101
|
Li M, Klungland A. Modifications and interactions at the R-loop. DNA Repair (Amst) 2020; 96:102958. [PMID: 32961406 DOI: 10.1016/j.dnarep.2020.102958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
R-loops are tripartite structures consisting of an RNA:DNA hybrid and a displaced single-stranded DNA [1]. They are widespread and occupy up to 5 % of the mammalian genomes [2]. R-loops have a key role in genome stability, and known functions associated with gene regulation, DNA replication, chromatin patterning, immunoglobuline gene recombination and DNA Double-strand break repair [3-7]. Novel methodology, including the application of the S9.6 antibody, have more recently led to detailed knowledge on the genome-wide distribution of the R-loops as well as the identification of the R-loop interactome [8-10]. The regulation of R-loops was recently shown to also depend on dynamic RNA-methylation, including METTL3/14 dependent 6-methylAdenines (m6As) and METTL8 dependent 3-methylCytosines (m3Cs) [11-13].
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway.
| |
Collapse
|
102
|
Meers C, Keskin H, Banyai G, Mazina O, Yang T, Gombolay AL, Mukherjee K, Kaparos EI, Newnam G, Mazin A, Storici F. Genetic Characterization of Three Distinct Mechanisms Supporting RNA-Driven DNA Repair and Modification Reveals Major Role of DNA Polymerase ζ. Mol Cell 2020; 79:1037-1050.e5. [PMID: 32882183 DOI: 10.1016/j.molcel.2020.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA. However, molecular pathways of RNA-driven repair processes remain obscure. Utilizing assays of RNA-DNA recombination with and without an induced DSB in yeast DNA, we characterize three forms of RNA-mediated genomic modifications: RNA- and cDNA-templated DSB repair (R-TDR and c-TDR) using an RNA transcript or a DNA copy of the RNA transcript for DSB repair, respectively, and a new mechanism of RNA-templated DNA modification (R-TDM) induced by spontaneous or mutagen-induced breaks. While c-TDR requires reverse transcriptase, translesion DNA polymerase ζ (Pol ζ) plays a major role in R-TDR, and it is essential for R-TDM. This study characterizes mechanisms of RNA-DNA recombination, uncovering a role of Pol ζ in transferring genetic information from transcript RNA to DNA.
Collapse
Affiliation(s)
- Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Havva Keskin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gabor Banyai
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Olga Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Efiyenia I Kaparos
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexander Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
103
|
|
104
|
Lafuente-Barquero J, García-Rubio ML, Martin-Alonso MS, Gómez-González B, Aguilera A. Harmful DNA:RNA hybrids are formed in cis and in a Rad51-independent manner. eLife 2020; 9:56674. [PMID: 32749214 PMCID: PMC7431130 DOI: 10.7554/elife.56674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
DNA:RNA hybrids constitute a well-known source of recombinogenic DNA damage. The current literature is in agreement with DNA:RNA hybrids being produced co-transcriptionally by the invasion of the nascent RNA molecule produced in cis with its DNA template. However, it has also been suggested that recombinogenic DNA:RNA hybrids could be facilitated by the invasion of RNA molecules produced in trans in a Rad51-mediated reaction. Here, we tested the possibility that such DNA:RNA hybrids constitute a source of recombinogenic DNA damage taking advantage of Rad51-independent single-strand annealing (SSA) assays in the yeast Saccharomyces cerevisiae. For this, we used new constructs designed to induce expression of mRNA transcripts in trans with respect to the SSA system. We show that unscheduled and recombinogenic DNA:RNA hybrids that trigger the SSA event are formed in cis during transcription and in a Rad51-independent manner. We found no evidence that such hybrids form in trans and in a Rad51-dependent manner.
Collapse
Affiliation(s)
- Juan Lafuente-Barquero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Maria Luisa García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Marta San Martin-Alonso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
105
|
Proukakis C. Somatic mutations in neurodegeneration: An update. Neurobiol Dis 2020; 144:105021. [PMID: 32712267 DOI: 10.1016/j.nbd.2020.105021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
106
|
Zhang C, Chen L, Peng D, Jiang A, He Y, Zeng Y, Xie C, Zhou H, Luo X, Liu H, Chen L, Ren J, Wang W, Zhao Y. METTL3 and N6-Methyladenosine Promote Homologous Recombination-Mediated Repair of DSBs by Modulating DNA-RNA Hybrid Accumulation. Mol Cell 2020; 79:425-442.e7. [PMID: 32615088 DOI: 10.1016/j.molcel.2020.06.017] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.
Collapse
Affiliation(s)
- Canfeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liping Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Di Peng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Ao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yunru He
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanru Zeng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haoxian Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaotong Luo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Ren
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China.
| |
Collapse
|
107
|
Elfman J, Pham LP, Li H. The relationship between chimeric RNAs and gene fusions: Potential implications of reciprocity in cancer. J Genet Genomics 2020; 47:341-348. [PMID: 33008771 DOI: 10.1016/j.jgg.2020.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Justin Elfman
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA
| | - Lam-Phong Pham
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA
| | - Hui Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA; Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA.
| |
Collapse
|
108
|
Husain A, Xu J, Fujii H, Nakata M, Kobayashi M, Wang JY, Rehwinkel J, Honjo T, Begum NA. SAMHD1-mediated dNTP degradation is required for efficient DNA repair during antibody class switch recombination. EMBO J 2020; 39:e102931. [PMID: 32511795 DOI: 10.15252/embj.2019102931] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1), a dNTP triphosphohydrolase, regulates the levels of cellular dNTPs through their hydrolysis. SAMHD1 protects cells from invading viruses that depend on dNTPs to replicate and is frequently mutated in cancers and Aicardi-Goutières syndrome, a hereditary autoimmune encephalopathy. We discovered that SAMHD1 localizes at the immunoglobulin (Ig) switch region, and serves as a novel DNA repair regulator of Ig class switch recombination (CSR). Depletion of SAMHD1 impaired not only CSR but also IgH/c-Myc translocation. Consistently, we could inhibit these two processes by elevating the cellular nucleotide pool. A high frequency of nucleotide insertion at the break-point junctions is a notable feature in SAMHD1 deficiency during activation-induced cytidine deaminase-mediated genomic instability. Interestingly, CSR induced by staggered but not blunt, double-stranded DNA breaks was impaired by SAMHD1 depletion, which was accompanied by enhanced nucleotide insertions at recombination junctions. We propose that SAMHD1-mediated dNTP balance regulates dNTP-sensitive DNA end-processing enzyme and promotes CSR and aberrant genomic rearrangements by suppressing the insertional DNA repair pathway.
Collapse
Affiliation(s)
- Afzal Husain
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jianliang Xu
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Kobayashi
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
109
|
Chen H, Yang H, Zhu X, Yadav T, Ouyang J, Truesdell SS, Tan J, Wang Y, Duan M, Wei L, Zou L, Levine AS, Vasudevan S, Lan L. m 5C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat Commun 2020; 11:2834. [PMID: 32503981 PMCID: PMC7275041 DOI: 10.1038/s41467-020-16722-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/19/2020] [Indexed: 12/02/2022] Open
Abstract
Recruitment of DNA repair proteins to DNA damage sites is a critical step for DNA repair. Post-translational modifications of proteins at DNA damage sites serve as DNA damage codes to recruit specific DNA repair factors. Here, we show that mRNA is locally modified by m5C at sites of DNA damage. The RNA methyltransferase TRDMT1 is recruited to DNA damage sites to promote m5C induction. Loss of TRDMT1 compromises homologous recombination (HR) and increases cellular sensitivity to DNA double-strand breaks (DSBs). In the absence of TRDMT1, RAD51 and RAD52 fail to localize to sites of reactive oxygen species (ROS)-induced DNA damage. In vitro, RAD52 displays an increased affinity for DNA:RNA hybrids containing m5C-modified RNA. Loss of TRDMT1 in cancer cells confers sensitivity to PARP inhibitors in vitro and in vivo. These results reveal an unexpected TRDMT1-m5C axis that promotes HR, suggesting that post-transcriptional modifications of RNA can also serve as DNA damage codes to regulate DNA repair. Post-translational modifications of proteins at DNA damage sites can facilitate the recruitment of DNA repair factors. Here, the authors show that mRNA is locally modified with m5C at sites of DNA damage by the RNA methyltransferase TRDMT1 to promote homologous recombination repair.
Collapse
Affiliation(s)
- Hao Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA
| | - Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Xiaolan Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Tribhuwan Yadav
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Jun Tan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yumin Wang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA.,Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Meihan Duan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA
| | - Leizhen Wei
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Arthur S Levine
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Li Lan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave., Pittsburgh, PA, 15213, USA. .,Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02129, USA. .,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
110
|
A Genome-Wide Screen for Genes Affecting Spontaneous Direct-Repeat Recombination in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:1853-1867. [PMID: 32265288 PMCID: PMC7263696 DOI: 10.1534/g3.120.401137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homologous recombination is an important mechanism for genome integrity maintenance, and several homologous recombination genes are mutated in various cancers and cancer-prone syndromes. However, since in some cases homologous recombination can lead to mutagenic outcomes, this pathway must be tightly regulated, and mitotic hyper-recombination is a hallmark of genomic instability. We performed two screens in Saccharomyces cerevisiae for genes that, when deleted, cause hyper-recombination between direct repeats. One was performed with the classical patch and replica-plating method. The other was performed with a high-throughput replica-pinning technique that was designed to detect low-frequency events. This approach allowed us to validate the high-throughput replica-pinning methodology independently of the replicative aging context in which it was developed. Furthermore, by combining the two approaches, we were able to identify and validate 35 genes whose deletion causes elevated spontaneous direct-repeat recombination. Among these are mismatch repair genes, the Sgs1-Top3-Rmi1 complex, the RNase H2 complex, genes involved in the oxidative stress response, and a number of other DNA replication, repair and recombination genes. Since several of our hits are evolutionarily conserved, and repeated elements constitute a significant fraction of mammalian genomes, our work might be relevant for understanding genome integrity maintenance in humans.
Collapse
|
111
|
Ribonucleotide incorporation in yeast genomic DNA shows preference for cytosine and guanosine preceded by deoxyadenosine. Nat Commun 2020; 11:2447. [PMID: 32415081 PMCID: PMC7229183 DOI: 10.1038/s41467-020-16152-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the abundance of ribonucleoside monophosphates (rNMPs) in DNA, sites of rNMP incorporation remain poorly characterized. Here, by using ribose-seq and Ribose-Map techniques, we built and analyzed high-throughput sequencing libraries of rNMPs derived from mitochondrial and nuclear DNA of budding and fission yeast. We reveal both common and unique features of rNMP sites among yeast species and strains, and between wild type and different ribonuclease H-mutant genotypes. We demonstrate that the rNMPs are not randomly incorporated in DNA. We highlight signatures and patterns of rNMPs, including sites within trinucleotide-repeat tracts. Our results uncover that the deoxyribonucleotide immediately upstream of the rNMPs has a strong influence on rNMP distribution, suggesting a mechanism of rNMP accommodation by DNA polymerases as a driving force of rNMP incorporation. Consistently, we find deoxyadenosine upstream from the most abundant genomic rCMPs and rGMPs. This study establishes a framework to better understand mechanisms of rNMP incorporation in DNA. Ribonucleoside monophosphates are incorporated by DNA polymerases into double-stranded DNA. Here, the authors use ribose-seq and Ribose-Map techniques to reveal that signatures and patterns of ribonucleotide incorporation in yeast mitochondrial and nuclear DNA show preference for cytosine and guanosine preceded by deoxyadenosine.
Collapse
|
112
|
Ui A, Chiba N, Yasui A. Relationship among DNA double-strand break (DSB), DSB repair, and transcription prevents genome instability and cancer. Cancer Sci 2020; 111:1443-1451. [PMID: 32232911 PMCID: PMC7226179 DOI: 10.1111/cas.14404] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/28/2022] Open
Abstract
DNA double‐strand break (DSB) is a serious type of DNA damage and is known to trigger multiple responses within cells. In these responses, novel relationships among DSB, DSB repair, and transcription machineries are created. First, transcription is repressed if DSB occurs near or at the transcription site, termed DSB‐induced transcriptional repression, which contributes to DSB repair with the aid of DNA damage‐signaling pathways, ATM‐ or DNA‐PKcs‐signaling pathways. DSB‐induced transcriptional repression is also regulated by transcriptional factors TLP1, NELF, and ENL, as well as chromatin remodeling and organizing factors ZMYND8, CDYL1, PBAF, and cohesin. Second, transcription and RNA promote DSB repair for genome integrity. Transcription factors such as LEDGF, SETD2, and transcriptionally active histone modification, H3K36, facilitate homologous recombination to overcome DSB. At transcriptional active sites, DNA:RNA hybrids, termed R‐loops, which are formed by DSB, are processed by RAD52 and XPG leading to an activation of the homologous recombination pathway. Even in a transcriptionally inactive non‐genic sites, noncoding RNAs that are produced by RNA polymerase II, DICER, and DROSHA, help to recruit DSB repair proteins at the DSB sites. Third, transcriptional activation itself, however, can induce DSB. Transcriptional activation often generates specific DNA structures such as R‐loops and topoisomerase‐induced DSBs, which cause genotoxic stress and may lead to genome instability and consequently to cancer. Thus, transcription and DSB repair machineries interact and cooperate to prevent genome instability and cancer.
Collapse
Affiliation(s)
- Ayako Ui
- Genome Regulation and Molecular Pharmacogenomics, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachijoji, Japan.,Department of Molecular Oncology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.,Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
113
|
Onaka AT, Su J, Katahira Y, Tang C, Zafar F, Aoki K, Kagawa W, Niki H, Iwasaki H, Nakagawa T. DNA replication machinery prevents Rad52-dependent single-strand annealing that leads to gross chromosomal rearrangements at centromeres. Commun Biol 2020; 3:202. [PMID: 32355220 PMCID: PMC7193609 DOI: 10.1038/s42003-020-0934-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/09/2020] [Indexed: 12/27/2022] Open
Abstract
Homologous recombination between repetitive sequences can lead to gross chromosomal rearrangements (GCRs). At fission yeast centromeres, Rad51-dependent conservative recombination predominantly occurs between inverted repeats, thereby suppressing formation of isochromosomes whose arms are mirror images. However, it is unclear how GCRs occur in the absence of Rad51 and how GCRs are prevented at centromeres. Here, we show that homology-mediated GCRs occur through Rad52-dependent single-strand annealing (SSA). The rad52-R45K mutation, which impairs SSA activity of Rad52 protein, dramatically reduces isochromosome formation in rad51 deletion cells. A ring-like complex Msh2-Msh3 and a structure-specific endonuclease Mus81 function in the Rad52-dependent GCR pathway. Remarkably, mutations in replication fork components, including DNA polymerase α and Swi1/Tof1/Timeless, change the balance between Rad51-dependent recombination and Rad52-dependent SSA at centromeres, increasing Rad52-dependent SSA that forms isochromosomes. Our results uncover a role of DNA replication machinery in the recombination pathway choice that prevents Rad52-dependent GCRs at centromeres.
Collapse
Affiliation(s)
- Atsushi T Onaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Chitose Laboratory Corporation, 2-13-3 Nogawa-honcho, Miyamae-ku, Kawasaki, Kanagawa, 216-0041, Japan
| | - Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhiro Katahira
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Crystal Tang
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Faria Zafar
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keita Aoki
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Wataru Kagawa
- Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo, 191-8506, Japan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Hiroshi Iwasaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
114
|
Hu Z, Mi S, Zhao T, Peng C, Peng Y, Chen L, Zhu W, Yao Y, Song Q, Li X, Li X, Jia C, Pei H. BGL3 lncRNA mediates retention of the BRCA1/BARD1 complex at DNA damage sites. EMBO J 2020; 39:e104133. [PMID: 32347575 DOI: 10.15252/embj.2019104133] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging regulators of genomic stability and human disease. However, the molecular mechanisms by which nuclear lncRNAs directly contribute to DNA damage responses remain largely unknown. Using RNA antisense purification coupled with quantitative mass spectrometry (RAP-qMS), we found that the lncRNA BGL3 binds to PARP1 and BARD1, exhibiting unexpected roles in homologous recombination. Mechanistically, BGL3 is recruited to DNA double-strand breaks (DSBs) by PARP1 at an early time point, which requires its interaction with the DNA-binding domain of PARP1. BGL3 also binds the C-terminal BRCT domain and an internal region (amino acids 127-424) of BARD1, which mediates interaction of the BRCA1/BARD1 complex with its binding partners such as HP1γ and RAD51, resulting in BRCA1/BARD1 retention at DSBs. Cells depleted for BGL3 displayed genomic instability and were sensitive to DNA-damaging reagents. Overall, our findings underscore the biochemical versatility of RNA as a mediator molecule in the DNA damage response pathway, which affects the accumulation of BRCA1/BARD1 at DSBs.
Collapse
Affiliation(s)
- Zhaohua Hu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaojie Mi
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Industrial Fermentation Microbiology, Tianjin Industrial Microbiology Key Lab, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Changmin Peng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, Washington, DC, USA.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yihan Peng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, Washington, DC, USA.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, Washington, DC, USA.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinzhi Li
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, Washington, DC, USA.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
115
|
Bader AS, Bushell M. DNA:RNA hybrids form at DNA double-strand breaks in transcriptionally active loci. Cell Death Dis 2020; 11:280. [PMID: 32332801 PMCID: PMC7181826 DOI: 10.1038/s41419-020-2464-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
The recent discovery of DNA:RNA hybrids, or R-loops, actively forming at DNA double-strand breaks (DSBs) has unlocked fresh insight into how RNA participates in DNA repair. However, the manner of DSB-induced R-loop formation is vital in determining its mechanism of action and is currently under debate. Here, we analyse published DNA:RNA-hybrid sequencing to elucidate the features that determine DSB-induced R-loop formation. We found that pre-existing transcriptional activity was critical for R-loop generation at break sites, suggesting that these RNAs are transcribed prior to break induction. In addition, this appeared to be a specific DSB response at the break, distinct from traditional, co-transcriptionally formed R-loops. We hypothesise that R-loop formation is orchestrated by the damage response at transcriptionally active DSB loci to specifically maintain these genomic regions. Further investigation is required to fully understand how canonical repair processes regulate R-loops at breaks and how they participate in the repair process.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
116
|
Ghosh S, Goldgur Y, Shuman S. Mycobacterial DNA polymerase I: activities and crystal structures of the POL domain as apoenzyme and in complex with a DNA primer-template and of the full-length FEN/EXO-POL enzyme. Nucleic Acids Res 2020; 48:3165-3180. [PMID: 32034423 PMCID: PMC7102940 DOI: 10.1093/nar/gkaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterial Pol1 is a bifunctional enzyme composed of an N-terminal DNA flap endonuclease/5' exonuclease domain (FEN/EXO) and a C-terminal DNA polymerase domain (POL). Here we document additional functions of Pol1: FEN activity on the flap RNA strand of an RNA:DNA hybrid and reverse transcriptase activity on a DNA-primed RNA template. We report crystal structures of the POL domain, as apoenzyme and as ternary complex with 3'-dideoxy-terminated DNA primer-template and dNTP. The thumb, palm, and fingers subdomains of POL form an extensive interface with the primer-template and the triphosphate of the incoming dNTP. Progression from an open conformation of the apoenzyme to a nearly closed conformation of the ternary complex entails a disordered-to-ordered transition of several segments of the thumb and fingers modules and an inward motion of the fingers subdomain-especially the O helix-to engage the primer-template and dNTP triphosphate. Distinctive structural features of mycobacterial Pol1 POL include a manganese binding site in the vestigial 3' exonuclease subdomain and a non-catalytic water-bridged magnesium complex at the protein-DNA interface. We report a crystal structure of the bifunctional FEN/EXO-POL apoenzyme that reveals the positions of two active site metals in the FEN/EXO domain.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
117
|
Mitrentsi I, Yilmaz D, Soutoglou E. How to maintain the genome in nuclear space. Curr Opin Cell Biol 2020; 64:58-66. [PMID: 32220808 DOI: 10.1016/j.ceb.2020.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/28/2020] [Accepted: 02/23/2020] [Indexed: 01/27/2023]
Abstract
Genomic instability can be life-threatening. The fine balance between error-free and mutagenic DNA repair pathways is essential for maintaining genome integrity. Recent advances in DNA double-strand break induction and detection techniques have allowed the investigation of DNA damage and repair in the context of the highly complex nuclear structure. These studies have revealed that the 3D genome folding, nuclear compartmentalization and cytoskeletal components control the spatial distribution of DNA lesions within the nuclear space and dictate their mode of repair.
Collapse
Affiliation(s)
- Ioanna Mitrentsi
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France
| | - Duygu Yilmaz
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France.
| |
Collapse
|
118
|
Deficiency in classical nonhomologous end-joining-mediated repair of transcribed genes is linked to SCA3 pathogenesis. Proc Natl Acad Sci U S A 2020; 117:8154-8165. [PMID: 32205441 DOI: 10.1073/pnas.1917280117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing Drosophila larval brains and eyes. Importantly, SCA3 phenotype in Drosophila was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.
Collapse
|
119
|
Jang Y, Elsayed Z, Eki R, He S, Du KP, Abbas T, Kai M. Intrinsically disordered protein RBM14 plays a role in generation of RNA:DNA hybrids at double-strand break sites. Proc Natl Acad Sci U S A 2020; 117:5329-5338. [PMID: 32094185 PMCID: PMC7071921 DOI: 10.1073/pnas.1913280117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence suggests participation of RNA-binding proteins with intrinsically disordered domains (IDPs) in the DNA damage response (DDR). These IDPs form liquid compartments at DNA damage sites in a poly(ADP ribose) (PAR)-dependent manner. However, it is greatly unknown how the IDPs are involved in DDR. We have shown previously that one of the IDPs RBM14 is required for the canonical nonhomologous end joining (cNHEJ). Here we show that RBM14 is recruited to DNA damage sites in a PARP- and RNA polymerase II (RNAPII)-dependent manner. Both KU and RBM14 are required for RNAPII-dependent generation of RNA:DNA hybrids at DNA damage sites. In fact, RBM14 binds to RNA:DNA hybrids. Furthermore, RNA:DNA hybrids and RNAPII are detected at gene-coding as well as at intergenic areas when double-strand breaks (DSBs) are induced. We propose that the cNHEJ pathway utilizes damage-induced transcription and intrinsically disordered protein RBM14 for efficient repair of DSBs.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Zeinab Elsayed
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Shuaixin He
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Kang-Ping Du
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231;
| |
Collapse
|
120
|
Zhang JM, Yadav T, Ouyang J, Lan L, Zou L. Alternative Lengthening of Telomeres through Two Distinct Break-Induced Replication Pathways. Cell Rep 2020; 26:955-968.e3. [PMID: 30673617 PMCID: PMC6366628 DOI: 10.1016/j.celrep.2018.12.102] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/09/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Alternative lengthening of telomeres (ALT) is a telomerase-independent but recombination-dependent pathway that maintains telomeres. Here, we describe an assay to visualize ALT-mediated telomeric DNA synthesis in ALT-associated PML bodies (APBs) without DNA-damaging agents or replication inhibitors. Using this assay, we find that ALT occurs through two distinct mechanisms. One of the ALT mechanisms requires RAD52, a protein implicated in break-induced DNA replication (BIR). We demonstrate that RAD52 directly promotes telomeric D-loop formation in vitro and is required for maintaining telomeres in ALT-positive cells. Unexpectedly, however, RAD52 is dispensable for C-circle formation, a hallmark of ALT. In RAD52-knockout ALT cells, C-circle formation and RAD52-independent ALT DNA synthesis gradually increase as telomeres are shortened, and these activities are dependent on BLM and BIR proteins POLD3 and POLD4. These results suggest that ALT occurs through a RAD52-dependent and a RAD52-independent BIR pathway, revealing the bifurcated framework and dynamic nature of this process.
Collapse
Affiliation(s)
- Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
121
|
Bader AS, Hawley BR, Wilczynska A, Bushell M. The roles of RNA in DNA double-strand break repair. Br J Cancer 2020; 122:613-623. [PMID: 31894141 PMCID: PMC7054366 DOI: 10.1038/s41416-019-0624-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/12/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Effective DNA repair is essential for cell survival: a failure to correctly repair damage leads to the accumulation of mutations and is the driving force for carcinogenesis. Multiple pathways have evolved to protect against both intrinsic and extrinsic genotoxic events, and recent developments have highlighted an unforeseen critical role for RNA in ensuring genome stability. It is currently unclear exactly how RNA molecules participate in the repair pathways, although many models have been proposed and it is possible that RNA acts in diverse ways to facilitate DNA repair. A number of well-documented DNA repair factors have been described to have RNA-binding capacities and, moreover, screens investigating DNA-damage repair mechanisms have identified RNA-binding proteins as a major group of novel factors involved in DNA repair. In this review, we integrate some of these datasets to identify commonalities that might highlight novel and interesting factors for future investigations. This emerging role for RNA opens up a new dimension in the field of DNA repair; we discuss its impact on our current understanding of DNA repair processes and consider how it might influence cancer progression.
Collapse
Affiliation(s)
- Aldo S Bader
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Ben R Hawley
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | | | - Martin Bushell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
122
|
Brambati A, Zardoni L, Nardini E, Pellicioli A, Liberi G. The dark side of RNA:DNA hybrids. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108300. [PMID: 32430097 DOI: 10.1016/j.mrrev.2020.108300] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
RNA:DNA hybrids form when nascent transcripts anneal to the DNA template strand or any homologous DNA region. Co-transcriptional RNA:DNA hybrids, organized in R-loop structures together with the displaced non-transcribed strand, assist gene expression, DNA repair and other physiological cellular functions. A dark side of the matter is that RNA:DNA hybrids are also a cause of DNA damage and human diseases. In this review, we summarize recent advances in the understanding of the mechanisms by which the impairment of hybrid turnover promotes DNA damage and genome instability via the interference with DNA replication and DNA double-strand break repair. We also discuss how hybrids could contribute to cancer, neurodegeneration and susceptibility to viral infections, focusing on dysfunctions associated with the anti-R-loop helicase Senataxin.
Collapse
Affiliation(s)
- Alessandra Brambati
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Luca Zardoni
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; Scuola Universitaria Superiore, IUSS, 27100, Pavia, Italy
| | - Eleonora Nardini
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; IFOM Foundation, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
123
|
Ji JH, Min S, Chae S, Ha GH, Kim Y, Park YJ, Lee CW, Cho H. De novo phosphorylation of H2AX by WSTF regulates transcription-coupled homologous recombination repair. Nucleic Acids Res 2020; 47:6299-6314. [PMID: 31045206 PMCID: PMC6614800 DOI: 10.1093/nar/gkz309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Histone H2AX undergoes a phosphorylation switch from pTyr142 (H2AX-pY142) to pSer139 (γH2AX) in the DNA damage response (DDR); however, the functional role of H2AX-pY142 remains elusive. Here, we report a new layer of regulation involving transcription-coupled H2AX-pY142 in the DDR. We found that constitutive H2AX-pY142 generated by Williams-Beuren syndrome transcription factor (WSTF) interacts with RNA polymerase II (RNAPII) and is associated with RNAPII-mediated active transcription in proliferating cells. Also, removal of pre-existing H2AX-pY142 by ATM-dependent EYA1/3 phosphatases disrupts this association and requires for transcriptional silencing at transcribed active damage sites. The following recovery of H2AX-pY142 via translocation of WSTF to DNA lesions facilitates transcription-coupled homologous recombination (TC-HR) in the G1 phase, whereby RAD51 loading, but not RPA32, utilizes RNAPII-dependent active RNA transcripts as donor templates. We propose that the WSTF-H2AX-RNAPII axis regulates transcription and TC-HR repair to maintain genome integrity.
Collapse
Affiliation(s)
- Jae-Hoon Ji
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Sunwoo Min
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Geun-Hyoung Ha
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yonghyeon Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
| | - Yeon-Ji Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hyeseong Cho
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, South Korea.,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
124
|
Andrade NS, Ramic M, Esanov R, Liu W, Rybin MJ, Gaidosh G, Abdallah A, Del’Olio S, Huff TC, Chee NT, Anatha S, Gendron TF, Wahlestedt C, Zhang Y, Benatar M, Mueller C, Zeier Z. Dipeptide repeat proteins inhibit homology-directed DNA double strand break repair in C9ORF72 ALS/FTD. Mol Neurodegener 2020; 15:13. [PMID: 32093728 PMCID: PMC7041170 DOI: 10.1186/s13024-020-00365-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The C9ORF72 hexanucleotide repeat expansion is the most common known genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two fatal age-related neurodegenerative diseases. The C9ORF72 expansion encodes five dipeptide repeat proteins (DPRs) that are produced through a non-canonical translation mechanism. Among the DPRs, proline-arginine (PR), glycine-arginine (GR), and glycine-alanine (GA) are the most neurotoxic and increase the frequency of DNA double strand breaks (DSBs). While the accumulation of these genotoxic lesions is increasingly recognized as a feature of disease, the mechanism(s) of DPR-mediated DNA damage are ill-defined and the effect of DPRs on the efficiency of each DNA DSB repair pathways has not been previously evaluated. METHODS AND RESULTS Using DNA DSB repair assays, we evaluated the efficiency of specific repair pathways, and found that PR, GR and GA decrease the efficiency of non-homologous end joining (NHEJ), single strand annealing (SSA), and microhomology-mediated end joining (MMEJ), but not homologous recombination (HR). We found that PR inhibits DNA DSB repair, in part, by binding to the nucleolar protein nucleophosmin (NPM1). Depletion of NPM1 inhibited NHEJ and SSA, suggesting that NPM1 loss-of-function in PR expressing cells leads to impediments of both non-homologous and homology-directed DNA DSB repair pathways. By deleting NPM1 sub-cellular localization signals, we found that PR binds NPM1 regardless of the cellular compartment to which NPM1 was directed. Deletion of the NPM1 acidic loop motif, known to engage other arginine-rich proteins, abrogated PR and NPM1 binding. Using confocal and super-resolution immunofluorescence microscopy, we found that levels of RAD52, a component of the SSA repair machinery, were significantly increased iPSC neurons relative to isogenic controls in which the C9ORF72 expansion had been deleted using CRISPR/Cas9 genome editing. Western analysis of post-mortem brain tissues confirmed that RAD52 immunoreactivity is significantly increased in C9ALS/FTD samples as compared to controls. CONCLUSIONS Collectively, we characterized the inhibitory effects of DPRs on key DNA DSB repair pathways, identified NPM1 as a facilitator of DNA repair that is inhibited by PR, and revealed deficits in homology-directed DNA DSB repair pathways as a novel feature of C9ORF72-related disease.
Collapse
Affiliation(s)
- Nadja S. Andrade
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Melina Ramic
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Rustam Esanov
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Wenjun Liu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 USA
| | - Mathew J. Rybin
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Gabriel Gaidosh
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136 USA
| | - Abbas Abdallah
- Department of Neurology, University of Massachusetts Medical School, Worchester, MA USA
| | - Samuel Del’Olio
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Tyler C. Huff
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136 USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1601 NW 12th Ave, Miami, FL. 33136 USA
| | - Nancy T. Chee
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Sadhana Anatha
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 USA
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, 115 NW 14th St.,, Miami, FL 33136 USA
| | - Christian Mueller
- Department of Neurology, University of Massachusetts Medical School, Worchester, MA USA
- Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Biomedical Research Building Room 413, Florida, Miami 33136 USA
| |
Collapse
|
125
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|
126
|
Hegazy YA, Fernando CM, Tran EJ. The balancing act of R-loop biology: The good, the bad, and the ugly. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49903-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
127
|
Li S, Xia L. Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives. ABIOTECH 2020; 1:58-73. [PMID: 36305005 PMCID: PMC9590512 DOI: 10.1007/s42994-019-00009-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/08/2019] [Indexed: 12/01/2022]
Abstract
CRISPR/Cas, as a simple, versatile, robust and cost-effective system for genome manipulation, has dominated the genome editing field over the past few years. The application of CRISPR/Cas in crop improvement is particularly important in the context of global climate change, as well as diverse agricultural, environmental and ecological challenges. Various CRISPR/Cas toolboxes have been developed and allow for targeted mutagenesis at specific genome loci, transcriptome regulation and epigenome editing, base editing, and precise targeted gene/allele replacement or tagging in plants. In particular, precise replacement of an existing allele with an elite allele in a commercial variety through homology-directed repair (HDR) is a holy grail in genome editing for crop improvement as it has been very difficult, laborious and time-consuming to introgress the elite alleles into commercial varieties without any linkage drag from parental lines within a few generations in crop breeding practice. However, it still remains very challenging in crop plants. This review intends to provide an informative summary of the latest development and breakthroughs in gene replacement using CRISPR/Cas technology, with a focus on achievements, potential mechanisms and future perspectives in plant biological science as well as crop improvement.
Collapse
Affiliation(s)
- Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| |
Collapse
|
128
|
|
129
|
Hegazy YA, Fernando CM, Tran EJ. The balancing act of R-loop biology: The good, the bad, and the ugly. J Biol Chem 2019; 295:905-913. [PMID: 31843970 DOI: 10.1074/jbc.rev119.011353] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An R-loop is a three-stranded nucleic acid structure that consists of a DNA:RNA hybrid and a displaced strand of DNA. R-loops occur frequently in genomes and have significant physiological importance. They play vital roles in regulating gene expression, DNA replication, and DNA and histone modifications. Several studies have uncovered that R-loops contribute to fundamental biological processes in various organisms. Paradoxically, although they do play essential positive functions required for important biological processes, they can also contribute to DNA damage and genome instability. Recent evidence suggests that R-loops are involved in a number of human diseases, including neurological disorders, cancer, and autoimmune diseases. This review focuses on the molecular basis for R-loop-mediated gene regulation and genomic instability and briefly discusses methods for identifying R-loops in vivo It also highlights recent studies indicating the role of R-loops in DNA double-strand break repair with an updated view of much-needed future goals in R-loop biology.
Collapse
Affiliation(s)
- Youssef A Hegazy
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
130
|
Mukherjee K, English N, Meers C, Kim H, Jonke A, Storici F, Torres M. Systematic analysis of linker histone PTM hotspots reveals phosphorylation sites that modulate homologous recombination and DSB repair. DNA Repair (Amst) 2019; 86:102763. [PMID: 31821952 DOI: 10.1016/j.dnarep.2019.102763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Double strand-breaks (DSBs) of genomic DNA caused by ionizing radiation or mutagenic chemicals are a common source of mutation, recombination, chromosomal aberration, and cell death. Linker histones are DNA packaging proteins with established roles in chromatin compaction, gene transcription, and in homologous recombination (HR)-mediated DNA repair. Using a machine-learning model for functional prioritization of eukaryotic post-translational modifications (PTMs) in combination with genetic and biochemical experiments with the yeast linker histone, Hho1, we discovered that site-specific phosphorylation sites regulate HR and HR-mediated DSB repair. Five total sites were investigated (T10, S65, S141, S173, and S174), ranging from high to low function potential as determined by the model. Of these, we confirmed S173/174 are phosphorylated in yeast by mass spectrometry and found no evidence of phosphorylation at the other sites. Phospho-nullifying mutations at these two sites results in a significant decrease in HR-mediated DSB repair templated either with oligonucleotides or a homologous chromosome, while phospho-mimicing mutations have no effect. S65, corresponding to a mammalian phosphosite that is conserved in yeast, exhibited similar effects. None of the mutations affected base- or nucleotide-excision repair, nor did they disrupt non-homologous end joining or RNA-mediated repair of DSBs when sequence heterology between the break and repair template strands was low. More extensive analysis of the S174 phospho-null mutant revealed that its repression of HR and DSB repair is proportional to the degree of sequence heterology between DSB ends and the HR repair template. Taken together, these data demonstrate the utility of machine learning for the discovery of functional PTM hotspots, reveal linker histone phosphorylation sites necessary for HR and HR-mediated DSB repair, and provide insight into the context-dependent control of DNA integrity by the yeast linker histone Hho1.
Collapse
Affiliation(s)
- Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Nolan English
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Hyojung Kim
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Alex Jonke
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA
| | - Matthew Torres
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive NW Atlanta GA 30332,USA.
| |
Collapse
|
131
|
Holt IJ. The mitochondrial R-loop. Nucleic Acids Res 2019; 47:5480-5489. [PMID: 31045202 PMCID: PMC6582354 DOI: 10.1093/nar/gkz277] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
The DNA in mitochondria contributes essential components of the organelle’s energy producing machinery that is essential for life. In 1971, many mitochondrial DNA molecules were found to have a third strand of DNA that maps to a region containing critical regulatory elements for transcription and replication. Forty-five years later, a third strand of RNA in the same region has been reported. This mitochondrial R-loop is present on thousands of copies of mitochondrial DNA per cell making it potentially the most abundant R-loop in nature. Here, I assess the discovery of the mitochondrial R-loop, discuss why it remained unrecognized for almost half a century and propose for it central roles in the replication, organization and expression of mitochondrial DNA, which if compromised can lead to disease states.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, 20014 San Sebastián, Spain & IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain
| |
Collapse
|
132
|
Sullivan-Reed K, Bolton-Gillespie E, Dasgupta Y, Langer S, Siciliano M, Nieborowska-Skorska M, Hanamshet K, Belyaeva EA, Bernhardy AJ, Lee J, Moore M, Zhao H, Valent P, Matlawska-Wasowska K, Müschen M, Bhatia S, Bhatia R, Johnson N, Wasik MA, Mazin AV, Skorski T. Simultaneous Targeting of PARP1 and RAD52 Triggers Dual Synthetic Lethality in BRCA-Deficient Tumor Cells. Cell Rep 2019; 23:3127-3136. [PMID: 29898385 PMCID: PMC6082171 DOI: 10.1016/j.celrep.2018.05.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/20/2018] [Accepted: 05/11/2018] [Indexed: 01/02/2023] Open
Abstract
PARP inhibitors (PARPis) have been used to induce synthetic lethality in BRCA-deficient tumors in clinical trials with limited success. We hypothesized that RAD52-mediated DNA repair remains active in PARPi-treated BRCA-deficient tumor cells and that targeting RAD52 should enhance the synthetic lethal effect of PARPi. We show that RAD52 inhibitors (RAD52is) attenuated single-strand annealing (SSA) and residual homologous recombination (HR) in BRCA-deficient cells. Simultaneous targeting of PARP1 and RAD52 with inhibitors or dominant-negative mutants caused synergistic accumulation of DSBs and eradication of BRCA-deficient but not BRCA-proficient tumor cells. Remarkably, Parp1-/-;Rad52-/- mice are normal and display prolonged latency of BRCA1-deficient leukemia compared with Parp1-/- and Rad52-/- counterparts. Finally, PARPi+RAD52i exerted synergistic activity against BRCA1-deficient tumors in immunodeficient mice with minimal toxicity to normal cells and tissues. In conclusion, our data indicate that addition of RAD52i will improve therapeutic outcome of BRCA-deficient malignancies treated with PARPi.
Collapse
Affiliation(s)
- Katherine Sullivan-Reed
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Elisabeth Bolton-Gillespie
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yashodhara Dasgupta
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Samantha Langer
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Micheal Siciliano
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Margaret Nieborowska-Skorska
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kritika Hanamshet
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elizaveta A Belyaeva
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102, USA
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jaewong Lee
- Department of Systems Biology, Beckman Research Institute, Monrovia, CA 91016, USA
| | - Morgan Moore
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Department of Clinical Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig-Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, 1090, Austria
| | - Ksenia Matlawska-Wasowska
- Division of Pediatric Research, Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute, Monrovia, CA 91016, USA
| | - Smita Bhatia
- Department of Pediatrics, University of Alabama Birmingham, Birmingham, AL 35223, USA
| | - Ravi Bhatia
- Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Tomasz Skorski
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
133
|
Toma M, Sullivan-Reed K, Śliwiński T, Skorski T. RAD52 as a Potential Target for Synthetic Lethality-Based Anticancer Therapies. Cancers (Basel) 2019; 11:E1561. [PMID: 31615159 PMCID: PMC6827130 DOI: 10.3390/cancers11101561] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations in DNA repair systems play a key role in the induction and progression of cancer. Tumor-specific defects in DNA repair mechanisms and activation of alternative repair routes create the opportunity to employ a phenomenon called "synthetic lethality" to eliminate cancer cells. Targeting the backup pathways may amplify endogenous and drug-induced DNA damage and lead to specific eradication of cancer cells. So far, the synthetic lethal interaction between BRCA1/2 and PARP1 has been successfully applied as an anticancer treatment. Although PARP1 constitutes a promising target in the treatment of tumors harboring deficiencies in BRCA1/2-mediated homologous recombination (HR), some tumor cells survive, resulting in disease relapse. It has been suggested that alternative RAD52-mediated HR can protect BRCA1/2-deficient cells from the accumulation of DNA damage and the synthetic lethal effect of PARPi. Thus, simultaneous inhibition of RAD52 and PARP1 might result in a robust dual synthetic lethality, effectively eradicating BRCA1/2-deficient tumor cells. In this review, we will discuss the role of RAD52 and its potential application in synthetic lethality-based anticancer therapies.
Collapse
Affiliation(s)
- Monika Toma
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Katherine Sullivan-Reed
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Tomasz Skorski
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
134
|
Kohzaki M, Ootsuyama A, Sun L, Moritake T, Okazaki R. Human RECQL4 represses the RAD52-mediated single-strand annealing pathway after ionizing radiation or cisplatin treatment. Int J Cancer 2019; 146:3098-3113. [PMID: 31495919 DOI: 10.1002/ijc.32670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 11/12/2022]
Abstract
Ionizing radiation (IR) and cisplatin are frequently used cancer treatments, although the mechanisms of error-prone DNA repair-mediated genomic instability after anticancer treatment are not fully clarified yet. RECQL4 mutations mainly in the C-terminal region of the RECQL4 gene lead to the cancer-predisposing Rothmund-Thomson syndrome, but the function of RECQL4ΔC (C-terminus deleted) in error-prone DNA repair remains unclear. We established several RECQL4ΔC cell lines and found that RECQL4ΔC cancer cells, but not RECQL4ΔC nontumorigenic cells, exhibited IR/cisplatin hypersensitivity. Notably, RECQL4ΔC cancer cells presented increased RPA2/RAD52 foci after cancer treatments. RECQL4ΔC HCT116 cells exhibited increased error-prone single-strand annealing (SSA) activity and decreased alternative end-joining activities, suggesting that RECQL4 regulates the DNA repair pathway choice at double-strand breaks. RAD52 depletion by siRNA or RAD52 inhibitors (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside [AICAR], (-)-epigallocatechin [EGC]) or a RAD52-phenylalanine 79 aptamer significantly restrained the growth of RAD52-upregulated RECQL4ΔC HCT116 cells in vitro and in mouse xenografts. Remarkably, compared to single-agent cisplatin or EGC treatment, cisplatin followed by low-concentration EGC had a significant suppressive effect on RECQL4ΔC HCT116 cell growth in vivo. Together, the regimens targeting the RAD52-mediated SSA pathway after anticancer treatment may be applicable for cancer patients with RECQL4 gene mutations.
Collapse
Affiliation(s)
- Masaoki Kohzaki
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Lue Sun
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.,Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Moritake
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Ryuji Okazaki
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
135
|
Abstract
The repair of DNA double-strand breaks occurs through a series of defined steps that are evolutionarily conserved and well-understood in most experimental organisms. However, it is becoming increasingly clear that repair does not occur in isolation from other DNA transactions. Transcription of DNA produces topological changes, RNA species, and RNA-dependent protein complexes that can dramatically influence the efficiency and outcomes of DNA double-strand break repair. The transcription-associated history of several double-strand break repair factors is reviewed here, with an emphasis on their roles in regulating R-loops and the emerging role of R-loops in coordination of repair events. Evidence for nucleolytic processing of R-loops is also discussed, as well as the molecular tools commonly used to measure RNA-DNA hybrids in cells.
Collapse
Affiliation(s)
- Tanya T Paull
- The Department of Molecular Biosciences and the Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
136
|
Durut N, Mittelsten Scheid O. The Role of Noncoding RNAs in Double-Strand Break Repair. FRONTIERS IN PLANT SCIENCE 2019; 10:1155. [PMID: 31611891 PMCID: PMC6776598 DOI: 10.3389/fpls.2019.01155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Genome stability is constantly threatened by DNA lesions generated by different environmental factors as well as endogenous processes. If not properly and timely repaired, damaged DNA can lead to mutations or chromosomal rearrangements, well-known reasons for genetic diseases or cancer in mammals, or growth abnormalities and/or sterility in plants. To prevent deleterious consequences of DNA damage, a sophisticated system termed DNA damage response (DDR) detects DNA lesions and initiates DNA repair processes. In addition to many well-studied canonical proteins involved in this process, noncoding RNA (ncRNA) molecules have recently been discovered as important regulators of the DDR pathway, extending the broad functional repertoire of ncRNAs to the maintenance of genome stability. These ncRNAs are mainly connected with double-strand breaks (DSBs), the most dangerous type of DNA lesions. The possibility to intentionally generate site-specific DSBs in the genome with endonucleases constitutes a powerful tool to study, in vivo, how DSBs are processed and how ncRNAs participate in this crucial event. In this review, we will summarize studies reporting the different roles of ncRNAs in DSB repair and discuss how genome editing approaches, especially CRISPR/Cas systems, can assist DNA repair studies. We will summarize knowledge concerning the functional significance of ncRNAs in DNA repair and their contribution to genome stability and integrity, with a focus on plants.
Collapse
|
137
|
Briggs E, Crouch K, Lemgruber L, Hamilton G, Lapsley C, McCulloch R. Trypanosoma brucei ribonuclease H2A is an essential R-loop processing enzyme whose loss causes DNA damage during transcription initiation and antigenic variation. Nucleic Acids Res 2019; 47:9180-9197. [PMID: 31350892 PMCID: PMC6753483 DOI: 10.1093/nar/gkz644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Ribonucleotides represent a threat to DNA genome stability and transmission. Two types of Ribonuclease H (RNase H) excise ribonucleotides when they form part of the DNA strand, or hydrolyse RNA when it base-pairs with DNA in structures termed R-loops. Loss of either RNase H is lethal in mammals, whereas yeast survives the absence of both enzymes. RNase H1 loss is tolerated by the parasite Trypanosoma brucei but no work has examined the function of RNase H2. Here we show that loss of T. brucei RNase H2 (TbRH2A) leads to growth and cell cycle arrest that is concomitant with accumulation of nuclear damage at sites of RNA polymerase (Pol) II transcription initiation, revealing a novel and critical role for RNase H2. Differential gene expression analysis reveals limited overall changes in RNA levels for RNA Pol II genes after TbRH2A loss, but increased perturbation of nucleotide metabolic genes. Finally, we show that TbRH2A loss causes R-loop and DNA damage accumulation in telomeric RNA Pol I transcription sites, also leading to altered gene expression. Thus, we demonstrate separation of function between two nuclear T. brucei RNase H enzymes during RNA Pol II transcription, but overlap in function during RNA Pol I-mediated gene expression during host immune evasion.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Rd, Bearsden G61 1QH, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
138
|
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
139
|
Burger K, Ketley RF, Gullerova M. Beyond the Trinity of ATM, ATR, and DNA-PK: Multiple Kinases Shape the DNA Damage Response in Concert With RNA Metabolism. Front Mol Biosci 2019; 6:61. [PMID: 31428617 PMCID: PMC6688092 DOI: 10.3389/fmolb.2019.00061] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
Our genome is constantly exposed to endogenous and exogenous sources of DNA damage resulting in various alterations of the genetic code. DNA double-strand breaks (DSBs) are considered one of the most cytotoxic lesions. Several types of repair pathways act to repair DNA damage and maintain genome stability. In the canonical DNA damage response (DDR) DSBs are recognized by the sensing kinases Ataxia-telangiectasia mutated (ATM), Ataxia-telangiectasia and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK), which initiate a cascade of kinase-dependent amplification steps known as DSB signaling. Recent evidence suggests that efficient recognition and repair of DSBs relies on the transcription and processing of non-coding (nc)RNA molecules by RNA polymerase II (RNAPII) and the RNA interference (RNAi) factors Drosha and Dicer. Multiple kinases influence the phosphorylation status of both the RNAPII carboxy-terminal domain (CTD) and Dicer in order to regulate RNA-dependent DSBs repair. The importance of kinase signaling and RNA processing in the DDR is highlighted by the regulation of p53-binding protein (53BP1), a key regulator of DSB repair pathway choice between homologous recombination (HR) and non-homologous end joining (NHEJ). Additionally, emerging evidence suggests that RNA metabolic enzymes also play a role in the repair of other types of DNA damage, including the DDR to ultraviolet radiation (UVR). RNAi factors are also substrates for mitogen-activated protein kinase (MAPK) signaling and mediate the turnover of ncRNA during nucleotide excision repair (NER) in response to UVR. Here, we review kinase-dependent phosphorylation events on RNAPII, Drosha and Dicer, and 53BP1 that modulate the key steps of the DDR to DSBs and UVR, suggesting an intimate link between the DDR and RNA metabolism.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
140
|
Zhang Y, Malzahn AA, Sretenovic S, Qi Y. The emerging and uncultivated potential of CRISPR technology in plant science. NATURE PLANTS 2019; 5:778-794. [PMID: 31308503 DOI: 10.1038/s41477-019-0461-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/24/2019] [Indexed: 05/18/2023]
Abstract
The application of clustered regularly interspaced short palindromic repeats (CRISPR) for genetic manipulation has revolutionized life science over the past few years. CRISPR was first discovered as an adaptive immune system in bacteria and archaea, and then engineered to generate targeted DNA breaks in living cells and organisms. During the cellular DNA repair process, various DNA changes can be introduced. The diverse and expanding CRISPR toolbox allows programmable genome editing, epigenome editing and transcriptome regulation in plants. However, challenges in plant genome editing need to be fully appreciated and solutions explored. This Review intends to provide an informative summary of the latest developments and breakthroughs of CRISPR technology, with a focus on achievements and potential utility in plant biology. Ultimately, CRISPR will not only facilitate basic research, but also accelerate plant breeding and germplasm development. The application of CRISPR to improve germplasm is particularly important in the context of global climate change as well as in the face of current agricultural, environmental and ecological challenges.
Collapse
Affiliation(s)
- Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Aimee A Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
141
|
Cluett TJ, Akman G, Reyes A, Kazak L, Mitchell A, Wood SR, Spinazzola A, Spelbrink JN, Holt IJ. Transcript availability dictates the balance between strand-asynchronous and strand-coupled mitochondrial DNA replication. Nucleic Acids Res 2019; 46:10771-10781. [PMID: 30239839 PMCID: PMC6237803 DOI: 10.1093/nar/gky852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022] Open
Abstract
Mammalian mitochondria operate multiple mechanisms of DNA replication. In many cells and tissues a strand-asynchronous mechanism predominates over coupled leading and lagging-strand DNA synthesis. However, little is known of the factors that control or influence the different mechanisms of replication, and the idea that strand-asynchronous replication entails transient incorporation of transcripts (aka bootlaces) is controversial. A firm prediction of the bootlace model is that it depends on mitochondrial transcripts. Here, we show that elevated expression of Twinkle DNA helicase in human mitochondria induces bidirectional, coupled leading and lagging-strand DNA synthesis, at the expense of strand-asynchronous replication; and this switch is accompanied by decreases in the steady-state level of some mitochondrial transcripts. However, in the so-called minor arc of mitochondrial DNA where transcript levels remain high, the strand-asynchronous replication mechanism is instated. Hence, replication switches to a strand-coupled mechanism only where transcripts are scarce, thereby establishing a direct correlation between transcript availability and the mechanism of replication. Thus, these findings support a critical role of mitochondrial transcripts in the strand-asynchronous mechanism of mitochondrial DNA replication; and, as a corollary, mitochondrial RNA availability and RNA/DNA hybrid formation offer means of regulating the mechanisms of DNA replication in the organelle.
Collapse
Affiliation(s)
- Tricia J Cluett
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | | | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Lawrence Kazak
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Alice Mitchell
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK
| | - Stuart R Wood
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Antonella Spinazzola
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK.,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Johannes N Spelbrink
- Department of Pediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6500 HB, Nijmegen, The Netherlands
| | - Ian J Holt
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK.,Biodonostia Health Research Institute, 20014 San Sebastián, Spain and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
142
|
Jalan M, Olsen KS, Powell SN. Emerging Roles of RAD52 in Genome Maintenance. Cancers (Basel) 2019; 11:E1038. [PMID: 31340507 PMCID: PMC6679097 DOI: 10.3390/cancers11071038] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The maintenance of genome integrity is critical for cell survival. Homologous recombination (HR) is considered the major error-free repair pathway in combatting endogenously generated double-stranded lesions in DNA. Nevertheless, a number of alternative repair pathways have been described as protectors of genome stability, especially in HR-deficient cells. One of the factors that appears to have a role in many of these pathways is human RAD52, a DNA repair protein that was previously considered to be dispensable due to a lack of an observable phenotype in knock-out mice. In later studies, RAD52 deficiency has been shown to be synthetically lethal with defects in BRCA genes, making RAD52 an attractive therapeutic target, particularly in the context of BRCA-deficient tumors.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie S Olsen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
143
|
Hu W, Lei L, Xie X, Huang L, Cui Q, Dang T, Liu GL, Li Y, Sun X, Zhou Z. Heterogeneous nuclear ribonucleoprotein L facilitates recruitment of 53BP1 and BRCA1 at the DNA break sites induced by oxaliplatin in colorectal cancer. Cell Death Dis 2019; 10:550. [PMID: 31320608 PMCID: PMC6639419 DOI: 10.1038/s41419-019-1784-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 02/05/2023]
Abstract
Although oxaliplatin is an effective chemotherapeutic drug for treatment of colorectal cancer (CRC), tumor cells can develop mechanisms to evade oxaliplatin-induced cell death and show high tolerance and acquired resistance to this drug. Heterogeneous nuclear ribonucleoprotein L (hnRNP L) has been proved to play a critical role in DNA repair during IgH class switch recombination (CSR) in B lymphocytes, while, its role in CRC and chemotherapeutic resistance remain unknown. Our study aims to uncover an unidentified mechanism of regulating DNA double-strand breaks (DSBs) by hnRNP L in CRC cells treated by oxaliplatin. In present study, we observed that knockdown of hnRNP L enhanced the level of DNA breakage and sensitivity of CRC cells to oxaliplatin. The expression of key DNA repair factors (BRCA1, 53BP1, and ATM) was unaffected by hnRNP L knockdown, thereby excluding the likelihood of hnRNP L mediation via mRNA regulation. Moreover, we observed that phosphorylation level of ATM changed oppositely to 53BP1 and BRCA1 in the CRC cells (SW620 and HCT116) which exhibit synergistic effect by oxaliplatin plus hnRNP L impairment. And similar phenomenon was observed in the foci formation of these critical repair factors. We also found that hnRNP L binds directly with these DNA repair factors through its RNA-recognition motifs (RRMs). Analysis of cell death indicated that the RRMs of hnRNP L are required for cell survival under incubation with oxaliplatin. In conclusion, hnRNP L is critical for the recruitment of the DNA repair factors in oxaliplatin-induced DSBs. Targeting hnRNP L is a promising new clinical approach that could enhance the effectiveness of current chemotherapeutic treatment in patients with resistance to oxaliplatin.
Collapse
Affiliation(s)
- Wenjun Hu
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Linping Lei
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xuqin Xie
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Libin Huang
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
| | - Tang Dang
- School of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Gang Logan Liu
- School of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Yuan Li
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xiaofeng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, SE-581 83, Linköping University, Linköping, Sweden
| | - Zongguang Zhou
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37 Guo Xue Xiang, 610041, Chengdu, China.
| |
Collapse
|
144
|
Marini F, Rawal CC, Liberi G, Pellicioli A. Regulation of DNA Double Strand Breaks Processing: Focus on Barriers. Front Mol Biosci 2019; 6:55. [PMID: 31380392 PMCID: PMC6646425 DOI: 10.3389/fmolb.2019.00055] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
In all the eukaryotic cells, nucleolytic processing (resection) of a double strand DNA break (DSB) is a key step to channel the repair of the lesion toward the homologous recombination, at the expenses of the non-homologous end joining (NHEJ). The coordinated action of several nucleases and helicases generates 3′ single strand (ss) DNA, which is covered by RPA and recombination factors. Molecular details of the process have been first dissected in the model organism Saccharomyces cerevisiae. When DSB ends are occupied by KU, a central component of the NHEJ, the Mre11-Rad50-Xrs2 (MRX) nuclease complex (MRN in human), aided by the associated factors Sae2 (CTIP in human), initiates the resection process, inducing a nick close to the DSB ends. Then, starting from the nick, the nucleases Mre11, Exo1, Dna2, in cooperation with Sgs1 helicase (BLM in human), degrade DNA strand in both the directions, creating the 3′ ssDNA filament. Multiple levels of regulation of the break processing ensure faithful DSB repair, preventing chromosome rearrangements, and genome instability. Here we review the DSB resection process and its regulation in the context of chromatin. Particularly, we focus on proteins that limit DSB resection, acting as physical barriers toward nucleases and helicases. Moreover, we also take into consideration recent evidence regarding functional interplay between DSB repair and RNA molecules nearby the break site.
Collapse
Affiliation(s)
- Federica Marini
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Chetan C Rawal
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Pavia, Italy.,IFOM Foundation, Milan, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
145
|
Zhang XD, Huang GW, Xie YH, He JZ, Guo JC, Xu XE, Liao LD, Xie YM, Song YM, Li EM, Xu LY. The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Res 2019; 46:1793-1809. [PMID: 29253179 PMCID: PMC5829580 DOI: 10.1093/nar/gkx1259] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/05/2017] [Indexed: 01/11/2023] Open
Abstract
EZR, a member of the ezrin-radixin-moesin (ERM) family, is involved in multiple aspects of cell migration and cancer. SMYD3, a histone H3–lysine 4 (H3–K4)-specific methyltransferase, regulates EZR gene transcription, but the molecular mechanisms of epigenetic regulation remain ill-defined. Here, we show that antisense lncRNA EZR-AS1 was positively correlated with EZR expression in both human esophageal squamous cell carcinoma (ESCC) tissues and cell lines. Both in vivo and in vitro studies revealed that EZR-AS1 promoted cell migration through up-regulation of EZR expression. Mechanistically, antisense lncRNA EZR-AS1 formed a complex with RNA polymerase II to activate the transcription of EZR. Moreover, EZR-AS1 could recruit SMYD3 to a binding site, present in a GC-rich region downstream of the EZR promoter, causing the binding of SMYD3 and local enrichment of H3K4me3. Finally, the interaction of EZR-AS1 with SMYD3 further enhanced EZR transcription and expression. Our findings suggest that antisense lncRNA EZR-AS1, as a member of an RNA polymerase complex and through enhanced SMYD3-dependent H3K4 methylation, plays an important role in enhancing transcription of the EZR gene to promote the mobility and invasiveness of human cancer cells.
Collapse
Affiliation(s)
- Xiao-Dan Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Guo-Wei Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Ying-Hua Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Jian-Zhong He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Jin-Cheng Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| | - Yang-Min Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yong-Mei Song
- The Affiliated Nanshan People's Hospital of Shenzhen University, Shenzhen Municipal Sixth People's Hospital, Shenzhen 518060, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 514041, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Medical College of Shantou University, Shantou 514041, Guangdong, PR China.,Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, PR China
| |
Collapse
|
146
|
Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates? DNA Repair (Amst) 2019; 81:102661. [PMID: 31331819 DOI: 10.1016/j.dnarep.2019.102661] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although long overlooked, it is now well understood that DNA does not systematically assemble into a canonical double helix, known as B-DNA, throughout the entire genome but can also accommodate other structures including DNA hairpins, G-quadruplexes and RNA:DNA hybrids. Notably, these non-canonical DNA structures form preferentially at transcriptionally active loci. Acting as replication roadblocks and being targeted by multiple machineries, these structures weaken the genome and render it prone to damage, including DNA double-strand breaks (DSB). In addition, secondary structures also further accumulate upon DSB formation. Here we discuss the potential functions of pre-existing or de novo formed nucleic acid structures, as bona fide repair intermediates or repair roadblocks, especially during Transcription-Coupled DNA Double-Strand Break repair (TC-DSBR), and provide an update on the specialized protein complexes displaying the ability to remove these structures to safeguard genome integrity.
Collapse
|
147
|
Jimeno S, Prados-Carvajal R, Huertas P. The role of RNA and RNA-related proteins in the regulation of DNA double strand break repair pathway choice. DNA Repair (Amst) 2019; 81:102662. [PMID: 31303544 DOI: 10.1016/j.dnarep.2019.102662] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA end resection is a critical step in the repair of DNA double strand breaks. It controls the way the lesion is going to be repaired, thus its regulation has a great importance in maintaining genomic stability. In this review, we focus in recent discoveries in the field that point to a modulation of resection by RNA molecules and RNA-related proteins. Moreover, we aim to reconcile contradictory reports on the positive or negative effect of DNA:RNA hybrids in the resection process.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Rosario Prados-Carvajal
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| |
Collapse
|
148
|
Zhong Y, Pan B, Zhu J, Fu H, Zheng X. RNase L facilitates the repair of DNA double-strand breaks through the nonhomologous end-joining pathway. FEBS Lett 2019; 593:1190-1200. [PMID: 31062340 DOI: 10.1002/1873-3468.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 11/08/2022]
Abstract
RNA molecules have been found to play important roles in DNA double-strand break (DSB) repair, but the exact underlying mechanism remains unclear. Here, we aimed to clarify the function of RNase L, an important ribonuclease in the immune system of vertebrates, in DSB repair. Knockdown of RNase L reduces cell survival after induction of DSBs by ionizing radiation or camptothecin and causes a significant decrease in DSB repair, as evidenced by an increase in the extent of phosphorylation of histone H2AX on Ser139 (γH2AX) and γH2AX nuclear foci formation. Thus, our findings indicate that RNase L interacts with the core factors involved in DNA end joining, such as XRCC4 and Lig4, and facilitates DSB repair through the nonhomologous end-joining pathway.
Collapse
Affiliation(s)
- Yiran Zhong
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, China
| | - Bingxin Pan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, China.,Anhui Medical University, Hefei, China
| | - Jie Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, China
| | - Hanjiang Fu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, China
| | - Xiaofei Zheng
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, China
| |
Collapse
|
149
|
Burger K, Schlackow M, Gullerova M. Tyrosine kinase c-Abl couples RNA polymerase II transcription to DNA double-strand breaks. Nucleic Acids Res 2019; 47:3467-3484. [PMID: 30668775 PMCID: PMC6468493 DOI: 10.1093/nar/gkz024] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/23/2022] Open
Abstract
DNA is constantly exposed to endogenous and exogenous damage. Various types of DNA repair counteract highly toxic DNA double-strand breaks (DSBs) to maintain genome stability. Recent findings suggest that the human DNA damage response (DDR) utilizes small RNA species, which are produced as long non-coding (nc)RNA precursors and promote recognition of DSBs. However, regulatory principles that control production of such transcripts remain largely elusive. Here we show that the Abelson tyrosine kinase c-Abl/ABL1 causes formation of RNA polymerase II (RNAPII) foci, predominantly phosphorylated at carboxy-terminal domain (CTD) residue Tyr1, at DSBs. CTD Tyr1-phosphorylated RNAPII (CTD Y1P) synthetizes strand-specific, damage-responsive transcripts (DARTs), which trigger formation of double-stranded (ds)RNA intermediates via DNA-RNA hybrid intermediates to promote recruitment of p53-binding protein 1 (53BP1) and Mediator of DNA damage checkpoint 1 (MDC1) to endogenous DSBs. Interference with transcription, c-Abl activity, DNA-RNA hybrid formation or dsRNA processing impairs CTD Y1P foci formation, attenuates DART synthesis and delays recruitment of DDR factors and DSB signalling. Collectively, our data provide novel insight in RNA-dependent DDR by coupling DSB-induced c-Abl activity on RNAPII to generate DARTs for consequent DSB recognition.
Collapse
Affiliation(s)
- Kaspar Burger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Margarita Schlackow
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
150
|
Tsukiashi M, Baba M, Kojima K, Himeda K, Takita T, Yasukawa K. Construction and characterization of ribonuclease H2 knockout NIH3T3 cells. J Biochem 2019; 165:249-256. [PMID: 30481312 DOI: 10.1093/jb/mvy101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease H (RNase H) specifically hydrolyzes the 5'-phosphodiester bonds of the RNA of RNA/DNA hybrid. Both types 1 and 2 RNases H act on the RNA strand of the hybrid, while only type 2 acts on the single ribonucleotide embedded in DNA duplex. In this study, to explore the role of mammalian type 2 RNase H (RNase H2) in cells, we constructed the RNase H2 knockout NIH3T3 cells (KO cells) by CRISPR/Cas9 system. KO cells hydrolyzed RNA strands in RNA/DNA hybrid, but not single ribonucleotides in DNA duplex, while wild-type NIH3T3 cells (WT cells) hydrolyzed both. Genomic DNA in the KO cells was more heavily hydrolyzed than in the WT cells by the alkaline or RNase H2 treatment, suggesting that the KO cells contained more ribonucleotides in genomic DNA than the WT cells. The growth rate of the KO cells was 60% of that of the WT cells. Expression of interferon-stimulated genes (ISGs) in the KO cells was not markedly elevated compared with the WT cells. These results suggest that in NIH3T3 cells, RNase H2 is crucial for suppressing the accumulation of ribonucleotides in genomic DNA but not for the expression of ISGs.
Collapse
Affiliation(s)
- Motoki Tsukiashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kohei Himeda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|