101
|
Bhatia S, Pooja, Yadav SK. CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. Int J Biol Macromol 2023; 238:124054. [PMID: 36933595 DOI: 10.1016/j.ijbiomac.2023.124054] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Clustered regularly interspersed short pallindromic repeats (CRISPR) and CRISPR associated proteins (Cas) system (CRISPR-Cas) came into light as prokaryotic defence mechanism for adaptive immune response. CRISPR-Cas works by integrating short sequences of the target genome (spacers) into the CRISPR locus. The locus containing spacers interspersed repeats is further expressed into small guide CRISPR RNA (crRNA) which is then deployed by the Cas proteins to evade the target genome. Based on the Cas proteins CRISPR-Cas is classified according to polythetic system of classification. The characteristic of the CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new arenas due to which today CRISPR-Cas has evolved as cutting end technique in the field of genome editing. Here, we discuss about the evolution of CRISPR, its classification and various Cas systems including the designing and molecular mechanism of CRISPR-Cas. Applications of CRISPR-Cas as a genome editing tools are also highlighted in the areas such as agriculture, and anticancer therapy. Briefly discuss the role of CRISPR and its Cas systems in the diagnosis of COVID-19 and its possible preventive measures. The challenges in existing CRISP-Cas technologies and their potential solutions are also discussed briefly.
Collapse
Affiliation(s)
- Simran Bhatia
- Center of Innovative and applied Bioprocessing, Sector-81, Knowledge City, Mohali, India; Regional Center for Biotechnology, Faridabad, India
| | - Pooja
- Center of Innovative and applied Bioprocessing, Sector-81, Knowledge City, Mohali, India
| | - Sudesh Kumar Yadav
- Center of Innovative and applied Bioprocessing, Sector-81, Knowledge City, Mohali, India; Regional Center for Biotechnology, Faridabad, India.
| |
Collapse
|
102
|
Dong MB, Tang K, Zhou X, Shen J, Chen K, Kim HR, Zhou J, Cao H, Vandenbulcke E, Zhang Y, Chow RD, Du A, Suzuki K, Fang SY, Majety M, Dai X, Chen S. Cas12a/Cpf1 knock-in mice enable efficient multiplexed immune cell engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532657. [PMID: 36993642 PMCID: PMC10055166 DOI: 10.1101/2023.03.14.532657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cas9 transgenic animals have drastically accelerated the discovery of novel immune modulators. But due to its inability to process its own CRISPR RNAs (crRNAs), simultaneous multiplexed gene perturbations using Cas9 remains limited, especially by pseudoviral vectors. Cas12a/Cpf1, however, can process concatenated crRNA arrays for this purpose. Here, we created conditional and constitutive LbCas12a knock-in transgenic mice. With these mice, we demonstrated efficient multiplexed gene editing and surface protein knockdown within individual primary immune cells. We showed genome editing across multiple types of primary immune cells including CD4 and CD8 T cells, B cells, and bone-marrow derived dendritic cells. These transgenic animals, along with the accompanying viral vectors, together provide a versatile toolkit for a broad range of ex vivo and in vivo gene editing applications, including fundamental immunological discovery and immune gene engineering.
Collapse
|
103
|
Downs BM, Hoang TM, Cope L. Increasing the Capture Rate of Circulating Tumor DNA in Unaltered Plasma Using Passive Microfluidic Mixer Flow Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3225-3234. [PMID: 36811956 DOI: 10.1021/acs.langmuir.2c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A limiting factor in using blood-based liquid biopsies for cancer detection is the volume of extracted blood required to capture a measurable number of circulating tumor DNA (ctDNA). To overcome this limitation, we developed a technology named the dCas9 capture system to capture ctDNA from unaltered flowing plasma, removing the need to extract the plasma from the body. This technology has provided the first opportunity to investigate whether microfluidic flow cell design can affect the capture of ctDNA in unaltered plasma. With inspiration from microfluidic mixer flow cells designed to capture circulating tumor cells and exosomes, we constructed four microfluidic mixer flow cells. Next, we investigated the effects of these flow cell designs and the flow rate on the rate of captured spiked-in BRAF T1799A (BRAFMut) ctDNA in unaltered flowing plasma using surface-immobilized dCas9. Once the optimal mass transfer rate of ctDNA, identified by the optimal ctDNA capture rate, was determined, we investigated whether the design of the microfluidic device, flow rate, flow time, and the number of spiked-in mutant DNA copies affected the rate of capture by the dCas9 capture system. We found that size modifications to the flow channel had no effect on the flow rate required to achieve the optimal capture rate of ctDNA. However, decreasing the size of the capture chamber decreased the flow rate required to achieve the optimal capture rate. Finally, we showed that, at the optimal capture rate, different microfluidic designs using different flow rates could capture DNA copies at a similar rate over time. In this study, the optimal capture rate of ctDNA in unaltered plasma was identified by adjusting the flow rate in each of the passive microfluidic mixer flow cells. However, further validation and optimization of the dCas9 capture system are required before it is ready to be used clinically.
Collapse
Affiliation(s)
- Bradley M Downs
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Tra-My Hoang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Leslie Cope
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
104
|
An update on CRISPR-Cas12 as a versatile tool in genome editing. Mol Biol Rep 2023; 50:2865-2881. [PMID: 36641494 DOI: 10.1007/s11033-023-08239-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2023]
Abstract
Gene editing techniques, which help in modification of any DNA sequence at ease, have revolutionized the world of Genetic engineering. Although there are other gene-editing techniques, CRISPR has emerged as the chief and most preferred tool due to its simplicity and capacity to execute effective gene editing in a wide range of organisms. Although Cas9 has widely been employed for genetic modification over the years, Cas12 systems have lately emerged as a viable option. This review primarily focuses on assessing Cas12-mediated mutagenesis and elucidating the editing efficacy of both Cpf1 (Cas12a) and C2c1 (Cas12b) systems in microbes, plants, and other species. Also, we reviewed several genetic alterations that have been performed with these Cas12 systems to improve editing efficiency. Furthermore, the experimental benefits and applications of Cas12 systems are highlighted in this study.
Collapse
|
105
|
Jianwei L, Jobichen C, Machida S, Meng S, Read RJ, Hongying C, Jian S, Yuan YA, Sivaraman J. Structures of apo Cas12a and its complex with crRNA and DNA reveal the dynamics of ternary complex formation and target DNA cleavage. PLoS Biol 2023; 21:e3002023. [PMID: 36917574 PMCID: PMC10013913 DOI: 10.1371/journal.pbio.3002023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/06/2023] [Indexed: 03/15/2023] Open
Abstract
Cas12a is a programmable nuclease for adaptive immunity against invading nucleic acids in CRISPR-Cas systems. Here, we report the crystal structures of apo Cas12a from Lachnospiraceae bacterium MA2020 (Lb2) and the Lb2Cas12a+crRNA complex, as well as the cryo-EM structure and functional studies of the Lb2Cas12a+crRNA+DNA complex. We demonstrate that apo Lb2Cas12a assumes a unique, elongated conformation, whereas the Lb2Cas12a+crRNA binary complex exhibits a compact conformation that subsequently rearranges to a semi-open conformation in the Lb2Cas12a+crRNA+DNA ternary complex. Notably, in solution, apo Lb2Cas12a is dynamic and can exist in both elongated and compact forms. Residues from Met493 to Leu523 of the WED domain undergo major conformational changes to facilitate the required structural rearrangements. The REC lobe of Lb2Cas12a rotates 103° concomitant with rearrangement of the hinge region close to the WED and RuvC II domains to position the RNA-DNA duplex near the catalytic site. Our findings provide insight into crRNA recognition and the mechanism of target DNA cleavage.
Collapse
Affiliation(s)
- Li Jianwei
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Satoru Machida
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sun Meng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Randy J. Read
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Chen Hongying
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shi Jian
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yuren Adam Yuan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
106
|
Sen D, Mukhopadhyay P. Application of CRISPR Cas systems in DNA recorders and writers. Biosystems 2023; 225:104870. [PMID: 36842456 DOI: 10.1016/j.biosystems.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
The necessity to record and store biological data is increasing in due course of time. However, it is quite difficult to understand biological mechanisms and keep a track of these events in some storage mediums. DNA (deoxyribonucleic acid) is the best candidate for the storage of cellular events in the biological system. It is energy efficient as well as stable at the same time. DNA-based writers and memory devices are continually evolving and finding new avenues in terms of their wide range of applications. Among all the DNA-based storage devices that employ enzymes like recombinases, nucleases, integrases, and polymerases, one of the most popular tools used for these devices is the emerging and versatile CRISPR Cas technology. CRISPR Cas is a prokaryotic immune system that keeps a memory of viral attacks and protects prokaryotes from potential future infections. The main aim of this short review is to study such molecular recorders and writers that employ CRISPR Cas technologies and obtain an in-depth overview of the mechanisms involved and the applications of these molecular devices.
Collapse
Affiliation(s)
- Debmitra Sen
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Poulami Mukhopadhyay
- Department of Microbiology, Barrackpore Rastraguru Surendranath College, Barrackpore, Kolkata, West Bengal, 700120, India.
| |
Collapse
|
107
|
Hou X, Guo X, Zhang Y, Zhang Q. CRISPR/Cas genome editing system and its application in potato. Front Genet 2023; 14:1017388. [PMID: 36861125 PMCID: PMC9968925 DOI: 10.3389/fgene.2023.1017388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Potato is the largest non-cereal food crop worldwide and a vital substitute for cereal crops, considering its high yield and great nutritive value. It plays an important role in food security. The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system has the advantages of easy operation, high efficiency, and low cost, which shows a potential in potato breeding. In this paper, the action mechanism and derivative types of the CRISPR/Cas system and the application of the CRISPR/Cas system in improving the quality and resistance of potatoes, as well as overcoming the self-incompatibility of potatoes, are reviewed in detail. At the same time, the application of the CRISPR/Cas system in the future development of the potato industry was analyzed and prospected.
Collapse
Affiliation(s)
- Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xiaomeng Guo
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan Zhang
- *Correspondence: Yan Zhang, ; Qiang Zhang,
| | | |
Collapse
|
108
|
Chen H, Zhou X, Wang M, Ren L. Towards Point of Care CRISPR-Based Diagnostics: From Method to Device. J Funct Biomater 2023; 14:jfb14020097. [PMID: 36826896 PMCID: PMC9967495 DOI: 10.3390/jfb14020097] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Rapid, accurate, and portable on-site detection is critical in the face of public health emergencies. Infectious disease control and public health emergency policymaking can both be aided by effective and trustworthy point of care tests (POCT). A very promising POCT method appears to be the clustered regularly interspaced short palindromic repeats and associated protein (CRISPR/Cas)-based molecular diagnosis. For on-site detection, CRISPR/Cas-based detection can be combined with multiple signal sensing methods and integrated into smart devices. In this review, sensing methods for CRISPR/Cas-based diagnostics are introduced and the advanced strategies and recent advances in CRISPR/Cas-based POCT are reviewed. Finally, the future perspectives of CRISPR and POCT are summarized and prospected.
Collapse
Affiliation(s)
- Haoxiang Chen
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Miao Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
- Correspondence:
| |
Collapse
|
109
|
Three novel Cas12a orthologs with robust DNA cleavage activity suitable for nucleic acid detection. Gene 2023; 852:147055. [PMID: 36400115 DOI: 10.1016/j.gene.2022.147055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Developing rapid and accurate pathogen detection methods is increasingly important, and CRISPR-Cas system can be optimized for this purpose. CRISPR-Cas12a is a single RNA-guided endonuclease system with the potential for nucleic acid detection. There is a broad diversity among Cas12a nucleases with robust detection capability. Herein, we characterised three Cas12a orthologs (ObCas12a, MbCas12a, and ScCas12a), including cis- and trans-cleavage activities, the identification of PAM, single-base resolution ability, and the application for nucleic acid detection. These Cas12a orthologs displayed robust cis- and trans-cleavage activities, and performed well in terms of specificity and sensitivity for nucleic acid detection. Furthermore, they have subtle differences in single-base resolution and recognised PAM sites in vitro. Therefore, these Cas12a nucleases are candidate proteins for CRISPR-based diagnostic methods. Addition of these enzymes to the nucleic acid detection toolbox will further expand the utility of this powerful technology.
Collapse
|
110
|
Chang HY, Qi LS. Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Mol Cell 2023; 83:442-451. [PMID: 36736311 PMCID: PMC10044466 DOI: 10.1016/j.molcel.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023]
Abstract
The Central Dogma of the flow of genetic information is arguably the crowning achievement of 20th century molecular biology. Reversing the flow of information from RNA to DNA or chromatin has come to the fore in recent years, from the convergence of fundamental discoveries and synthetic biology. Inspired by the example of long noncoding RNAs (lncRNAs) in mammalian genomes that direct chromatin modifications and gene expression, synthetic biologists have repurposed prokaryotic RNA-guided genome defense systems such as CRISPR to edit eukaryotic genomes and epigenomes. Here we explore the parallels of these two fields and highlight opportunities for synergy and future breakthroughs.
Collapse
Affiliation(s)
- Howard Y Chang
- Center for Personal Dynamic Regulome, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94080, USA.
| |
Collapse
|
111
|
Kolasinliler G, Aagre MM, Akkale C, Kaya HB. The use of CRISPR-Cas-based systems in bacterial cell factories. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
112
|
Petiwala S, Modi A, Anton T, Murphy E, Kadri S, Hu H, Lu C, Flister MJ, Verduzco D. Optimization of Genomewide CRISPR Screens Using AsCas12a and Multi-Guide Arrays. CRISPR J 2023; 6:75-82. [PMID: 36787117 DOI: 10.1089/crispr.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Genomewide loss-of-function (LOF) screening using clustered regularly interspaced short palindromic repeats (CRISPR) has facilitated the discovery of novel gene functions across diverse physiological and pathophysiological systems. A challenge with conventional genomewide CRISPR-Cas9 libraries is the unwieldy size (60,000-120,000 constructs), which is resource intensive and prohibitive in some experimental contexts. One solution to streamlining CRISPR screening is by multiplexing two or more guides per gene on a single construct, which enables functional redundancy to compensate for suboptimal gene knockout by individual guides. In this regard, AsCas12a (Cpf1) and its derivatives, for example, enhanced AsCas12a (enAsCas12a), have enabled multiplexed guide arrays to be specifically and efficiently processed for genome editing. Prior studies have established that multiplexed CRISPR-Cas12a libraries perform comparably to the larger equivalent CRISPR-Cas9 libraries, yet the most efficient CRISPR-Cas12a library design remains unresolved. In this study, we demonstrate that CRISPR-Cas12a genomewide LOF screening performed optimally with three guides arrayed per gene construct and could be adapted to robotic cell culture without noticeable differences in screen performance. Thus, the conclusions from this study provide novel insight to streamlining genomewide LOF screening using CRISPR-Cas12a and robotic cell culture.
Collapse
Affiliation(s)
| | - Apexa Modi
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Tifani Anton
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Erin Murphy
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Sabah Kadri
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Hengcheng Hu
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Charles Lu
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | | | | |
Collapse
|
113
|
Maity S, Mukherjee R, Banerjee S. Recent Advances and Therapeutic Strategies Using CRISPR Genome Editing Technique for the Treatment of Cancer. Mol Biotechnol 2023; 65:206-226. [PMID: 35999480 DOI: 10.1007/s12033-022-00550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/10/2022] [Indexed: 01/18/2023]
Abstract
CRISPR genome editing technique has the potential to target cancer cells in a precise manner. The latest advancements have helped to address one of the prominent concerns about this strategy which is the off-target integrations observed with dsDNA and have resulted in more studies being carried out for potentially safer and more targeted gene therapy, so as to make it available for the clinical trials in order to effectively treat cancer. CRISPR screens offer great potential for the high throughput investigation of the gene functionality in various tumors. It extends its capability to identify the tumor growth essential genes, therapeutic resistant genes, and immunotherapeutic responses. CRISPR screens are mostly performed in in vitro models, but latest advancements focus on developing in vivo models to view cancer progression in animal models. It also allows the detection of factors responsible for tumorigenesis. In CRISPR screens key parameters are optimized in order to meet proficient gene targeting efficiencies. It also detects various molecular effectors required for gene regulation in different cancers, essential pathways which modulate cytotoxicity to immunotherapy in cancer cells, important genes which contribute to cancer cell survival in hypoxic states and modulate cancer long non-coding RNAs. The current review focuses on the recent developments in the therapeutic application of CRISPR technology for cancer therapy. Furthermore, the associated challenges and safety concerns along with the various strategies that can be implemented to overcome these drawbacks has been discussed.
Collapse
Affiliation(s)
- Shreyasi Maity
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Rishyani Mukherjee
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
114
|
Rananaware SR, Vesco EK, Shoemaker GM, Anekar SS, Sandoval LSW, Meister KS, Macaluso NC, Nguyen LT, Jain PK. Programmable RNA detection with CRISPR-Cas12a. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.525716. [PMID: 36778248 PMCID: PMC9915489 DOI: 10.1101/2023.01.29.525716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CRISPR is a prominent bioengineering tool and the type V CRISPR-associated protein complex, Cas12a, is widely used in diagnostic platforms due to its innate ability to cleave DNA substrates. Here we demonstrate that Cas12a can also be programmed to directly detect RNA substrates without the need for reverse transcription or strand displacement. We discovered that while the PAM-proximal "seed" region of the crRNA exclusively recognizes DNA for initiating trans- cleavage, the PAM-distal region or 3'-end of the crRNA can tolerate both RNA and DNA substrates. Utilizing this property, we developed a method named Split Activators for Highly Accessible RNA Analysis or 'SAHARA' to detect RNA sequences at the PAM-distal region of the crRNA by merely supplying a short ssDNA or a PAM containing dsDNA to the seed region. Notably, SAHARA is Mg 2+ concentration- and pH-dependent, and it was observed to work robustly at room temperature with multiple orthologs of Cas12a. SAHARA also displayed a significant improvement in the specificity for target recognition as compared to the wild-type CRISPR-Cas12a, at certain positions along the crRNA. By employing SAHARA we achieved amplification-free detection of picomolar concentrations of miRNA-155 and hepatitis C virus RNA. Finally, SAHARA can use a PAM-proximal DNA as a switch to control the trans-cleavage activity of Cas12a for the detection of both DNA and RNA targets. With this, multicomplex arrays can be made to detect distinct DNA and RNA targets with pooled crRNA/Cas12a complexes. In conclusion, SAHARA is a simple, yet powerful nucleic acid detection platform based on Cas12a that can be applied in a multiplexed fashion and potentially be expanded to other CRISPR-Cas enzymes. Abstract Figure
Collapse
Affiliation(s)
- Santosh R. Rananaware
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Emma K. Vesco
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Grace M. Shoemaker
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Swapnil S. Anekar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | | | - Katelyn S. Meister
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Nicolas C. Macaluso
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Long T. Nguyen
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Piyush K. Jain
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
115
|
Woodcraft C, Chooi YH, Roux I. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Nat Prod Rep 2023; 40:158-173. [PMID: 36205232 DOI: 10.1039/d2np00055e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Covering: up to May 2022Fungal genetics has transformed natural product research by enabling the elucidation of cryptic metabolites and biosynthetic steps. The enhanced capability to add, subtract, modulate, and rewrite genes via CRISPR/Cas technologies has opened up avenues for the manipulation of biosynthetic gene clusters across diverse filamentous fungi. This review discusses the innovative and diverse strategies for fungal natural product discovery and engineering made possible by CRISPR/Cas-based tools. We also provide a guide into multiple angles of CRISPR/Cas experiment design, and discuss current gaps in genetic tool development for filamentous fungi and the promising opportunities for natural product research.
Collapse
Affiliation(s)
- Clara Woodcraft
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Indra Roux
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
116
|
Wang M, Liu H, Ren J, Huang Y, Deng Y, Liu Y, Chen Z, Chow FWN, Leung PHM, Li S. Enzyme-Assisted Nucleic Acid Amplification in Molecular Diagnosis: A Review. BIOSENSORS 2023; 13:bios13020160. [PMID: 36831926 PMCID: PMC9953907 DOI: 10.3390/bios13020160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
Infectious diseases and tumors have become the biggest medical challenges in the 21st century. They are driven by multiple factors such as population growth, aging, climate change, genetic predispositions and more. Nucleic acid amplification technologies (NAATs) are used for rapid and accurate diagnostic testing, providing critical information in order to facilitate better follow-up treatment and prognosis. NAATs are widely used due their high sensitivity, specificity, rapid amplification and detection. It should be noted that different NAATs can be selected according to different environments and research fields; for example, isothermal amplification with a simple operation can be preferred in developing countries or resource-poor areas. In the field of translational medicine, CRISPR has shown great prospects. The core component of NAAT lies in the activity of different enzymes. As the most critical material of nucleic acid amplification, the key role of the enzyme is self-evident, playing the upmost important role in molecular diagnosis. In this review, several common enzymes used in NAATs are compared and described in detail. Furthermore, we summarize both the advances and common issues of NAATs in clinical application.
Collapse
Affiliation(s)
- Meiling Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yunqi Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuan Liu
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
117
|
Yu L, Marchisio MA. CRISPR-associated type V proteins as a tool for controlling mRNA stability in S. cerevisiae synthetic gene circuits. Nucleic Acids Res 2023; 51:1473-1487. [PMID: 36651298 PMCID: PMC9943656 DOI: 10.1093/nar/gkac1270] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Type V-A CRISPR-(d)Cas system has been used in multiplex genome editing and transcription regulation in both eukaryotes and prokaryotes. However, mRNA degradation through the endonuclease activity of Cas12a has never been studied. In this work, we present an efficient and powerful tool to induce mRNA degradation in the yeast Saccharomyces cerevisiae via the catalytic activity of (d)Cas12a on pre-crRNA structure. Our results point out that dFnCas12a, (d)LbCas12a, denAsCas12a and two variants (which carry either NLSs or NESs) perform significant mRNA degradation upon insertion of pre-crRNA fragments into the 5'- or 3' UTR of the target mRNA. The tool worked well with two more Cas12 proteins-(d)MbCas12a and Casϕ2-whereas failed by using type VI LwaCas13a, which further highlights the great potential of type V-A Cas proteins in yeast. We applied our tool to the construction of Boolean NOT, NAND, and IMPLY gates, whose logic operations are fully based on the control of the degradation of the mRNA encoding for a reporter protein. Compared to other methods for the regulation of mRNA stability in yeast synthetic gene circuits (such as RNAi and riboswitches/ribozymes), our system is far easier to engineer and ensure very high performance.
Collapse
Affiliation(s)
- Lifang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, China
| | | |
Collapse
|
118
|
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li PF, Yu T. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 2023; 8:36. [PMID: 36646687 PMCID: PMC9841506 DOI: 10.1038/s41392-023-01309-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology is the ideal tool of the future for treating diseases by permanently correcting deleterious base mutations or disrupting disease-causing genes with great precision and efficiency. A variety of efficient Cas9 variants and derivatives have been developed to cope with the complex genomic changes that occur during diseases. However, strategies to effectively deliver the CRISPR system to diseased cells in vivo are currently lacking, and nonviral vectors with target recognition functions may be the focus of future research. Pathological and physiological changes resulting from disease onset are expected to serve as identifying factors for targeted delivery or targets for gene editing. Diseases are both varied and complex, and the choice of appropriate gene-editing methods and delivery vectors for different diseases is important. Meanwhile, there are still many potential challenges identified when targeting delivery of CRISPR/Cas9 technology for disease treatment. This paper reviews the current developments in three aspects, namely, gene-editing type, delivery vector, and disease characteristics. Additionally, this paper summarizes successful examples of clinical trials and finally describes possible problems associated with current CRISPR applications.
Collapse
Affiliation(s)
- Tianxiang Li
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Yanyan Yang
- grid.410645.20000 0001 0455 0905Department of Immunology, School of Basic Medicine, Qingdao University, 266021 Qingdao, People’s Republic of China
| | - Hongzhao Qi
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Weigang Cui
- grid.452710.5Department of Cardiology, People’s Hospital of Rizhao, No. 126 Taian Road, 276827 Rizhao, People’s Republic of China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, 276000 Linyi, People’s Republic of China
| | - Xiuxiu Fu
- grid.412521.10000 0004 1769 1119Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000 Qingdao, People’s Republic of China
| | - Xiangqin He
- grid.412521.10000 0004 1769 1119Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000 Qingdao, People’s Republic of China
| | - Meixin Liu
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Pei-feng Li
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China. .,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China.
| |
Collapse
|
119
|
Shahbazi R, Lipson P, Gottimukkala KSV, Lane DD, Adair JE. CRISPR Gene Editing of Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2023; 2567:39-62. [PMID: 36255694 DOI: 10.1007/978-1-0716-2679-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetic editing of hematopoietic stem and progenitor cells can be employed to understand gene-function relationships underlying hematopoietic cell biology, leading to new therapeutic approaches to treat disease. The ability to collect, purify, and manipulate primary cells outside the body permits testing of many different gene editing approaches. RNA-guided nucleases, such as CRISPR, have revolutionized gene editing based simply on Watson-Crick base-pairing, employed to direct activity to specific genomic loci. Given the ease and affordability of synthetic, custom RNA guides, testing of precision edits or large random pools in high-throughput screening studies is now widely available. With the ever-growing number of CRISPR nucleases being discovered or engineered, researchers now have a plethora of options for directed genomic change, including single base edits, nicks or double-stranded DNA cuts with blunt or staggered ends, as well as the ability to target CRISPR to other cellular oligonucleotides such as RNA or mitochondrial DNA. Except for single base editing strategies, precise rewriting of larger segments of the genetic code requires delivery of an additional component, templated DNA oligonucleotide(s) encoding the desired changes flanked by homologous sequences that permit recombination at or near the site of CRISPR activity. Altogether, the ever-growing CRISPR gene editing toolkit is an invaluable resource. This chapter outlines available technologies and the strategies for applying CRISPR-based editing in hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
| | | | | | | | - Jennifer E Adair
- Fred Hutchinson Cancer Center, Seattle, WA, USA.
- University of Washington, Seattle, WA, USA.
| |
Collapse
|
120
|
A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering. Mol Biotechnol 2023; 65:311-325. [PMID: 36163606 PMCID: PMC9512960 DOI: 10.1007/s12033-022-00567-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (CRISPR/Cas) system has altered life science research offering enormous options in manipulating, detecting, imaging, and annotating specific DNA or RNA sequences of diverse organisms. This system incorporates fragments of foreign DNA (spacers) into CRISPR cassettes, which are further transcribed into the CRISPR arrays and then processed to make guide RNA (gRNA). The CRISPR arrays are genes that encode Cas proteins. Cas proteins provide the enzymatic machinery required for acquiring new spacers targeting invading elements. Due to programmable sequence specificity, numerous Cas proteins such as Cas9, Cas12, Cas13, and Cas14 have been exploited to develop new tools for genome engineering. Cas variants stimulated genetic research and propelled the CRISPR/Cas tool for manipulating and editing nucleic acid sequences of living cells of diverse organisms. This review aims to provide detail on two classes (class 1 and 2) of the CRISPR/Cas system, and the mechanisms of all Cas proteins, including Cas12, Cas13, and Cas14 discovered so far. In addition, we also discuss the pros and cons and recent applications of various Cas proteins in diverse fields, including those used to detect viruses like severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This review enables the researcher to gain knowledge on various Cas proteins and their applications, which have the potential to be used in next-generation precise genome engineering.
Collapse
|
121
|
Khan S, Sallard E. Current and Prospective Applications of CRISPR-Cas12a in Pluricellular Organisms. Mol Biotechnol 2023; 65:196-205. [PMID: 35939208 PMCID: PMC9841005 DOI: 10.1007/s12033-022-00538-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023]
Abstract
CRISPR-Cas systems play a critical role in the prokaryotic adaptive immunity against mobile genetic elements, such as phages and foreign plasmids. In the last decade, Cas9 has been established as a powerful and versatile gene editing tool. In its wake, the novel RNA-guided endonuclease system CRISPR-Cas12a is transforming biological research due to its unique properties, such as its high specificity or its ability to target T-rich motifs, to induce staggered double-strand breaks and to process RNA arrays. Meanwhile, there is an increasing need for efficient and safe gene activation, repression or editing in pluricellular organisms for crop improvement, gene therapy, research model development, and other goals. In this article, we review CRISPR-Cas12a applications in pluricellular organisms and discuss how the challenges characteristic of these complex models, such as vectorization or temperature variations in ectothermic species, can be overcome.
Collapse
Affiliation(s)
- Shaheen Khan
- Department of Molecular Biotechnology and Bioinformatics, Università degli Studi di Milano, Milan, Italy ,Division of Neuroscience, Department of Pharmacology & Toxicology, Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Erwan Sallard
- Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Institute for Virology and Microbiology, Witten/Herdecke University, 58453 Witten, Germany
| |
Collapse
|
122
|
Fang H, Culver JN, Niedz RP, Qi Y. Delivery of CRISPR-Cas12a Ribonucleoprotein Complex for Genome Editing in an Embryogenic Citrus Cell Line. Methods Mol Biol 2023; 2653:153-171. [PMID: 36995625 DOI: 10.1007/978-1-0716-3131-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology is a powerful genome editing tool. Recently developed CRISPR-Cas12a system confers several advantages over CRISPR-Cas9, making it ideal for use in plant genome editing and crop improvement. While traditional transformation methods based on plasmid delivery pose concerns associated with transgene integration and off-target effects, CRISPR-Cas12a delivered as ribonucleoproteins (RNPs) can effectively alleviate these potential issues. Here we present a detailed protocol for LbCas12a-mediated genome editing using RNP delivery in Citrus protoplasts. This protocol provides a comprehensive guideline for RNP component preparation, RNP complex assembly and delivery, and editing efficiency assessment.
Collapse
Affiliation(s)
- Hong Fang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - James N Culver
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Randall P Niedz
- U.S. Horticultural Research Laboratory, USDA-Agricultural Research Service, Fort Pierce, FL, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.
| |
Collapse
|
123
|
Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA. Nature 2023; 613:588-594. [PMID: 36599979 PMCID: PMC9811890 DOI: 10.1038/s41586-022-05559-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 01/05/2023]
Abstract
Bacterial abortive-infection systems limit the spread of foreign invaders by shutting down or killing infected cells before the invaders can replicate1,2. Several RNA-targeting CRISPR-Cas systems (that is, types III and VI) cause abortive-infection phenotypes by activating indiscriminate nucleases3-5. However, a CRISPR-mediated abortive mechanism that leverages indiscriminate DNase activity of an RNA-guided single-effector nuclease has yet to be observed. Here we report that RNA targeting by the type V single-effector nuclease Cas12a2 drives abortive infection through non-specific cleavage of double-stranded DNA (dsDNA). After recognizing an RNA target with an activating protospacer-flanking sequence, Cas12a2 efficiently degrades single-stranded RNA (ssRNA), single-stranded DNA (ssDNA) and dsDNA. Within cells, the activation of Cas12a2 induces an SOS DNA-damage response and impairs growth, preventing the dissemination of the invader. Finally, we harnessed the collateral activity of Cas12a2 for direct RNA detection, demonstrating that Cas12a2 can be repurposed as an RNA-guided RNA-targeting tool. These findings expand the known defensive abilities of CRISPR-Cas systems and create additional opportunities for CRISPR technologies.
Collapse
|
124
|
Abstract
The CRISPR-associated (Cas) Cas12a is the effector protein for type V-A CRISPR systems. Cas12a is a sequence-specific endonuclease that targets and cleaves DNA containing a cognate short signature motif, called the protospacer adjacent motif (PAM), flanked by a 20 nucleotide (nt) segment that is complementary to the "guide" region of its CRISPR RNA (crRNA). The guide sequence of the crRNA can be programmed to target any DNA with a cognate PAM and is the basis for Cas12a's current use for gene editing in numerous organisms and for medical diagnostics. While Cas9 (type II effector protein) is widely used for gene editing, Cas12a possesses favorable features such as its smaller size and creation of staggered double-stranded DNA ends after cleavage that enhances cellular recombination events. Collected here are protocols for the recombinant purification of Cas12a and the transcription of its corresponding programmable crRNA that are used in a variety of Cas12a-specific in vitro activity assays such as the cis, the trans and the guide-RNA independent DNA cleavage activities with multiple substrates. Correspondingly, protocols are included for the quantification of the activity assay data using ImageJ and the use of MATLAB for rate constant calculations. These procedures can be used for further structural and mechanistic studies of Cas12a orthologs and other Cas proteins.
Collapse
Affiliation(s)
- Lindsie Martin
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
125
|
Kim SK, Kim H, Woo SG, Kim TH, Rha E, Kwon KK, Lee H, Lee SG, Lee DH. CRISPRi-based programmable logic inverter cascade for antibiotic-free selection and maintenance of multiple plasmids. Nucleic Acids Res 2022; 50:13155-13171. [PMID: 36511859 PMCID: PMC9825151 DOI: 10.1093/nar/gkac1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Antibiotics have been widely used for plasmid-mediated cell engineering. However, continued use of antibiotics increases the metabolic burden, horizontal gene transfer risks, and biomanufacturing costs. There are limited approaches to maintaining multiple plasmids without antibiotics. Herein, we developed an inverter cascade using CRISPRi by building a plasmid containing a single guide RNA (sgRNA) landing pad (pSLiP); this inhibited host cell growth by repressing an essential cellular gene. Anti-sgRNAs on separate plasmids restored cell growth by blocking the expression of growth-inhibitory sgRNAs in pSLiP. We maintained three plasmids in Escherichia coli with a single antibiotic selective marker. To completely avoid antibiotic use and maintain the CRISPRi-based logic inverter cascade, we created a novel d-glutamate auxotrophic E. coli. This enabled the stable maintenance of the plasmid without antibiotics, enhanced the production of the terpenoid, (-)-α-bisabolol, and generation of an antibiotic-resistance gene-free plasmid. CRISPRi is therefore widely applicable in genetic circuits and may allow for antibiotic-free biomanufacturing.
Collapse
Affiliation(s)
| | | | - Seung Gyun Woo
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34143, Republic of Korea
| | - Tae Hyun Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34143, Republic of Korea
| | - Eugene Rha
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kil Koang Kwon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyewon Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seung-Goo Lee
- To whom correspondence should be addressed. Tel: +82 42 860 4373; Fax: +82 42 860 4489;
| | - Dae-Hee Lee
- Correspondence may also be addressed to Dae-Hee Lee. Tel: +82 42 879 8225; Fax: +82 42 860 4489;
| |
Collapse
|
126
|
Biochemical characterization of the two novel mgCas12a proteins from the human gut metagenome. Sci Rep 2022; 12:20857. [PMID: 36460704 PMCID: PMC9718762 DOI: 10.1038/s41598-022-25227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
CRISPR/Cas9 and Cas12a belonging to the Class II CRISPR system are characterized by a single-component effector protein. Despite unique features of Cas12a like DNA cleavage with 5' staggered ends and a single crRNA, Cas12a has not been adopted in biotechnological applications to the similar extent as Cas9. To better understand the CRISPR/Cas12 systems, we selected two candidates, designated mgCas12a-1 and mgCas12a-2, from an analysis of the human microbiome metagenome (mg) and provided biochemical characterization. These new Cas12a proteins shared about 37% identity in amino acid sequences and shared the same direct repeat sequences in the crRNA with FnCas12a from Francisella novicida. The purification yield of the recombinant proteins was up to 3.6-fold greater than that of FnCas12a. In cell-free DNA cleavage assays, both mgCas12a proteins showed the higher cleavage efficiencies when Mn2+ was provided with KCl (< 100 mM) than tested other divalent ions. They were able to tolerate ranges of pH points and temperature, and showed the highest cleavage efficiencies at pH 8.0 and 50 °C. In addition, mgCas12a proteins showed 51% less crRNA-independent and 56% less crRNA-dependent non-specific nuclease activity upon prolonged incubation than did FnCas12a. Considering their greater yield in protein preparation and reduced non-specific nuclease activity, our findings may expedite the use of Cas12a especially when genome editing needs to be practiced with the form of ribonucleoproteins.
Collapse
|
127
|
Wu S, Tian P, Tan T. CRISPR-Cas13 technology portfolio and alliance with other genetic tools. Biotechnol Adv 2022; 61:108047. [DOI: 10.1016/j.biotechadv.2022.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
|
128
|
Nguyen GT, Dhingra Y, Sashital DG. Miniature CRISPR-Cas12 endonucleases - Programmed DNA targeting in a smaller package. Curr Opin Struct Biol 2022; 77:102466. [PMID: 36170778 PMCID: PMC10114186 DOI: 10.1016/j.sbi.2022.102466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
CRISPR-associated (Cas) endonucleases specifically target and cleave RNA or DNA based on complementarity to a guide RNA. Cas endonucleases - including Cas9, Cas12a, and Cas13 - have been adopted for a wide array of biotechnological tools, including gene editing, transcriptional modulation, and diagnostics. These tools are facilitated by ready reprogramming of guide RNA sequences and the varied nucleic acid binding and cleavage activities observed across diverse Cas endonucleases. However, the large size of most Cas endonucleases (950-1400 amino acids) can restrict applications. The recent discovery of miniature Cas endonucleases (400-800 amino acids) provides the potential to overcome this limitation. Here, we review recent advances in understanding the structural mechanisms of two miniature Cas endonucleases, Cas12f and Cas12j.
Collapse
Affiliation(s)
- Giang T Nguyen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010, USA. https://twitter.com/GiangNg12638532
| | - Yukti Dhingra
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010, USA. https://twitter.com/yukti__dhingra
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010, USA.
| |
Collapse
|
129
|
Wu WY, Mohanraju P, Liao C, Adiego-Pérez B, Creutzburg SCA, Makarova KS, Keessen K, Lindeboom TA, Khan TS, Prinsen S, Joosten R, Yan WX, Migur A, Laffeber C, Scott DA, Lebbink JHG, Koonin EV, Beisel CL, van der Oost J. The miniature CRISPR-Cas12m effector binds DNA to block transcription. Mol Cell 2022; 82:4487-4502.e7. [PMID: 36427491 DOI: 10.1016/j.molcel.2022.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/01/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
CRISPR-Cas are prokaryotic adaptive immune systems. Cas nucleases generally use CRISPR-derived RNA guides to specifically bind and cleave DNA or RNA targets. Here, we describe the experimental characterization of a bacterial CRISPR effector protein Cas12m representing subtype V-M. Despite being less than half the size of Cas12a, Cas12m catalyzes auto-processing of a crRNA guide, recognizes a 5'-TTN' protospacer-adjacent motif (PAM), and stably binds a guide-complementary double-stranded DNA (dsDNA). Cas12m has a RuvC domain with a non-canonical catalytic site and accordingly is incapable of guide-dependent cleavage of target nucleic acids. Despite lacking target cleavage activity, the high binding affinity of Cas12m to dsDNA targets allows for interference as demonstrated by its ability to protect bacteria against invading plasmids through silencing invader transcription and/or replication. Based on these molecular features, we repurposed Cas12m by fusing it to a cytidine deaminase that resulted in base editing within a distinct window.
Collapse
Affiliation(s)
- Wen Y Wu
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Prarthana Mohanraju
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Chunyu Liao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Sjoerd C A Creutzburg
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Kira S Makarova
- National Centre for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Karlijn Keessen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Timon A Lindeboom
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Tahseen S Khan
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Stijn Prinsen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Rob Joosten
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | | | - Anzhela Migur
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | | | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Eugene V Koonin
- National Centre for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
130
|
Chen BC, Lin HY. Deletion of NTH1 and HSP12 increases the freeze–thaw resistance of baker’s yeast in bread dough. Microb Cell Fact 2022; 21:149. [PMID: 35879798 PMCID: PMC9310457 DOI: 10.1186/s12934-022-01876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background The intracellular molecule trehalose in Saccharomyces cerevisiae may have a major protective function under extreme environmental conditions. NTH1 is one gene which expresses trehalase to degrade trehalose. Small heat shock protein 12 (HSP12 expressed) plays a role in protecting membranes and enhancing freezing stress tolerance. Results An optimized S. cerevisiae CRISPR-Cpf1 genome-editing system was constructed. Multiplex genome editing using a single crRNA array was shown to be functional. NTH1 or/and HSP12 knockout in S. cerevisiae enhanced the freezing stress tolerance and improved the leavening ability after freezing and thawing. Conclusions Deleting NTH1 in the combination with deleting HSP12 would strengthen the freezing tolerance and protect the cell viability from high rates of death in longer-term freezing. It provides valuable insights for breeding novel S. cerevisiae strains for the baking industry through a more precise, speedy, and economic genome-editing system.
Collapse
|
131
|
CRISPR-Based Tools for Fighting Rare Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121968. [PMID: 36556333 PMCID: PMC9787644 DOI: 10.3390/life12121968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Rare diseases affect the life of a tremendous number of people globally. The CRISPR-Cas system emerged as a powerful genome engineering tool and has facilitated the comprehension of the mechanism and development of therapies for rare diseases. This review focuses on current efforts to develop the CRISPR-based toolbox for various rare disease therapy applications and compares the pros and cons of different tools and delivery methods. We further discuss the therapeutic applications of CRISPR-based tools for fighting different rare diseases.
Collapse
|
132
|
Al-Shayeb B, Skopintsev P, Soczek KM, Stahl EC, Li Z, Groover E, Smock D, Eggers AR, Pausch P, Cress BF, Huang CJ, Staskawicz B, Savage DF, Jacobsen SE, Banfield JF, Doudna JA. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell 2022; 185:4574-4586.e16. [PMID: 36423580 DOI: 10.1016/j.cell.2022.10.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
Abstract
CRISPR-Cas systems are host-encoded pathways that protect microbes from viral infection using an adaptive RNA-guided mechanism. Using genome-resolved metagenomics, we find that CRISPR systems are also encoded in diverse bacteriophages, where they occur as divergent and hypercompact anti-viral systems. Bacteriophage-encoded CRISPR systems belong to all six known CRISPR-Cas types, though some lack crucial components, suggesting alternate functional roles or host complementation. We describe multiple new Cas9-like proteins and 44 families related to type V CRISPR-Cas systems, including the Casλ RNA-guided nuclease family. Among the most divergent of the new enzymes identified, Casλ recognizes double-stranded DNA using a uniquely structured CRISPR RNA (crRNA). The Casλ-RNA-DNA structure determined by cryoelectron microscopy reveals a compact bilobed architecture capable of inducing genome editing in mammalian, Arabidopsis, and hexaploid wheat cells. These findings reveal a new source of CRISPR-Cas enzymes in phages and highlight their value as genome editors in plant and human cells.
Collapse
Affiliation(s)
- Basem Al-Shayeb
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Earth and Planetary Science, University of California, Berkeley, CA, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA; University of Melbourne, Melbourne, Australia; Department of Chemistry, University of California, Berkeley, CA, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Gladstone Institutes, University of California, San Francisco, CA, USA
| | - Petr Skopintsev
- Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Katarzyna M Soczek
- Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Elizabeth C Stahl
- Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Zheng Li
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Evan Groover
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Dylan Smock
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Amy R Eggers
- Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Patrick Pausch
- Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Carolyn J Huang
- Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, USA; Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Earth and Planetary Science, University of California, Berkeley, CA, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA; University of Melbourne, Melbourne, Australia.
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, CA, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Gladstone Institutes, University of California, San Francisco, CA, USA.
| |
Collapse
|
133
|
Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Commun Biol 2022; 5:1163. [PMID: 36323848 PMCID: PMC9630288 DOI: 10.1038/s42003-022-04152-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/21/2022] [Indexed: 01/09/2023] Open
Abstract
Cas12a can process multiple sgRNAs from a single transcript of CRISPR array, conferring advantages in multiplexed base editing when incorporated into base editor systems, which is extremely helpful given that phenotypes commonly involve multiple genes or single-nucleotide variants. However, multiplexed base editing through Cas12a-derived base editors has been barely reported, mainly due to the compromised efficiencies and restricted protospacer-adjacent motif (PAM) of TTTV for wild-type Cas12a. Here, we develop Cas12a-mediated cytosine base editor (CBE) and adenine base editor (ABE) systems with elevated efficiencies and expanded targeting scope, by combining highly active deaminases with Lachnospiraceae bacterium Cas12a (LbCas12a) variants. We confirm that these CBEs and ABEs can perform efficient C-to-T and A-to-G conversions, respectively, on targets with PAMs of NTTN, TYCN, and TRTN. Notably, multiplexed base editing can be conducted using the developed CBEs and ABEs in somatic cells and embryos. These Cas12a variant-mediated base editors will serve as versatile tools for multiplexed point mutation, which is notably important in genetic improvement, disease modeling, and gene therapy.
Collapse
|
134
|
Zhang B, Lin J, Perčulija V, Li Y, Lu Q, Chen J, Ouyang S. Structural insights into target DNA recognition and cleavage by the CRISPR-Cas12c1 system. Nucleic Acids Res 2022; 50:11820-11833. [PMID: 36321657 PMCID: PMC9723637 DOI: 10.1093/nar/gkac987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Cas12c is the recently characterized dual RNA-guided DNase effector of type V-C CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein) systems. Due to minimal requirements for a protospacer adjacent motif (PAM), Cas12c is an attractive candidate for genome editing. Here we report the crystal structure of Cas12c1 in complex with single guide RNA (sgRNA) and target double-stranded DNA (dsDNA) containing the 5'-TG-3' PAM. Supported by biochemical and mutation assays, this study reveals distinct structural features of Cas12c1 and the associated sgRNA, as well as the molecular basis for PAM recognition, target dsDNA unwinding, heteroduplex formation and recognition, and cleavage of non-target and target DNA strands. Cas12c1 recognizes the PAM through a mechanism that is interdependent on sequence identity and Cas12c1-induced conformational distortion of the PAM region. Another special feature of Cas12c1 is the cleavage of both non-target and target DNA strands at a single, uniform site with indistinguishable cleavage capacity and order. Location of the sgRNA seed region and minimal length of target DNA required for triggering Cas12c1 DNase activity were also determined. Our findings provide valuable information for developing the CRISPR-Cas12c1 system into an efficient, high-fidelity genome editing tool.
Collapse
Affiliation(s)
| | | | | | - Yu Li
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Qiuhua Lu
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Jing Chen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Songying Ouyang
- To whom correspondence should be addressed. Tel: +86 591 22868072;
| |
Collapse
|
135
|
Zhang P, Chan MM. A multifaceted signal recorder of cellular experiences using Cas12a base-editing. Trends Biotechnol 2022; 40:1279-1281. [PMID: 35933268 DOI: 10.1016/j.tibtech.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023]
Abstract
Technological advances have led to the emergence of lineage tracers, but signal recorders for mammalian systems have remained elusive. Kempton et al. have developed a Cas12a base-editing signal recorder capable of capturing diverse signals and operating in various experimental designs. The recorder enables new opportunities to chronicle cellular history.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Michelle M Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
136
|
Walton RT, Singh A, Blainey PC. Pooled genetic screens with image-based profiling. Mol Syst Biol 2022; 18:e10768. [PMID: 36366905 PMCID: PMC9650298 DOI: 10.15252/msb.202110768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Spatial structure in biology, spanning molecular, organellular, cellular, tissue, and organismal scales, is encoded through a combination of genetic and epigenetic factors in individual cells. Microscopy remains the most direct approach to exploring the intricate spatial complexity defining biological systems and the structured dynamic responses of these systems to perturbations. Genetic screens with deep single-cell profiling via image features or gene expression programs have the capacity to show how biological systems work in detail by cataloging many cellular phenotypes with one experimental assay. Microscopy-based cellular profiling provides information complementary to next-generation sequencing (NGS) profiling and has only recently become compatible with large-scale genetic screens. Optical screening now offers the scale needed for systematic characterization and is poised for further scale-up. We discuss how these methodologies, together with emerging technologies for genetic perturbation and microscopy-based multiplexed molecular phenotyping, are powering new approaches to reveal genotype-phenotype relationships.
Collapse
Affiliation(s)
- Russell T Walton
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of Biological EngineeringMITCambridgeMAUSA
| | - Avtar Singh
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Present address:
Department of Cellular and Tissue GenomicsGenentechSouth San FranciscoCAUSA
| | - Paul C Blainey
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of Biological EngineeringMITCambridgeMAUSA
- Koch Institute for Integrative Cancer ResearchMITCambridgeMAUSA
| |
Collapse
|
137
|
Robertson G, Burger J, Campa M. CRISPR/Cas-based tools for the targeted control of plant viruses. MOLECULAR PLANT PATHOLOGY 2022; 23:1701-1718. [PMID: 35920132 PMCID: PMC9562834 DOI: 10.1111/mpp.13252] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Plant viruses are known to infect most economically important crops and pose a major threat to global food security. Currently, few resistant host phenotypes have been delineated, and while chemicals are used for crop protection against insect pests and bacterial or fungal diseases, these are inefficient against viral diseases. Genetic engineering emerged as a way of modifying the plant genome by introducing functional genes in plants to improve crop productivity under adverse environmental conditions. Recently, new breeding technologies, and in particular the exciting CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) technology, was shown to be a powerful alternative to engineer resistance against plant viruses, thus has great potential for reducing crop losses and improving plant productivity to directly contribute to food security. Indeed, it could circumvent the "Genetic modification" issues because it allows for genome editing without the integration of foreign DNA or RNA into the genome of the host plant, and it is simpler and more versatile than other new breeding technologies. In this review, we describe the predominant features of the major CRISPR/Cas systems and outline strategies for the delivery of CRISPR/Cas reagents to plant cells. We also provide an overview of recent advances that have engineered CRISPR/Cas-based resistance against DNA and RNA viruses in plants through the targeted manipulation of either the viral genome or susceptibility factors of the host plant genome. Finally, we provide insight into the limitations and challenges that CRISPR/Cas technology currently faces and discuss a few alternative applications of the technology in virus research.
Collapse
Affiliation(s)
- Gaëlle Robertson
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
- Department of Experimental and Health SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Johan Burger
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| | - Manuela Campa
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
138
|
Huang Z, Fang J, Zhou M, Gong Z, Xiang T. CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Front Microbiol 2022; 13:1011399. [PMID: 36386639 PMCID: PMC9650447 DOI: 10.3389/fmicb.2022.1011399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 08/03/2023] Open
Abstract
Pathogenic microorganisms have major impacts on human lives. Rapid and sensitive diagnostic tools are urgently needed to facilitate the early treatment of microbial infections and the effective control of microbial transmission. CRISPR-Cas13 employs programmable RNA to produce a sensitive and specific method with high base resolution and thus to provide a novel tool for the rapid detection of microorganisms. The review aims to provide insights to spur further development by summarizing the characteristics of effectors of the CRISPR-Cas13 system and by describing the latest research into its application in the rapid detection of pathogenic microorganisms in combination with nucleic acid extraction, isothermal amplification, and product detection.
Collapse
Affiliation(s)
- Zhanchao Huang
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianhua Fang
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhou
- Jiangxi Zhongke Yanyuan Biotechnology Co., Ltd., Nanchang, China
| | - Zhenghua Gong
- Jiangxi Zhongke Yanyuan Biotechnology Co., Ltd., Nanchang, China
| | - Tianxin Xiang
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
139
|
Development of an in vivo cleavable donor plasmid for targeted transgene integration by CRISPR-Cas9 and CRISPR-Cas12a. Sci Rep 2022; 12:17775. [PMID: 36272994 PMCID: PMC9588054 DOI: 10.1038/s41598-022-22639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
The CRISPR-Cas system is widely used for genome editing of cultured cells and organisms. The discovery of a new single RNA-guided endonuclease, CRISPR-Cas12a, in addition to the conventional CRISPR-Cas9 has broadened the number of editable target sites on the genome. Here, we developed an in vivo cleavable donor plasmid for precise targeted knock-in of external DNA by both Cas9 and Cas12a. This plasmid, named pCriMGET_9-12a (plasmid of synthetic CRISPR-coded RNA target sequence-equipped donor plasmid-mediated gene targeting via Cas9 and Cas12a), comprises the protospacer-adjacent motif sequences of Cas9 and Cas12a at the side of an off-target free synthetic CRISPR-coded RNA target sequence and a multiple cloning site for donor cassette insertion. pCriMGET_9-12a generates a linearized donor cassette in vivo by both CRISPR-Cas9 and CRISPR-Cas12a, which resulted in increased knock-in efficiency in culture cells. This method also achieved > 25% targeted knock-in of long external DNA (> 4 kb) in mice by both CRISPR-Cas9 and CRISPR-Cas12a. The pCriMGET_9-12a system expands the genomic target space for transgene knock-in and provides a versatile, low-cost, and high-performance CRISPR genome editing tool.
Collapse
|
140
|
Abstract
CRISPR-Cas is a powerful genome editing tool for various species and human cell lines, widely used in many research areas including studying the mechanisms, targets, and gene therapies of human diseases. Recent developments have even allowed high-throughput genetic screening using the CRISPR system. However, due to the practical and ethical limitations in human gene editing research, little is known about whether CRISPR-editable DNA segments could influence human complex traits or diseases. Here, we investigated the human genomic regions condensed with different CRISPR Cas enzymes’ protospacer-adjacent motifs (PAMs). We found that Cas enzymes with GC-rich PAMs could interfere more with the genomic regions that harbor enriched heritability for human complex traits and diseases. The results linked GC content across the genome to the functional genomic elements in the heritability enrichment of human complex traits. We provide a genetic overview of the effects of high-throughput genome editing on human complex traits. An analysis of different CRISPR protospacer-adjacent motifs (PAMs) from various Cas enzymes shows that GC-rich PAMs are more abundant in genomic regions that harbour enriched heritability for human complex traits.
Collapse
|
141
|
Yuan B, Yuan C, Li L, Long M, Chen Z. Application of the CRISPR/Cas System in Pathogen Detection: A Review. Molecules 2022; 27:molecules27206999. [PMID: 36296588 PMCID: PMC9610700 DOI: 10.3390/molecules27206999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/18/2022] Open
Abstract
Early and rapid diagnosis of pathogens is important for the prevention and control of epidemic disease. The polymerase chain reaction (PCR) technique requires expensive instrument control, a special test site, complex solution treatment steps and professional operation, which can limit its application in practice. The pathogen detection method based on the clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated protein (CRISPR/Cas) system is characterized by strong specificity, high sensitivity and convenience for detection, which is more suitable for practical applications. This article first reviews the CRISPR/Cas system, and then introduces the application of the two types of systems represented by Type II (cas9), Type V (cas12a, cas12b, cas14a) and Type VI (cas13a) in pathogen detection. Finally, challenges and prospects are proposed.
Collapse
|
142
|
Zhang X, Shi Y, Chen G, Wu D, Wu Y, Li G. CRISPR/Cas Systems-Inspired Nano/Biosensors for Detecting Infectious Viruses and Pathogenic Bacteria. SMALL METHODS 2022; 6:e2200794. [PMID: 36114150 DOI: 10.1002/smtd.202200794] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Infectious pathogens cause severe human illnesses and great deaths per year worldwide. Rapid, sensitive, and accurate detection of pathogens is of great importance for preventing infectious diseases caused by pathogens and optimizing medical healthcare systems. Inspired by a microbial defense system (i.e., CRISPR/ CRISPR-associated proteins (Cas) system, an adaptive immune system for protecting microorganisms from being attacked by invading species), a great many new biosensors have been successfully developed and widely applied in the detection of infectious viruses and pathogenic bacteria. Moreover, advanced nanotechnologies have also been integrated into these biosensors to improve their detection stability, sensitivity, and accuracy. In this review, the recent advance in CRISPR/Cas systems-based nano/biosensors and their applications in the detection of infectious viruses and pathogenic bacteria are comprehensively reviewed. First of all, the categories and working principles of CRISPR/Cas systems for establishing the nano/biosensors are simply introduced. Then, the design and construction of CRISPR/Cas systems-based nano/biosensors are comprehensively discussed. In the end, attentions are focused on the applications of CRISPR/Cas systems-based nano/biosensors in the detection of infectious viruses and pathogenic bacteria. Impressively, the remaining opportunities and challenges for the further design and development of CRISPR/Cas system-based nano/biosensors and their promising applications are proposed.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, BT95DL, UK
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
143
|
Wörle E, Newman A, D’Silva J, Burgio G, Grohmann D. Allosteric activation of CRISPR-Cas12a requires the concerted movement of the bridge helix and helix 1 of the RuvC II domain. Nucleic Acids Res 2022; 50:10153-10168. [PMID: 36107767 PMCID: PMC9508855 DOI: 10.1093/nar/gkac767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Nucleases derived from the prokaryotic defense system CRISPR-Cas are frequently re-purposed for gene editing and molecular diagnostics. Hence, an in-depth understanding of the molecular mechanisms of these enzymes is of crucial importance. We focused on Cas12a from Francisella novicida (FnCas12a) and investigated the functional role of helix 1, a structural element that together with the bridge helix (BH) connects the recognition and the nuclease lobes of FnCas12a. Helix 1 is structurally connected to the lid domain that opens upon DNA target loading thereby activating the active site of FnCas12a. We probed the structural states of FnCas12a variants altered in helix 1 and/or the bridge helix using single-molecule FRET measurements and assayed the pre-crRNA processing, cis- and trans-DNA cleavage activity. We show that helix 1 and not the bridge helix is the predominant structural element that confers conformational stability of FnCas12a. Even small perturbations in helix 1 lead to a decrease in DNA cleavage activity while the structural integrity is not affected. Our data, therefore, implicate that the concerted remodeling of helix 1 and the bridge helix upon DNA binding is structurally linked to the opening of the lid and therefore involved in the allosteric activation of the active site.
Collapse
Affiliation(s)
- Elisabeth Wörle
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Anthony Newman
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Jovita D’Silva
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Gaetan Burgio
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Dina Grohmann
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
144
|
Huang Z, Liu S, Pei X, Li S, He Y, Tong Y, Liu G. Fluorescence Signal-Readout of CRISPR/Cas Biosensors for Nucleic Acid Detection. BIOSENSORS 2022; 12:bios12100779. [PMID: 36290917 PMCID: PMC9599699 DOI: 10.3390/bios12100779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 05/25/2023]
Abstract
The CRISPR/Cas system is now being used extensively in nucleic acid detection applications, particularly after the trans-cleavage activity of several Cas effectors was found. A CRISPR/Cas system combined with multiple signal-readout techniques has been developed for various molecular diagnostics applications. Fluorescence is now a widely utilized dominant read-out technique in CRISPR biosensors. An in-depth understanding of various fluorescence readout types and variables affecting the fluorescence signals can facilitate better experimental designs to effectively improve the analytical performance. There are the following two commonly used types of CRISPR/Cas detection modes: the first is based on binding activity, such as Cas9 and dCas9; the second is based on cleavage activity, such as Cas12a, Cas12b, Cas13, and Cas14. In this review, fluorescence signal-readout strategies from the last 5 years based on the binding activity and cleavage activity of the CRISPR/Cas system with fundamentals and examples are fully discussed. A detailed comparison of the available fluorescent reporter sequences and design principles is summarized. Current challenges and further applications of CRISPR-based detection methods will be discussed according to the most recent developments.
Collapse
Affiliation(s)
- Zhaohe Huang
- Institute of Cosmetic Regulatory Science and College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Sitong Liu
- Institute of Cosmetic Regulatory Science and College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaojing Pei
- Institute of Cosmetic Regulatory Science and College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shujing Li
- Institute of Cosmetic Regulatory Science and College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yifan He
- Institute of Cosmetic Regulatory Science and College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yigang Tong
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100029, China
| | - Guoqi Liu
- Biotecnovo (Beijing) Co., Ltd., Beijing Economic and Technological Development Zone, Beijing 100176, China
| |
Collapse
|
145
|
Crone MA, MacDonald JT, Freemont PS, Siciliano V. gDesigner: computational design of synthetic gRNAs for Cas12a-based transcriptional repression in mammalian cells. NPJ Syst Biol Appl 2022; 8:34. [PMID: 36114193 PMCID: PMC9481559 DOI: 10.1038/s41540-022-00241-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Synthetic networks require complex intertwined genetic regulation often relying on transcriptional activation or repression of target genes. CRISPRi-based transcription factors facilitate the programmable modulation of endogenous or synthetic promoter activity and the process can be optimised by using software to select appropriate gRNAs and limit non-specific gene modulation. Here, we develop a computational software pipeline, gDesigner, that enables the automated selection of orthogonal gRNAs with minimized off-target effects and promoter crosstalk. We next engineered a Lachnospiraceae bacterium Cas12a (dLbCas12a)-based repression system that downregulates target gene expression by means of steric hindrance of the cognate promoter. Finally, we generated a library of orthogonal synthetic dCas12a-repressed promoters and experimentally demonstrated it in HEK293FT, U2OS and H1299 cells lines. Our system expands the toolkit of mammalian synthetic promoters with a new complementary and orthogonal CRISPRi-based system, ultimately enabling the design of synthetic promoter libraries for multiplex gene perturbation that facilitate the understanding of complex cellular phenotypes.
Collapse
Affiliation(s)
- Michael A Crone
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom
- London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, 84 Wood Lane, London, United Kingdom
| | - James T MacDonald
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
| | - Paul S Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom.
- London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, 84 Wood Lane, London, United Kingdom.
| | - Velia Siciliano
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
- Istituto Italiano di Tecnologia IIT, Department of Synthetic and Systems Biology for Biomedicine, Genoa, Italy.
| |
Collapse
|
146
|
Chen K, Shen Z, Wang G, Gu W, Zhao S, Lin Z, Liu W, Cai Y, Mushtaq G, Jia J, Wan C(C, Yan T. Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis. Front Bioeng Biotechnol 2022; 10:986233. [PMID: 36185462 PMCID: PMC9524266 DOI: 10.3389/fbioe.2022.986233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas technology originated from the immune mechanism of archaea and bacteria and was awarded the Nobel Prize in Chemistry in 2020 for its success in gene editing. Molecular diagnostics is highly valued globally for its development as a new generation of diagnostic technology. An increasing number of studies have shown that CRISPR/Cas technology can be integrated with biosensors and bioassays for molecular diagnostics. CRISPR-based detection has attracted much attention as highly specific and sensitive sensors with easily programmable and device-independent capabilities. The nucleic acid-based detection approach is one of the most sensitive and specific diagnostic methods. With further research, it holds promise for detecting other biomarkers such as small molecules and proteins. Therefore, it is worthwhile to explore the prospects of CRISPR technology in biosensing and summarize its application strategies in molecular diagnostics. This review provides a synopsis of CRISPR biosensing strategies and recent advances from nucleic acids to other non-nucleic small molecules or analytes such as proteins and presents the challenges and perspectives of CRISPR biosensors and bioassays.
Collapse
Affiliation(s)
- Kun Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyi Shen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, Shanghai, China
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Zihan Lin
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Idlib, Syria
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
147
|
Wang Z, Wang Y, Wang Y, Chen W, Ji Q. CRISPR/Cpf1-Mediated Multiplex and Large-Fragment Gene Editing in Staphylococcus aureus. ACS Synth Biol 2022; 11:3049-3057. [PMID: 36001082 DOI: 10.1021/acssynbio.2c00248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Staphylococcus aureus is a major human pathogen that causes a variety of infections, including life-threatening diseases. Research on S. aureus is constrained by complex and limited genetic manipulation methods. Here, we report a CRISPR/Cpf1-mediated system, pCpfSA, for rapid and versatile genome editing in S. aureus. In direct comparison with the existing CRISPR/Cas9-mediated genome-editing system, the pCpfSA system exhibits enhanced colony-forming units (CFUs) after editing and an expanded targetable range with comparable editing efficiency. Given the precursor crRNA (pre-crRNA) processing activity of Cpf1, the pCpfSA system also allows multiplex gene editing and large-fragment DNA knockout simply by introducing two crRNAs and the corresponding donor templates, which is difficult to achieve using the CRISPR/Cas9 system, thereby greatly expanding the genome editor toolbox for S. aureus.
Collapse
Affiliation(s)
- Zhipeng Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yujue Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
148
|
Kumari D, Prasad BD, Dwivedi P, Hidangmayum A, Sahni S. CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism. Mol Biol Rep 2022; 49:11587-11600. [DOI: 10.1007/s11033-022-07851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
|
149
|
Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov 2022; 21:655-675. [PMID: 35637318 PMCID: PMC9149674 DOI: 10.1038/s41573-022-00476-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/19/2022]
Abstract
Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.
Collapse
Affiliation(s)
- Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Hozefa Bandukwala
- Sigilon Therapeutics, Cambridge, MA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | - Devyn M Smith
- Sigilon Therapeutics, Cambridge, MA, USA
- Arbor Biotechnologies, Cambridge, MA, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
150
|
Xia K, Zhang D, Xu X, Liu G, Yang Y, Chen Z, Wang X, Zhang GQ, Sun HX, Gu Y. Protoplast technology enables the identification of efficient multiplex genome editing tools in Phalaenopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111368. [PMID: 35780949 DOI: 10.1016/j.plantsci.2022.111368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phalaenopsis orchids are popular ornamental plants worldwide. The application and optimization of efficient CRISPR-Cas genome editing toolkits in Phalaenopsis greatly accelerate the development of orchid gene function and breeding research. However, these methods are greatly hindered by the deficiency of a rapid screening system. In this study, we established a fast and convenient Phalaenopsis protoplast technology for the identification of functional genome editing tools. Two multiplex genome editing tools, PTG-Cas9-HPG (PTG, polycistronic tRNA-gRNA) system and RMC-Cpf1-HPG (RMC, ribozyme-based multi-crRNA) system, were developed for Phalaenopsis genome editing and further evaluated by established protoplast technology. We successfully detected various editing events comprising substitution and indel at designed target sites of the PDS gene and MADS gene, showing that both PTG-Cas9-HPG and RMC-Cpf1-HPG multiplex genome editing systems are functional in Phalaenopsis. Additionally, by optimizing the promoter that drives Cpf1 expression, we found that Super promoter can significantly improve the editing efficiency of the RMC-Cpf1-HPG system. Altogether, we successfully developed two efficient multiplex genome editing systems, PTG-Cas9-HPG and RMC-Cpf1-HPG, for Phalaenopsis, and the established protoplast-based screening technology provides a valuable foundation for developing more diverse and efficient genome editing toolkits and facilitating the development of orchid precision breeding.
Collapse
Affiliation(s)
- Keke Xia
- BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Xiaojing Xu
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yong Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Guo-Qiang Zhang
- Laboratory for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, The National Orchid Conservation Center of China, Shenzhen 518114, China
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen 518083, China; BGI-Beijing, Beijing 100101, China.
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China.
| |
Collapse
|