offspring that differ from their mothers are more likely to avoid infection. In parasites, however, the two effects of maternal transmission act in the same direction. As for hosts, maternal transmission eliminates coevolutionary cycles, thereby reducing selection for increased mutation. Unlike for hosts, however, maternal transmission additionally selects against higher mutation by favouring parasite offspring that are the same as their mothers.
Collapse
|
146
|
Subramanian S, Lambert DM. Selective constraints determine the time dependency of molecular rates for human nuclear genomes. Genome Biol Evol 2013; 4:1127-32. [PMID: 23059453 PMCID: PMC3514959 DOI: 10.1093/gbe/evs092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In contrast to molecular rates for neutral mitochondrial sequences, rates for constrained sites (including nonsynonymous sites, D-loop, and RNA) in the mitochondrial genome are known to vary with the time frame used for their estimation. Here, we examined this issue for the nuclear genomes using single-nucleotide polymorphisms (SNPs) from six complete human genomes of individuals belonging to different populations. We observed a strong time-dependent distribution of nonsynonymous SNPs (nSNPs) in highly constrained genes. Typically, the proportion of young nSNPs specific to a single population was found to be up to three times higher than that of the ancient nSNPs shared between diverse human populations. In contrast, this trend disappeared, and a uniform distribution of young and old nSNPs was observed in genes under relaxed selective constraints. This suggests that because mutations in constrained genes are highly deleterious, they are removed over time, resulting in a relative overabundance of young nSNPs. In contrast, mutations in genes under relaxed constraints are nearly neutral, which leads to similar proportions of young and old SNPs. These results could be useful to researchers aiming to select appropriate genes or genomic regions for estimating evolutionary rates and species or population divergence times.
Collapse
|
147
|
Woodruff RC. An extreme test of mutational meltdown shows mutational firm up instead. Genetica 2013; 141:185-8. [PMID: 23543206 DOI: 10.1007/s10709-013-9716-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/25/2013] [Indexed: 01/18/2023]
Abstract
Traditionally, the accumulation of new deleterious mutations in populations or species in low numbers is expected to lead to a reduction in fitness and mutational meltdown, but in this study the opposite was observed. Beginning with a highly inbred populations of Drosophila melanogaster, new mutations that accumulated in experiments of two females and two males or of one female and one male each generation for 52 generations did not cause a decline in progeny numbers over time. Only two lines went extinct among 52 tested lines. In three of four experiments there was a significant increase in progeny numbers over time (mutational firm up), which had to be due to new beneficial, compensatory, overdominant, or back mutations.
Collapse
Affiliation(s)
- R C Woodruff
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
148
|
Haywood S. Origin of evolutionary change in avian clutch size. Biol Rev Camb Philos Soc 2013; 88:895-911. [PMID: 23521762 DOI: 10.1111/brv.12035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/18/2013] [Accepted: 02/27/2013] [Indexed: 01/08/2023]
Abstract
Why different bird species lay different numbers of eggs is a question that has long been associated with factors external to the organism, that is, factors which operate on inherited variation in clutch size through the action of natural selection. Yet, while external factors are important, the extent of what is evolutionarily possible rests with the mechanisms developed by birds for clutch-size control. Hitherto neglected, these mechanisms generate factors internal to the organism that are central to the origin of evolutionary change. They are related to the fact that a species-specific range of clutch size arises from the differential survival of pre-ovulatory follicles undergoing growth when the signal causing egg laying to end reaches the ovary. Herein, I examine three internal factors that, together with external factors, could impact the evolution of avian clutch size. Each factor acts by changing either the number of pre-ovulatory follicles present in the ovary at the time of follicular disruption or the timing of this event. These changes to clutch size can be explained by the concept of heterochrony. In light of this, the role of phenotypic plasticity and genes determining clutch size is discussed. Finally, to account for the origin of evolutionary change in clutch size, I detail an hypothesis involving a process similar to Waddington's theory of genetic assimilation.
Collapse
|
149
|
Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet 2013; 14:262-74. [PMID: 23478346 DOI: 10.1038/nrg3425] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and the removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive differences in linked selection among species--including roles for selective sweeps being 'hard' or 'soft'--and the concealing effects of demography and confounding genomic variables. We advocate targeted studies of closely related species to unify our understanding of how selection and linkage interact to shape genome evolution.
Collapse
|
150
|
Abstract
The evolution of sex is one of the most important and controversial problems in evolutionary biology. Although sex is almost universal in higher animals and plants, its inherent costs have made its maintenance difficult to explain. The most famous of these is the twofold cost of males, which can greatly reduce the fecundity of a sexual population, compared to a population of asexual females. Over the past century, multiple hypotheses, along with experimental evidence to support these, have been put forward to explain widespread costly sex. In this review, we outline some of the most prominent theories, along with the experimental and observational evidence supporting these. Historically, there have been 4 classes of theories: the ability of sex to fix multiple novel advantageous mutants (Fisher-Muller hypothesis); sex as a mechanism to stop the build-up of deleterious mutations in finite populations (Muller's ratchet); recombination creating novel genotypes that can resist infection by parasites (Red Queen hypothesis); and the ability of sex to purge bad genomes if deleterious mutations act synergistically (mutational deterministic hypothesis). Current theoretical and experimental evidence seems to favor the hypothesis that sex breaks down selection interference between new mutants, or it acts as a mechanism to shuffle genotypes in order to repel parasitic invasion. However, there is still a need to collect more data from natural populations and experimental studies, which can be used to test different hypotheses.
Collapse
Affiliation(s)
- Matthew Hartfield
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|