101
|
Bera K, Kwang SY, Cassabaum AA, Rich CC, Frontiera RR. Facile Background Discrimination in Femtosecond Stimulated Raman Spectroscopy Using a Dual-Frequency Raman Pump Technique. J Phys Chem A 2019; 123:7932-7939. [DOI: 10.1021/acs.jpca.9b02473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kajari Bera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Siu Yi Kwang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alyssa A. Cassabaum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher C. Rich
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R. Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
102
|
Phelan BT, Schultz JD, Zhang J, Huang GJ, Young RM, Wasielewski MR. Quantum coherence in ultrafast photo-driven charge separation. Faraday Discuss 2019; 216:319-338. [PMID: 31066389 DOI: 10.1039/c8fd00218e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coherent interactions are prevalent in photodriven processes, ranging from photosynthetic energy transfer to superexchange-mediated electron transfer, resulting in numerous studies aimed towards identifying and understanding these interactions. A key motivator of this interest is the non-statistical scaling laws that result from coherently traversing multiple pathways due to quantum interference. To that end, we employed ultrafast transient absorption spectroscopy to measure electron transfer in two donor-acceptor molecular systems comprising a p-(9-anthryl)-N,N-dimethylaniline chromophore/electron donor and either one or two equivalent naphthalene-1,8:4,5-bis(dicarboximide) electron acceptors at both ambient and cryogenic temperatures. The two-acceptor compound shows a statistical factor of 2.1 ± 0.2 rate enhancement at room temperature and a non-statistical factor of 2.6 ± 0.2 rate enhancement at cryogenic temperatures, suggesting correlated interactions between the two acceptors with the donor and with the bath modes. Comparing the charge recombination rates indicates that the electron is delocalized over both acceptors at low temperature but localized on a single acceptor at room temperature. These results highlight the importance of shielding the system from bath fluctuations to preserve and ultimately exploit the coherent interactions.
Collapse
Affiliation(s)
- Brian T Phelan
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Jonathan D Schultz
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Jinyuan Zhang
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Guan-Jhih Huang
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Ryan M Young
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Michael R Wasielewski
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| |
Collapse
|
103
|
Hong DL, Luo YH, He XT, Zheng ZY, Su S, Wang JY, Wang C, Chen C, Sun BW. Unraveling the Mechanisms of the Excited-State Intermolecular Proton Transfer (ESPT) for a D-π-A Molecular Architecture. Chemistry 2019; 25:8805-8812. [PMID: 31054168 DOI: 10.1002/chem.201900856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/25/2019] [Indexed: 11/10/2022]
Abstract
Precise revealing the mechanisms of excited-state intermolecular proton transfer (ESPT) and the corresponding geometrical relaxation upon photoexcitation and photoionization remains a formidable challenge. In this work, the compound (E)-4-(((4H-1,2,4-triazol-4-yl)imino)methyl)-2,6-dimethoxyphenol (TIMDP) adopting a D-π-A molecular architecture featuring a significant intramolecular charge transfer (ICT) effect has been designed. With the presence of perchloric acid (35 %), TIMDP can be dissolved through the formation of a HClO4 -H2 O-OH(TIMDP)-N(TIMDP) hydrogen-bonding bridge. At the ground state, the ICT effect is dominant, giving birth to crystals of TIMDP. Upon external stimuli (e.g., UV light irradiation, electro field), the excited state is achieved, which weakens the ICT effect, and significantly promotes the ESPT effect along the hydrogen-bonding bridge, resulting in crystals of [HTIMDP]+ ⋅[H2 O]⋅[ClO4 ]- . As a consequence, the mechanisms of the ESPT can be investigated, which distorted the D-π-A molecular architecture, tuned the emission color with the largest Stokes shift of 242 nm, and finally, high photoluminescence quantum yields (12 %) and long fluorescence lifetimes (8.6 μs) have achieved. These results not only provide new insight into ESPT mechanisms, but also open a new avenue for the design of efficient ESPT emitters.
Collapse
Affiliation(s)
- Dan-Li Hong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Xiao-Tong He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Zi-Yue Zheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Shan Su
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Jia-Ying Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Cong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Chen Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| |
Collapse
|
104
|
Wright JC. Fundamental Studies of Relationships between Experimental Nonlinear Coherent Vibrational Spectroscopies. J Phys Chem Lett 2019; 10:2767-2774. [PMID: 31181169 DOI: 10.1021/acs.jpclett.9b01280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- John C Wright
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
105
|
Tang L, Fang C. Nitration of Tyrosine Channels Photoenergy through a Conical Intersection in Water. J Phys Chem B 2019; 123:4915-4928. [PMID: 31094198 DOI: 10.1021/acs.jpcb.9b03464] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitration of tyrosine occurs under oxidative stress in vivo. The product, 3-nitrotyrosine (3NY), has a dramatically decreased quantum yield and can be used as a molecular ruler. In this study, femtosecond transient absorption spectroscopy and quantum calculations were implemented to elucidate the photoinduced relaxation processes of anionic 3NY in water. Upon 400 nm excitation into an excited electronic state with notable charge-transfer (CT) character, a barrierless nitro-twisting motion rapidly (<100 fs) guides the chromophore into an adjacent twisted intramolecular CT state, therein reaching a sloped S1/S0 conical intersection on the ∼100 fs time scale. Once in the hot ground state, excess energy is further released through vibrational cooling with biexponential time constants of ∼140 and 680 fs in water. Nitro back-twisting occurs on longer time scales (∼1.1 and 9 ps in water), returning the system to original ground state. Systematic evaluations of excited-state potential energies of anionic 3NY were performed by density functional theory (DFT) and time-dependent DFT calculations, showing that intersystem crossing (ISC) from the first singlet state (S1) to the first or second triplet state (T1 or T2) is unlikely. Inclusion of an explicit water molecule in calculations leads to improved mapping of the excited-state energy ordering of the second singlet state (S2) and T2, further diminishing ISC probability from S1 and favoring an ultrafast internal conversion to S0. These results provide deep insights into the highly efficient nonradiative decay of anionic 3NY in aqueous solution, with nitro-site-specific information that can help infer the characterization and potential optogenetic control of 3NY in protein environment.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331-4003 , United States
| | - Chong Fang
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331-4003 , United States
| |
Collapse
|
106
|
Taylor MA, Zhu L, Rozanov ND, Stout KT, Chen C, Fang C. Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Phys Chem Chem Phys 2019; 21:9728-9739. [PMID: 31032505 DOI: 10.1039/c9cp01077g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Green fluorescent protein (GFP) has revolutionized bioimaging and life sciences. Its successes have inspired modification of the chromophore structure and environment to tune emission properties, but outside the protein cage, the chromophore is essentially non-fluorescent. In this study, we employ the tunable femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption (TA) to map the energy dissipation pathways of GFP model chromophore (HBDI) in basic aqueous solution. Strategic tuning of the Raman pump to 550 nm exploits the stimulated emission band to enhance excited state vibrational motions as HBDI navigates the non-equilibrium potential energy landscape to pass through a conical intersection. The time-resolved FSRS uncovers prominent anharmonic couplings between a global out-of-plane bending mode of ∼227 cm-1 and two modes at ∼866 and 1572 cm-1 before HBDI reaches the twisted intramolecular charge transfer (TICT) state on the ∼3 ps time scale. Remarkably, the wavelet transform analysis reveals a ∼500 fs delayed onset of the coupling peaks, in correlation with the emergence of an intermediate charge-separated state en route to the TICT state. This mechanism is corroborated by the altered coupling matrix for the HBDI Raman modes in the 50% (v/v) water-glycerol mixture, and a notable lengthening of the picosecond time constant. The real-time molecular "movie" of the general rotor-like HBDI isomerization reaction following photoexcitation represents a significant advance in comprehending the photochemical reaction pathways of the solvated GFP chromophore, therefore providing a crucial foundation to enable rational design of diverse nanomachines from efficient molecular rotors to bright fluorescent probes.
Collapse
Affiliation(s)
- Miles A Taylor
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | | | | | | | | | | |
Collapse
|
107
|
MacDonell RJ, Schuurman MS. Site-Selective Isomerization of Cyano-Substituted Butadienes: Chemical Control of Nonadiabatic Dynamics. J Phys Chem A 2019; 123:4693-4701. [DOI: 10.1021/acs.jpca.9b02446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ryan J. MacDonell
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Michael S. Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, D’Iorio Hall, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
- National Research of Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
108
|
Chen C, Zhu L, Baranov MS, Tang L, Baleeva NS, Smirnov AY, Yampolsky IV, Solntsev KM, Fang C. Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design. J Phys Chem B 2019; 123:3804-3821. [DOI: 10.1021/acs.jpcb.9b03201] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ilia V. Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
109
|
Kesgin-Schaefer S, Heidemann J, Puchert A, Koelbel K, Yorke BA, Huse N, Pearson AR, Uetrecht C, Tidow H. Crystal structure of a domain-swapped photoactivatable sfGFP variant provides evidence for GFP folding pathway. FEBS J 2019; 286:2329-2340. [PMID: 30817081 DOI: 10.1111/febs.14797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/07/2019] [Accepted: 02/27/2019] [Indexed: 01/23/2023]
Abstract
Photoactivatable fluorescent proteins (PA-FPs) are a powerful non-invasive tool in high-resolution live-cell imaging. They can be converted from an inactive to an active form by light, enabling the spatial and temporal trafficking of proteins and cell dynamics. PA-FPs have been previously generated by mutating selected residues in the chromophore or in its close proximity. A new strategy to generate PA-FPs is the genetic incorporation of unnatural amino acids (UAAs) containing photocaged groups using unique suppressor tRNA/aminoacyl-tRNA synthetase pairs. We set out to develop a photoactivatable GFP variant suitable for time-resolved structural studies. Here, we report the crystal structure of superfolder GFP (sfGFP) containing the UAA ortho-nitrobenzyl-tyrosine (ONBY) at position 66 and its spectroscopic characterization. Surprisingly, the crystal structure (to 2.7 Å resolution) reveals a dimeric domain-swapped arrangement of sfGFP66ONBY with residues 1-142 of one molecule associating with residues 148-234 from another molecule. This unusual domain-swapped structure supports a previously postulated GFP folding pathway that proceeds via an equilibrium intermediate.
Collapse
Affiliation(s)
- Stephanie Kesgin-Schaefer
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Germany
| | - Johannes Heidemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Anke Puchert
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Physics, Center for Free-Electron Laser Science, Institute for Nanostructure and Solid State Physics, University of Hamburg, Germany
| | - Knut Koelbel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Briony A Yorke
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Physics, Center for Free-Electron Laser Science, Institute for Nanostructure and Solid State Physics, University of Hamburg, Germany
| | - Nils Huse
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Physics, Center for Free-Electron Laser Science, Institute for Nanostructure and Solid State Physics, University of Hamburg, Germany
| | - Arwen R Pearson
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Physics, Center for Free-Electron Laser Science, Institute for Nanostructure and Solid State Physics, University of Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,European XFEL GmbH, Schenefeld, Germany
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Germany
| |
Collapse
|
110
|
Chen C, Baranov MS, Zhu L, Baleeva NS, Smirnov AY, Zaitseva SO, Yampolsky IV, Solntsev KM, Fang C. Designing redder and brighter fluorophores by synergistic tuning of ground and excited states. Chem Commun (Camb) 2019; 55:2537-2540. [PMID: 30742139 DOI: 10.1039/c8cc10007a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We strategically modified the GFP core via chemical synthesis to make redder and brighter biomimetic fluorophores. Based on quantum calculations, solvatochromism analysis, and femtosecond Raman, we unveiled the additive effect of tuning the electronic ground and excited states, respectively, to achieve a dramatic emission redshift with a "double-donor-one-acceptor" structure.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Chiariello MG, Raucci U, Coppola F, Rega N. Unveiling anharmonic coupling by means of excited state ab initio dynamics: application to diarylethene photoreactivity. Phys Chem Chem Phys 2019; 21:3606-3614. [PMID: 30306981 DOI: 10.1039/c8cp04707c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, excited state ab initio molecular dynamics together with a time resolved vibrational analysis is employed to shed light on the vibrational photoinduced dynamics of a well-known diarylethene molecule experiencing a ring opening reaction upon electronic excitation. The photoreactivity of diarylethenes is recognized to be controlled by a non-adiabatic intersection point between the ground and the first excited state surfaces. The computation of an energy scan, along a suitable reaction coordinate, allows us to identify the region of potential energy surfaces in which the ground (S0) and the first excited (S1) state are well separated. The adiabatic sampling of that region in S1 shows that in the first 3 picoseconds, the central CC bond, which is subject to break, oscillates in an antiphase with respect to the energy gap ΔE(S1 - S0). A multiresolution analysis based on the wavelet transform was then applied to the structural parameters extracted from the excited state dynamics. The wavelet maps show characteristic oscillations of the frequencies, mainly CC stretching and CCC bending localized on the central 4-ring moiety. Moreover, we have identified the main frequency (methyl wagging motion) involved in the modulation of these oscillations. The anharmonic coupling within a group of vibrational modes was therefore highlighted, in good agreement with experimental evidence. For the first time, a quantitative analysis of time resolved signals from a wavelet transform/ab initio molecular dynamics approach was performed.
Collapse
|
112
|
Joseph SK, Kuritz N, Yahel E, Lapshina N, Rosenman G, Natan A. Proton-Transfer-Induced Fluorescence in Self-Assembled Short Peptides. J Phys Chem A 2019; 123:1758-1765. [DOI: 10.1021/acs.jpca.8b09183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sijo K. Joseph
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Natalia Kuritz
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Eldad Yahel
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Nadezda Lapshina
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Gil Rosenman
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Amir Natan
- Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
113
|
|
114
|
|
115
|
Mathew R, Kayal S, Yapamanu AL. Excited state structural dynamics of 4-cyano-4′-hydroxystilbene: deciphering the signatures of proton-coupled electron transfer using ultrafast Raman loss spectroscopy. Phys Chem Chem Phys 2019; 21:22409-22419. [DOI: 10.1039/c9cp02923k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-initiated proton-coupled electron transfer process in the 4-cyano-4′-hydroxystilbene–tert-butylamine adduct strongly affects the excited-state structural dynamics of CHSB.
Collapse
Affiliation(s)
- Reshma Mathew
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Thiruvananthapuram 695551
- India
| | - Surajit Kayal
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | | |
Collapse
|
116
|
Kraack JP, Motzkus M, Buckup T. Excited State Vibrational Spectra of All- trans Retinal Derivatives in Solution Revealed By Pump-DFWM Experiments. J Phys Chem B 2018; 122:12271-12281. [PMID: 30507189 DOI: 10.1021/acs.jpcb.8b08495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ultrafast structural changes during the photoinduced isomerization of the retinal-protonated Schiff base (RPSB) is still a poorly understood aspect in the retinal's photochemistry. In this work, we apply pump-degenerate four-wave mixing (pump-DFWM) to all- trans retinal (ATR) and retinal Schiff bases (RSB) to resolve coherent high- and low-frequency vibrational signatures from excited electronic states. We show that the vibrational spectra of excited singlet states in these samples exhibit pronounced differences compared to the relaxed ground state. Pump-DFWM results indicate three major features for ATR and RSB. (i) Excited state vibrational spectra of ATR and RSB consist predominately of low-frequency modes in the energetic range 100-500 cm-1. (ii) Excited state vibrational spectra show distinct differences for excitation in specific regions of electronic transitions of excited state absorption and emission. (iii) Low-frequency modes in ATR and RSB are inducible during the entire lifetime of the excited electronic states. This latter effect points to a transient molecular structure that, following initial relaxation between different excited electronic states, does not change anymore over the lifetime of the finally populated excited electronic state.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| |
Collapse
|
117
|
Zhong S, Rivera-Molina F, Rivetta A, Toomre D, Santos-Sacchi J, Navaratnam D. Seeing the long tail: A novel green fluorescent protein, SiriusGFP, for ultra long timelapse imaging. J Neurosci Methods 2018; 313:68-76. [PMID: 30578868 PMCID: PMC9431725 DOI: 10.1016/j.jneumeth.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Fluorescent proteins (FPs) have widespread uses in cell biology. However, the practical applications of FPs are significantly limited due to their rapid photobleaching and misfolding when fused to target proteins. NEW METHOD Using a combination of novel and known mutations to eGFP, we developed a well folded and very photostable variant, SiriusGFP. RESULTS The fluorescence spectrum indicated that the excitation and emission peaks of SiriusGFP were red-shifted by 16 and 8 nm, respectively. Co- operative effects of two key mutations, S147R and S205 V, contribute to its photostability. SiriusGFP tagged to the mitochondrial outer membrane protein Omp25 showed sustained fluorescence during continuous 3D-scanning confocal imaging (4D confocal) compared to eGFP-tagged Omp25. Furthermore, with super-resolution structured illumination microscopy (SIM) we demonstrate marked improvements in image quality and resolution (130 nm in XY axis, and 310 nm in Z axis), as well as, decreased artifacts due to photobleaching. COMPARISON WITH EXISTING METHOD(S) Compared to eGFP. SiriusGFP shows a 2-fold increase in photostability in vitro, and folds well when fused to the N- and C- termini of cytoplasmic and membrane proteins. While its quantum yield is ˜3 fold lower than eGFP, its decreased brightness was more than compensated by its increasedphotostability in different experimental paradigms allowing practical experimentation without dynamic adjustment of light intensity or fluorescence sampling times. CONCLUSIONS We have developed a variant of eGFP, SiriusGFP, that shows over a two fold increase in photostability with utility in methods requiring sustained or high intensity excitation as in 4D confocal or SIM imaging.
Collapse
Affiliation(s)
- Sheng Zhong
- Dept. of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06511, United States; Dept. of Neurology, United States
| | | | | | | | - Joseph Santos-Sacchi
- Dept. of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06511, United States; Dept. of Neuroscience, United States; Dept. of Cellular and Molecular Physiology, United States
| | - Dhasakumar Navaratnam
- Dept. of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06511, United States; Dept. of Neuroscience, United States; Dept. of Neurology, United States.
| |
Collapse
|
118
|
Tachibana SR, Tang L, Zhu L, Liu W, Wang Y, Fang C. Watching an Engineered Calcium Biosensor Glow: Altered Reaction Pathways before Emission. J Phys Chem B 2018; 122:11986-11995. [PMID: 30449101 DOI: 10.1021/acs.jpcb.8b10587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biosensors have become an indispensable tool set in life sciences. Among them, fluorescent protein-based biosensors have great biocompatibility and tunable emission properties but their development is largely on trial and error. To facilitate a rational design, we implement tunable femtosecond stimulated Raman spectroscopy, aided by transient absorption and quantum calculations, to elucidate the working mechanisms of a single-site Pro377Arg mutant of an emission ratiometric Ca2+ biosensor based on a green fluorescent protein-calmodulin complex. Comparisons with the parent protein and the Ca2+-free/bound states unveil more structural inhomogeneity yet an overall faster excited-state proton-transfer (ESPT) reaction inside the Ca2+-bound biosensor. The correlated photoreactant and photoproduct vibrational modes in the excited state reveal more chromophore twisting and trapping in the Ca2+-bound state during ESPT and the largely conserved chromophore dynamics in the Ca2+-free state from parent protein. The uncovered structural dynamics insights throughout an ESPT reaction inside a calcium biosensor provide important design principles in maintaining a hydrophilic, less compact, and more homogeneous environment with directional H-bonding (from the chromophore to surrounding protein residues) via bioengineering methods to improve the ESPT efficiency and quantum yield while maintaining photostability.
Collapse
Affiliation(s)
- Sean R Tachibana
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Longteng Tang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Liangdong Zhu
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Weimin Liu
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Yanli Wang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Chong Fang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
119
|
Raman spectra of the GFP-like fluorescent proteins. BIOPHYSICS REPORTS 2018; 4:265-272. [PMID: 30533491 PMCID: PMC6245236 DOI: 10.1007/s41048-018-0072-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022] Open
Abstract
The objective of the study was to elucidate optical characteristics of the chromophore structures of fluorescent proteins. Raman spectra of commonly used GFP-like fluorescent proteins (FPs) with diverse emission wavelengths (green, yellow, cyan and red), including the enhanced homogenous FPs EGFP, EYFP, and ECFP (from jellyfish) as well as mNeptune (from sea anemone) were measured. High-quality Raman spectra were obtained and many marker bands for the chromophore of the FPs were identified via assignment of Raman spectra bands. We report the presence of a positive linear correlation between the Raman band shift of C5=C6 and the excitation energy of FPs, demonstrated by plotting absorption maxima (cm−1) against the position of the Raman band C5=C6 in EGFP, ECFP, EYFP, the anionic chromophore and the neutral chromophore. This study revealed new Raman features in the chromophores of the observed FPs, and may contribute to a deeper understanding of the optical properties of FPs.
Collapse
|
120
|
Duan HG, Qi DL, Sun ZR, Miller RD, Thorwart M. Signature of the geometric phase in the wave packet dynamics on hypersurfaces. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
121
|
Tang L, Zhu L, Wang Y, Fang C. Uncovering the Hidden Excited State toward Fluorescence of an Intracellular pH Indicator. J Phys Chem Lett 2018; 9:4969-4975. [PMID: 30111103 DOI: 10.1021/acs.jpclett.8b02281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intracellular pH (pHi) imaging is of paramount importance for life sciences. In this work, we implement the ultrafast electronic and stimulated Raman spectroscopies to unravel the fluorescence mechanism of an excitation-ratiometric pHi indicator in basic aqueous solution. After photoexcitation of the pHi indicator HPTS, a hidden charge-transfer (CT) state following the locally excited (LE) state is uncovered as an essential step prior to fluorescence and this LE → CT transition is gated by ultrafast solvation dynamics. A 835 cm-1 intermolecular vibrational mode is identified to potentially facilitate the CT-state formation on the 700 fs time scale. Dynamic correlation with the other excited-state Raman marker bands suggests that the transition between transient electronic states is aided by solvation events mostly in the molecular plane of HPTS. These vivid structural dynamics insights can enable the rational design of more efficient and bright pHi indicators in an H-bonding environment with controllable properties.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Liangdong Zhu
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Yanli Wang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Chong Fang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
122
|
Excited State Structural Evolution of a GFP Single-Site Mutant Tracked by Tunable Femtosecond-Stimulated Raman Spectroscopy. Molecules 2018; 23:molecules23092226. [PMID: 30200474 PMCID: PMC6225354 DOI: 10.3390/molecules23092226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
Tracking vibrational motions during a photochemical or photophysical process has gained momentum, due to its sensitivity to the progression of reaction and change of environment. In this work, we implemented an advanced ultrafast vibrational technique, femtosecond-stimulated Raman spectroscopy (FSRS), to monitor the excited state structural evolution of an engineered green fluorescent protein (GFP) single-site mutant S205V. This mutation alters the original excited state proton transfer (ESPT) chain. By strategically tuning the Raman pump to different wavelengths (i.e., 801, 539, and 504 nm) to achieve pre-resonance with transient excited state electronic bands, the characteristic Raman modes of the excited protonated (A*) chromophore species and intermediate deprotonated (I*) species can be selectively monitored. The inhomogeneous distribution/population of A* species go through ESPT with a similar ~300 ps time constant, confirming that bridging a water molecule to protein residue T203 in the ESPT chain is the rate-limiting step. Some A* species undergo vibrational cooling through high-frequency motions on the ~190 ps time scale. At early times, a portion of the largely protonated A* species could also undergo vibrational cooling or return to the ground state with a ~80 ps time constant. On the photoproduct side, a ~1330 cm−1 delocalized motion is observed, with dispersive line shapes in both the Stokes and anti-Stokes FSRS with a pre-resonance Raman pump, which indicates strong vibronic coupling, as the mode could facilitate the I* species to reach a relatively stable state (e.g., the main fluorescent state) after conversion from A*. Our findings disentangle the contributions of various vibrational motions active during the ESPT reaction, and offer new structural dynamics insights into the fluorescence mechanisms of engineered GFPs and other analogous autofluorescent proteins.
Collapse
|
123
|
Chen C, Zhu LD, Fang C. Femtosecond stimulated Raman line shapes: Dependence on resonance conditions of pump and probe pulses. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1805125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Liang-dong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, Oregon, 97331-6507, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, Oregon, 97331-6507, USA
| |
Collapse
|
124
|
Kayal S, Roy K, Lakshmanna YA, Umapathy S. Probing the effect of solvation on photoexcited 2-(2′-hydroxyphenyl)benzothiazole via ultrafast Raman loss spectroscopic studies. J Chem Phys 2018; 149:044310. [DOI: 10.1063/1.5028274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Surajit Kayal
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Khokan Roy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Y. Adithya Lakshmanna
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Siva Umapathy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
125
|
Abstract
As one of the most fundamental processes, excited-state proton transfer (ESPT) plays a major role in both chemical and biological systems. In the past several decades, experimental and theoretical studies on ESPT systems have attracted considerable attention because of their tremendous potential in fluorescent probes, biological imaging, white-light-emitting materials, and organic optoelectronic materials. ESPT is related to fluorescence properties and usually occurs on an ultrafast time scale at or below 100 fs. Consequently, steady-state and femtosecond time-resolved absorption, fluorescence, and vibrational spectra have been used to explore the mechanism of ESPT. However, based on previous experimental studies, direct information, such as transition state geometries, energy barrier, and potential energy surface (PES) of the ESPT reaction, is difficult to obtain. These data are important for unravelling the detailed mechanism of ESPT reaction and can be obtained from state-of-the-art ab initio excited-state calculations. In recent years, an increasing number of experimental and theoretical studies on the detailed mechanism of ESPT systems have led to tremendous progress. This Account presents the recent advances in theoretical studies, mainly those from our group. We focus on the cases where the theoretical studies are of great importance and indispensable, such as resolving the debate on the stepwise and concerted mechanism of excited-state double proton transfer (ESDPT), revealing the sensing mechanism of ESPT chemosensors, illustrating the effect of intermolecular hydrogen bonding on the excited-state intramolecular proton transfer (ESIPT) reaction, investigating the fluorescence quenching mechanism of ESPT systems by twisting process, and determining the size of the solute·(solvent) n cluster for the solvent-assisted ESPT reaction. Through calculation of vertical excitation energies, optimization of excited-state geometries, and construction of PES of the ESPT reactions, we provide modifications to experimentally proposed mechanisms or completely new mechanism. Our proposed new and inspirational mechanisms based on theoretical studies can successfully explain the previous experimental results; some of the mechanisms have been further confirmed by experimental studies and provided guidance for researchers to design new ESPT chemosensors. Determination of the energy barrier from an accurate PES is the key to explore the ESPT mechanism with theoretical methods. This approach becomes complicated when the charge transfer state is involved for time-dependent density functional theory (TDDFT) method and optimally tuned range-separated TDDFT provides an alternative way. To unveil the driving force of ESPT reaction, the excited-state molecular dynamics combined with the intrinsic reaction coordinate calculations can be employed. These advanced approaches should be used for further studies on ESPT systems.
Collapse
Affiliation(s)
- Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, Liaoning, China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, Liaoning, China
| |
Collapse
|
126
|
Domino-like multi-emissions across red and near infrared from solid-state 2-/2,6-aryl substituted BODIPY dyes. Nat Commun 2018; 9:2688. [PMID: 30002375 PMCID: PMC6043560 DOI: 10.1038/s41467-018-05040-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Considerable achievements on multiple emission capabilities and tunable wavelengths have been obtained in inorganic luminescent materials. However, the development of organic counterparts remains a grand challenge. Herein we report a series of 2-/2,6-aryl substituted boron-dipyrromethene dyes with wide-range and multi-fluorescence emissions across red and near infrared in their aggregation states. Experimental data of X-ray diffraction, UV–vis absorption, and room temperature fluorescence spectra have proved the multiple excitation and easy-adjustable emission features in aggregated boron-dipyrromethene dyes. Temperature-dependent and time-resolved fluorescence studies have indicated a successive energy transfer from high to step-wisely lower-located energy levels that correspond to different excitation states of aggregates. Consistent quantum chemical calculation results have proposed possible aggregation modes of boron-dipyrromethene dyes to further support the above-described scenario. Thus, this study greatly enriches the fundamental recognition of conventional boron-dipyrromethene dyes by illustrating the relationships between multiple emission behaviors and the aggregation states of boron-dipyrromethene molecules. The class of BODIPY dyes has high solubility and high quantum yields and is widely used in imaging applications. Here Tian et al. synthesize new dye molecules and demonstrate extended emission properties and application scope controllable both by the excitation wavelength and aggregation states.
Collapse
|
127
|
Liu X, Wei X, Zhou H, Meng S, Zhao Y, Xue J, Zheng X. UV and Resonance Raman Spectroscopic and Theoretical Studies on the Solvent-Dependent Ground and Excited-State Thione → Thiol Tautomerization of 4,6-Dimethyl-2-mercaptopyrimidine (DMMP). J Phys Chem A 2018; 122:5710-5720. [PMID: 29889517 DOI: 10.1021/acs.jpca.8b04525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The vibrational spectra of 4,6-dimethyl-2-mercaptopyrimidine (DMMP) in acetonitrile, methanol, and water were assigned by resonance Raman spectroscopy through a combination of Fourier-transform infrared spectroscopy (FT-IR), FT-Raman UV-vis spectroscopy, and density functional theoretical (DFT) calculations. The FT-Raman spectra show that the neat solid DMMP is formed as a dimer due to intermolecular hydrogen bonding. In methanol and water, however, the majority of the Raman spectra were assigned to the vibrational modes of DMMP(solvent) n ( n = 1-4) clusters containing NH···O hydrogen bonds. The intermolecular NH···O hydrogen bond interactions, which are key constituents of the stable DMMP thione structure, revealed significant structural differences in acetonitrile, methanol, and water. In addition, UV-induced hydrogen transfer isomeric reactions between the thione and thiol forms of DMMP were detected in water and acetonitrile. DFT calculations indicate that the observed thione → thiol tautomerization should occur easily in lower excited states in acetonitrile and water.
Collapse
|
128
|
Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nat Commun 2018; 9:2525. [PMID: 29955070 PMCID: PMC6023914 DOI: 10.1038/s41467-018-04946-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/01/2018] [Indexed: 11/08/2022] Open
Abstract
Hybrid organic–inorganic perovskites have attractive optoelectronic properties including exceptional solar cell performance. The improved properties of perovskites have been attributed to polaronic effects involving stabilization of localized charge character by structural deformations and polarizations. Here we examine the Pb–I structural dynamics leading to polaron formation in methylammonium lead iodide perovskite by transient absorption, time-domain Raman spectroscopy, and density functional theory. Methylammonium lead iodide perovskite exhibits excited-state coherent nuclear wave packets oscillating at ~20, ~43, and ~75 cm−1 which involve skeletal bending, in-plane bending, and c-axis stretching of the I–Pb–I bonds, respectively. The amplitudes of these wave packet motions report on the magnitude of the excited-state structural changes, in particular, the formation of a bent and elongated octahedral PbI64− geometry. We have predicted the excited-state geometry and structural changes between the neutral and polaron states using a normal-mode projection method, which supports and rationalizes the experimental results. This study reveals the polaron formation via nuclear dynamics that may be important for efficient charge separation. Elucidating electron-phonon coupling in hybrid organic-inorganic perovskites may help us to understand the high photovoltaic efficiency. Here, the authors observe low-frequency Raman modes and related nuclear displacements of the Pb–I framework, indicating how these vibrational motions lead to polaron formation in perovskites.
Collapse
|
129
|
Li J, Zhang M, Du C, Song P, Li X. A theoretical study on excited state proton transfer in 2-(2′-dihydroxyphenyl) benzoxazole. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jia Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials; Northeastern University; Shenyang Liaoning China
- Department of Physics; Liaoning University; Shenyang Liaoning China
| | - Meixia Zhang
- Department of Physics; Liaoning University; Shenyang Liaoning China
| | - Can Du
- Department of Physics; Liaoning University; Shenyang Liaoning China
| | - Peng Song
- Department of Physics; Liaoning University; Shenyang Liaoning China
| | - Xiaodong Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials; Northeastern University; Shenyang Liaoning China
| |
Collapse
|
130
|
Fang C, Tang L, Oscar BG, Chen C. Capturing Structural Snapshots during Photochemical Reactions with Ultrafast Raman Spectroscopy: From Materials Transformation to Biosensor Responses. J Phys Chem Lett 2018; 9:3253-3263. [PMID: 29799757 DOI: 10.1021/acs.jpclett.8b00373] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemistry studies the composition, structure, properties, and transformation of matter. A mechanistic understanding of the pertinent processes is required to translate fundamental knowledge into practical applications. The current development of ultrafast Raman as a powerful time-resolved vibrational technique, particularly femtosecond stimulated Raman spectroscopy (FSRS), has shed light on the structure-energy-function relationships of various photosensitive systems. This Perspective reviews recent work incorporating optical innovations, including the broad-band up-converted multicolor array (BUMA) into a tunable FSRS setup, and demonstrates its resolving power to watch metal speciation and photolysis, leading to high-quality thin films, and fluorescence modulation of chimeric protein biosensors for calcium ion imaging. We discuss advantages of performing FSRS in the mixed time-frequency domain and present strategies to delineate mechanisms by tracking low-frequency modes and systematically modifying chemical structures with specific functional groups. These unique insights at the chemical-bond level have started to enable the rational design and precise control of functional molecular machines in optical, materials, energy, and life sciences.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Longteng Tang
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Breland G Oscar
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Cheng Chen
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| |
Collapse
|
131
|
Sahu K, Nandi N, Dolai S, Bera A. A Ratio-Analysis Method for the Dynamics of Excited State Proton Transfer: Pyranine in Water and Micelles. J Phys Chem B 2018; 122:6610-6615. [DOI: 10.1021/acs.jpcb.8b04271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nilanjana Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Suman Dolai
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Avisek Bera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
132
|
Tang L, Wang Y, Zhu L, Kallio K, Remington SJ, Fang C. Photoinduced proton transfer inside an engineered green fluorescent protein: a stepwise-concerted-hybrid reaction. Phys Chem Chem Phys 2018; 20:12517-12526. [PMID: 29708241 DOI: 10.1039/c8cp01907j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoactivated proton transfer (PT) wire is responsible for the glow of green fluorescent protein (GFP), which is crucial for bioimaging and biomedicine. In this work, a new GFP-S65T/S205V double mutant is developed from wild-type GFP in which the PT wire is significantly modified. We implement femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS) to delineate the PT process in action. The excited state proton transfer proceeds on the ∼110 ps timescale, which infers that the distance of one key link (water to T203) in the PT wire of GFP-S205V is shortened by the extra S65T mutation. The rise of an imidazolinone ring deformation mode at ∼871 cm-1 in FSRS further suggests that this PT reaction is in a concerted manner. A ∼4 ps component prior to large-scale proton dissociation through the PT wire is also retrieved, indicative of some small-scale proton motions and heavy-atom rearrangement in the vicinity of the chromophore. Our work provides deep insights into the novel hybrid PT mechanism in engineered GFP and demonstrates the power of tunable FSRS methodology in tracking ultrafast photoreactions with the desirable structural specificity in physiological environments.
Collapse
Affiliation(s)
- Longteng Tang
- Oregon State University, Department of Chemistry, 263 Linus Pauling Science Centre (lab), 153 Gilbert Hall (office), Corvallis, OR 97331, USA.
| | | | | | | | | | | |
Collapse
|
133
|
Bilal SM, Kayal S, Sanju KS, Adithya Lakshmanna Y. Femtosecond Time-Resolved Raman Spectroscopy Reveals Structural Evidence for meta Effect in Stilbenols. J Phys Chem A 2018; 122:4601-4608. [PMID: 29683672 DOI: 10.1021/acs.jpca.7b12339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The meta effect in substituted aromatics plays a crucial role in their excited-state photophysical properties. Meta-substituted hydroxyarenes such as naphthols, stilbenols, and chromophoric constituents of green fluorescent proteins show unusual photoacidity and enhanced fluorescence lifetime and quantum yield when compared to their para-derivatives. Variation in the excited state features of the meta-derivatives when compared to the para-derivatives in stilbenols has been attributed to the enhanced torsional barrier for interconversion between the planar and the twisted perpendicular forms. Herein, we employed femtosecond time-resolved Raman spectroscopy to provide the direct structural evidence for the enhanced torsional barrier in meta-stilbenol. The Raman band profiles of the olefinic C═C stretch related to the torsional motion are found to decay with time constants of ∼750 and ∼13 ps in meta-stilbenol and para-stilbenol respectively, unraveling the structural evidence for the observed enhanced photoacidity originating from enhanced rates of excited-state proton transfer. Further, time-resolved fluorescence measurements are performed to elucidate the relaxation pathways of the excited states of the stilbenols.
Collapse
Affiliation(s)
- Syed M Bilal
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Vithura, Thiruvananthapuram 695551 , India
| | - Surajit Kayal
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Krishnankutty S Sanju
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Vithura, Thiruvananthapuram 695551 , India
| | - Y Adithya Lakshmanna
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Vithura, Thiruvananthapuram 695551 , India
| |
Collapse
|
134
|
Tang L, Wang Y, Zhu L, Lee C, Fang C. Correlated Molecular Structural Motions for Photoprotection after Deep-UV Irradiation. J Phys Chem Lett 2018; 9:2311-2319. [PMID: 29672054 DOI: 10.1021/acs.jpclett.8b00999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure to ultraviolet (UV) light could cause photodamage to biomolecular systems and degrade optoelectronic devices. To mitigate such detrimental effects from the bottom up, we strategically select a photosensitive molecule pyranine and implement femtosecond electronic and Raman spectroscopies to elucidate its ultrafast photoprotection mechanisms in solution. Our results show that pyranine undergoes excited-state proton transfer in water, while this process is blocked in methanol regardless of excitation wavelengths (267, 400 nm). After 267 nm irradiation, the molecule relaxes from a higher lying electronic state into a lower lying singlet state with a <300 fs time constant, followed by solvation events. Transient Raman marker bands exhibit different patterns of intensity dynamics and frequency shift that elucidate the real-time interplay among conformational motions, photochemical reaction, and vibrational cooling after excitation. More energetic photons are revealed to selectively enhance certain relaxation pathways. These mechanistic findings offer new guidelines to improve the UV tolerance and stability of the engineered functional molecules in materials and life sciences.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Yanli Wang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Liangdong Zhu
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Che Lee
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Chong Fang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
135
|
Li MD, Yan Z, Zhu R, Phillips DL, Aparici-Espert I, Lhiaubet-Vallet V, Miranda MA. Enhanced Drug Photosafety by Interchromophoric Interaction Owing to Intramolecular Charge Separation. Chemistry 2018; 24:6654-6659. [DOI: 10.1002/chem.201800716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province; Shantou University; Guangdong 515063 P. R. China
| | - Zhiping Yan
- Department of Chemistry; The University of Hong Kong, Pokfulam Road; Hong Kong S. A. R. P. R. China
| | - Ruixue Zhu
- Department of Chemistry; The University of Hong Kong, Pokfulam Road; Hong Kong S. A. R. P. R. China
| | - David Lee Phillips
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province; Shantou University; Guangdong 515063 P. R. China
- Department of Chemistry; The University of Hong Kong, Pokfulam Road; Hong Kong S. A. R. P. R. China
| | - Isabel Aparici-Espert
- Instituto de Tecnología Química UPV-CSIC; Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas; Avda de los Naranjos s/n 46022 Valencia Spain
| | - Virginie Lhiaubet-Vallet
- Instituto de Tecnología Química UPV-CSIC; Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas; Avda de los Naranjos s/n 46022 Valencia Spain
| | - Miguel A. Miranda
- Instituto de Tecnología Química UPV-CSIC; Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas; Avda de los Naranjos s/n 46022 Valencia Spain
| |
Collapse
|
136
|
Ellis SR, Hoffman DP, Park M, Mathies RA. Difference Bands in Time-Resolved Femtosecond Stimulated Raman Spectra of Photoexcited Intermolecular Electron Transfer from Chloronaphthalene to Tetracyanoethylene. J Phys Chem A 2018; 122:3594-3605. [PMID: 29558802 DOI: 10.1021/acs.jpca.8b00318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time-resolved femtosecond stimulated Raman spectra (FSRS) of a charge transfer (CT) excited noncovalent complex tetracyanoethylene:1-chloronaphthalene (TCNE:ClN) in dichloromethane (DCM) is reported with 40 fs time resolution. In the frequency domain, five FSRS peaks are observed with frequencies of 534, 858, 1069, 1392, and 1926 cm-1. The most intense peaks at 534 and 1392 cm-1 correspond to fundamentals while the features at 858, 1069, and 1926 cm-1 are attributed to a difference frequency, an overtone and a combination frequency of the fundamentals, respectively. The frequency of the 1392 cm-1 fundamental corresponding to the central C═C stretch of TCNE•- is red-shifted from the frequency of the steady state radical due to the close proximity and electron affinity of the countercation. The observation of a FSRS band at a difference frequency is analyzed. This analysis lends evidence for alternative nonlinear pathways of inverse Raman gain scattering (IRGS) or vertical-FSRS (VFSRS) which may contribute to the time-evolving FSRS spectrum on-resonance. Impulsive stimulated Raman measurements of the complex show coherent oscillations of the stimulated emission with frequencies of 153, 278, and 534 cm-1. The 278 cm-1 mode corresponds to Cl bending of the dichloromethane solvent. The center frequency of the 278 cm-1 mode is modulated by a frequency of ∼30 cm-1 which is attributed to the effect of librational motion of the dichloromethane solvent as it reorganizes around the nascent contact ion pair. The 153 ± 15 cm-1 mode corresponds to an out-of-plane bending motion of TCNE. This motion modulates the intermolecular separation of the contact ion pair and thereby the overlap of the frontier orbitals which is crucial for rapid charge recombination in 5.9 ± 0.2 ps. High time-frequency resolution vibrational spectra provide unique molecular details regarding charge localization and recombination.
Collapse
Affiliation(s)
- Scott R Ellis
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - David P Hoffman
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Myeongkee Park
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Richard A Mathies
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
137
|
Chiariello MG, Rega N. Exploring Nuclear Photorelaxation of Pyranine in Aqueous Solution: an Integrated Ab-Initio Molecular Dynamics and Time Resolved Vibrational Analysis Approach. J Phys Chem A 2018; 122:2884-2893. [DOI: 10.1021/acs.jpca.7b12371] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Gabriella Chiariello
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, via Cintia, I-80126 Napoli, Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, via Cintia, I-80126 Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II, Piazzale Tecchio 80, I-80125, Napoli, Italy
| |
Collapse
|
138
|
Donati G, Petrone A, Caruso P, Rega N. The mechanism of a green fluorescent protein proton shuttle unveiled in the time-resolved frequency domain by excited state ab initio dynamics. Chem Sci 2018; 9:1126-1135. [PMID: 29675157 PMCID: PMC5890789 DOI: 10.1039/c7sc02803b] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/26/2017] [Indexed: 11/21/2022] Open
Abstract
We simulated an excited state proton transfer in green fluorescent protein by excited state ab initio dynamics, and examined the reaction mechanism in both the time and the frequency domain through a multi resolution wavelet analysis. This original approach allowed us, for the first time, to directly compare the trends of photoactivated vibrations to femtosecond stimulated Raman spectroscopy results, and to give an unequivocal interpretation of the role played by low frequency modes in promoting the reaction. We could attribute the main driving force of the reaction to an important photoinduced softening of the ring-ring orientational motion of the chromophore, thus permitting the tightening of the hydrogen bond network and the opening of the reaction pathway. We also found that both the chromophore (in terms of its inter-ring dihedral angle and phenolic C-O and imidazolinone C-N bond distances) and its pocket (in terms of the inter-molecular oxygen's dihedral angle of the chromophore pocket) relaxations are modulated by low frequency (about 120 cm-1) modes involving the oxygen atoms of the network. This is in agreement with the femtosecond Raman spectroscopy findings in the time-frequency domain. Moreover, the rate in proximity to the Franck Condon region involves a picosecond time scale, with a significant influence from fluctuations of nearby hydrogen bonded residues such as His148. This approach opens a new scenario with ab initio simulations as routinely used tools to understand photoreactivity and the results of advanced time resolved spectroscopy techniques.
Collapse
Affiliation(s)
- Greta Donati
- Dipartimento di Scienze Chimiche , Università di Napoli 'Federico II' , Complesso Universitario di M.S.Angelo , via Cintia , I-80126 Napoli , Italy . ; Tel: +39 081 674207
| | - Alessio Petrone
- Dipartimento di Scienze Chimiche , Università di Napoli 'Federico II' , Complesso Universitario di M.S.Angelo , via Cintia , I-80126 Napoli , Italy . ; Tel: +39 081 674207
| | - Pasquale Caruso
- Italian Institute of Technology , IIT@CRIB Center for Advanced Biomaterials for Healthcare , Largo Barsanti e Matteucci , I-80125 Napoli , Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche , Università di Napoli 'Federico II' , Complesso Universitario di M.S.Angelo , via Cintia , I-80126 Napoli , Italy . ; Tel: +39 081 674207
- Italian Institute of Technology , IIT@CRIB Center for Advanced Biomaterials for Healthcare , Largo Barsanti e Matteucci , I-80125 Napoli , Italy
| |
Collapse
|
139
|
Kim YJ, Kwon OH. Proton diffusion dynamics along a diol as a proton-conducting wire in a photo-amphiprotic model system. Phys Chem Chem Phys 2018; 18:32826-32839. [PMID: 27883126 DOI: 10.1039/c6cp06265b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the dynamics of excited-state proton transfer (ESPT) of photo-amphiprotic 7-hydroxyquinoline (7HQ) in the presence of a hydrogen (H)-bond bridging diol in a polar aprotic medium. The formation of 1 : 1 H-bonded complexes of 7HQ with various diols of different alkane chain lengths was revealed using steady-state electronic spectroscopy. With femtosecond-resolved fluorescence spectroscopy, cyclic H-bonded 1 : 1 complexes were found to undergo facile ESPT from the acidic enol to the basic imine group of 7HQ via the H-bond bridge. Through quantum chemical calculations, we found that the proton-transfer rate of the well-configured H-bonded complex correlated with the intramolecular H-bond length of a H-bond wiring diol molecule. Noncyclic, singly H-bonded 7HQ with a diol molecule was observed to undergo ESPT once another diol molecule diffuses to the noncyclic complex and accomplishes the formation of a reactive cyclic H-bonded 7HQ-(diol)2 complex, which was evidenced by the observation that the overall proton-transfer rate constant decreases when a longer-chain diol was used as the bridging wire part. The kinetic isotope effect on the proton relay was investigated to confirm that the nature of the activation barrier for the proton diffusion along the wire is isotope-sensitive proton tunnelling, while for the non-cyclic configuration, the isotope-insensitive H-bond bridge formation is a prerequisite for ESPT.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea. and Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Oh-Hoon Kwon
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea. and Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
140
|
Wineman-Fisher V, Simkovich R, Huppert D, Trujillo K, Remington SJ, Miller Y. Mutagenic induction of an ultra-fast water-chain proton wire. Phys Chem Chem Phys 2018; 18:23089-95. [PMID: 27492977 DOI: 10.1039/c6cp05071a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacement of the hydroxyl group of a hydrophilic sidechain by an H atom in the proton wire of GFP induces formation of a water-chain proton wire. Surprisingly, this "non-native" water chain functions as a proton wire with response times within 10 ps of the wild type protein. This remarkable rate retention is understood as a natural consequence of the well-known Grotthuss mechanism of proton transfer in water.
Collapse
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel. and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel
| | - Ron Simkovich
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Huppert
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kristina Trujillo
- Department of Physics and Institute of Molecular Biology, University of Oregon, Eugene, USA
| | - S James Remington
- Department of Physics and Institute of Molecular Biology, University of Oregon, Eugene, USA
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel. and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel
| |
Collapse
|
141
|
Louant O, Champagne B, Liégeois V. Investigation of the Electronic Excited-State Equilibrium Geometries of Three Molecules Undergoing ESIPT: A RI-CC2 and TDDFT Study. J Phys Chem A 2018; 122:972-984. [DOI: 10.1021/acs.jpca.7b10881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Orian Louant
- Laboratoire de Chimie Théorique,
UCPTS, Namur Institute of Structured Matter, Université de Namur, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Benoît Champagne
- Laboratoire de Chimie Théorique,
UCPTS, Namur Institute of Structured Matter, Université de Namur, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Vincent Liégeois
- Laboratoire de Chimie Théorique,
UCPTS, Namur Institute of Structured Matter, Université de Namur, rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
142
|
Kayal S, Roy K, Umapathy S. Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: Ultrafast transient absorption and ultrafast Raman loss spectroscopic studies. J Chem Phys 2018; 148:024301. [DOI: 10.1063/1.5008726] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Surajit Kayal
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Khokan Roy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Siva Umapathy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
143
|
Hart SM, Silva WR, Frontiera RR. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission. Chem Sci 2017; 9:1242-1250. [PMID: 29675170 PMCID: PMC5885776 DOI: 10.1039/c7sc03496b] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
Evidence for transient anionic and cationic species in singlet fission is given by ultrafast Raman measurements.
Singlet fission is a spin-allowed process in which an excited singlet state evolves into two triplet states. We use femtosecond stimulated Raman spectroscopy, an ultrafast vibrational technique, to follow the molecular structural evolution during singlet fission in order to determine the mechanism of this process. In crystalline pentacene, we observe the formation of an intermediate characterized by pairs of excited state peaks that are red- and blue-shifted relative to the ground state features. We hypothesize that these features arise from the formation of cationic and anionic species due to partial transfer of electron density from one pentacene molecule to a neighboring molecule. These observations provide experimental evidence for the role of states with significant charge-transfer character which facilitate the singlet fission process in pentacene. Our work both provides new insight into the singlet fission mechanism in pentacene and demonstrates the utility of structurally-sensitive time-resolved spectroscopic techniques in monitoring ultrafast processes.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry , University of Minnesota , Minneapolis , MN 55455 , USA .
| | - W Ruchira Silva
- Department of Chemistry , University of Minnesota , Minneapolis , MN 55455 , USA .
| | - Renee R Frontiera
- Department of Chemistry , University of Minnesota , Minneapolis , MN 55455 , USA .
| |
Collapse
|
144
|
Chen C, Liu W, Baranov MS, Baleeva NS, Yampolsky IV, Zhu L, Wang Y, Shamir A, Solntsev KM, Fang C. Unveiling Structural Motions of a Highly Fluorescent Superphotoacid by Locking and Fluorinating the GFP Chromophore in Solution. J Phys Chem Lett 2017; 8:5921-5928. [PMID: 29148819 DOI: 10.1021/acs.jpclett.7b02661] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Superphotoacidity involves ultrafast proton motions implicated in numerous chemical and biological processes. We used conformational locking and strategic addition of electron-withdrawing substituents to synthesize a new GFP chromophore analogue: p-HO-3,5-diF-BDI:BF2 (diF). It is highly fluorescent and exhibits excited-state proton transfer (ESPT) in various solvents, placing it among the strongest photoacids. Tunable femtosecond stimulated Raman spectroscopy with unique resonance conditions and transient absorption are complementarily employed to elucidate the structural basis for superphotoacidity. We reveal a multistep ESPT reaction from diF to methanol with an initial proton dissociation on the ∼600 fs time scale that forms a charge-separated state, stabilized by solvation, and followed by a diffusion-controlled proton transfer on the ∼350 ps time scale. A ∼1580 cm-1 phenolic ring motion is uncovered to accompany ESPT before 1 ps. This study provides a vivid movie of the photoinduced proton dissociation of a superphotoacid with bright fluorescence, effectively bridging fundamental mechanistic insights to precise control of macroscopic functions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University , 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Weimin Liu
- Department of Chemistry, Oregon State University , 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1, Moscow 117997, Russia
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University , 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Yanli Wang
- Department of Chemistry, Oregon State University , 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Alexandra Shamir
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Kyril M Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University , 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
145
|
Bera K, Douglas CJ, Frontiera RR. Femtosecond Raman Microscopy Reveals Structural Dynamics Leading to Triplet Separation in Rubrene Singlet Fission. J Phys Chem Lett 2017; 8:5929-5934. [PMID: 29166019 DOI: 10.1021/acs.jpclett.7b02769] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Singlet fission generates multiple excitons from a single photon, which in theory can result in solar cell efficiencies with values above the Shockley-Queisser limit. Understanding the molecular structural dynamics during singlet fission will help to fabricate efficient organic photovoltaic devices. Here we use femtosecond stimulated Raman spectroscopy to reveal the structural evolution during the triplet separation in rubrene. We observe vibrational signatures of the correlated triplet pair, as well as shifting of the vibrational frequencies of the 1430 and 1542 cm-1 excited state modes, which increase by more than 25 cm-1 in 5 ps. Our results indicate that the correlated pair separation into two individual triplets occurs concurrently with the loss of electron density from the tetracene backbone in rubrene. This study provides new insights into the triplet separation process and proves the utility of structurally sensitive ultrafast vibrational techniques to understand the mechanism of singlet fission.
Collapse
Affiliation(s)
- Kajari Bera
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Christopher J Douglas
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
146
|
Green O, Gajst O, Simkovitch R, Shabat D, Huppert D. Chloro benzoate cyanine picolinium photoacid excited-state proton transfer to water. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.08.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
147
|
Li X, Liao T, Chung LW. Computational Prediction of Excited-State Carbon Tunneling in the Two Steps of Triplet Zimmerman Di-π-Methane Rearrangement. J Am Chem Soc 2017; 139:16438-16441. [PMID: 29037035 DOI: 10.1021/jacs.7b07539] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photoinduced Zimmerman di-π-methane (DPM) rearrangement of polycyclic molecules to form synthetically useful cyclopropane derivatives was found experimentally to proceed in a triplet excited state. We have applied state-of-the-art quantum mechanical methods, including M06-2X, DLPNO-CCSD(T) and variational transition-state theory with multidimensional tunneling corrections, to an investigation of the reaction rates of the two steps in the triplet DPM rearrangement of dibenzobarrelene, benzobarrelene and barrelene. This study predicts a high probability of carbon tunneling in regions around the two consecutive transition states at 200-300 K, and an enhancement in the rates by 104-276/35-67% with carbon tunneling at 200/300 K. The Arrhenius plots of the rate constants were found to be curved at low temperatures. Moreover, the computed 12C/13C kinetic isotope effects were affected significantly by carbon tunneling and temperature. Our predictions of electronically excited-state carbon tunneling and two consecutive carbon tunneling are unprecedented. Heavy-atom tunneling in some photoinduced reactions with reactive intermediates and narrow barriers can be potentially observed at relatively low temperature in experiments.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry, South University of Science and Technology of China , Shenzhen 518055, China
| | - Tao Liao
- Department of Chemistry, South University of Science and Technology of China , Shenzhen 518055, China
| | - Lung Wa Chung
- Department of Chemistry, South University of Science and Technology of China , Shenzhen 518055, China
| |
Collapse
|
148
|
Gozem S, Luk HL, Schapiro I, Olivucci M. Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chem Rev 2017; 117:13502-13565. [DOI: 10.1021/acs.chemrev.7b00177] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Samer Gozem
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Hoi Ling Luk
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
| | - Igor Schapiro
- Fritz
Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, 53100 Siena, Italy
| |
Collapse
|
149
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
150
|
Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat Chem 2017; 10:31-37. [PMID: 29256511 DOI: 10.1038/nchem.2853] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/27/2017] [Indexed: 12/23/2022]
Abstract
Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.
Collapse
|