101
|
Abstract
Peroxiredoxins are abundant cellular antioxidant proteins that help to control intracellular peroxide levels. These proteins may also function, in part, through an evolved sensitivity of some peroxiredoxins towards peroxide-mediated inactivation in hydrogen peroxide signaling in eukaryotes. This review summarizes recent progress in our understanding of the catalytic and regulatory mechanisms of 'typical 2-Cys' peroxiredoxins and of the biological roles played by these important enzymes in oxidative stress and nonstress-related cellular signaling. New evidence suggests localized peroxide buildup plays a role in nonstress-related signaling.
Collapse
Affiliation(s)
- Andrea Hall
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - P. Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
102
|
Soriano FX, Baxter P, Murray LM, Sporn MB, Gillingwater TH, Hardingham GE. Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin. Mol Cells 2009; 27:279-82. [PMID: 19326073 PMCID: PMC2837916 DOI: 10.1007/s10059-009-0050-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/15/2009] [Indexed: 01/11/2023] Open
Abstract
"Two-cysteine" peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin's role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by nuclear factor erythroid 2-related factor (Nrf2) via a conserved Aáë-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here, the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress.
Collapse
Affiliation(s)
- Francesc X. Soriano
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Paul Baxter
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Lyndsay M. Murray
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Michael B. Sporn
- Centre for Neuroscience Research, University of Edinburgh, Edinburgh EH8 9XD, UK; Dartmouth Medical School, 524 Remsen, Hanover NH 03755, USA
| | | | - Giles E. Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
103
|
Aran M, Ferrero DS, Pagano E, Wolosiuk RA. Typical 2-Cys peroxiredoxins--modulation by covalent transformations and noncovalent interactions. FEBS J 2009; 276:2478-93. [PMID: 19476489 DOI: 10.1111/j.1742-4658.2009.06984.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
2-Cys peroxiredoxins are peroxidases devoid of prosthetic groups that mediate in the defence against oxidative stress and the peroxide activation of signaling pathways. This dual capacity relies on the high reactivity of the conserved peroxidatic and resolving cysteines, whose modification embraces not only the usual thiol-disulfide exchange but also higher oxidation states of the sulfur atom. These changes are part of a complex system wherein the cooperation with other post-translational modifications - phosphorylation, acetylation - may function as major regulatory mechanisms of the quaternary structure. More importantly, modern proteomic approaches have identified the oxyacids at cysteine residues as novel protein targets for unsuspected post-translational modifications, such as phosphorylation that yields the unusual sulfi(o)nic-phosphoryl anhydride. In this article, we review the biochemical attributes of 2-Cys peroxiredoxins that, in combination with complementary studies of forward and reverse genetics, have generated stimulating molecular models to explain how this enzyme integrates into cell signaling in vivo.
Collapse
Affiliation(s)
- Martin Aran
- Instituto Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
104
|
Seo JH, Lim JC, Lee DY, Kim KS, Piszczek G, Nam HW, Kim YS, Ahn T, Yun CH, Kim K, Chock PB, Chae HZ. Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nalpha-terminal acetylation of human peroxiredoxin II. J Biol Chem 2009; 284:13455-13465. [PMID: 19286652 DOI: 10.1074/jbc.m900641200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxins (Prxs) are a group of peroxidases containing a cysteine thiol at their catalytic site. During peroxidase catalysis, the catalytic cysteine, referred to as the peroxidatic cysteine (C(P)), cycles between thiol (C(P)-SH) and disulfide (-S-S-) states via a sulfenic (C(P)-SOH) intermediate. Hyperoxidation of the C(P) thiol to its sulfinic (C(P)-SO(2)H) derivative has been shown to be reversible, but its sulfonic (C(P)-SO(3)H) derivative is irreversible. Our comparative study of hyperoxidation and regeneration of Prx I and Prx II in HeLa cells revealed that Prx II is more susceptible than Prx I to hyperoxidation and that the majority of the hyperoxidized Prx II formation is reversible. However, the hyperoxidized Prx I showed much less reversibility because of the formation of its irreversible sulfonic derivative, as verified with C(P)-SO(3)H-specific antiserum. In an attempt to identify the multiple hyperoxidized spots of the Prx I on two-dimensional PAGE analysis, an N-acetylated Prx I was identified as part of the total Prx I using anti-acetylated Lys antibody. Using peptidyl-Asp metalloendopeptidase (EC 3.4.24.33) peptide fingerprints, we found that N(alpha)-terminal acetylation (N(alpha)-Ac) occurred exclusively on Prx II after demethionylation. N(alpha)-Ac of Prx II blocks Prx II from irreversible hyperoxidation without altering its affinity for hydrogen peroxide. A comparative study of non-N(alpha)-acetylated and N(alpha)-terminal acetylated Prx II revealed that N(alpha)-Ac of Prx II induces a significant shift in the circular dichroism spectrum and elevation of T(m) from 59.6 to 70.9 degrees C. These findings suggest that the structural maintenance of Prx II by N(alpha)-Ac may be responsible for preventing its hyperoxidation to form C(P)-SO(3)H.
Collapse
Affiliation(s)
- Jae Ho Seo
- School of Biological Sciences and Technology Chonnam National University, Gwangju 500-757, Korea
| | - Jung Chae Lim
- School of Biological Sciences and Technology Chonnam National University, Gwangju 500-757, Korea
| | - Duck-Yeon Lee
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Kyung Seok Kim
- School of Biological Sciences and Technology Chonnam National University, Gwangju 500-757, Korea
| | - Grzegorz Piszczek
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Hyung Wook Nam
- Department of Biochemistry, College of Science, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea
| | - Yu Sam Kim
- Department of Biochemistry, College of Science, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea
| | - Taeho Ahn
- Department of Biochemistry, Chonnam National University, Gwangju 500-757, Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology Chonnam National University, Gwangju 500-757, Korea
| | - Kanghwa Kim
- Department of Food and Nutrition and College of Veterinary Medicine Chonnam National University, Gwangju 500-757, Korea
| | - P Boon Chock
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Ho Zoon Chae
- School of Biological Sciences and Technology Chonnam National University, Gwangju 500-757, Korea.
| |
Collapse
|
105
|
Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies. Proc Natl Acad Sci U S A 2008; 105:19738-43. [PMID: 19057013 DOI: 10.1073/pnas.0810676105] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous studies have shown that a dominant negative form of c-Jun (TAM67) suppresses mouse skin carcinogenesis both in vitro and in vivo. The current study identifies Sulfiredoxin (Srx) as a unique target of activator protein-1 (AP-1) activation and TAM67 inhibition. Manipulation of Srx levels by ShRNA or over-expression demonstrates that Srx is critical for redox homeostasis through reducing hyperoxidized peroxiredoxins. In JB6 cells, knockdown of Srx abolishes tumor promoter-induced transformation and enhances cell sensitivity to oxidative stress. Knockdown of Srx also impairs c-Jun phosphorylation, implicating a role for Srx in the feedback regulation of AP-1 activity. Screening of patient tissues by tissue microarray reveals elevated Srx expression in several types of human skin cancers. Our study indicates that Srx is a functionally significant target of AP-1 blockade that may have value in cancer prevention or treatment.
Collapse
|
106
|
Kitajima S. Hydrogen Peroxide-mediated Inactivation of Two Chloroplastic Peroxidases, Ascorbate Peroxidase and 2-Cys Peroxiredoxin†. Photochem Photobiol 2008; 84:1404-9. [DOI: 10.1111/j.1751-1097.2008.00452.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
107
|
Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 2008; 12:746-54. [PMID: 18804173 DOI: 10.1016/j.cbpa.2008.07.028] [Citation(s) in RCA: 473] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/30/2008] [Indexed: 01/03/2023]
Abstract
The polarizable sulfur atom in cysteine is subject to numerous post-translational oxidative modifications in the cellular milieu, which regulates a wide variety of biological phenomena such as catalysis, metal binding, protein turnover, and signal transduction. The application of chemical rationale to describe the features of different cysteine oxoforms affords a unique perspective on this rapidly expanding field. Moreover, a chemical framework broadens our understanding of the functional roles that specific cysteine oxidation states can play and facilitates the development of mechanistic proposals, which can be tested in both biochemical and cellular studies.
Collapse
Affiliation(s)
- Khalilah G Reddie
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
108
|
Soriano FX, Léveillé F, Papadia S, Higgins LG, Varley J, Baxter P, Hayes JD, Hardingham GE. Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H-1,2-dithiole-3-thione. J Neurochem 2008; 107:533-43. [PMID: 18761713 DOI: 10.1111/j.1471-4159.2008.05648.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peroxiredoxins are an important family of cysteine-based antioxidant enzymes that exert a neuroprotective effect in several models of neurodegeneration. However, under oxidative stress they are vulnerable to inactivation through hyperoxidation of their active site cysteine residues. We show that in cortical neurons, the chemopreventive inducer 3H-1,2-dithiole-3-thione (D3T), that activates the transcription factor Nuclear factor erythroid 2-related factor (Nrf2), inhibits the formation of inactivated, hyperoxidized peroxiredoxins following oxidative trauma, and protects neurons against oxidative stress. In both neurons and glia, Nrf2 expression and treatment with chemopreventive Nrf2 activators, including D3T and sulforaphane, up-regulates sulfiredoxin, an enzyme responsible for reducing hyperoxidized peroxiredoxins. Induction of sulfiredoxin expression is mediated by Nrf2, acting via a cis-acting antioxidant response element (ARE) in its promoter. The ARE element in Srxn1 contains an embedded activator protein-1 (AP-1) site which directs induction of Srxn1 by synaptic activity. Thus, raising Nrf2 activity in neurons prevents peroxiredoxin hyperoxidation and induces a new member of the ARE-gene family, whose enzymatic function of reducing hyperoxidized peroxiredoxins may contribute to the neuroprotective effects of Nrf2 activators.
Collapse
Affiliation(s)
- Francesc X Soriano
- Centre for Neuroscience Research, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Jönsson TJ, Tsang AW, Lowther WT, Furdui CM. Identification of intact protein thiosulfinate intermediate in the reduction of cysteine sulfinic acid in peroxiredoxin by human sulfiredoxin. J Biol Chem 2008; 283:22890-4. [PMID: 18593714 DOI: 10.1074/jbc.c800124200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The reversible oxidation of the active site cysteine in typical 2-Cys peroxiredoxins (Prx) to sulfinic acid during oxidative stress plays an important role in peroxide-mediated cell signaling. The catalytic retroreduction of Prx-SO(2)(-) by sulfiredoxin (Srx) has been proposed to proceed through two novel reaction intermediates, a sulfinic phosphoryl ester and protein-based thiosulfinate. Two scenarios for the repair mechanism have been suggested that differ in the second step of the reaction. The attack of Srx or GSH on the Prx-SO(2)PO(3)(2-) intermediate would result in either the formation of Prx-Cys-S(=O)-S-Cys-Srx or the formation of Prx-Cys-S(=O)-S-G thiosulfinates, respectively. To elucidate the mechanism of Prx repair, we monitored the reduction of human PrxII-SO(2)(-) using rapid chemical quench methodology and electrospray ionization time-of-flight mass spectrometry. An (18)O exchange study revealed that the Prx sulfinic acid phosphoryl ester is rapidly formed and hydrolyzed (k = 0.35 min(-1)). Furthermore, we observed the exclusive formation of a thiosulfinate linkage between Prx and Srx (k = 1.4 min(-1)) that collapses to the disulfide-bonded Srx-Prx species (k = 0.14 min(-1)). Thus, the kinetic and chemical competences of the first two steps in the Srx reaction have been demonstrated. It is clear, however, that GSH may influence thiosulfinate formation and that GSH and Srx may play additional roles in the resolution of the thiosulfinate intermediate.
Collapse
Affiliation(s)
- Thomas J Jönsson
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
110
|
Jönsson TJ, Murray MS, Johnson LC, Lowther WT. Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J Biol Chem 2008; 283:23846-51. [PMID: 18579529 DOI: 10.1074/jbc.m803244200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfiredoxin (Srx) catalyzes a novel enzymatic reaction, the reduction of protein cysteine sulfinic acid, Cys-SO(2)(-). This reaction is unique to the typical 2-Cys peroxiredoxins (Prx) and plays a role in peroxide-mediated signaling by regulating the activity of Prxs. Two mechanistic schemes have been proposed that differ regarding the first step of the reaction. This step involves either the direct transfer of the gamma-phosphate of ATP to the Prx molecule or through Srx acting as a phosphorylated intermediary. In an effort to clarify this step of the Srx reaction, we have determined the 1.8A resolution crystal structure of Srx in complex with ATP and Mg(2+). This structure reveals the role of the Mg(2+) ion to position the gamma-phosphate toward solvent, thus preventing an in-line attack by the catalytic residue Cys-99 of Srx. A model of the quaternary complex is consistent with this proposal. Furthermore, phosphorylation studies on several site-directed mutants of Srx and Prx, including the Prx-Asp mimic of the Prx-SO(2)(-) species, support a mechanism where phosphorylation of Prx-SO(2)(-) is the first chemical step.
Collapse
Affiliation(s)
- Thomas J Jönsson
- Center for Structural Biology and Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
111
|
Roussel X, Béchade G, Kriznik A, Van Dorsselaer A, Sanglier-Cianferani S, Branlant G, Rahuel-Clermont S. Evidence for the formation of a covalent thiosulfinate intermediate with peroxiredoxin in the catalytic mechanism of sulfiredoxin. J Biol Chem 2008; 283:22371-82. [PMID: 18552404 DOI: 10.1074/jbc.m800493200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The typical 2-Cys peroxiredoxins are thiol-peroxidases involved in the physiology of hydrogen peroxide not only as a toxic but also as a signaling molecule. Coordination of these functions depends on the sulfinylation of the catalytic Cys, a modification reversed by ATP-dependent sulfiredoxin, which specifically reduces the sulfinic acid group of overoxidized 2-Cys peroxiredoxins into a sulfenic acid. Sulfiredoxin was originally proposed to operate by covalent catalysis, with formation of a peroxiredoxin-sulfiredoxin intermediate linked by a thiosulfinate bond between the catalytic Cys of both partners, a hypothesis rejected by a study of the human enzyme. To settle the argument, we investigated the catalytic mechanism of Saccharomyces cerevisiae sulfiredoxin, by the characterization of the nature and kinetics of formation of the protein species formed between sulfiredoxin and its substrate in the presence of ATP, using mutants of the non-essential Cys residues of both proteins. We observed the formation of a dithiothreitol-reducible peroxiredoxin-sulfiredoxin species using SDS-PAGE and Western blot analysis, and its mass was shown to correspond to a thiosulfinate complex by high resolution mass spectrometry coupled to liquid chromatography. We next measured indirectly and directly a rate constant of formation of the thiosulfinate species of approximately 2 min(-1), for both wild-type and mutant sulfiredoxins, at least equal to the steady-state rate constant of the reaction, with a stoichiometry of 1:1 relative to peroxiredoxin. Taken altogether, our results strongly argue in favor of the formation of a covalent thiosulfinate peroxiredoxin-sulfiredoxin species as an intermediate on the catalytic pathway.
Collapse
Affiliation(s)
- Xavier Roussel
- Unité Mixte de Recherche, CNRS-UHP 7567, Maturation des Acide Ribonucléique et Enzymologie Moléculaire, Nancy Université, Faculté des Sciences, Bld. des Aiguillettes, BP 239, Vandoeuvre-lès-Nancy 54506, France
| | | | | | | | | | | | | |
Collapse
|
112
|
Poole LB, Nelson KJ. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 2008; 12:18-24. [PMID: 18282483 PMCID: PMC2408887 DOI: 10.1016/j.cbpa.2008.01.021] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/15/2008] [Indexed: 12/20/2022]
Abstract
Accumulating evidence reveals hydrogen peroxide as a key player both as a damaging agent and, from emerging evidence over the past decade, as a second messenger in intracellular signaling. This rather mild oxidant acts upon downstream targets within signaling cascades to modulate the activity of a host of enzymes (e.g. phosphatases and kinases) and transcriptional regulators through chemoselective oxidation of cysteine residues. With the recent development of specific detection reagents for hydrogen peroxide and new chemical tools to detect the generation of the initial oxidation product, sulfenic acid, on reactive cysteines within target proteins, the scene is set to gain a better understanding of the mechanisms through which hydrogen peroxide acts as a second messenger in cell signaling.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| | | |
Collapse
|
113
|
News & views. Biotechnol J 2008. [DOI: 10.1002/biot.200890016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|