101
|
Elevated H2AX Phosphorylation Observed with kINPen Plasma Treatment Is Not Caused by ROS-Mediated DNA Damage but Is the Consequence of Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8535163. [PMID: 31641425 PMCID: PMC6770374 DOI: 10.1155/2019/8535163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
Phosphorylated histone 2AX (γH2AX) is a long-standing marker for DNA double-strand breaks (DSBs) from ionizing radiation in the field of radiobiology. This led to the perception of γH2AX being a general marker of direct DNA damage with the treatment of other agents such as low-dose exogenous ROS that unlikely act on cellular DNA directly. Cold physical plasma confers biomedical effects majorly via release of reactive oxygen and nitrogen species (ROS). In vitro, increase of γH2AX has often been observed with plasma treatment, leading to the conclusion that DNA damage is a direct consequence of plasma exposure. However, increase in γH2AX also occurs during apoptosis, which is often observed with plasma treatment as well. Moreover, it must be questioned if plasma-derived ROS can reach into the nucleus and still be reactive enough to damage DNA directly. We investigated γH2AX induction in a lymphocyte cell line upon ROS exposure (plasma, hydrogen peroxide, or hypochlorous acid) or UV-B light. Cytotoxicity and γH2AX induction was abrogated by the use of antioxidants with all types of ROS treatment but not UV radiation. H2AX phosphorylation levels were overall independent of analyzing either all nucleated cells or segmenting γH2AX phosphorylation for each cell cycle phase. SB202190 (p38-MAPK inhibitor) and Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited γH2AX induction upon ROS but not UV treatment. Finally, and despite γH2AX induction, UV but not plasma treatment led to significantly increased micronucleus formation, which is a functional read-out of genotoxic DNA DSBs. We conclude that plasma-mediated and low-ROS γH2AX induction depends on caspase activation and hence is not the cause but consequence of apoptosis induction. Moreover, we could not identify lasting mutagenic effects with plasma treatment despite phosphorylation of H2AX.
Collapse
|
102
|
Ibler AEM, ElGhazaly M, Naylor KL, Bulgakova NA, F El-Khamisy S, Humphreys D. Typhoid toxin exhausts the RPA response to DNA replication stress driving senescence and Salmonella infection. Nat Commun 2019; 10:4040. [PMID: 31492859 PMCID: PMC6731267 DOI: 10.1038/s41467-019-12064-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
Salmonella Typhi activates the host DNA damage response through the typhoid toxin, facilitating typhoid symptoms and chronic infections. Here we reveal a non-canonical DNA damage response, which we call RING (response induced by a genotoxin), characterized by accumulation of phosphorylated histone H2AX (γH2AX) at the nuclear periphery. RING is the result of persistent DNA damage mediated by toxin nuclease activity and is characterized by hyperphosphorylation of RPA, a sensor of single-stranded DNA (ssDNA) and DNA replication stress. The toxin overloads the RPA pathway with ssDNA substrate, causing RPA exhaustion and senescence. Senescence is also induced by canonical γΗ2ΑΧ foci revealing distinct mechanisms. Senescence is transmitted to non-intoxicated bystander cells by an unidentified senescence-associated secreted factor that enhances Salmonella infections. Thus, our work uncovers a mechanism by which genotoxic Salmonella exhausts the RPA response by inducing ssDNA formation, driving host cell senescence and facilitating infection.
Collapse
Affiliation(s)
- Angela E M Ibler
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Mohamed ElGhazaly
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kathryn L Naylor
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sherif F El-Khamisy
- The Healthy Life Span Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Center of Genomics, Zewail City of Science and Technology, Giza, Egypt
| | - Daniel Humphreys
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
103
|
Li M, Li L, Zhang X, Zhao H, Wei M, Zhai W, Wang B, Yan Y. LncRNA RP11-670E13.6, interacted with hnRNPH, delays cellular senescence by sponging microRNA-663a in UVB damaged dermal fibroblasts. Aging (Albany NY) 2019; 11:5992-6013. [PMID: 31444317 PMCID: PMC6738423 DOI: 10.18632/aging.102159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Ultraviolet (UV) irradiation from the sunlight is a major etiologic factor for premature skin aging. Long noncoding RNAs (lncRNAs) are involved in various biological processes, and their roles in UV irradiation-induced skin aging have recently been described. Previously, we found that the lncRNA RP11-670E13.6 was up-regulated and delayed cellular senescence in UVB-irradiated primary human dermal fibroblasts. Here, we performed further investigations of RP11-670E13.6 function. The results showed that this lncRNA directly bound to miR-663a and functioned as a sponge for miR-663a to modulate the derepression of Cdk4 and Cdk6, thereby delaying cellular senescence during UV irradiation-induced skin photoaging. Moreover, we found that RP11-670E13.6 may facilitate DNA damage repair by increasing ATM and γH2A.X levels. In addition, heterogeneous nuclear ribonucleoprotein H physically interacted with RP11-670E13.6 and blocked its expression. Collectively, our results suggested that the RP11-670E13.6/miR-663a/CDK4 and RP11-670E13.6/miR-663a/CDK6 axis, which may function as competitive endogenous RNA networks, played important roles in UVB-induced cellular senescence.
Collapse
Affiliation(s)
- Mengna Li
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Li Li
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Xiaofeng Zhang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Huijuan Zhao
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Min Wei
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Wanying Zhai
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Baoxi Wang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Yan Yan
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| |
Collapse
|
104
|
Lian J, Xia L, Chen Y, Zheng J, Ma K, Luo L, Ye F. Aldolase B impairs DNA mismatch repair and induces apoptosis in colon adenocarcinoma. Pathol Res Pract 2019; 215:152597. [PMID: 31564566 DOI: 10.1016/j.prp.2019.152597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
Evidence suggests that DNA repair capacity manifested by intact functional base excision repair and mismatch repair (MMR) pathways is related to the prognosis of multiple cancer types. Aldolase B (ALDOB) is well known for its role in metabolism and glycolysis. The expression of ALDOB in colon adenocarcinoma and the relationship between its expression and colon adenocarcinoma prognosis remain controversial; in addition, the potential role of ALDOB in DNA MMR has not yet been reported. In this study, we identified a cluster of DNA repair-related proteins that interact with ALDOB in the colon adenocarcinoma cell line HCT116. Expression analysis of colon adenocarcinoma data from the Cancer Genome Atlas (TCGA-COAD data, n = 551) indicated that ALDOB mRNA expression was significantly higher in specimens with microsatellite instability (MSI) than in specimens with microsatellite stability (MSS). Regarding prognosis, colon adenocarcinoma patients with high ALDOB mRNA expression had longer overall survival (OS). Higher expression of ALDOB protein was significantly correlated with MMR deficiency (d-MMR) in formalin-fixed paraffin-embedded (FFPE) patient specimens. The expression of ALDOB was significantly elevated in colon adenocarcinoma cell lines. Further evidence indicated that rather than affecting proliferation, ALDOB overexpression induced the functional loss of MMR proteins and in turn caused irreversible DNA damage via disrupting EZH2-Rad51 expression and then caused apoptosis by ERK inactivation. Overall, our study demonstrates that high ALDOB expression impairs DNA MMR and induces apoptosis in colon adenocarcinoma. ALDOB may be a new biomarker associated with d-MMR and an independent prognostic factor for colon adenocarcinoma.
Collapse
Affiliation(s)
- Jiabian Lian
- Laboratory of Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Clinical Medical, Fujian Medical University, Fuzhou, China; Department of Cancer Prevention Diagnosis and Treatment, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lu Xia
- Laboratory of Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Clinical Medical, Fujian Medical University, Fuzhou, China; Department of Cancer Prevention Diagnosis and Treatment, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yixing Chen
- Laboratory of Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Clinical Medical, Fujian Medical University, Fuzhou, China
| | - Jiani Zheng
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Clinical Medical, Fujian Medical University, Fuzhou, China; Department of Cancer Prevention Diagnosis and Treatment, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ke Ma
- Department of Gastrointestinal Surgery, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lingtao Luo
- Department of Gastrointestinal Surgery, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Clinical Medical, Fujian Medical University, Fuzhou, China; Department of Cancer Prevention Diagnosis and Treatment, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Feng Ye
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Clinical Medical, Fujian Medical University, Fuzhou, China; Department of Cancer Prevention Diagnosis and Treatment, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
105
|
Zhdanova NS, Vaskova EA, Karamysheva TV, Minina JM, Rubtsov NB, Zakian SM. Dysfunction telomeres in embryonic fibroblasts and cultured in vitro pluripotent stem cells of Rattus norvegicus (Rodentia, Muridae). COMPARATIVE CYTOGENETICS 2019; 13:1-14. [PMID: 31404388 PMCID: PMC6684521 DOI: 10.3897/compcytogen.v13i3.34732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
We studied the level of spontaneous telomere dysfunction in Rattus norvegicus (Berkenhout, 1769) (Rodentia, Muridae) embryonic fibroblasts (rEFs) and in cultured in vitro rat pluripotent stem cells (rPSCs), embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs), on early passages and after prolonged cultivation. Among studied cell lines, rESCs showed the lowest level of telomere dysfunction, while the riPSCs demonstrated an elevated level on early passages of cultivation. In cultivation, the frequency of dysfunctional telomeres has increased in all studied cell lines; this is particularly true for dysfunctional telomeres occurring in G1 stage in riPSCs. The obtained data are mainly discussed in the connection with the specific structure of the telomere regions and their influence on the differential DNA damage response in them.
Collapse
Affiliation(s)
- Natalya S. Zhdanova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
| | - Evgenia A. Vaskova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
| | - Tatyana V. Karamysheva
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
| | - Julia M. Minina
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
| | - Nykolay B. Rubtsov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, Novosibirsk 630090, RussiaThe Federal Research Center Institute of Cytology and Genetics SB RASNovosibirskRussia
- E.N. Meshalkin National medical research center, Ministry of Health of the Russian Federation, Rechkunovskaya st. 15, 630055, Novosibirsk, RussiaMinistry of Health of the Russian FederationNovosibirskRussia
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentjeva av. 8, 630090, Novosibirsk, RussiaInstitute of Chemical Biology and Fundamental Medicine SB RASNovosibirskRussia
| |
Collapse
|
106
|
Li Z, Chen Y, Tang M, Li Y, Zhu WG. Regulation of DNA damage-induced ATM activation by histone modifications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00004-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
107
|
Abstract
All organisms must protect their genome from constantly occurring DNA damage. To this end, cells have evolved complex pathways for repairing sites of DNA lesions, and multiple in vitro and in vivo techniques have been developed to study these processes. In this review, we discuss the commonly used laser microirradiation method for monitoring the accumulation of repair proteins at DNA damage sites in cells, and we outline several strategies for deriving kinetic models from such experimental data. We discuss an example of how in vitro measurements and in vivo microirradation experiments complement each other to provide insight into the mechanism of PARP1 recruitment to DNA lesions. We also discuss a strategy to combine data obtained for the recruitment of many different proteins in a move toward fully quantitating the spatiotemporal relationships between various damage responses, and we outline potential venues for future development in the field.
Collapse
|
108
|
Kim JJ, Lee SY, Miller KM. Preserving genome integrity and function: the DNA damage response and histone modifications. Crit Rev Biochem Mol Biol 2019; 54:208-241. [PMID: 31164001 DOI: 10.1080/10409238.2019.1620676] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Kyle M Miller
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
109
|
Chen BR, Quinet A, Byrum AK, Jackson J, Berti M, Thangavel S, Bredemeyer AL, Hindi I, Mosammaparast N, Tyler JK, Vindigni A, Sleckman BP. XLF and H2AX function in series to promote replication fork stability. J Cell Biol 2019; 218:2113-2123. [PMID: 31123184 PMCID: PMC6605786 DOI: 10.1083/jcb.201808134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/03/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
Chen et al. show that XLF functions to limit fork reversal during DNA replication. H2AX prevents MRE11-dependent replication stress in XLF-deficient cells, suggesting that H2AX prevents the resection of regressed arms at reversed forks. XRCC4-like factor (XLF) is a non-homologous end joining (NHEJ) DNA double strand break repair protein. However, XLF deficiency leads to phenotypes in mice and humans that are not necessarily consistent with an isolated defect in NHEJ. Here we show that XLF functions during DNA replication. XLF undergoes cell division cycle 7–dependent phosphorylation; associates with the replication factor C complex, a critical component of the replisome; and is found at replication forks. XLF deficiency leads to defects in replication fork progression and an increase in fork reversal. The additional loss of H2AX, which protects DNA ends from resection, leads to a requirement for ATR to prevent an MRE11-dependent loss of newly synthesized DNA and activation of DNA damage response. Moreover, H2ax−/−:Xlf−/− cells exhibit a marked dependence on the ATR kinase for survival. We propose that XLF and H2AX function in series to prevent replication stress induced by the MRE11-dependent resection of regressed arms at reversed replication forks.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Annabel Quinet
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Andrea K Byrum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jessica Jackson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Matteo Berti
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Saravanabhavan Thangavel
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Andrea L Bredemeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Issa Hindi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
110
|
Rodríguez A, Naveja JJ, Torres L, García de Teresa B, Juárez-Figueroa U, Ayala-Zambrano C, Azpeitia E, Mendoza L, Frías S. WIP1 Contributes to the Adaptation of Fanconi Anemia Cells to DNA Damage as Determined by the Regulatory Network of the Fanconi Anemia and Checkpoint Recovery Pathways. Front Genet 2019; 10:411. [PMID: 31130988 PMCID: PMC6509935 DOI: 10.3389/fgene.2019.00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/15/2019] [Indexed: 02/01/2023] Open
Abstract
DNA damage adaptation (DDA) allows the division of cells with unrepaired DNA damage. DNA repair deficient cells might take advantage of DDA to survive. The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs), and deficiencies in this pathway cause a fraction of breast and ovarian cancers as well as FA, a chromosome instability syndrome characterized by bone marrow failure and cancer predisposition. FA cells are hypersensitive to ICLs; however, DDA might promote their survival. We present the FA-CHKREC Boolean Network Model, which explores how FA cells might use DDA. The model integrates the FA pathway with the G2 checkpoint and the checkpoint recovery (CHKREC) processes. The G2 checkpoint mediates cell-cycle arrest (CCA) and the CHKREC activates cell-cycle progression (CCP) after resolution of DNA damage. Analysis of the FA-CHKREC network indicates that CHKREC drives DDA in FA cells, ignoring the presence of unrepaired DNA damage and allowing their division. Experimental inhibition of WIP1, a CHKREC component, in FA lymphoblast and cancer cell lines prevented division of FA cells, in agreement with the prediction of the model.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - J Jesús Naveja
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leda Torres
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Benilde García de Teresa
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Ulises Juárez-Figueroa
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cecilia Ayala-Zambrano
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Eugenio Azpeitia
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
111
|
Wang B, Zhang Z, Xia S, Jiang M, Wang Y. Expression of γ-H2AX and patient prognosis in breast cancer cohort. J Cell Biochem 2019; 120:12958-12965. [PMID: 30920061 DOI: 10.1002/jcb.28567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022]
Abstract
H2AX phosphorylation is a novel marker of DNA double-stranded breaks. In the present study, we assessed the γ-H2AX expression, its association with other clinicopathologic characteristics, and the prognosis in a cohort of 97 patients with breast cancer. Ninety-seven specimens of tumor tissue and 77 adjacent normal tissues from patients with breast cancer were examined. All patients underwent modified radical mastectomy or local tumor resection without lymph node dissection. γ-H2AX expression was assessed by standard immunohistochemistry. Patients were followed after surgery for a mean duration of 70.1 ± 18.7 months (range, 6-93 months). The γ-H2AX staining was positive in 27 (27.8%) patients. The positive rates of H2AX were 26.0% and 2.6% in tumor tissue and adjacent normal tissues, respectively. γ-H2AX positive status was negatively associated with TNM staging, with 24 positive cases (32.4%) in TNM staging I-II, while no positive cases in TNM staging III-IV (P = 0.026). Sixteen patients (16.5%) died during the follow-up. No significant association between γ-H2AX expression and patient survival was detected. The unadjusted HR (hazard ratio) for γ-H2AX positive was 0.84 (95% CI: 0.27, 2.60). In TNM staging subgroup analysis, death only occurred in γ-H2AX negative patients. Our study is the first study to demonstrate that expression of γ-H2AX is associated with TNM staging. Due to the small sample and limited follow-up time, we did not observe a significant association between γ-H2AX and patient survival. γ-H2AX expression could be a potential biomarker for cancer diagnosis and prediction, and further studies are in need.
Collapse
Affiliation(s)
- Beili Wang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Zhang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi'an Xia
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mawei Jiang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
112
|
Zong D, Adam S, Wang Y, Sasanuma H, Callén E, Murga M, Day A, Kruhlak MJ, Wong N, Munro M, Chaudhuri AR, Karim B, Xia B, Takeda S, Johnson N, Durocher D, Nussenzweig A. BRCA1 Haploinsufficiency Is Masked by RNF168-Mediated Chromatin Ubiquitylation. Mol Cell 2019; 73:1267-1281.e7. [PMID: 30704900 PMCID: PMC6430682 DOI: 10.1016/j.molcel.2018.12.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/22/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
BRCA1 functions at two distinct steps during homologous recombination (HR). Initially, it promotes DNA end resection, and subsequently it recruits the PALB2 and BRCA2 mediator complex, which stabilizes RAD51-DNA nucleoprotein filaments. Loss of 53BP1 rescues the HR defect in BRCA1-deficient cells by increasing resection, suggesting that BRCA1's downstream role in RAD51 loading is dispensable when 53BP1 is absent. Here we show that the E3 ubiquitin ligase RNF168, in addition to its canonical role in inhibiting end resection, acts in a redundant manner with BRCA1 to load PALB2 onto damaged DNA. Loss of RNF168 negates the synthetic rescue of BRCA1 deficiency by 53BP1 deletion, and it predisposes BRCA1 heterozygous mice to cancer. BRCA1+/-RNF168-/- cells lack RAD51 foci and are hypersensitive to PARP inhibitor, whereas forced targeting of PALB2 to DNA breaks in mutant cells circumvents BRCA1 haploinsufficiency. Inhibiting the chromatin ubiquitin pathway may, therefore, be a synthetic lethality strategy for BRCA1-deficient cancers.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Salomé Adam
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Elsa Callén
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Meagan Munro
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Arnab Ray Chaudhuri
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.,Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Baktiar Karim
- Pathology/Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bing Xia
- Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
113
|
Xue B, Xiao K, Tian Z. Top-down characterization of mouse core histones. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:258-265. [PMID: 30698319 DOI: 10.1002/jms.4339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Histone post-translational modifications (PTMs) play various roles in chromatin-related cellular processes, and comprehensive analysis of these combinatorial PTMs at the intact protein level by top-down proteomics is the method of choice to reveal their crosstalk and biological functions. Here, we report our top-down characterization of the core histones from mouse fibroblasts cells NIH/3T3, which is a classic model used in many kinds of research. With nanoRPLC-MS/MS analysis and ProteinGoggle database search, 547 protein species were identified with spectrum-level FDR ≤ 1%, where PTMs in 51 protein species were unambiguously localized with PTM scores ≥1. High-resolution MS/MS data also allowed the unambiguous identification of acetylation instead of trimethylation. This study presents a general picture of combinatorial PTMs of mouse core histones, which serves as a basic reference for all future related biological studies.
Collapse
Affiliation(s)
- Bingbing Xue
- School of Chemical Science and Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Kaijie Xiao
- School of Chemical Science and Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Zhixin Tian
- School of Chemical Science and Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| |
Collapse
|
114
|
Pujol-Canadell M, Young E, Smilenov L. Use of a Humanized Mouse Model System in the Validation of Human Radiation Biodosimetry Standards. Radiat Res 2019; 191:439-446. [PMID: 30802180 DOI: 10.1667/rr15283.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
After a planned or unplanned radiation exposure, determination of absorbed dose has great clinical importance, informing treatment and triage decisions in the exposed individuals. Biodosimetry approaches allow for determination of dose in the absence of physical measurement apparatus. The current state-of-the-art biodosimetry method is based on the frequency of induced dicentric chromosomes in peripheral blood T cells, which is proportional to the absorbed radiation dose. Since dose-response curves used for obtaining absorbed dose for humans are based on data sourced from in vitro studies, a concerning discrepancy may be present in the reported dose. Specifically, T-cell survival after in vitro irradiation is much higher than that measured in humans in vivo and, in addition, is not dose dependent over some dose ranges. We hypothesized that these differences may lead to inappropriately inflated dicentric frequencies after in vitro irradiation when compared with in vivo irradiation of the same samples. This may lead to underestimation of the in vivo dose. To test this hypothesis, we employed the humanized mouse model, which allowed direct comparison of cell depletion and dicentric frequencies in human T cells irradiated in vivo and in vitro. The results showed similar dicentric chromosome induction frequencies measured in vivo and in vitro when assessed 24 h postirradiation despite the differences in cell survival. These results appear to validate the use of in vitro data for the estimation of the absorbed dose in human radiation biodosimetry.
Collapse
Affiliation(s)
| | - Erik Young
- Columbia University Medical Center, New York, New York
| | | |
Collapse
|
115
|
Sone M, Toyoda T, Cho YM, Akagi JI, Matsushita K, Mizuta Y, Morikawa T, Nishikawa A, Ogawa K. Immunohistochemistry of γ-H2AX as a method of early detection of urinary bladder carcinogenicity in mice. J Appl Toxicol 2019; 39:868-876. [PMID: 30701581 DOI: 10.1002/jat.3775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022]
Abstract
Phosphorylated histone H2AX (γ-H2AX) has been demonstrated as a DNA damage marker both in vitro and in vivo. We previously reported the effects of genotoxic carcinogens in the urinary bladder of rats by immunohistochemical analysis of γ-H2AX using samples from 28-day repeated-dose tests. To evaluate the application of γ-H2AX as a biomarker of carcinogenicity in the bladder, we examined species differences in γ-H2AX formation in the urinary bladder of mice. Six-week-old male B6C3F1 mice were treated orally with 12 chemicals for 4 weeks. Immunohistochemical analysis demonstrated that N-butyl-N-(4-hydroxybutyl)nitrosamine, p-cresidine and 2-acetylaminofluorene (2-AAF), classified as genotoxic bladder carcinogens, induced significant increases in γ-H2AX levels in the bladder urothelium. In contrast, genotoxic (2-nitroanisole, glycidol, N-nitrosodiethylamine and acrylamide) and non-genotoxic (dimethylarsinic acid and melamine) non-bladder carcinogens did not upregulate γ-H2AX. Importantly, 2-nitroanisole, a potent genotoxic bladder carcinogen in rats, significantly increased the proportion of γ-H2AX-positive cells in rats only, reflecting differences in carcinogenicity in the urinary bladder between rats and mice. Significant upregulation of γ-H2AX was also induced by uracil, a non-genotoxic bladder carcinogen that may be associated with cell proliferation, as demonstrated by increased Ki67 expression. 2-AAF caused γ-H2AX formation mainly in the superficial layer, together with reduced and disorganized expression of uroplakin III, unlike in rats, suggesting the mouse-specific cytotoxicity of 2-AAF in umbrella cells. These results suggest γ-H2AX is a useful biomarker reflecting species differences in carcinogenicity in the urinary bladder.
Collapse
Affiliation(s)
- Mizuki Sone
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.,Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Jun-Ichi Akagi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Yasuko Mizuta
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Akiyoshi Nishikawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.,Department of Pathology, Saiseikai Utsunomiya Hospital, 911-1 Takebayashi-machi, Utsunomiya, Tochigi, 321-0974, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| |
Collapse
|
116
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
117
|
He WX, Wu M, Liu Z, Li Z, Wang Y, Zhou J, Yu P, Zhang XJ, Zhou L, Gui JF. Oocyte-specific maternal Slbp2 is required for replication-dependent histone storage and early nuclear cleavage in zebrafish oogenesis and embryogenesis. RNA (NEW YORK, N.Y.) 2018; 24:1738-1748. [PMID: 30185624 PMCID: PMC6239174 DOI: 10.1261/rna.067090.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/28/2018] [Indexed: 05/29/2023]
Abstract
Stem-loop binding protein (SLBP) is required for replication-dependent histone mRNA metabolism in mammals. Zebrafish possesses two slbps, and slbp1 is necessary for retinal neurogenesis. However, the detailed expression and function of slbp2 in zebrafish are still unknown. In this study, we first identified zebrafish slbp2 as an oocyte-specific maternal factor and then generated a maternal-zygotic slbp2 F3 homozygous mutant (MZslbp2Δ4-/-) using CRISPR/Cas9. The depletion of maternal Slbp2 disrupted early nuclear cleavage, which resulted in developmental arrest at the MBT stage. The developmental defects could be rescued in slbp2 transgenic MZslbp2Δ4-/- embryos. However, homozygous mutant MZslbp1Δ1-/- developed normally, indicating slbp1 is dispensable for zebrafish early embryogenesis. Through comparative proteome and transcriptome profiling between WT and MZslbp2Δ4-/- embryos, we identified many differentially expressed proteins and genes. In comparison with those in WT embryos, four replication-dependent histones, including H2a, H2b, H3, and H4, all reduced their expression, while histone variant h2afx significantly increased in MZslbp2Δ4-/- embryos at the 256-cell stage and high stage. Zebrafish Slbp2 can bind histone mRNA stem-loop in vitro, and the defects of MZslbp2Δ4-/- embryos can be partially rescued by overexpression of H2b. The current data indicate that maternal Slbp2 plays a pivotal role in the storage of replication-dependent histone mRNAs and proteins during zebrafish oogenesis.
Collapse
Affiliation(s)
- Wen-Xia He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
118
|
Abstract
The timely and precise repair of DNA damage, or more specifically DNA double-strand breaks (DSBs) - the most deleterious DNA lesions, is crucial for maintaining genome integrity and cellular homeostasis. An appropriate cellular response to DNA DSBs requires the integration of various factors, including the post-translational modifications (PTMs) of chromatin and chromatin-associated proteins. Notably, the PTMs of histones have been shown to play a fundamental role in initiating and regulating cellular responses to DNA DSBs. Here we review the role of the major histone PTMs, including phosphorylation, ubiquitination, methylation and acetylation, and their interactions during DNA DSB-induced responses.
Collapse
Affiliation(s)
- Hieu T Van
- a Department of Epigenetics and Molecular Carcinogenesis , University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Margarida A Santos
- a Department of Epigenetics and Molecular Carcinogenesis , University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
119
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
120
|
Structured illumination microscopy imaging reveals localization of replication protein A between chromosome lateral elements during mammalian meiosis. Exp Mol Med 2018; 50:1-12. [PMID: 30154456 PMCID: PMC6113238 DOI: 10.1038/s12276-018-0139-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
An important event enabling meiotic prophase I to proceed is the close juxtaposition of conjoined chromosome axes of homologs and their assembly via an array of transverse filaments and meiosis-specific axial elements into the synaptonemal complex (SC). During meiosis, recombination requires the establishment of a platform for recombinational interactions between the chromosome axes and their subsequent stabilization. This is essential for ensuring crossover recombination and proper segregation of homologous chromosomes. Thus, well-established SCs are essential for supporting these processes. The regulation of recombination intermediates on the chromosome axis/SC and dynamic positioning of double-strand breaks are not well understood. Here, using super-resolution microscopy (structured illumination microscopy), we determined the localization of the replication protein A (RPA) complex on the chromosome axes in the early phase of leptonema/zygonema and within the CEs of SC in the pachynema during meiotic prophase in mouse spermatocytes. RPA, which marks the intermediate steps of pairing and recombination, appears in large numbers and is positioned on the chromosome axes at the zygonema. In the pachynema, RPA foci are reduced but do not completely disappear; instead, they are placed between lateral elements. Our results reveal the precise structure of SC and localization dynamics of recombination intermediates on meiocyte chromosomes undergoing homolog pairing and meiotic recombination.
Collapse
|
121
|
Vougiouklakis T, Saloura V, Park JH, Takamatsu N, Miyamoto T, Nakamura Y, Matsuo Y. Development of novel SUV39H2 inhibitors that exhibit growth suppressive effects in mouse xenograft models and regulate the phosphorylation of H2AX. Oncotarget 2018; 9:31820-31831. [PMID: 30159125 PMCID: PMC6112750 DOI: 10.18632/oncotarget.25806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/01/2018] [Indexed: 01/21/2023] Open
Abstract
Protein methyltransferase SUV39H2 was reported to methylate histone H2AX at lysine 134 and enhance the formation of phosphorylated H2AX (γ-H2AX), which causes chemoresistance of cancer cells. We found that a series of imidazo[1,2-a]pyridine compounds that we synthesized could inhibit SUV39H2 methyltransferase activity. One of the potent compounds, OTS193320, was further analyzed in in vitro studies. The compound decreased global histone H3 lysine 9 tri-methylation levels in breast cancer cells and triggered apoptotic cell death. Combination of OTS193320 with doxorubicin (DOX) resulted in reduction of γ-H2AX levels as well as cancer cell viability compared to a single agent OTS193320 or DOX. Further optimization of inhibitors and their in vivo analysis identified a compound, OTS186935, which revealed significant inhibition of tumor growth in mouse xenograft models using MDA-MB-231 breast cancer cells and A549 lung cancer cells without any detectable toxicity. Our results suggest that the SUV39H2 inhibitors sensitize cancer cells to DOX by reduction of γ-H2AX levels in cancer cells, and collectively demonstrate that SUV39H2 inhibition warrants further investigation as a novel anti-cancer therapy.
Collapse
Affiliation(s)
- Theodore Vougiouklakis
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Vassiliki Saloura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jae-Hyun Park
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | | | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA.,Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Yo Matsuo
- OncoTherapy Science Inc., Kawasaki, Japan
| |
Collapse
|
122
|
Hu X, Wu X, Liu H, Cheng Z, Zhao Z, Xiang C, Feng X, Takeda S, Qing Y. Genistein-induced DNA damage is repaired by nonhomologous end joining and homologous recombination in TK6 cells. J Cell Physiol 2018; 234:2683-2692. [PMID: 30070703 DOI: 10.1002/jcp.27082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/28/2018] [Indexed: 02/05/2023]
Abstract
Genistein (GES), a phytoestrogen, has potential chemopreventive and chemotherapeutic effects on cancer. The anticancer mechanism of GES may be related with topoisomerase II associated DNA double-strand breaks (DSBs). However, the precise molecular mechanism remains elusive. Here, we performed genetic analyses using human lymphoblastoid TK6 cell lines to investigate whether non-homologous DNA end joining (NHEJ) and homologous recombination (HR), the two major repair pathways of DSBs, were involved in repairing GES-induced DNA damage. Our results showed that GES induced DSBs in TK6 cells. Cells lacking Ligase4, an NHEJ enzyme, are hypersensitive to GES. Furthermore, the sensitivity of Ligase4-/- cells was associated with enhanced DNA damage when comparing the accumulation of γ-H2AX foci and number of chromosomal aberrations (CAs) with WT cells. In addition, cells lacking Rad54, a HR enzyme, also presented hypersensitivity and increased DNA damages in response to GES. Meanwhile, Treatment of GES-lacking enhanced the accumulation of Rad51, an HR factor, in TK6 cells, especially in Ligase4-/- . These results provided direct evidence that GES induced DSBs in TK6 cells and clarified that both NHEJ and HR were involved in the repair of GES-induced DNA damage, suggesting that GES in combination with inhibition of NHEJ or HR would provide a potential anticancer strategy.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Hao Liu
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Ziyuan Cheng
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Zilu Zhao
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Cuifang Xiang
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Feng
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
123
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
124
|
Morotomi-Yano K, Saito S, Adachi N, Yano KI. Dynamic behavior of DNA topoisomerase IIβ in response to DNA double-strand breaks. Sci Rep 2018; 8:10344. [PMID: 29985428 PMCID: PMC6037730 DOI: 10.1038/s41598-018-28690-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
DNA topoisomerase II (Topo II) is crucial for resolving topological problems of DNA and plays important roles in various cellular processes, such as replication, transcription, and chromosome segregation. Although DNA topology problems may also occur during DNA repair, the possible involvement of Topo II in this process remains to be fully investigated. Here, we show the dynamic behavior of human Topo IIβ in response to DNA double-strand breaks (DSBs), which is the most harmful form of DNA damage. Live cell imaging coupled with site-directed DSB induction by laser microirradiation demonstrated rapid recruitment of EGFP-tagged Topo IIβ to the DSB site. Detergent extraction followed by immunofluorescence showed the tight association of endogenous Topo IIβ with DSB sites. Photobleaching analysis revealed that Topo IIβ is highly mobile in the nucleus. The Topo II catalytic inhibitors ICRF-187 and ICRF-193 reduced the Topo IIβ mobility and thereby prevented Topo IIβ recruitment to DSBs. Furthermore, Topo IIβ knockout cells exhibited increased sensitivity to bleomycin and decreased DSB repair mediated by homologous recombination (HR), implicating the role of Topo IIβ in HR-mediated DSB repair. Taken together, these results highlight a novel aspect of Topo IIβ functions in the cellular response to DSBs.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- Department of Bioelectrics, Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinta Saito
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan
| | - Noritaka Adachi
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan.,Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan
| | - Ken-Ichi Yano
- Department of Bioelectrics, Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555, Japan.
| |
Collapse
|
125
|
Wei Y, Chen L, Xu H, Xie C, Zhou Y, Zhou F. Mitochondrial Dysfunctions Regulated Radioresistance through Mitochondria-to-Nucleus Retrograde Signaling Pathway of NF-κB/PI3K/AKT2/mTOR. Radiat Res 2018; 190:204-215. [PMID: 29863983 DOI: 10.1667/rr15021.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated the relationship between significantly different genes of the mitochondria-to-nucleus retrograde signaling pathway (RTG) in H1299 ρ0 cells (mtDNA depleted cell) and compared their radiosensitivity to that of parental ρ+ cells, to determine the possible intervention targets of radiosensitization. ρ0 cells were depleted of mitochondrial DNA by chronic culturing in ethidium bromide at low concentration. Radiosensitivity was analyzed using clonogenic assay. Western blot was used to analyze the cell cycle-related proteins, serine/threonine kinase ataxia telangiectasia mutant (ATM), ataxia telangiectasia and Rad3-related protein (ATR) and cyclin B1 (CCNB1). The γ-H2AX foci were detected using confocal fluorescence microscopy. RNA samples were hybridized using the Agilent human genome expression microarray. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for Gene Ontology (GO) Consortium and pathway annotations of differentially expressed genes, respectively. The H1299 ρ0 cells were found to be more radioresistant than ρ+ cells. The ATP production of H1299 ρ0 cells was lower than that of the ρ+ cells before or after irradiation. Both H1299 ρ0 and ρ+ cells had higher ROS levels after irradiation, however, the radiation-induced ROS production in ρ0 cells was significantly lower than in ρ+ cells. In addition, the percentage of apoptosis in H1299 ρ0 cells was lower than in ρ+ cells after 6 Gy irradiation. As for the cell cycle and DNA damage response-related proteins ATM, ATR and CCNB1, the expression levels in ρ0 cells were significantly higher than in ρ+ cells, and there were less γ-H2AX foci in the ρ0 than ρ+ cells after irradiation. Furthermore, the results of the human genome expression microarray demonstrated that the phosphorylated protein levels of the NF-κB/PI3K/AKT2/mTOR signaling pathway were increased after 6 Gy irradiation and were decreased after treatment with the AKT2-specific inhibitor MK-2206 combined with radiation in H1299 ρ0 cells. MK-2206 treatment also led to an increase in pro-apoptotic proteins. In conclusion, these results demonstrate that mtDNA depletion might activate the mitochondria-to-nucleus retrograde signaling pathway of NF-κB/PI3K/AKT2/mTOR and induce radioresistance in H1299 ρ0 cells by evoking mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Yuehua Wei
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,d Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lulu Chen
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,d Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui Xu
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Conghua Xie
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yunfeng Zhou
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Fuxiang Zhou
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
126
|
Bekeschus S, Schmidt A, Kramer A, Metelmann HR, Adler F, von Woedtke T, Niessner F, Weltmann KD, Wende K. High throughput image cytometry micronucleus assay to investigate the presence or absence of mutagenic effects of cold physical plasma. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:268-277. [PMID: 29417643 DOI: 10.1002/em.22172] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 06/08/2023]
Abstract
Promising cold physical plasma sources have been developed in the field of plasma medicine. An important prerequisite to their clinical use is lack of genotoxic effects in cells. During optimization of one or even different plasma sources for a specific application, large numbers of samples need to be analyzed. There are soft and easy-to-assess markers for genotoxic stress such as phosphorylation of histone H2AX (γH2AX) but only few tests are accredited by the OECD with regard to mutagenicity detection. The micronucleus (MN) assay is among them but often requires manual counting of many thousands of cells per sample under the microscope. A high-throughput MN assay is presented using image flow cytometry and image analysis software. A human lymphocyte cell line was treated with plasma generated with ten different feed gas conditions corresponding to distinct reactive species patterns that were investigated for their genotoxic potential. Several millions of cells were automatically analyzed by a MN quantification strategy outlined in detail in this work. Our data demonstrates the absence of newly formed MN in any feed gas condition using the atmospheric pressure plasma jet kINPen. As positive control, ionizing radiation gave a significant 5-fold increase in micronucleus frequency. Thus, this assay is suitable to assess the genotoxic potential in large sample sets of cells exposed chemical or physical agents including plasmas in an efficient, reliable, and semiautomated manner. Environ. Mol. Mutagen. 59:268-277, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Axel Kramer
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans-Robert Metelmann
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Frank Adler
- Department of Radiotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Felix Niessner
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| |
Collapse
|
127
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
128
|
LRH1 enhances cell resistance to chemotherapy by transcriptionally activating MDC1 expression and attenuating DNA damage in human breast cancer. Oncogene 2018; 37:3243-3259. [DOI: 10.1038/s41388-018-0193-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 11/08/2022]
|
129
|
Lee IN, Dobre O, Richards D, Ballestrem C, Curran JM, Hunt JA, Richardson SM, Swift J, Wong LS. Photoresponsive Hydrogels with Photoswitchable Mechanical Properties Allow Time-Resolved Analysis of Cellular Responses to Matrix Stiffening. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7765-7776. [PMID: 29430919 PMCID: PMC5864053 DOI: 10.1021/acsami.7b18302] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/12/2018] [Indexed: 05/03/2023]
Abstract
As cell function and phenotype can be directed by the mechanical characteristics of the surrounding matrix, hydrogels have become important platforms for cell culture systems, with properties that can be tuned by external stimuli, such as divalent cations, enzymatic treatment, and pH. However, many of these stimuli can directly affect cell behavior, making it difficult to distinguish purely mechanical signaling events. This study reports on the development of a hydrogel that incorporates photoswitchable cross-linkers, which can reversibly alter their stiffness upon irradiation with the appropriate wavelength of light. Furthermore, this study reports the response of bone-marrow-derived mesenchymal stem cells (MSCs) on these hydrogels that were stiffened systematically by irradiation with blue light. The substrates were shown to be noncytotoxic, and crucially MSCs were not affected by blue-light exposure. Time-resolved analysis of cell morphology showed characteristic cell spreading and increased aspect ratios in response to greater substrate stiffness. This hydrogel provides a platform to study mechanosignaling in cells responding to dynamic changes in stiffness, offering a new way to study mechanotransduction signaling pathways and biological processes, with implicit changes to tissue mechanics, such as development, ageing, and fibrosis.
Collapse
Affiliation(s)
- I-Ning Lee
- Manchester Institute
of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- School
of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool L69 3GH, United Kingdom
| | - Oana Dobre
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - David Richards
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Judith M. Curran
- School
of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool L69 3GH, United Kingdom
| | - John A. Hunt
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Stephen M. Richardson
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Joe Swift
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Lu Shin Wong
- Manchester Institute
of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
130
|
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M. Role of novel histone modifications in cancer. Oncotarget 2018; 9:11414-11426. [PMID: 29541423 PMCID: PMC5834259 DOI: 10.18632/oncotarget.23356] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Surendar Arumugam
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bian Jinsong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
131
|
König A, Zöller N, Kippenberger S, Bernd A, Kaufmann R, Layer PG, Heselich A. Non-thermal near-infrared exposure photobiomodulates cellular responses to ionizing radiation in human full thickness skin models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:115-123. [DOI: 10.1016/j.jphotobiol.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
|
132
|
Bittner L, Wyck S, Herrera C, Siuda M, Wrenzycki C, van Loon B, Bollwein H. Negative effects of oxidative stress in bovine spermatozoa on in vitro development and DNA integrity of embryos. Reprod Fertil Dev 2018; 30:1359-1368. [DOI: 10.1071/rd17533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 03/22/2018] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress in spermatozoa has effects on subsequent embryo development. The aim of the present study was to elucidate whether sperm oxidative stress results in increased DNA damage in the embryo. To this end, bovine spermatozoa were incubated for 1 h at 37°C without or with 100 µM H2O2, resulting in non-oxidised (NOX-S) and oxidised (OX-S) spermatozoa respectively. Non-incubated spermatozoa served as the control group (CON-S). After IVF, developmental rates 30, 46 and 60 h and 7 days after IVF were assessed. DNA damage was analysed in embryos using the comet assay and a DNA damage marker (γH2AX immunostaining); the apoptotic index was determined in blastocysts. Exposure of spermatozoa to H2O2 induced a significant amount of sperm chromatin damage. The use of OX-S in IVF resulted in significantly reduced cleavage and blastocyst rates compared with the use of CON-S and NOX-S. Furthermore, in embryos resulting from the use of OX-S, a developmental delay was evident 30 and 46 h after IVF. γH2AX immunostaining was lower in blastocysts than in early embryos. In blastocysts, the comet and apoptotic indices were significantly higher in embryos resulting from the use of OX-S than CON-S and NOX-S. In conclusion, oxidative stress in spermatozoa induces developmental abnormalities and is a source of DNA damage in the resulting embryos.
Collapse
|
133
|
Ginjala V, Rodriguez-Colon L, Ganguly B, Gangidi P, Gallina P, Al-Hraishawi H, Kulkarni A, Tang J, Gheeya J, Simhadri S, Yao M, Xia B, Ganesan S. Protein-lysine methyltransferases G9a and GLP1 promote responses to DNA damage. Sci Rep 2017; 7:16613. [PMID: 29192276 PMCID: PMC5709370 DOI: 10.1038/s41598-017-16480-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022] Open
Abstract
Upon induction of DNA breaks, ATM activation leads to a cascade of local chromatin modifications that promote efficient recruitment of DNA repair proteins. Errors in this DNA repair pathway lead to genomic instability and cancer predisposition. Here, we show that the protein lysine methyltransferase G9a (also known as EHMT2) and GLP1 (also known as EHMT1) are critical components of the DNA repair pathway. G9a and GLP1 rapidly localizes to DNA breaks, with GLP1 localization being dependent on G9a. ATM phosphorylation of G9a on serine 569 is required for its recruitment to DNA breaks. G9a catalytic activity is required for the early recruitment of DNA repair factors including 53BP and BRCA1 to DNA breaks. Inhibition of G9a catalytic activity disrupts DNA repair pathways and increases sensitivity to ionizing radiation. Thus, G9a is a potential therapeutic target in the DNA repair pathway.
Collapse
Affiliation(s)
- Vasudeva Ginjala
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA.
| | - Lizahira Rodriguez-Colon
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Bratati Ganguly
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Prawallika Gangidi
- Cornell University, College of Engineering, Department of Biological Engineering, 111 Wing Drive, Ithaca, NY, 14853-5701, USA
| | - Paul Gallina
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Husam Al-Hraishawi
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Atul Kulkarni
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Jeremy Tang
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Jinesh Gheeya
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Srilatha Simhadri
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Ming Yao
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Bing Xia
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA
| | - Shridar Ganesan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany street, New Brunswick, New Jersey, 08903, USA.
| |
Collapse
|
134
|
Park SJ, Heo K, Choi C, Yang K, Adachi A, Okada H, Yoshida Y, Ohno T, Nakano T, Takahashi A. Carbon ion irradiation abrogates Lin28B-induced X-ray resistance in melanoma cells. JOURNAL OF RADIATION RESEARCH 2017; 58:765-771. [PMID: 28482074 PMCID: PMC5710593 DOI: 10.1093/jrr/rrx022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/06/2017] [Indexed: 05/25/2023]
Abstract
The Lin28/let-7 axis plays an important role in tumor initiation and developmental processes. Lin28B is upregulated in a variety of cancers, and its overexpression enhances cancer cell proliferation and radioresistance through the suppression of let-7 micro RNA expression. In this study, we investigated the role of the Lin28/let7 axis as a target for radiosensitization of melanoma cancer cells. The overexpression of Lin28B reduced mature let-7 microRNA expression in melanoma cell lines, and enhanced the sphere-forming ability of melanoma cell lines, which is a characteristic of cancer stem cell (CSC) populations. Interestingly, Lin28B-overexpressed melanoma cells were more resistant to X-ray irradiation than control cells, and Lin28B-induced radioresistance was abolished after carbon ion irradiation. Consistent with these results, Lin28B overexpression reduced the numbers of γH2A.X foci after X-ray irradiation, whereas carbon ion irradiation had no such effect. Our results suggest that a carbon ion beam is more effective than an X-ray beam in terms of killing cancer cells, possibly due to elimination of CSC populations.
Collapse
Affiliation(s)
- Seong-Joon Park
- Gunma University Heavy Ion Medical Center, 3–39-22 Showa-machi, Maebashi 371–8511, Gunma, Japan
- Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Gijang-gun, Busan 619-953, Republic of Korea
| | - Kyu Heo
- Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Gijang-gun, Busan 619-953, Republic of Korea
| | - Chulwon Choi
- Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Gijang-gun, Busan 619-953, Republic of Korea
| | - Kwangmo Yang
- Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Gijang-gun, Busan 619-953, Republic of Korea
| | - Akiko Adachi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3–39-22 Showa-machi, Maebashi 371–8511, Gunma, Japan
| | - Hiroko Okada
- Gunma University Initiative for Advanced Research, 3–39-22 Showa-machi, Maebashi 371–8511, Gunma, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3–39-22 Showa-machi, Maebashi 371–8511, Gunma, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, 3–39-22 Showa-machi, Maebashi 371–8511, Gunma, Japan
| | - Takashi Nakano
- Gunma University Heavy Ion Medical Center, 3–39-22 Showa-machi, Maebashi 371–8511, Gunma, Japan
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3–39-22 Showa-machi, Maebashi 371–8511, Gunma, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3–39-22 Showa-machi, Maebashi 371–8511, Gunma, Japan
| |
Collapse
|
135
|
D'Alessandro G, d'Adda di Fagagna F. Transcription and DNA Damage: Holding Hands or Crossing Swords? J Mol Biol 2017; 429:3215-3229. [DOI: 10.1016/j.jmb.2016.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/12/2023]
|
136
|
Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway. Biomed Pharmacother 2017; 94:974-981. [DOI: 10.1016/j.biopha.2017.07.148] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 07/30/2017] [Indexed: 01/06/2023] Open
|
137
|
Genome Instability and γH2AX. Int J Mol Sci 2017; 18:ijms18091979. [PMID: 28914798 PMCID: PMC5618628 DOI: 10.3390/ijms18091979] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
γH2AX has emerged in the last 20 years as a central player in the DDR (DNA damage response), with specificity for DSBs (double-strand breaks). Upon the generation of DSBs, γ-phosphorylation extends along megabase-long domains in chromatin, both sides of the damage. The significance of this mechanism is of great importance; it depicts a biological amplification mechanism where one DSB induces the γ-phosphorylation of thousands of H2AX molecules along megabaselong domains of chromatin, that are adjusted to the sites of DSBs. A sequential recruitment of signal transduction factors that interact to each other and become activated to further amplify the signal that will travel to the cytoplasm take place on the γ-phosphorylated chromatin. γ-phosphorylation is an early event in the DSB damage response, induced in all phases of the cell cycle, and participates in both DSB repair pathways, the HR (homologous recombination) and NHEJ (non-homologous end joining). Today, numerous studies support the notion that γH2AX functions as a guardian of the genome by preventing misrepaired DSB that increase the mutation load of the cells and may further lead to genome instability and carcinogenesis.
Collapse
|
138
|
Liu C, Vyas A, Kassab MA, Singh AK, Yu X. The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res 2017; 45:8129-8141. [PMID: 28854736 PMCID: PMC5737498 DOI: 10.1093/nar/gkx565] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 01/11/2023] Open
Abstract
Poly ADP-ribose polymerases (PARPs) catalyze massive protein poly ADP-ribosylation (PARylation) within seconds after the induction of DNA single- or double-strand breaks. PARylation occurs at or near the sites of DNA damage and promotes the recruitment of DNA repair factors via their poly ADP-ribose (PAR) binding domains. Several novel PAR-binding domains have been recently identified. Here, we summarize these and other recent findings suggesting that PARylation may be the critical event that mediates the first wave of the DNA damage response. We also discuss the potential for functional crosstalk with other DNA damage-induced post-translational modifications.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Aditi Vyas
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Muzaffer A. Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Anup K. Singh
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
139
|
Abstract
DNA double-strand breaks (DSBs) serve as obligatory intermediates for Ig heavy chain (Igh) class switch recombination (CSR). The mechanisms by which DSBs are resolved to promote long-range DNA end-joining while suppressing genomic instability inherently associated with DSBs are yet to be fully elucidated. Here, we use a targeted short-hairpin RNA screen in a B-cell lymphoma line to identify the BRCT-domain protein BRIT1 as an effector of CSR. We show that conditional genetic deletion of BRIT1 in mice leads to a marked increase in unrepaired Igh breaks and a significant reduction in CSR in ex vivo activated splenic B cells. We find that the C-terminal tandem BRCT domains of BRIT1 facilitate its interaction with phosphorylated H2AX and that BRIT1 is recruited to the Igh locus in an activation-induced cytidine deaminase (AID) and H2AX-dependent fashion. Finally, we demonstrate that depletion of another BRCT-domain protein, MDC1, in BRIT1-deleted B cells increases the severity of CSR defect over what is observed upon loss of either protein alone. Our results identify BRIT1 as a factor in CSR and demonstrate that multiple BRCT-domain proteins contribute to optimal resolution of AID-induced DSBs.
Collapse
|
140
|
Abstract
Ataxia Telangiectasia Mutated (ATM) has been known for decades as the main kinase mediating the DNA Double-Strand Break Response (DDR). Extensive studies have revealed its dual role in locally promoting detection and repair of DSBs as well as in activating global DNA damage checkpoints. However, recent studies pinpoint additional unanticipated functions for ATM in modifying both the local chromatin landscape and the global chromosome organization, more particularly at persistent breaks. Given the emergence of a novel and unexpected class of DSBs prevalently arising in transcriptionally active genes and intrinsically difficult to repair, a specific role of ATM at refractory DSBs could be an important and so far overlooked feature of Ataxia Telangiectasia (A-T) a severe disorder associated with ATM mutations.
Collapse
Affiliation(s)
- Thomas Clouaire
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, France
| | - Aline Marnef
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, France.
| |
Collapse
|
141
|
Abstract
Replication forks encounter obstacles that must be repaired or bypassed to complete chromosome duplication before cell division. Proteomic analysis of replication forks suggests that the checkpoint and repair machinery travels with unperturbed forks, implying that they are poised to respond to stalling and collapse. However, impaired fork progression still generates aberrations, including repeat copy number instability and chromosome rearrangements. Deregulated origin firing also causes fork instability if a newer fork collides with an older one, generating double-strand breaks (DSBs) and partially rereplicated DNA. Current evidence suggests that multiple mechanisms are used to repair rereplication damage, yet these can have deleterious consequences for genome integrity.
Collapse
|
142
|
Shen J, Kim HC, Wolfram J, Mu C, Zhang W, Liu H, Xie Y, Mai J, Zhang H, Li Z, Guevara M, Mao ZW, Shen H. A Liposome Encapsulated Ruthenium Polypyridine Complex as a Theranostic Platform for Triple-Negative Breast Cancer. NANO LETTERS 2017; 17:2913-2920. [PMID: 28418672 PMCID: PMC5484597 DOI: 10.1021/acs.nanolett.7b00132] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ruthenium coordination complexes have the potential to serve as novel theranostic agents for cancer. However, a major limitation in their clinical implementation is effective tumor accumulation. In this study, we have developed a liposome-based theranostic nanodelivery system for [Ru(phen)2dppz](ClO4)2 (Lipo-Ru). This ruthenium polypyridine complex emits a strong fluorescent signal when incorporated in the hydrophobic lipid bilayer of the delivery vehicle or in the DNA helix, enabling visualization of the therapeutic agent in tumor tissues. Incubation of MDA-MB-231 breast cancer cells with Lipo-Ru induced double-strand DNA breaks and triggers apoptosis. In a mouse model of triple-negative breast cancer, treatment with Lipo-Ru dramatically reduced tumor growth. Biodistribution studies of Lipo-Ru revealed that more than 20% of the injected dose accumulated in the tumor. These results suggest that Lipo-Ru could serve as a promising theranostic platform for cancer.
Collapse
Affiliation(s)
- Jianliang Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Han-Cheon Kim
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, United States
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 3224, United States
| | - Chaofeng Mu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Wei Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haoran Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Yan Xie
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, United States
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhi Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Maria Guevara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, United States
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
143
|
Corrà S, Salvadori R, Bee L, Barbieri V, Mognato M. Analysis of DNA-damage response to ionizing radiation in serum-shock synchronized human fibroblasts. Cell Biol Toxicol 2017; 33:373-388. [PMID: 28466226 PMCID: PMC5493713 DOI: 10.1007/s10565-017-9394-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Many aspects of cellular physiology, including cellular response to genotoxic stress, are related to the circadian rhythmicity induced by the molecular clock. The current study investigated if the cellular response to DNA damage is in relation to endogenous expression levels of the PER2 protein, a key component of the molecular regulatory system that confers rhythmicity in mammalian cells. Human normal fibroblasts (CCD-34Lu) were subjected to serum shock to induce circadian oscillations of the PER2 protein and then irradiated with γ- rays at times corresponding to the trough and peak expression of the PER2 protein. To better examine cellular response to DNA damage, the experiments performed in this study were carried out in non-proliferating CCD-34Lu fibroblasts in order to maintain the cell and circadian cycles separated while they were being exposed to genotoxic stress. Study results demonstrated that clonogenic cell survival, double-strand break repair kinetics, and TP53 protein levels were affected in the cells irradiated at the trough than in those irradiated at peak expression of the PER2 protein.
Collapse
Affiliation(s)
- Samantha Corrà
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy
| | - Riccardo Salvadori
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy
| | - Leonardo Bee
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy.,Menarini Silicon Biosystems, 10355 Science Center Dr #210, San Diego, CA, 92121, USA
| | - Vito Barbieri
- Department of Surgical, Oncological and Gastroenteric Sciences, University of Padova, via Giustiniani 2, Padova, Italy
| | - Maddalena Mognato
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy.
| |
Collapse
|
144
|
Youn CK, Kim HB, Wu TT, Park S, Cho SI, Lee JH. 53BP1 contributes to regulation of autophagic clearance of mitochondria. Sci Rep 2017; 7:45290. [PMID: 28345606 PMCID: PMC5366885 DOI: 10.1038/srep45290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autophagy, the primary recycling pathway within cells, plays a critical role in mitochondrial quality control under normal growth conditions and in the cellular response to stress. Here we provide evidence that 53BP1, a DNA damage response protein, is involved in regulating mitochondrial clearance from the cell via a type of autophagy termed mitophagy. We found that when either human or mouse cells were 53BP1-deficient, there was an increase in mitochondrial abnormalities, as observed through staining intensity, aggregation, and increased mass. Moreover, a 53BP1-depleted cell population included an increased number of cells with a high mitochondrial membrane potential (ΔΨm) relative to controls, suggesting that the loss of 53BP1 prevents initiation of mitophagy thereby leading to the accumulation of damaged mitochondria. Indeed, both 53BP1 and the mitophagy-associated protein LC3 translocated to mitochondria in response to damage induced by the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The recruitment of parkin, an E3-ubiquitin ligase, to mitochondria in response to CCCP treatment was significantly decreased in 53BP1-deficient cells. And lastly, using p53-deficient H1299 cells, we confirmed that the role of 53BP1 in mitophagy is independent of p53. These data support a model in which 53BP1 plays an important role in modulating mitochondrial homeostasis and in the clearance of damaged mitochondria.
Collapse
Affiliation(s)
- Cha Kyung Youn
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of premedical Sciences, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Hong Beum Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of premedical Sciences, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Ting Ting Wu
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Sanggon Park
- Department of Internal Medicine, Hemato-oncology, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Sung Il Cho
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| |
Collapse
|
145
|
Tiwari M, Parvez S, Agrawala PK. Role of some epigenetic factors in DNA damage response pathway. AIMS GENETICS 2017; 4:69-83. [PMID: 31435504 PMCID: PMC6690236 DOI: 10.3934/genet.2017.1.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/17/2017] [Indexed: 01/01/2023]
Abstract
The current review gives a brief account of the DNA damage response pathway and involvement of various epigenetic mechanisms in DNA damage response pathway. The main focus is on histone modifications leading to structural alterations in chromatin since the compact chromatin structure poses a major limitation in the DNA repair process. Based on this hypothesis, our laboratory has also evaluated certain histone deacetylase inhibitors as potential radiomitigators and the same has been discussed in brief at the end of the review.
Collapse
Affiliation(s)
- Mrinalini Tiwari
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Road, Timarpur, Delhi 110054 India
| | - Suhel Parvez
- Department of Toxicology, Jamia Hamdard University, Hamdard Nagar, Delhi 110062 India
| | - Paban K Agrawala
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Road, Timarpur, Delhi 110054 India
| |
Collapse
|
146
|
Erdem ZN, Schwarz S, Drev D, Heinzle C, Reti A, Heffeter P, Hudec X, Holzmann K, Grasl-Kraupp B, Berger W, Grusch M, Marian B. Irinotecan Upregulates Fibroblast Growth Factor Receptor 3 Expression in Colorectal Cancer Cells, Which Mitigates Irinotecan-Induced Apoptosis. Transl Oncol 2017; 10:332-339. [PMID: 28340475 PMCID: PMC5367848 DOI: 10.1016/j.tranon.2017.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/16/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND: Irinotecan (IRI) is an integral part of colorectal cancer (CRC) therapy, but response rates are unsatisfactory and resistance mechanisms are still insufficiently understood. As fibroblast growth factor receptor 3 (FGFR3) mediates essential survival signals in CRC, it is a candidate gene for causing intrinsic resistance to IRI. METHODS: We have used cell line models overexpressing FGFR3 to study the receptor's impact on IRI response. For pathway blockade, a dominant-negative receptor mutant and a small molecule kinase inhibitor were employed. RESULTS: IRI exposure induced expression of FGFR3 as well as its ligands FGF8 and FGF18 both in cell cultures and in xenograft tumors. As overexpression of FGFR3 mitigated IRI-induced apoptosis in CRC cell models, this suggests that the drug itself activated a survival response. On the cellular level, the antiapoptotic protein bcl-xl was upregulated and caspase 3 activation was inhibited. Targeting FGFR3 signaling using a dominant-negative receptor mutant sensitized cells for IRI. In addition, the FGFR inhibitor PD173074 acted synergistically with the chemotherapeutic drug and significantly enhanced IRI-induced caspase 3 activity in vitro. In vivo, PD173074 strongly inhibited growth of IRI-treated tumors. CONCLUSION: Together, our results indicate that targeting FGFR3 can be a promising strategy to enhance IRI response in CRC patients.
Collapse
Affiliation(s)
- Zeynep N Erdem
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Stefanie Schwarz
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Daniel Drev
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Christine Heinzle
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Andrea Reti
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Petra Heffeter
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Xenia Hudec
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Klaus Holzmann
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bettina Grasl-Kraupp
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Walter Berger
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Michael Grusch
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Brigitte Marian
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
147
|
High-resolution phenotypic profiling of natural products-induced effects on the single-cell level. Sci Rep 2017; 7:44472. [PMID: 28295057 PMCID: PMC5353608 DOI: 10.1038/srep44472] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
Natural products (NPs) are highly evolved molecules making them a valuable resource for new therapeutics. Here we demonstrate the usefulness of broad-spectrum phenotypic profiling of NP-induced perturbations on single cells with imaging-based High-Content Screening to inform on physiology, mechanisms-of-actions, and multi-level toxicity. Our technology platform aims at broad applicability using a comprehensive marker panel with standardized settings streamlined towards an easy implementation in laboratories dedicated to natural products research.
Collapse
|
148
|
Leung JWC, Makharashvili N, Agarwal P, Chiu LY, Pourpre R, Cammarata MB, Cannon JR, Sherker A, Durocher D, Brodbelt JS, Paull TT, Miller KM. ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes Dev 2017; 31:260-274. [PMID: 28242625 PMCID: PMC5358723 DOI: 10.1101/gad.292516.116] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2017] [Indexed: 12/02/2022]
Abstract
In this study, Leung et al. identified ZMYM3 (zinc finger, myeloproliferative, and mental retardation-type 3) as a chromatin-interacting protein that promotes DNA repair by homologous recombination. This work identifies a critical chromatin-binding DNA damage response factor, ZMYM3, which modulates BRCA1 functions within chromatin to ensure the maintenance of genome integrity. Chromatin connects DNA damage response factors to sites of damaged DNA to promote the signaling and repair of DNA lesions. The histone H2A variants H2AX, H2AZ, and macroH2A represent key chromatin constituents that facilitate DNA repair. Through proteomic screening of these variants, we identified ZMYM3 (zinc finger, myeloproliferative, and mental retardation-type 3) as a chromatin-interacting protein that promotes DNA repair by homologous recombination (HR). ZMYM3 is recruited to DNA double-strand breaks through bivalent interactions with both histone and DNA components of the nucleosome. We show that ZMYM3 links the HR factor BRCA1 to damaged chromatin through specific interactions with components of the BRCA1-A subcomplex, including ABRA1 and RAP80. By regulating ABRA1 recruitment to damaged chromatin, ZMYM3 facilitates the fine-tuning of BRCA1 interactions with DNA damage sites and chromatin. Consistent with a role in regulating BRCA1 function, ZMYM3 deficiency results in impaired HR repair and genome instability. Thus, our work identifies a critical chromatin-binding DNA damage response factor, ZMYM3, which modulates BRCA1 functions within chromatin to ensure the maintenance of genome integrity.
Collapse
Affiliation(s)
- Justin W C Leung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nodar Makharashvili
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Poonam Agarwal
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Li-Ya Chiu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Renaud Pourpre
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael B Cammarata
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Joe R Cannon
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alana Sherker
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G1X5, Canada
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G1X5, Canada
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
149
|
Qiu Z, Zhang Z, Roschke A, Varga T, Aplan PD. Generation of Gross Chromosomal Rearrangements by a Single Engineered DNA Double Strand Break. Sci Rep 2017; 7:43156. [PMID: 28225067 PMCID: PMC5320478 DOI: 10.1038/srep43156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Gross chromosomal rearrangements (GCRs), including translocations, inversions amplifications, and deletions, can be causal events leading to malignant transformation. GCRs are thought to be triggered by DNA double strand breaks (DSBs), which in turn can be spontaneous or induced by external agents (eg. cytotoxic chemotherapy, ionizing radiation). It has been shown that induction of DNA DSBs at two defined loci can produce stable balanced chromosomal translocations, however, a single engineered DNA DSB could not. Herein, we report that although a single engineered DNA DSB in H2AX “knockdown” cells did not generate GCRs, repair of a single engineered DNA DSB in fibroblasts that had ablated H2ax did produce clonal, stable GCRs, including balanced translocations and megabase-pair inversions. Upon correction of the H2ax deficiency, cells no longer generated GCRs following a single engineered DNA DSB. These findings demonstrate that clonal, stable GCRs can be produced by a single engineered DNA DSB in H2ax knockout cells, and that the production of these GCRs is ameliorated by H2ax expression.
Collapse
Affiliation(s)
- Zhijun Qiu
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhenhua Zhang
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Roschke
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamas Varga
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Aplan
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
150
|
Adkins NL, Swygert SG, Kaur P, Niu H, Grigoryev SA, Sung P, Wang H, Peterson CL. Nucleosome-like, Single-stranded DNA (ssDNA)-Histone Octamer Complexes and the Implication for DNA Double Strand Break Repair. J Biol Chem 2017; 292:5271-5281. [PMID: 28202543 DOI: 10.1074/jbc.m117.776369] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
Repair of DNA double strand breaks (DSBs) is key for maintenance of genome integrity. When DSBs are repaired by homologous recombination, DNA ends can undergo extensive processing, producing long stretches of single-stranded DNA (ssDNA). In vivo, DSB processing occurs in the context of chromatin, and studies indicate that histones may remain associated with processed DSBs. Here we demonstrate that histones are not evicted from ssDNA after in vitro chromatin resection. In addition, we reconstitute histone-ssDNA complexes (termed ssNucs) with ssDNA and recombinant histones and analyze these particles by a combination of native gel electrophoresis, sedimentation velocity, electron microscopy, and a recently developed electrostatic force microscopy technique, DREEM (dual-resonance frequency-enhanced electrostatic force microscopy). The reconstituted ssNucs are homogenous and relatively stable, and DREEM reveals ssDNA wrapping around histones. We also find that histone octamers are easily transferred in trans from ssNucs to either double-stranded DNA or ssDNA. Furthermore, the Fun30 remodeling enzyme, which has been implicated in DNA repair, binds ssNucs preferentially over nucleosomes, and ssNucs are effective at activating Fun30 ATPase activity. Our results indicate that ssNucs may be a hallmark of processes that generate ssDNA, and that posttranslational modification of ssNucs may generate novel signaling platforms involved in genome stability.
Collapse
Affiliation(s)
- Nicholas L Adkins
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sarah G Swygert
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Parminder Kaur
- the Department of Physics.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Hengyao Niu
- the Department Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Sergei A Grigoryev
- the Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Patrick Sung
- the Department Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Hong Wang
- the Department of Physics.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Craig L Peterson
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605,
| |
Collapse
|