101
|
Abstract
Bone marrow failure is a nearly universal complication of Fanconi anemia. The proteins encoded by FANC genes are involved in DNA damage responses through the formation of a multisubunit nuclear complex that facilitates the E3 ubiquitin ligase activity of FANCL. However, it is not known whether loss of E3 ubiquitin ligase activity accounts for the hematopoietic stem cell defects characteristic of Fanconi anemia. Here we provide evidence that FANCL increases the activity and expression of β-catenin, a key pluripotency factor in hematopoietic stem cells. We show that FANCL ubiquitinates β-catenin with atypical ubiquitin chain extension known to have nonproteolytic functions. Specifically, β-catenin modified with lysine-11 ubiquitin chain extension efficiently activates a lymphocyte enhancer-binding factor-T cell factor reporter. We also show that FANCL-deficient cells display diminished capacity to activate β-catenin leading to reduced transcription of Wnt-responsive targets c-Myc and Cyclin D1. Suppression of FANCL expression in normal human CD34(+) stem and progenitor cells results in fewer β-catenin active cells and inhibits expansion of multilineage progenitors. Together, these results suggest that diminished Wnt/β-catenin signaling may be an underlying molecular defect in FANCL-deficient hematopoietic stem cells leading to their accelerated loss.
Collapse
|
102
|
Borgal L, Habbig S, Hatzold J, Liebau MC, Dafinger C, Sacarea I, Hammerschmidt M, Benzing T, Schermer B. The ciliary protein nephrocystin-4 translocates the canonical Wnt regulator Jade-1 to the nucleus to negatively regulate β-catenin signaling. J Biol Chem 2012; 287:25370-80. [PMID: 22654112 DOI: 10.1074/jbc.m112.385658] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal-recessive cystic kidney disease and represents the most common genetic cause for end-stage renal disease in children and adolescents. It can be caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs). All NPHPs localize to primary cilia, classifying this disease as a "ciliopathy." The primary cilium is a critical regulator of several cell signaling pathways. Cystogenesis in the kidney is thought to involve overactivation of canonical Wnt signaling, which is negatively regulated by the primary cilium and several NPH proteins, although the mechanism remains unclear. Jade-1 has recently been identified as a novel ubiquitin ligase targeting the canonical Wnt downstream effector β-catenin for proteasomal degradation. Here, we identify Jade-1 as a novel component of the NPHP protein complex. Jade-1 colocalizes with NPHP1 at the transition zone of primary cilia and interacts with NPHP4. Furthermore, NPHP4 stabilizes protein levels of Jade-1 and promotes the translocation of Jade-1 to the nucleus. Finally, NPHP4 and Jade-1 additively inhibit canonical Wnt signaling, and this genetic interaction is conserved in zebrafish. The stabilization and nuclear translocation of Jade-1 by NPHP4 enhances the ability of Jade-1 to negatively regulate canonical Wnt signaling. Loss of this repressor function in nephronophthisis might be an important factor promoting Wnt activation and contributing to cyst formation.
Collapse
Affiliation(s)
- Lori Borgal
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Chen L, Han L, Zhang K, Shi Z, Zhang J, Zhang A, Wang Y, Song Y, Li Y, Jiang T, Pu P, Jiang C, Kang C. VHL regulates the effects of miR-23b on glioma survival and invasion via suppression of HIF-1α/VEGF and β-catenin/Tcf-4 signaling. Neuro Oncol 2012; 14:1026-36. [PMID: 22649212 DOI: 10.1093/neuonc/nos122] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aberrant microRNA expression has been implicated in the development of human cancers. Here, we investigated the oncogenic significance and function of miR-23b in glioma. We identified that the expression of miR-23b was elevated in both glioma samples and glioma cells, indicated by real-time polymerase chain reaction analyses. Down-regulation of miR-23b triggered growth inhibition, induced apoptosis, and suppressed invasion of glioma in vitro. Luciferase assay and Western blot analysis revealed that VHL is a direct target of miR-23b. Restoring expression of VHL inhibited glioma proliferation and invasion. Mechanistic investigation revealed that miR-23b deletion decreased HIF-1α/VEGF expression and suppressed β-catenin/Tcf-4 transcription activity by targeting VHL. Furthermore, expression of VHL was inversely correlated with miR-23b in glioma samples and was predictive of patient survival in a retrospective analysis. Therefore, we demonstrated that downregulation of miR-23b suppressed tumor survival through targeting VHL, leading to the inhibition of β-catenin/Tcf-4 and HIF-1α/VEGF signaling pathways.
Collapse
Affiliation(s)
- Lingchao Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
The many faces and functions of β-catenin. EMBO J 2012; 31:2714-36. [PMID: 22617422 DOI: 10.1038/emboj.2012.150] [Citation(s) in RCA: 1187] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/30/2012] [Indexed: 02/07/2023] Open
Abstract
β-Catenin (Armadillo in Drosophila) is a multitasking and evolutionary conserved molecule that in metazoans exerts a crucial role in a multitude of developmental and homeostatic processes. More specifically, β-catenin is an integral structural component of cadherin-based adherens junctions, and the key nuclear effector of canonical Wnt signalling in the nucleus. Imbalance in the structural and signalling properties of β-catenin often results in disease and deregulated growth connected to cancer and metastasis. Intense research into the life of β-catenin has revealed a complex picture. Here, we try to capture the state of the art: we try to summarize and make some sense of the processes that regulate β-catenin, as well as the plethora of β-catenin binding partners. One focus will be the interaction of β-catenin with different transcription factors and the potential implications of these interactions for direct cross-talk between β-catenin and non-Wnt signalling pathways.
Collapse
|
105
|
Abstract
Over the last two decades molecular studies of inherited tumor syndromes that are associated with the development of kidney cancer have led to the identification of genes and biochemical pathways, which play key roles in the malignant transformation of renal epithelial cells. Some of these findings have broad biological impact and extend beyond renal cancer. This review's focus is on the von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF) oxygen-sensing pathway and its role in physiology, energy metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
106
|
Xue J, Lv DD, Jiao S, Zhao W, Li X, Sun H, Yan B, Fan L, Hu RG, Fang J. pVHL mediates K63-linked ubiquitination of nCLU. PLoS One 2012; 7:e35848. [PMID: 22532874 PMCID: PMC3332038 DOI: 10.1371/journal.pone.0035848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 03/23/2012] [Indexed: 11/19/2022] Open
Abstract
pVHL, product of von Hippel-Lindau (VHL) tumor suppressor gene, functions as the substrate recognition component of an E3-ubiquitin ligase that targets proteins for ubiquitination and proteasomal degradation. Hypoxia-inducible factor α (HIFα) is the well-known substrate of pVHL. Besides HIFα, pVHL also binds to many other proteins and has multiple functions. In this manuscript, we report that the nuclear clusterin (nCLU) is a target of pVHL. We found that pVHL had a direct interaction with nCLU. nCLU bound to pVHL at pVHL's β domain, the site for recognition of substrate, indicating that nCLU might be a substrate of pVHL. Interestingly, pVHL bound to nCLU but did not lead to nCLU destruction. Further studies indicated that pVHL mediated K63-linked ubiquitination of nCLU and promoted nCLU nuclear translocation. In summary, our results disclose a novel function of pVHL that mediates K63-linked ubiquitination and identify nCLU as a new target of pVHL.
Collapse
Affiliation(s)
- Jing Xue
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Dan-dan Lv
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Shi Jiao
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Wenting Zhao
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Xuebing Li
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Heng Sun
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Bing Yan
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Li Fan
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Rong-gui Hu
- The Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Jing Fang
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
107
|
Lian X, Duan X, Wu X, Li C, Chen S, Wang S, Cai Y, Weng Z. Expression and clinical significance of von Hippel-Lindau downstream genes: Jade-1 and β-catenin related to renal cell carcinoma. Urology 2012; 80:485.e7-13. [PMID: 22516360 DOI: 10.1016/j.urology.2012.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the expression of Jade-1 and β-catenin and their effect in the development of renal cell carcinoma (RCC). METHODS The expression of Jade-1 and β-catenin in 11 normal kidney tissue specimens (normal group) and 60 RCC specimens (RCC group) was determined using real-time polymerase chain reaction and immunohistochemistry. Also, their effect on early relapses of RCC was analyzed after 5 years of follow-up. RESULTS The expression of Jade-1 protein in the RCC group was significantly lower than that in the normal group (0.1655 vs 0.7438, P < .05), and the expression of β-catenin protein was significantly greater than that in the normal group (0.2756 vs 0.0855, P < .05). The expression of Jade-1 mRNA in the RCC group was 0.202 times that in the normal group, which were lower (P < .05). The expression of β-catenin mRNA was 1.014 times that in the normal group (P > .05). The expression of Jade-1 protein and β-catenin protein in poorly differentiated RCC specimens was significantly lower and higher than the expression in the well-differentiated RCC specimen (P < .05), respectively. Patients with negative Jade-1 expression and positive β-catenin expression were found to have shorter survival on univariate analysis (P < .05). CONCLUSION RCC with a low expression of Jade-1 and high expression of β-catenin is associated with a poor outcome and decreased survival.
Collapse
Affiliation(s)
- Xin Lian
- Department of Urology, Lishui Central Hospital, Wenzhou Medical College, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Effects of growth hormone on the salmon pituitary proteome. J Proteomics 2012; 75:1718-31. [DOI: 10.1016/j.jprot.2011.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/30/2011] [Accepted: 12/04/2011] [Indexed: 01/02/2023]
|
109
|
Abstract
A strict physiological balance between endogenous proangiogenic and antiangiogenic factors controls endothelial cell functions, such that endothelial cell growth is normally restrained. However, in pathologic angiogenesis, a shift occurs in the balance of regulators, favoring endothelial growth. Much of the control of angiogenic events is instigated through hypoxia-induced VEGF expression. The ubiquitin-proteasome system (UPS) plays a central role in fine-tuning the functions of core proangiogenic proteins, including VEGF, VEGFR-2, angiogenic signaling proteins (e.g., the PLCγ1 and PI3 kinase/AKT pathways), and other non-VEGF angiogenic pathways. The emerging mechanisms by which ubiquitin modification of angiogenic proteins control angiogenesis involve both proteolytic and nonproteolytic functions. Here, I review recent advances that link the UPS to regulation of angiogenesis and highlight the potential therapeutic value of the UPS in angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, Boston University Medical Campus, 670 Albany St., Room 510, Boston, MA 02118, USA.
| |
Collapse
|
110
|
Roberts DM, Pronobis MI, Alexandre KM, Rogers GC, Poulton JS, Schneider DE, Jung KC, McKay DJ, Peifer M. Defining components of the ß-catenin destruction complex and exploring its regulation and mechanisms of action during development. PLoS One 2012; 7:e31284. [PMID: 22359584 PMCID: PMC3281067 DOI: 10.1371/journal.pone.0031284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background A subset of signaling pathways play exceptionally important roles in embryonic and post-embryonic development, and mis-regulation of these pathways occurs in most human cancers. One such pathway is the Wnt pathway. The primary mechanism keeping Wnt signaling off in the absence of ligand is regulated proteasomal destruction of the canonical Wnt effector ßcatenin (or its fly homolog Armadillo). A substantial body of evidence indicates that SCFβTrCP mediates βcat destruction, however, an essential role for Roc1 has not been demonstrated in this process, as would be predicted. In addition, other E3 ligases have also been proposed to destroy βcat, suggesting that βcat destruction may be regulated differently in different tissues. Methodology/Principal Findings Here we used cultured Drosophila cells, human colon cancer cells, and Drosophila embryos and larvae to explore the machinery that targets Armadillo for destruction. Using RNAi in Drosophila S2 cells to examine which SCF components are essential for Armadillo destruction, we find that Roc1/Roc1a is essential for regulating Armadillo stability, and that in these cells the only F-box protein playing a detectable role is Slimb. Second, we find that while embryonic and larval Drosophila tissues use the same destruction complex proteins, the response of these tissues to destruction complex inactivation differs, with Armadillo levels more elevated in embryos. We provide evidence consistent with the possibility that this is due to differences in armadillo mRNA levels. Third, we find that there is no correlation between the ability of different APC2 mutant proteins to negatively regulate Armadillo levels, and their recently described function in positively-regulating Wnt signaling. Finally, we demonstrate that APC proteins lacking the N-terminal Armadillo-repeat domain cannot restore Armadillo destruction but retain residual function in negatively-regulating Wnt signaling. Conclusions/Significance We use these data to refine our model for how Wnt signaling is regulated during normal development.
Collapse
Affiliation(s)
- David M. Roberts
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
- * E-mail: (DMR); (MP)
| | - Mira I. Pronobis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kelly M. Alexandre
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - John S. Poulton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel E. Schneider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kuo-Chen Jung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel J. McKay
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (DMR); (MP)
| |
Collapse
|
111
|
Majid S, Saini S, Dahiya R. Wnt signaling pathways in urological cancers: past decades and still growing. Mol Cancer 2012; 11:7. [PMID: 22325146 PMCID: PMC3293036 DOI: 10.1186/1476-4598-11-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/10/2012] [Indexed: 02/25/2023] Open
Abstract
The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers.
Collapse
Affiliation(s)
- Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, 4150 Clement Street, San Francisco CA 94121, USA
| | | | | |
Collapse
|
112
|
He H, Ding F, Li Y, Luo A, Chen H, Wu C, Liu Z. Migfilin Regulates Esophageal Cancer Cell Motility through Promoting GSK-3β–Mediated Degradation of β-Catenin. Mol Cancer Res 2012; 10:273-81. [DOI: 10.1158/1541-7786.mcr-11-0419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
113
|
Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation. Mol Cell Biol 2011; 32:689-703. [PMID: 22144582 DOI: 10.1128/mcb.06455-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acetyltransferase complexes of the MYST family with distinct substrate specificities and functions maintain a conserved association with different ING tumor suppressor proteins. ING complexes containing the HBO1 acetylase are a major source of histone H3 and H4 acetylation in vivo and play critical roles in gene regulation and DNA replication. Here, our molecular dissection of HBO1/ING complexes unravels the protein domains required for their assembly and function. Multiple PHD finger domains present in different subunits bind the histone H3 N-terminal tail with a distinct specificity toward lysine 4 methylation status. We show that natively regulated association of the ING4/5 PHD domain with HBO1-JADE determines the growth inhibitory function of the complex, linked to its tumor suppressor activity. Functional genomic analyses indicate that the p53 pathway is a main target of the complex, at least in part through direct transcription regulation at the initiation site of p21/CDKN1A. These results demonstrate the importance of ING association with MYST acetyltransferases in controlling cell proliferation, a regulated link that accounts for the reported tumor suppressor activities of these complexes.
Collapse
|
114
|
Abstract
Ninety percent or more of kidney cancers are believed to be of epithelial cell origin, and are referred to as renal cell carcinoma (RCC), which are further subdivided based on histology into clear-cell RCC (75%), papillary RCC (15%), chromophobe tumor (5%), and oncocytoma (5%). Some genes confer an increased risk of these various histologic RCC subtypes. In practice, there is some overlap among the histologic subtypes, and there are some shared molecular features among these tumor types. This review focuses primarily on the most common form of RCC, clear-cell renal carcinoma, noting some recent advances in the other histologic subtypes.
Collapse
Affiliation(s)
- Lianjie Li
- Howard Hughes Medical Institute (HHMI), 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, 450 Brookline Avenue, Boston, MA 02215, USA
| | - William G. Kaelin
- Howard Hughes Medical Institute (HHMI), 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
115
|
The lysyl oxidase propeptide interacts with the receptor-type protein tyrosine phosphatase kappa and inhibits β-catenin transcriptional activity in lung cancer cells. Mol Cell Biol 2011; 31:3286-97. [PMID: 21690299 DOI: 10.1128/mcb.01426-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The propeptide region of the lysyl oxidase proenzyme (LOX-PP) has been shown to inhibit Ras signaling in NIH 3T3 and lung cancer cells with activated RAS, but its mechanism of action is poorly understood. Here, a yeast two-hybrid assay of LOX-PP-interacting proteins identified a clone encoding the intracellular phosphatase domains of receptor-type protein tyrosine phosphatase kappa (RPTP-κ), and the interaction of the two proteins in mammalian cells was confirmed. RPTP-κ is proteolytically processed to isoforms that have opposing effects on β-catenin activity. The RPTP-κ transmembrane P subunit interacts with and sequesters β-catenin at the cell membrane, where it can associate with E-cadherin and promote intercellular interactions. At high cell density, further processing of the P subunit yields a phosphatase intracellular portion (PIC) subunit, which chaperones β-catenin to the nucleus, where it can function to activate transcription. Lung cancer cells were found to contain higher PIC levels than untransformed lung epithelial cells. In H1299 lung cancer cells, ectopic LOX-PP expression reduced the nuclear levels of PIC by increasing its turnover in the lysosome, thereby decreasing the nuclear levels and transcriptional activity of β-catenin while increasing β-catenin membrane localization. Thus, LOX-PP is shown to negatively regulate pro-oncogenic β-catenin signaling in lung cancer cells.
Collapse
|
116
|
The relationship between EGFR gain and VHL loss in lung adenocarcinoma and poor patient survival. Int J Clin Oncol 2011; 16:679-85. [DOI: 10.1007/s10147-011-0248-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
|
117
|
Choi H, Chun YS, Kim TY, Park JW. HIF-2alpha enhances beta-catenin/TCF-driven transcription by interacting with beta-catenin. Cancer Res 2011; 70:10101-11. [PMID: 21159632 DOI: 10.1158/0008-5472.can-10-0505] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The tumor-promoting factors β-catenin and hypoxia-inducible factor (HIF) are often found to be coactivated in rapidly growing tumors. Recently, it was shown that HIF-1α negatively regulates Wnt/β-catenin signaling by sequestering β-catenin from β-catenin/T-cell factor (TCF). However, no investigation has been undertaken on the involvement of HIF-2α in β-catenin regulation. In this study, it was found that, like HIF-1α, HIF-2α interacts with β-catenin, but at a different site. Furthermore, HIF-2α was found to assemble with β-catenin/TCF and facilitate gene transcription. Mutational analyses revealed that transactivation domains of HIF-2α promote p300 coactivator recruitment by β-catenin. Furthermore, HIF-2α and β-catenin were found to associate in the nuclei of 786-0 renal cell carcinoma cells, and HIF-2α was found to be required for β-catenin activation in these cells and for their proliferation. These results suggest that this interaction contributes to the unrestrained growth of tumor cells containing coactivated HIF-2α and β-catenin. Interestingly, these actions of HIF-2α oppose those of HIF-1α on β-catenin and cell growth, and this suggests that HIF-1α/HIF-2α balance may importantly determine cell growth when hypoxia and Wnt stimulation coexist.
Collapse
Affiliation(s)
- Hyunsung Choi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
118
|
Verkaar F, Zaman GJ. New avenues to target Wnt/β-catenin signaling. Drug Discov Today 2011; 16:35-41. [DOI: 10.1016/j.drudis.2010.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/22/2010] [Accepted: 11/18/2010] [Indexed: 01/10/2023]
|
119
|
van Rooijen E, Santhakumar K, Logister I, Voest E, Schulte-Merker S, Giles R, van Eeden F. A Zebrafish Model for VHL and Hypoxia Signaling. Methods Cell Biol 2011; 105:163-90. [DOI: 10.1016/b978-0-12-381320-6.00007-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
120
|
Cole AM, Ridgway RA, Derkits SE, Parry L, Barker N, Clevers H, Clarke AR, Sansom OJ. p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium. EMBO Mol Med 2010; 2:472-86. [PMID: 20976827 PMCID: PMC3394507 DOI: 10.1002/emmm.201000101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 12/21/2022] Open
Abstract
Senescence has been implicated as an important mechanism of tumour suppression in a number of human malignancies, including colorectal cancer (CRC). However, we still have a relatively poor understanding of how the underlying mutations that occur in cancer cause senescence and its relevance in vivo. The Apc gene is mutated in approximately 80% of CRC as the initiating event, but rarely elsewhere. In this study we have examined the capacity of Apc loss to induce senescence in the intestinal epithelium compared to the renal epithelium. Within the renal epithelium, loss of Apc function led to an induction of senescence, however, bypassing senescence through combined Apc and p21 or Ink4A gene deletion rapidly initiated renal carcinoma. Within the intestinal epithelium, loss of Apc did not induce senescence. Moreover, combined Apc and p21 or Ink4A loss had no impact upon tumourigenesis. Taken together, these results show that Apc loss in vivo invokes a senescence program in a context-dependent fashion, and implies senescence may play a key barrier to tumourigenesis in the kidney. However, in CRC, escape from senescence is likely to only be a barrier in cancers initiated by other mutations.
Collapse
Affiliation(s)
| | | | | | - Lee Parry
- School of Biosciences, University of CardiffCardiff, UK
| | - Nick Barker
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre UtrechtUtrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre UtrechtUtrecht, Netherlands
| | - Alan R Clarke
- School of Biosciences, University of CardiffCardiff, UK
| | | |
Collapse
|
121
|
Abstract
Renal cell carcinoma (RCC), the most lethal type of genitourinary cancer, is generally resistant to chemotherapy and radiation therapy. Surgical excision of the tumor at a localized stage remains the mainstay for curative therapy. A number of drugs developed in recent years have shown limited to significant efficacy in treating RCC. These drugs act by blocking critical signaling pathways associated with RCC tumor growth and survival, and angiogenesis. Beyond well-validated signaling targets such as VHL, VEGFR and mTOR, additional pathways including HGF/c-MET and Wnt/β-catenin have emerged as important to RCC pathogenesis. Mutations in one or more components of these signaling networks may affect tumor response to therapy. This review summarizes the state of knowledge about signaling pathways in RCC and discusses the known genetic and epigenetic alterations that underlie dysregulation of these pathways.
Collapse
|
122
|
Tauriello DVF, Maurice MM. The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle 2010; 9:3700-9. [PMID: 20930545 DOI: 10.4161/cc.9.18.13204] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Wnt signaling mediates key developmental and homeostatic processes including stem cell maintenance, growth and cell fate specification, cell polarity and migration. Inappropriate activation of Wnt signaling is linked to a range of human disorders, most notably cancer and neurodegenerative diseases. In the Wnt/β-catenin cascade, signaling events converge on the regulation of ubiquitin-mediated degradation of the crucial transcriptional regulator β-catenin. The emerging mechanisms by which ubiquitin modification of proteins controls cellular pathways comprise both proteolytic and nonproteolytic functions. In nonproteolytic functions, ubiquitin acts as a signaling device in the control of protein activity, subcellular localization and complex formation. Here, we review and discuss recent developments that implicate ubiquitin-mediated mechanisms at multiple steps of Wnt pathway activation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
123
|
Blocking Wnt signaling by SFRP-like molecules inhibits in vivo cell proliferation and tumor growth in cells carrying active β-catenin. Oncogene 2010; 30:423-33. [PMID: 20856206 DOI: 10.1038/onc.2010.432] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Constitutive activation of Wnt/β-catenin signaling in cancer results from mutations in pathway components, which frequently coexist with autocrine Wnt signaling or epigenetic silencing of extracellular Wnt antagonists. Among the extracellular Wnt inhibitors, the secreted frizzled-related proteins (SFRPs) are decoy receptors that contain soluble Wnt-binding frizzled domains. In addition to SFRPs, other endogenous molecules harboring frizzled motifs bind to and inhibit Wnt signaling. One of such molecules is V3Nter, a soluble SFRP-like frizzled polypeptide that binds to Wnt3a and inhibits Wnt signaling and expression of the β-catenin target genes cyclin D1 and c-myc. V3Nter is derived from the cell surface extracellular matrix component collagen XVIII. Here, we used HCT116 human colon cancer cells carrying the ΔS45 activating mutation in one of the alleles of β-catenin to show that V3Nter and SFRP-1 decrease baseline and Wnt3a-induced β-catenin stabilization. Consequently, V3Nter reduces the growth of human colorectal cancer xenografts by specifically controlling cell proliferation and cell cycle progression, without affecting angiogenesis or apoptosis, as shown by decreased [(3)H]-thymidine (in vitro) or BrdU (in vivo) incorporation, clonogenesis assays, cell cycle analysis and magnetic resonance imaging in living mice. Additionally, V3Nter switches off the β-catenin target gene expression signature in vivo. Moreover, experiments with β-catenin allele-targeted cells showed that the ΔS45 β-catenin allele hampers, but does not abrogate, inhibition of Wnt signaling by SFRP-1 or by the SFRP-like frizzled domain. Finally, neither SFRP-1 nor V3Nter affect β-catenin signaling in SW480 cells carrying nonfunctional Adenomatous polyposis coli. Thus, SFRP-1 and the SFRP-like molecule V3Nter can inhibit tumor growth of β-catenin-activated tumor cells in vivo.
Collapse
|
124
|
Cai Q, Robertson ES. Ubiquitin/SUMO modification regulates VHL protein stability and nucleocytoplasmic localization. PLoS One 2010; 5. [PMID: 20844582 PMCID: PMC2936558 DOI: 10.1371/journal.pone.0012636] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/14/2010] [Indexed: 01/08/2023] Open
Abstract
Functional inactivation of the von Hippel-Lindau (VHL) tumor suppressor protein is linked to the development of several forms of cancer as well as oncogenic progression like sporadic renal clear-cell carcinomas (RCC). Despite the critical role played by VHL in destruction of hypoxia-inducible factor α (HIFα) via ubiquitin-mediated proteolysis, very little is known about the post-translational modification which regulates VHL activity. Our previous study showed that the SUMO E3 ligase PIASy interacts with VHL and induces VHL SUMOylation on lysine residue 171 (Cai et al, PLoS ONE, 2010, 5(3):e9720). Here we further report that VHL also undergoes ubiquitylation on both lysine residues 171 and 196, which is blocked by PIASy. Moreover, using a VHL-SUMO1 or ubiquitin fusion protein, we found that ubiquitylated VHL is localized predominantly in the cytoplasm, while SUMOylated VHL results in increased VHL protein stability and nuclear redistribution. Interestingly, substitution of lysine 171 and 196 to arginine of VHL abrogates its inhibitory function on the transcriptional activity of HIFα, and tube formation in vitro. This demonstrates that post-translational modifications like ubiquitylation and SUMOylation contributes to VHL protein stability and nucleocytoplasmic shuttling, and that the overall function of VHL in tumor suppression may require a precise and dynamically regulated process which involves protein modification.
Collapse
Affiliation(s)
- Qiliang Cai
- Department of Microbiology and Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
125
|
Abstract
Aberrant DNA methylation, in particular promoter hypermethylation and transcriptional silencing of tumor suppressor genes, has an important role in the development of many human cancers, including renal cell carcinoma (RCC). Indeed, apart from mutations in the well studied von Hippel-Lindau gene (VHL), the mutation frequency rates of known tumor suppressor genes in RCC are generally low, but the number of genes found to show frequent inactivation by promoter methylation in RCC continues to grow. Here, we review the genes identified as epigenetically silenced in RCC and their relationship to pathways of tumor development. Increased understanding of RCC epigenetics provides new insights into the molecular pathogenesis of RCC and opportunities for developing novel strategies for the diagnosis, prognosis and management of RCC.
Collapse
|
126
|
Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X, Chen YG. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol 2010; 12:781-90. [DOI: 10.1038/ncb2082] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/05/2010] [Indexed: 12/18/2022]
|
127
|
Lancaster MA, Gleeson JG. Cystic kidney disease: the role of Wnt signaling. Trends Mol Med 2010; 16:349-60. [PMID: 20576469 PMCID: PMC2919646 DOI: 10.1016/j.molmed.2010.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 02/07/2023]
Abstract
Wnt signaling encompasses a variety of signaling cascades that can be activated by secreted Wnt ligands. Two such pathways, the canonical or beta-catenin pathway and the planar cell polarity (PCP) pathway, have recently received attention for their roles in multiple cellular processes within the kidney. Both of these pathways are important for kidney development as well as homeostasis and injury repair. The disruption of either pathway can lead to cystic kidney disease, a class of genetic diseases that includes the most common hereditary life-threatening syndrome polycystic kidney disease (PKD). Recent evidence implicates canonical and noncanonical Wnt pathways in cyst formation and points to a remarkable role for developmental processes in the adult kidney.
Collapse
Affiliation(s)
- Madeline A Lancaster
- Biomedical Sciences Program, Howard Hughes Medical Institutes, Department of Neurosciences, University of California, San Diego, USA.
| | | |
Collapse
|
128
|
Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 2010; 20:470-81. [PMID: 20688255 DOI: 10.1016/j.tcb.2010.05.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 01/24/2023]
Abstract
Armadillo (ARM)-repeat proteins form a large family with diverse and fundamental functions in many eukaryotes. ARM-repeat proteins have largely been characterised in multicellular organisms and much is known about how a subset of these proteins function. The structure of ARM-repeats allows proteins containing them to be functionally very versatile. Are the ARM-repeat proteins in 'little creatures' as multifunctional as their better-studied relatives? The time is now right to start analysing ARM-repeat proteins in these new systems to better understand their cell biology. Here, we review recent advances in understanding the many cellular roles of both well-known and novel ARM-repeat proteins.
Collapse
|
129
|
Drosophila von Hippel-Lindau tumor suppressor gene function in epithelial tubule morphogenesis. Mol Cell Biol 2010; 30:3779-94. [PMID: 20516215 DOI: 10.1128/mcb.01578-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mutations in the human von Hippel-Lindau (VHL) gene are the cause of VHL disease that displays multiple benign and malignant tumors. The VHL gene has been shown to regulate angiogenic potential and glycolic metabolism via its E3 ubiquitin ligase function against the alpha subunit of hypoxia-inducible factor (HIF-alpha). However, many HIF-independent functions of VHL have been identified. Recent evidence also indicates that the canonical function cannot fully explain the VHL mutant cell phenotypes, although it is still unclear how many of these noncanonical functions relate to the pathophysiological processes because of a lack of tractable genetic systems. Here, we report the first genomic mutant phenotype of Drosophila melanogaster VHL (dVHL) in the epithelial tubule network, the trachea, and show that dVHL regulates branch migration and lumen formation via its endocytic function. The endocytic function regulates the surface level of the chemotactic signaling receptor Breathless and promotes clearing of the lumen matrix during maturation of the tracheal tubes. Importantly, the regulatory function in tubular morphogenesis is conserved in the mammalian system, as conditional knockout of Vhl in mouse kidney also resulted in similar cell motility and lumen phenotypes.
Collapse
|
130
|
Balcells M, Martorell J, Olivé C, Santacana M, Chitalia V, Cardoso AA, Edelman ER. Smooth muscle cells orchestrate the endothelial cell response to flow and injury. Circulation 2010; 121:2192-9. [PMID: 20458015 DOI: 10.1161/circulationaha.109.877282] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Local modulation of vascular mammalian target of rapamycin (mTOR) signaling reduces smooth muscle cell (SMC) proliferation after endovascular interventions but may be associated with endothelial cell (EC) toxicity. The trilaminate vascular architecture juxtaposes ECs and SMCs to enable complex paracrine coregulation but shields SMCs from flow. We hypothesized that flow differentially affects mTOR signaling in ECs and SMCs and that SMCs regulate mTOR in ECs. METHODS AND RESULTS SMCs and/or ECs were exposed to coronary artery flow in a perfusion bioreactor. We demonstrated by flow cytometry, immunofluorescence, and immunoblotting that EC expression of phospho-S6 ribosomal protein (p-S6RP), a downstream target of mTOR, was doubled by flow. Conversely, S6RP in SMCs was growth factor but not flow responsive, and SMCs eliminated the flow sensitivity of ECs. Temsirolimus, a sirolimus analog, eliminated the effect of growth factor on SMCs and of flow on ECs, reducing p-S6RP below basal levels and inhibiting endothelial recovery. EC p-S6RP expression in stented porcine arteries confirmed our in vitro findings: Phosphorylation was greatest in ECs farthest from intact SMCs in metal stented arteries and altogether absent after sirolimus stent elution. CONCLUSIONS The mTOR pathway is activated in ECs in response to luminal flow. SMCs inhibit this flow-induced stimulation of endothelial mTOR pathway. Thus, we now define a novel external stimulus regulating phosphorylation of S6RP and another level of EC-SMC crosstalk. These interactions may explain the impact of local antiproliferative delivery that targets SMC proliferation and suggest that future stents integrate design influences on flow and drug effects on their molecular targets.
Collapse
MESH Headings
- Animals
- Aorta/physiology
- Arteries/physiology
- Arteries/physiopathology
- Cell Communication/physiology
- Cells, Cultured
- Coronary Vessels/physiology
- Endothelial Cells/metabolism
- Endothelium, Vascular/injuries
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- In Vitro Techniques
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Regional Blood Flow/drug effects
- Regional Blood Flow/physiology
- Ribosomal Protein S6/metabolism
- Signal Transduction
- Sirolimus/analogs & derivatives
- Sirolimus/pharmacology
- Stents/adverse effects
- Swine
- Swine, Miniature
- TOR Serine-Threonine Kinases
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Mercedes Balcells
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
131
|
Seagroves TN, Peacock DL, Liao D, Schwab LP, Krueger R, Handorf CR, Haase VH, Johnson RS. VHL deletion impairs mammary alveologenesis but is not sufficient for mammary tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2269-82. [PMID: 20382704 PMCID: PMC2861092 DOI: 10.2353/ajpath.2010.090310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2010] [Indexed: 12/21/2022]
Abstract
Overexpression of hypoxia inducible factor-1 (HIF-1)alpha, which is common in most solid tumors, correlates with poor prognosis and high metastatic risk in breast cancer patients. Because HIF-1alpha protein stability is tightly controlled by the tumor suppressor von Hippel-Lindau (VHL), deletion of VHL results in constitutive HIF-1alpha expression. To determine whether VHL plays a role in normal mammary gland development, and if HIF-1alpha overexpression is sufficient to initiate breast cancer, Vhl was conditionally deleted in the mammary epithelium using the Cre/loxP system. During first pregnancy, loss of Vhl resulted in decreased mammary epithelial cell proliferation and impaired alveolar differentiation; despite these phenotypes, lactation was sufficient to support pup growth. In contrast, in multiparous dams, Vhl(-/-) mammary glands exhibited a progressive loss of alveolar epithelium, culminating in lactation failure. Deletion of Vhl in the epithelium also impacted the mammary stroma, as there was increased microvessel density accompanied by hemorrhage and increased immune cell infiltration. However, deletion of Vhl was not sufficient to induce mammary tumorigenesis in dams bred continuously for up to 24 months of age. Moreover, co-deletion of Hif1a could not rescue the Vhl(-/-)-dependent phenotype as dams were unable to successfully lactate during the first lactation. These results suggest that additional VHL-regulated genes besides HIF1A function to maintain the proliferative and regenerative potential of the breast epithelium.
Collapse
Affiliation(s)
- Tiffany N Seagroves
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Duchi S, Fagnocchi L, Cavaliere V, Hsouna A, Gargiulo G, Hsu T. Drosophila VHL tumor-suppressor gene regulates epithelial morphogenesis by promoting microtubule and aPKC stability. Development 2010; 137:1493-503. [PMID: 20388653 DOI: 10.1242/dev.042804] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in the human von Hippel-Lindau (VHL) genes are the cause of VHL disease, which displays multiple benign and malignant tumors. The VHL gene has been shown to regulate angiogenic potential and glycolic metabolism via its E3 ubiquitin ligase function against the alpha subunit of hypoxia-inducible factor (HIF). However, many other HIF-independent functions of VHL have been identified and recent evidence indicates that the canonical function cannot fully explain the VHL mutant cell phenotypes. Many of these functions have not been verified in genetically tractable systems. Using an established follicular epithelial model in Drosophila, we show that the Drosophila VHL gene is involved in epithelial morphogenesis via stabilizing microtubule bundles and aPKC. Microtubule defects in VHL mutants lead to mislocalization of aPKC and subsequent loss of epithelial integrity. Destabilizing microtubules in ex vivo culture of wild-type egg chambers can also result in aPKC mislocalization and epithelial defects. Importantly, paclitaxel-induced stabilization of microtubules can rescue the aPKC localization phenotype in Drosophila VHL mutant follicle cells. The results establish a developmental function of the VHL gene that is relevant to its tumor-suppressor activity.
Collapse
Affiliation(s)
- Serena Duchi
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
133
|
Cai Q, Verma SC, Kumar P, Ma M, Robertson ES. Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification. PLoS One 2010; 5:e9720. [PMID: 20300531 PMCID: PMC2838797 DOI: 10.1371/journal.pone.0009720] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/21/2010] [Indexed: 12/15/2022] Open
Abstract
The hypoxic microenvironment contributes to embryonic development and tumor progression through stabilization of the potent transcriptional factor HIFα. In normoxia, the tumor suppressor protein VHL acts as an E3 ubiquitin ligase to target HIFα for proteolytic destruction. Increasing evidence shows that VHL is a multifunctional adaptor involved in inhibition of HIFα-dependent and independent cellular processes. However, the molecular effect of hypoxic stress on VHL functions remains elusive. Here we report that PIASy, a SUMO E3 ligase upregulated in hypoxia, interacts with VHL and induces VHL SUMOylation on lysine residue 171. Moreover, PIASy-mediated SUMO1 modification induces VHL oligomerization and abrogates its inhibitory function on tumor cell growth, migration and clonogenicity. Knockdown of PIASy by small interfering RNA leads to reduction of VHL oligomerization and increases HIF1α degradation. These findings reveal a unique molecular strategy for inactivation of VHL under hypoxic stress.
Collapse
Affiliation(s)
- Qiliang Cai
- Abramson Comprehensive Cancer Center and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Suhbash C. Verma
- Abramson Comprehensive Cancer Center and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Pankaj Kumar
- Abramson Comprehensive Cancer Center and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michelle Ma
- Abramson Comprehensive Cancer Center and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Abramson Comprehensive Cancer Center and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
134
|
Dimitrova YN, Li J, Lee YT, Rios-Esteves J, Friedman DB, Choi HJ, Weis WI, Wang CY, Chazin WJ. Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem 2010; 285:13507-16. [PMID: 20181957 DOI: 10.1074/jbc.m109.049411] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Beta-catenin is a key component of the Wnt signaling pathway that functions as a transcriptional co-activator of Wnt target genes. Upon UV-induced DNA damage, beta-catenin is recruited for polyubiquitination and subsequent proteasomal degradation by a unique, p53-induced SCF-like complex (SCF(TBL1)), comprised of Siah-1, Siah-1-interacting protein (SIP), Skp1, transducin beta-like 1 (TBL1), and adenomatous polyposis coli (APC). Given the complexity of the various factors involved and the novelty of ubiquitination of the non-phosphorylated beta-catenin substrate, we have investigated Siah-1-mediated ubiquitination of beta-catenin in vitro and in cells. Overexpression and purification protocols were developed for each of the SCF(TBL1) proteins, enabling a systematic analysis of beta-catenin ubiquitination using an in vitro ubiquitination assay. This study revealed that Siah-1 alone was able to polyubiquitinate beta-catenin. In addition, TBL1 was shown to play a role in protecting beta-catenin from Siah-1 ubiquitination in vitro and from Siah-1-targeted proteasomal degradation in cells. Siah-1 and TBL1 were found to bind to the same armadillo repeat domain of beta-catenin, suggesting that polyubiquitination of beta-catenin is regulated by competition between Siah-1 and TBL1 during Wnt signaling.
Collapse
Affiliation(s)
- Yoana N Dimitrova
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
Promoter region hyermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many types of human cancers. Functional epigenetic studies, in which gene expression is induced by treatment with demethylating agents, may identify novel genes with tumour-specific methylation. We used high-density gene expression microarrays in a functional epigenetic study of 11 renal cell carcinoma (RCC) cell lines. Twenty-eight genes were then selected for analysis of promoter methylation status in cell lines and primary RCC. Eight genes (BNC1, PDLIM4, RPRM, CST6, SFRP1, GREM1, COL14A1 and COL15A1) showed frequent (>30% of RCC tested) tumour-specific promoter region methylation. Hypermethylation was associated with transcriptional silencing. Re-expression of BNC1, CST6, RPRM and SFRP1 suppressed the growth of RCC cell lines and RNA interference knock-down of BNC1, SFRP1 and COL14A1 increased the growth of RCC cell lines. Methylation of BNC1 or COL14A1 was associated with a poorer prognosis independent of tumour size, stage or grade. The identification of these epigenetically inactivated candidate RCC TSGs can provide insights into renal tumourigenesis and a basis for developing novel therapies and biomarkers for prognosis and detection.
Collapse
|
136
|
Haase VH. The VHL tumor suppressor: master regulator of HIF. Curr Pharm Des 2010; 15:3895-903. [PMID: 19671042 DOI: 10.2174/138161209789649394] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/01/2009] [Indexed: 12/11/2022]
Abstract
Hypoxia-Inducible Factors (HIFs) are heterodimeric oxygen-sensitive basic helix-loop-helix transcription factors that play central roles in cellular adaptation to low oxygen environments. The von-Hippel Lindau tumor suppressor (pVHL) is the substrate recognition component of an E3 ubiquitin ligase and functions as a master regulator of HIF activity by targeting the hydroxylated HIF-alpha subunit for ubiquitylation and rapid proteasomal degradation under normoxic conditions. Mutations in pVHL can be found in familial and sporadic hemangioblastomas, clear cell carcinomas of the kidney, pheochromocytomas and inherited forms of erythrocytosis, illustrating the importance of disrupted molecular oxygen sensing in the pathogenesis of these diseases. Tissue-specific gene targeting of pVHL in mice has demonstrated that efficient execution of HIF proteolysis is critically important for normal tissue physiology, and has provided novel insights into the functional consequences of HIF activation on the cellular and tissue level. Here we focus on the contribution of individual HIF transcription factors to the development of VHL phenotypes and discuss how the pVHL/HIF axis could be exploited pharmacologically.
Collapse
Affiliation(s)
- Volker H Haase
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
137
|
|
138
|
Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet 2009; 10:821-32. [PMID: 19884889 DOI: 10.1038/nrg2665] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sensing of oxygen levels and maintenance of oxygen homeostasis is crucial for cells. The hypoxic-sensitive regulation of gene expression allows information about the oxygen status to be converted into appropriate cellular responses. Although there is a core transcriptional pathway, the signalling cascade can be modified to allow diversity and specificity in the transcriptional output. In this Review, we discuss recent advances in our understanding of the mechanisms and factors that contribute to the observed diversity and specificity. A deeper knowledge about how hypoxic signalling is tuned will further our understanding of the cellular hypoxic response in normal physiology and how it becomes derailed in disease.
Collapse
|
139
|
Jeong M, Piao ZH, Kim MS, Lee SH, Yun S, Sun HN, Yoon SR, Chung JW, Kim TD, Jeon JH, Lee J, Kim HN, Choi JY, Choi I. Thioredoxin-interacting protein regulates hematopoietic stem cell quiescence and mobilization under stress conditions. THE JOURNAL OF IMMUNOLOGY 2009; 183:2495-505. [PMID: 19625652 DOI: 10.4049/jimmunol.0804221] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are maintained in a quiescent state in bone marrow (BM) niches by intrinsic and extrinsic signals. The mechanisms regulating the quiescence and mobilization of HSCs, however, remain unclear. In this study, we report that the expression of thioredoxin-interacting protein (TXNIP) is decreased during HSC activation. In Txnip(-/-) mice, the long-term reconstituting HSC population is decreased and exhausted, and its capacity to repopulate is rapidly lost. These effects are associated with hyperactive Wnt signaling, an active cell cycle, and reduced p21 expression under conditions of stress. TXNIP deficiency reduced the CXCL12- and osteopontin-mediated interaction between HSCs and the bone marrow, and impaired homing and retention in the osteoblastic niche, resulting in mobilized HSCs. Therefore, we propose that TXNIP is essential for maintaining HSC quiescence and the interaction between HSCs and the BM niche.
Collapse
Affiliation(s)
- Mira Jeong
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Berndt JD, Moon RT, Major MB. Beta-catenin gets jaded and von Hippel-Lindau is to blame. Trends Biochem Sci 2009; 34:101-4. [PMID: 19217300 DOI: 10.1016/j.tibs.2008.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 11/19/2022]
Abstract
Numerous studies have pointed to interactions between the tumor suppressor von Hippel-Lindau (VHL) and the oncogenic Wnt-beta-catenin signaling cascade; however, the mechanism of this crosstalk has remained elusive. Among other roles, VHL can promote the stabilization of Jade-1. Now, recent findings provide compelling evidence that Jade-1 ubiquitylates beta-catenin, leading to its degradation. Thus, the loss of VHL, as seen in clear cell renal cell carcinoma, could lead to tumor formation through beta-catenin de-repression.
Collapse
Affiliation(s)
- Jason D Berndt
- Howard Hughes Medical Institute, Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Box 357370, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
141
|
|
142
|
D'Arceuil H, Liu C, Levitt P, Thompson B, Kosofsky B, de Crespigny A. Three-dimensional high-resolution diffusion tensor imaging and tractography of the developing rabbit brain. Dev Neurosci 2007; 30:262-75. [PMID: 17962716 DOI: 10.1159/000110503] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 04/26/2007] [Indexed: 01/19/2023] Open
Abstract
Diffusion tensor imaging (DTI) is sensitive to structural ordering in brain tissue particularly in the white matter tracts. Diffusion anisotropy changes with disease and also with neural development. We used high-resolution DTI of fixed rabbit brains to study developmental changes in regional diffusion anisotropy and white matter fiber tract development. Imaging was performed on a 4.7-tesla Bruker Biospec Avance scanner using custom-built solenoid coils and DTI was performed at various postnatal ages. Trace apparent diffusion coefficient, fractional diffusion anisotropy maps and fiber tracts were generated and compared across the ages. The brain was highly anisotropic at birth and white matter anisotropy increased with age. Regional DTI tractography of the internal capsule showed refinement in regional tract architecture with maturation. Interestingly, brains with congenital deficiencies of the callosal commissure showed selectively strikingly different fiber architecture compared to age-matched brains. There was also some evidence of subcortical to cortical fiber connectivity. DTI tractography of the anterior and posterior limbs of the internal capsule showed reproducibly coherent fiber tracts corresponding to known corticospinal and corticobulbar tract anatomy. There was some minor interanimal tract variability, but there was remarkable similarity between the tracts in all animals. Therefore, ex vivo DTI tractography is a potentially powerful tool for neuroscience investigations and may also reveal effects (such as fiber tract pruning during development) which may be important targets for in vivo human studies.
Collapse
Affiliation(s)
- Helen D'Arceuil
- Neuroradiology Section, Massachusetts General Hospital, Boston, Mass., USA.
| | | | | | | | | | | |
Collapse
|