101
|
Yan Y, Liu Y, Xing T, Shi Q. Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light‐harvesting complexes using the nonperturbative reduced dynamics method. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Yanying Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Tao Xing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Physical Science Laboratory Huairou National Comprehensive Science Center Beijing China
| |
Collapse
|
102
|
Zhou L, Tian L, Zhang WK. Experimental consideration of two-dimensional Fourier transform spectroscopy. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2007125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Lie Tian
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Wen-kai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
103
|
Sohail SH, Otto JP, Cunningham PD, Kim YC, Wood RE, Allodi MA, Higgins JS, Melinger JS, Engel GS. DNA scaffold supports long-lived vibronic coherence in an indodicarbocyanine (Cy5) dimer. Chem Sci 2020; 11:8546-8557. [PMID: 34123114 PMCID: PMC8163443 DOI: 10.1039/d0sc01127d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vibronic coupling between pigment molecules is believed to prolong coherences in photosynthetic pigment–protein complexes. Reproducing long-lived coherences using vibronically coupled chromophores in synthetic DNA constructs presents a biomimetic route to efficient artificial light harvesting. Here, we present two-dimensional (2D) electronic spectra of one monomeric Cy5 construct and two dimeric Cy5 constructs (0 bp and 1 bp between dyes) on a DNA scaffold and perform beating frequency analysis to interpret observed coherences. Power spectra of quantum beating signals of the dimers reveal high frequency oscillations that correspond to coherences between vibronic exciton states. Beating frequency maps confirm that these oscillations, 1270 cm−1 and 1545 cm−1 for the 0-bp dimer and 1100 cm−1 for the 1-bp dimer, are coherences between vibronic exciton states and that these coherences persist for ∼300 fs. Our observations are well described by a vibronic exciton model, which predicts the excitonic coupling strength in the dimers and the resulting molecular exciton states. The energy spacing between those states closely corresponds to the observed beat frequencies. MD simulations indicate that the dyes in our constructs lie largely internal to the DNA base stacking region, similar to the native design of biological light harvesting complexes. Observed coherences persist on the timescale of photosynthetic energy transfer yielding further parallels to observed biological coherences, establishing DNA as an attractive scaffold for synthetic light harvesting applications. Dyes coupled to DNA display distance-dependent vibronic couplings that prolongs quantum coherences detected with 2D spectroscopy.![]()
Collapse
Affiliation(s)
- Sara H Sohail
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - John P Otto
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Paul D Cunningham
- U.S. Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Young C Kim
- U.S. Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Ryan E Wood
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Marco A Allodi
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Jacob S Higgins
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Joseph S Melinger
- U.S. Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Gregory S Engel
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| |
Collapse
|
104
|
Kim CW, Rhee YM. Toward monitoring the dissipative vibrational energy flows in open quantum systems by mixed quantum-classical simulations. J Chem Phys 2020; 152:244109. [PMID: 32610983 DOI: 10.1063/5.0009867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In open quantum system dynamics, rich information about the major energy relaxation channels and corresponding relaxation rates can be elucidated by monitoring the vibrational energy flow among individual bath modes. However, such calculations often become tremendously difficult as the complexity of the subsystem-bath coupling increases. In this paper, we attempt to make this task feasible by using a mixed quantum-classical method, the Poisson-bracket mapping equation with non-Hamiltonian modification (PBME-nH) [H. W. Kim and Y. M. Rhee, J. Chem. Phys. 140, 184106 (2014)]. For a quantum subsystem bilinearly coupled to harmonic bath modes, we derive an expression for the mode energy in terms of the classical positions and momenta of the nuclei, while keeping consistency with the energy of the quantum subsystem. The accuracy of the resulting expression is then benchmarked against a numerically exact method by using relatively simple models. Although our expression predicts a qualitatively correct dissipation rate for a range of situations, cases involving a strong vibronic resonance are quite challenging. This is attributed to the inherent lack of quantum back reaction in PBME-nH, which becomes significant when the subsystem strongly interacts with a small number of bath modes. A rigorous treatment of such an effect will be crucial for developing quantitative simulation methods that can handle generic subsystem-bath coupling.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
105
|
Bonafé FP, Aradi B, Hourahine B, Medrano CR, Hernández FJ, Frauenheim T, Sánchez CG. A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron–Nuclear Dynamics and Pump–Probe Spectroscopy Simulations. J Chem Theory Comput 2020; 16:4454-4469. [DOI: 10.1021/acs.jctc.9b01217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Franco P. Bonafé
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
| | - Ben Hourahine
- SUPA, Department of Physics, John Anderson Building, The University of Strathclyde, 107 Rottenrow, Glasgow G15 6QN, United Kingdom
| | - Carlos R. Medrano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Federico J. Hernández
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
- Department of Physics, Universidad de Santiago de Chile, Av. Ecuador 3493, Santiago, Chile
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
- Computational Science Research Center (CSRC) Beijing and Computational Science and Applied Research (CSAR) Institute, Shenzhen, China
| | - Cristián G. Sánchez
- Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
106
|
Kwang SY, Frontiera RR. Spatially Offset Femtosecond Stimulated Raman Spectroscopy: Observing Exciton Transport through a Vibrational Lens. J Phys Chem Lett 2020; 11:4337-4344. [PMID: 32427490 DOI: 10.1021/acs.jpclett.0c01114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To design better molecular electronic devices, we need a strong understanding of how charges or excitons propagate, as many efficiency losses arise during transport. Exciton transport has been difficult to study because excitons tend to be short-lived, have short diffusion lengths, and can easily recombine. Here, we debut spatially offset femtosecond stimulated Raman spectroscopy (SO-FSRS), a three-pulse ultrafast microscopy technique. By offsetting the photoexcitation beam, we can monitor Raman spectral changes as a function of both time and position. We used SO-FSRS on 6,13-bis(triisopropylsilylethynyl) pentacene, a well-studied organic semiconductor used in photovoltaics and field-effect transistors. We demonstrated that the fast exciton and free charge carrier transport axes are identical and observed that exciton transport is less anisotropic by a factor of ∼3. SO-FSRS is the first technique that directly tracks molecular structural evolution during exciton transport, which can provide roadmaps for tailor-making molecules for specific electronic devices.
Collapse
Affiliation(s)
- Siu Yi Kwang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
107
|
Sánchez Muñoz C, Schlawin F. Photon Correlation Spectroscopy as a Witness for Quantum Coherence. PHYSICAL REVIEW LETTERS 2020; 124:203601. [PMID: 32501097 DOI: 10.1103/physrevlett.124.203601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The development of spectroscopic techniques able to detect and verify quantum coherence is a goal of increasing importance given the rapid progress of new quantum technologies, the advances in the field of quantum thermodynamics, and the emergence of new questions in chemistry and biology regarding the possible relevance of quantum coherence in biochemical processes. Ideally, these tools should be able to detect and verify the presence of quantum coherence in both the transient dynamics and the steady state of driven-dissipative systems, such as light-harvesting complexes driven by thermal photons in natural conditions. This requirement poses a challenge for standard laser spectroscopy methods. Here, we propose photon correlation measurements as a new tool to analyze quantum dynamics in molecular aggregates in driven-dissipative situations. We show that the photon correlation statistics of the light emitted in several models of molecular aggregates can signal the presence of coherent dynamics. Deviations from the counting statistics of independent emitters constitute a direct fingerprint of quantum coherence in the steady state. Furthermore, the analysis of frequency resolved photon correlations can signal the presence of coherent dynamics even in the absence of steady state coherence, providing direct spectroscopic access to the much sought-after site energies in molecular aggregates.
Collapse
Affiliation(s)
- Carlos Sánchez Muñoz
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Frank Schlawin
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
108
|
Gozem S, Johnson PJM, Halpin A, Luk HL, Morizumi T, Prokhorenko VI, Ernst OP, Olivucci M, Miller RJD. Excited-State Vibronic Dynamics of Bacteriorhodopsin from Two-Dimensional Electronic Photon Echo Spectroscopy and Multiconfigurational Quantum Chemistry. J Phys Chem Lett 2020; 11:3889-3896. [PMID: 32330041 PMCID: PMC9198827 DOI: 10.1021/acs.jpclett.0c01063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to the ultrafast time scale of the photoinduced reaction and high degree of spectral overlap among the reactant, product, and excited electronic states in bacteriorhodopsin (bR), it has been a challenge for traditional spectroscopies to resolve the interplay between vibrational dynamics and electronic processes occurring in the retinal chromophore of bR. Here, we employ ultrafast two-dimensional electronic photon echo spectroscopy to follow the early excited-state dynamics of bR preceding the isomerization. We detect an early periodic photoinduced absorptive signal that, employing a hybrid multiconfigurational quantum/molecular mechanical model of bR, we attribute to periodic mixing of the first and second electronic excited states (S1 and S2, respectively). This recurrent interaction between S1 and S2, induced by a bond length alternation of the retinal chromohore, supports the hypothesis that the ultrafast photoisomerization in bR is initiated by a process involving coupled nuclear and electronic motion on three different electronic states.
Collapse
Affiliation(s)
- Samer Gozem
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Philip J M Johnson
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Alexei Halpin
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Hoi Ling Luk
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Valentyn I Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter, Atomically Resolved Dynamics Division, Building 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Department of Biotechnology, Chemistry and Pharmacology, Universitá di Siena, via De Gasperi 2, I-53100Siena, Italy
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
109
|
Cao J, Cogdell RJ, Coker DF, Duan HG, Hauer J, Kleinekathöfer U, Jansen TLC, Mančal T, Miller RJD, Ogilvie JP, Prokhorenko VI, Renger T, Tan HS, Tempelaar R, Thorwart M, Thyrhaug E, Westenhoff S, Zigmantas D. Quantum biology revisited. SCIENCE ADVANCES 2020; 6:eaaz4888. [PMID: 32284982 PMCID: PMC7124948 DOI: 10.1126/sciadv.aaz4888] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/06/2020] [Indexed: 05/21/2023]
Abstract
Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.
Collapse
Affiliation(s)
- Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - David F. Coker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Hong-Guang Duan
- Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Jürgen Hauer
- Technische Universität München, Dynamische Spektroskopien, Fakultät für Chemie, Lichtenbergstr. 4, 85748 Garching, Germany, and Photonics Institute, TU Wien, 1040 Vienna, Austria
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Thomas L. C. Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - R. J. Dwayne Miller
- Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Valentyn I. Prokhorenko
- Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Thomas Renger
- Institute of Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Roel Tempelaar
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Erling Thyrhaug
- Technische Universität München, Dynamische Spektroskopien, Fakultät für Chemie, Lichtenbergstr. 4, 85748 Garching, Germany, and Photonics Institute, TU Wien, 1040 Vienna, Austria
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | | |
Collapse
|
110
|
Thaler B, Meyer M, Heim P, Koch M. Long-Lived Nuclear Coherences inside Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2020; 124:115301. [PMID: 32242724 DOI: 10.1103/physrevlett.124.115301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/06/2020] [Indexed: 05/20/2023]
Abstract
Much of our knowledge about dynamics and functionality of molecular systems has been achieved with femtosecond time-resolved spectroscopy. Despite extensive technical developments over the past decades, some classes of systems have eluded dynamical studies so far. Here, we demonstrate that superfluid helium nanodroplets, acting as a thermal bath of 0.4 K temperature to stabilize weakly bound or reactive systems, are well suited for time-resolved studies of single molecules solvated in the droplet interior. By observing vibrational wave packet motion of indium dimers (In_{2}) for tens of picoseconds, we demonstrate that the perturbation imposed by this quantum liquid can be lower by a factor of 10-100 compared to any other solvent, which uniquely allows us to study processes depending on long nuclear coherence in a dissipative environment. Furthermore, tailor-made microsolvation environments inside droplets will enable us to investigate the solvent influence on intramolecular dynamics in a wide tuning range from molecular isolation to strong molecule-solvent coupling.
Collapse
Affiliation(s)
- Bernhard Thaler
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| | - Miriam Meyer
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| | - Pascal Heim
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| | - Markus Koch
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| |
Collapse
|
111
|
Arsenault EA, Yoneda Y, Iwai M, Niyogi KK, Fleming GR. Vibronic mixing enables ultrafast energy flow in light-harvesting complex II. Nat Commun 2020; 11:1460. [PMID: 32193383 PMCID: PMC7081214 DOI: 10.1038/s41467-020-14970-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
Since the discovery of quantum beats in the two-dimensional electronic spectra of photosynthetic pigment-protein complexes over a decade ago, the origin and mechanistic function of these beats in photosynthetic light-harvesting has been extensively debated. The current consensus is that these long-lived oscillatory features likely result from electronic-vibrational mixing, however, it remains uncertain if such mixing significantly influences energy transport. Here, we examine the interplay between the electronic and nuclear degrees of freedom (DoF) during the excitation energy transfer (EET) dynamics of light-harvesting complex II (LHCII) with two-dimensional electronic-vibrational spectroscopy. Particularly, we show the involvement of the nuclear DoF during EET through the participation of higher-lying vibronic chlorophyll states and assign observed oscillatory features to specific EET pathways, demonstrating a significant step in mapping evolution from energy to physical space. These frequencies correspond to known vibrational modes of chlorophyll, suggesting that electronic-vibrational mixing facilitates rapid EET over moderately size energy gaps.
Collapse
Affiliation(s)
- Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yusuke Yoneda
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
112
|
Song Y, Schubert A, Liu X, Bhandari S, Forrest SR, Dunietz BD, Geva E, Ogilvie JP. Efficient Charge Generation via Hole Transfer in Dilute Organic Donor-Fullerene Blends. J Phys Chem Lett 2020; 11:2203-2210. [PMID: 32031813 DOI: 10.1021/acs.jpclett.0c00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient organic photovoltaics (OPVs) require broadband charge photogeneration with near-unity quantum yield. This can only be achieved by exploiting all pathways that generate charge. Electron transfer from organic donors to acceptors has been well-studied and is considered the primary path to charge photogeneration in OPVs. In contrast, much less is known about the hole transfer pathway. Here we study charge photogeneration in an archetypal system comprising tetraphenyldibenzoperiflanthene:C70 blends using our recently developed multispectral two-dimensional electronic spectroscopy (M-2DES), supported by time-dependent density functional theory and fully quantum-mechanical Fermi's golden rule rate calculations. Our approach identifies in real time two rapid charge transfer pathways that are confirmed through computational analysis. Surprisingly, we find that both electron and hole transfer occur with comparable rates and efficiencies, facilitated by donor-acceptor electronic interactions. Our results highlight the importance of the hole transfer pathway for optimizing the efficiency of OPV devices employing small-molecule heterojunctions.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexander Schubert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Xiao Liu
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Stephen R Forrest
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
113
|
Bukartė E, Haufe A, Paleček D, Büchel C, Zigmantas D. Revealing vibronic coupling in chlorophyll c1 by polarization-controlled 2D electronic spectroscopy. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
114
|
Interference among Multiple Vibronic Modes in Two-Dimensional Electronic Spectroscopy. MATHEMATICS 2020. [DOI: 10.3390/math8020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vibronic coupling between electronic and vibrational states in molecules plays a critical role in most photo-induced phenomena. Many key details about a molecule’s vibronic coupling are hidden in linear spectroscopic measurements, and therefore nonlinear optical spectroscopy methods such as two-dimensional electronic spectroscopy (2D ES) have become more broadly adopted. A single vibrational mode of a molecule leads to a Franck–Condon progression of peaks in a 2D spectrum. Each peak oscillates as a function of the waiting time, and Fourier transformation can produce a spectral slice known as a ‘beating map’ at the oscillation frequency. The single vibrational mode produces a characteristic peak structure in the beating map. Studies of single modes have limited utility, however, because most molecules have numerous vibrational modes that couple to the electronic transition. Interactions or interference among the modes may lead to complicated peak patterns in each beating map. Here, we use lineshape-function theory to simulate 2D ES arising from a system having multiple vibrational modes. The simulations reveal that the peaks in each beating map are affected by all of the vibrational modes and therefore do not isolate a single mode, which was anticipated.
Collapse
|
115
|
|
116
|
Siwiak-Jaszek S, Olaya-Castro A. Transient synchronisation and quantum coherence in a bio-inspired vibronic dimer. Faraday Discuss 2019; 216:38-56. [PMID: 31062011 DOI: 10.1039/c9fd00006b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synchronisation is a collective phenomenon widely investigated in classical oscillators and, more recently, in quantum systems. However it remains unclear what features distinguish synchronous behaviour in these two scenarios. Recent works have shown that investigating synchronisation dynamics in open quantum systems can give insight into this issue. Here we study transient synchronisation in a bio-inspired vibronic dimer, where electronic excitation dynamics is mediated by coherent interactions with intramolecular vibrational modes. We show that the synchronisation dynamics of local mode displacements exhibit a rich behaviour which arises directly from the distinct time-evolutions of different vibronic quantum coherences. Furthermore, our study shows that coherent energy transport in this bio-inspired system is concomitant with the emergence of positive synchronisation between mode displacements. Our work provides further understanding of the relations between quantum coherence and synchronisation in open quantum systems and suggests an interesting role for coherence in biomolecules, that of promoting synchronisation of vibrational motions driven out of thermal equilibrium.
Collapse
Affiliation(s)
- Stefan Siwiak-Jaszek
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
117
|
Vibronic coherence evolution in multidimensional ultrafast photochemical processes. Nat Commun 2019; 10:5621. [PMID: 31819052 PMCID: PMC6901526 DOI: 10.1038/s41467-019-13503-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm-1 coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates.
Collapse
|
118
|
Lim J, Bösen CM, Somoza AD, Koch CP, Plenio MB, Huelga SF. Multicolor Quantum Control for Suppressing Ground State Coherences in Two-Dimensional Electronic Spectroscopy. PHYSICAL REVIEW LETTERS 2019; 123:233201. [PMID: 31868446 DOI: 10.1103/physrevlett.123.233201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 06/10/2023]
Abstract
The measured multidimensional spectral response of different light harvesting complexes exhibits oscillatory features which suggest an underlying coherent energy transfer. However, making this inference rigorous is challenging due to the difficulty of isolating excited state coherences in highly congested spectra. In this work, we provide a coherent control scheme that suppresses ground state coherences, thus making rephasing spectra dominated by excited state coherences. We provide a benchmark for the scheme using a model dimeric system and numerically exact methods to analyze the spectral response. We argue that combining temporal and spectral control methods can facilitate a second generation of experiments that are tailored to extract desired information and thus significantly advance our understanding of complex open many-body structure and dynamics.
Collapse
Affiliation(s)
- J Lim
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - C M Bösen
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - A D Somoza
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - C P Koch
- Theoretische Physik, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - M B Plenio
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - S F Huelga
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| |
Collapse
|
119
|
Schultz JD, Coleman AF, Mandal A, Shin JY, Ratner MA, Young RM, Wasielewski MR. Steric Interactions Impact Vibronic and Vibrational Coherences in Perylenediimide Cyclophanes. J Phys Chem Lett 2019; 10:7498-7504. [PMID: 31730346 DOI: 10.1021/acs.jpclett.9b02923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing molecular systems that exploit vibronic coherence to improve light harvesting efficiencies relies on understanding how interchromophoric interactions, such as van der Waals forces and dipolar coupling, influence these coherences in multichromophoric arrays. However, disentangling these interactions requires studies of molecular systems with tunable structural relationships. Here, we use a combination of two-dimensional electronic spectroscopy and femtosecond stimulated Raman spectroscopy to investigate the role of steric hindrance between chromophores in driving changes to vibronic and vibrational coherences in a series of substituted perylenediimide (PDI) cyclophane dimers. We report significant differences in the frequency power spectra from the cyclophane dimers versus the corresponding monomer reference. We attribute these differences to distortion of the PDI cores from steric interactions between the substituents. These results highlight the importance of considering structural changes when rationalizing vibronic coupling in multichromophoric systems.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Adam F Coleman
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Aritra Mandal
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Jae Yoon Shin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Mark A Ratner
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| |
Collapse
|
120
|
Maiuri M, Garavelli M, Cerullo G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J Am Chem Soc 2019; 142:3-15. [DOI: 10.1021/jacs.9b10533] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
121
|
Menzel JP, de Groot HJM, Buda F. Photoinduced Electron Transfer in Donor-Acceptor Complexes: Isotope Effect and Dynamic Symmetry Breaking. J Phys Chem Lett 2019; 10:6504-6511. [PMID: 31593634 PMCID: PMC6844126 DOI: 10.1021/acs.jpclett.9b02408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Electron-nuclear (vibronic) coupling has emerged as an important factor in determining the efficiency of energy transfer and charge separation in natural and artificial photosynthetic systems. Here we investigate the photoinduced charge-transfer process in a hydrogen-bonded donor-acceptor molecular complex. By using real-time quantum-classical simulations based on time-dependent Kohn-Sham equations, we follow in detail the relaxation from the Franck-Condon point to the region of strong nonadiabatic coupling where electron transfer occurs. We elucidate how the charge transfer is coupled to specific vibrational modes and how it is affected by isotope substitution. The importance of resonance in nuclear and electron dynamics and the role of dynamic symmetry breaking are emphasized. Using the dipole moment as a descriptive parameter, exchange of angular momentum between nuclear and electronic subsystems in an electron-nuclear resonant process is inferred. The performed simulations support a nonadiabatic conversion via adiabatic passage process that was recently put forward. These results are relevant in deriving rational design principles for solar-to-fuel conversion devices.
Collapse
|
122
|
Duan HG, Thorwart M, Miller RJD. Does electronic coherence enhance anticorrelated pigment vibrations under realistic conditions? J Chem Phys 2019; 151:114115. [PMID: 31542003 DOI: 10.1063/1.5119248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The light-harvesting efficiency of a photoactive molecular complex is largely determined by the properties of its electronic quantum states. Those, in turn, are influenced by molecular vibrational states of the nuclear degrees of freedom. Here, we reexamine two recently formulated concepts that a coherent vibronic coupling between molecular states would either extend the electronic coherence lifetime or enhance the amplitude of the anticorrelated vibrational mode at longer times. For this, we study a vibronically coupled dimer and calculate the nonlinear two-dimensional (2D) electronic spectra that directly reveal electronic coherence. The time scale of electronic coherence is initially extracted by measuring the antidiagonal bandwidth of the central peak in the 2D spectrum at zero waiting time. Based on the residual analysis, we identify small-amplitude long-lived oscillations in the cross-peaks, which, however, are solely due to groundstate vibrational coherence, regardless of having resonant or off-resonant conditions. Our studies neither show an enhancement of the electronic quantum coherence nor an enhancement of the anticorrelated vibrational mode by the vibronic coupling under ambient conditions.
Collapse
Affiliation(s)
- Hong-Guang Duan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
123
|
Song Y, Schubert A, Maret E, Burdick RK, Dunietz BD, Geva E, Ogilvie JP. Vibronic structure of photosynthetic pigments probed by polarized two-dimensional electronic spectroscopy and ab initio calculations. Chem Sci 2019; 10:8143-8153. [PMID: 31857881 PMCID: PMC6836992 DOI: 10.1039/c9sc02329a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Bacteriochlorophyll a (Bchl a) and chlorophyll a (Chl a) play important roles as light absorbers in photosynthetic antennae and participate in the initial charge-separation steps in photosynthetic reaction centers. Despite decades of study, questions remain about the interplay of electronic and vibrational states within the Q-band and its effect on the photoexcited dynamics. Here we report results of polarized two-dimensional electronic spectroscopic measurements, performed on penta-coordinated Bchl a and Chl a and their interpretation based on state-of-the-art time-dependent density functional theory calculations and vibrational mode analysis for spectral shapes. We find that the Q-band of Bchl a is comprised of two independent bands, that are assigned following the Gouterman model to Q x and Q y states with orthogonal transition dipole moments. However, we measure the angle to be ∼75°, a finding that is confirmed by ab initio calculations. The internal conversion rate constant from Q x to Q y is found to be 11 ps-1. Unlike Bchl a, the Q-band of Chl a contains three distinct peaks with different polarizations. Ab initio calculations trace these features back to a spectral overlap between two electronic transitions and their vibrational replicas. The smaller energy gap and the mixing of vibronic states result in faster internal conversion rate constants of 38-50 ps-1. We analyze the spectra of penta-coordinated Bchl a and Chl a to highlight the interplay between low-lying vibronic states and their relationship to photoinduced relaxation. Our findings shed new light on the photoexcited dynamics in photosynthetic systems where these chromophores are primary pigments.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics , University of Michigan , 450 Church St , Ann Arbor , MI 48109 , USA .
| | - Alexander Schubert
- Department of Chemistry , University of Michigan , 930 N University Ave , Ann Arbor , MI 48109 , USA
- Department of Chemistry and Biochemistry , Kent State University , 1175 Risman Drive , Kent , OH 44242 , USA
| | - Elizabeth Maret
- Applied Physics Program , University of Michigan , 450 Church St , Ann Arbor , MI 48109 , USA
| | - Ryan K Burdick
- Department of Chemistry , University of Michigan , 930 N University Ave , Ann Arbor , MI 48109 , USA
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry , Kent State University , 1175 Risman Drive , Kent , OH 44242 , USA
| | - Eitan Geva
- Department of Chemistry , University of Michigan , 930 N University Ave , Ann Arbor , MI 48109 , USA
| | - Jennifer P Ogilvie
- Department of Physics , University of Michigan , 450 Church St , Ann Arbor , MI 48109 , USA .
| |
Collapse
|
124
|
Kloss B, Reichman DR, Tempelaar R. Multiset Matrix Product State Calculations Reveal Mobile Franck-Condon Excitations Under Strong Holstein-Type Coupling. PHYSICAL REVIEW LETTERS 2019; 123:126601. [PMID: 31633978 DOI: 10.1103/physrevlett.123.126601] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 06/10/2023]
Abstract
We show that the dynamics of (vertical) Franck-Condon excitations in the regime where Holstein-coupled vibrational modes mix strongly with electronic degrees of freedom sharply contrasts with the known self-localized behavior of vibrationally relaxed excitations. Instead, the strongly coupled modes are found to periodically induce resonances between interacting electronic sites, during which effective excitation transfer occurs, allowing Franck-Condon excitations to attain substantial mean square displacements under conditions where relaxed excitations are essentially trapped to a single site. In demonstrating this behavior, we employ a multiset matrix product state formalism. We find this tensor network state method to be a remarkably efficient and accurate approach for the notoriously difficult problem posed by the Holstein model in the regime where the electronic coupling, the vibrational quantum, and the vibrational reorganization energy are comparable in magnitude.
Collapse
Affiliation(s)
- Benedikt Kloss
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Roel Tempelaar
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
125
|
Irgen-Gioro S, Gururangan K, Saer RG, Blankenship RE, Harel E. Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II. Chem Sci 2019; 10:10503-10509. [PMID: 32055373 PMCID: PMC7003877 DOI: 10.1039/c9sc03501j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/08/2019] [Indexed: 11/21/2022] Open
Abstract
The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects for uncovering mechanisms of efficient energy transport.
The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna–Matthews–Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (<100 fs) as energy transport between states at the energy level difference equal to the coherence energy. The pigment monomer bacteriochlorophyll a (BChla) shows no electronic coherences, supporting our methodology of removing long-lived vibrational coherences that have obfuscated previous assignments. This correlation of timescales and energy between coherences and energy transport reestablishes the time and energy scales that quantum processes may play a role in energy transport.
Collapse
Affiliation(s)
- Shawn Irgen-Gioro
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston IL 60208 , USA
| | - Karthik Gururangan
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston IL 60208 , USA
| | - Rafael G Saer
- Department of Biology , Washington University in St. Louis , One Brookings Dr St. Louis , MO 63130 , USA
| | - Robert E Blankenship
- Department of Biology , Washington University in St. Louis , One Brookings Dr St. Louis , MO 63130 , USA
| | - Elad Harel
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston IL 60208 , USA.,Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , USA .
| |
Collapse
|
126
|
Ford JS, Salam A, Jones GA. A Quantum Electrodynamics Description of Quantum Coherence and Damping in Condensed-Phase Energy Transfer. J Phys Chem Lett 2019; 10:5654-5661. [PMID: 31483664 DOI: 10.1021/acs.jpclett.9b02183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum coherence in condensed-phase electronic resonance energy transfer (RET) is described within the context of quantum electrodynamics (QED) theory. Mediating dressed virtual photons (polaritons) are explicitly incorporated into the treatment, and coherence is understood within the context of interfering Feynman pathways connecting the initial and final states for the RET process. The model investigated is that of an oriented three-body donor, acceptor, and mediator RET system embedded within a dispersive and absorbing polarizable medium. We show how quantum coherence can significantly enhance the rate of RET and give a rigorous picture for subsequent decoherence that is driven by both phase and amplitude damping. Energy-conserving phase damping occurs as a result of geometric and dispersive effects and is associated with destructive interference between Feynman pathways. Dissipative amplitude damping, on the other hand, is attributed to vibronic relaxation and absorptivity of the medium and can be understood as virtual photons (polaritons) leaking into the environment. This model offers insights into the emergence of coherence and subsequent decoherence for energy transfer in photosynthetic systems.
Collapse
Affiliation(s)
- Jack S Ford
- School of Chemistry , University of East Anglia , Norwich NR4 7TJ , U.K
| | - A Salam
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27109 , United States
- Physikalische Institut , Albert-Ludwigs-Universitat-Freiburg , Hermann-Herder-Strasse 3 , D-79104 Freiburg , Germany
- Freiburg Institute for Advanced Studies (FRIAS) , Albertstrasse 19 , D-79104 Freiburg , Germany
| | - Garth A Jones
- School of Chemistry , University of East Anglia , Norwich NR4 7TJ , U.K
| |
Collapse
|
127
|
Schnedermann C, Alvertis AM, Wende T, Lukman S, Feng J, Schröder FAYN, Turban DHP, Wu J, Hine NDM, Greenham NC, Chin AW, Rao A, Kukura P, Musser AJ. A molecular movie of ultrafast singlet fission. Nat Commun 2019; 10:4207. [PMID: 31527736 PMCID: PMC6746807 DOI: 10.1038/s41467-019-12220-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/26/2019] [Indexed: 11/09/2022] Open
Abstract
The complex dynamics of ultrafast photoinduced reactions are governed by their evolution along vibronically coupled potential energy surfaces. It is now often possible to identify such processes, but a detailed depiction of the crucial nuclear degrees of freedom involved typically remains elusive. Here, combining excited-state time-domain Raman spectroscopy and tree-tensor network state simulations, we construct the full 108-atom molecular movie of ultrafast singlet fission in a pentacene dimer, explicitly treating 252 vibrational modes on 5 electronic states. We assign the tuning and coupling modes, quantifying their relative intensities and contributions, and demonstrate how these modes coherently synchronise to drive the reaction. Our combined experimental and theoretical approach reveals the atomic-scale singlet fission mechanism and can be generalized to other ultrafast photoinduced reactions in complex systems. This will enable mechanistic insight on a detailed structural level, with the ultimate aim to rationally design molecules to maximise the efficiency of photoinduced reactions.
Collapse
Affiliation(s)
- Christoph Schnedermann
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Antonios M Alvertis
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Torsten Wende
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
| | - Steven Lukman
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jiaqi Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Florian A Y N Schröder
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - David H P Turban
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Nicholas D M Hine
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Alex W Chin
- Centre National de la Recherce Scientifique, Institute des Nanosciences de Paris, Sorbonne Universite, Paris, France
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
| | - Andrew J Musser
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK.
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14853, USA.
| |
Collapse
|
128
|
Karki KJ, Chen J, Sakurai A, Shi Q, Gardiner AT, Kühn O, Cogdell RJ, Pullerits T. Before Förster. Initial excitation in photosynthetic light harvesting. Chem Sci 2019; 10:7923-7928. [PMID: 31673317 PMCID: PMC6788518 DOI: 10.1039/c9sc01888c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022] Open
Abstract
Electronic 2D spectroscopy allows nontrivial quantum effects to be explored in unprecedented detail. Here, we apply recently developed fluorescence detected coherent 2D spectroscopy to study the light harvesting antenna 2 (LH2) of photosynthetic purple bacteria. We report double quantum coherence 2D spectra which show clear cross peaks indicating correlated excitations. Similar results are found for rephasing and nonrephasing signals. Analysis of signal generating quantum pathways leads to the conclusion that, contrary to the currently prevailing physical picture, the two weakly coupled pigment rings of LH2 share the initial electronic excitation leading to quantum mechanical correlation between the two clearly separate absorption bands. These results are general and have consequences for the interpretation of initially created excited states not only in photosynthesis but in all light absorbing systems composed of weakly interacting pigments where the excitation transfer is commonly described by using Förster theory. Being able to spectrally resolve the nonequilibrium dynamics immediately following photoabsorption may provide a glimpse to the systems' transition into the Förster regime.
Collapse
Affiliation(s)
- Khadga J Karki
- Chemical Physics and NanoLund , Lund University , Box 124 , 22100 Lund , Sweden .
| | - Junsheng Chen
- Chemical Physics and NanoLund , Lund University , Box 124 , 22100 Lund , Sweden .
| | - Atsunori Sakurai
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba, Meguro , Tokyo 153-8505 , Japan
| | - Qi Shi
- Chemical Physics and NanoLund , Lund University , Box 124 , 22100 Lund , Sweden .
| | - Alastair T Gardiner
- Institute of Molecular, Cell and Systems Biology , College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow G12 8QQ , UK
| | - Oliver Kühn
- Institute of Physics , University of Rostock , Albert-Einstein-Str. 23-24 , 18059 Rostock , Germany
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology , College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow G12 8QQ , UK
| | - Tönu Pullerits
- Chemical Physics and NanoLund , Lund University , Box 124 , 22100 Lund , Sweden .
| |
Collapse
|
129
|
Somoza AD, Marty O, Lim J, Huelga SF, Plenio MB. Dissipation-Assisted Matrix Product Factorization. PHYSICAL REVIEW LETTERS 2019; 123:100502. [PMID: 31573298 DOI: 10.1103/physrevlett.123.100502] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Charge and energy transfer in biological and synthetic organic materials are strongly influenced by the coupling of electronic states to a highly structured dissipative environment. Nonperturbative simulations of these systems require a substantial computational effort, and current methods can only be applied to large systems if environmental structures are severely coarse grained. Time evolution methods based on tensor networks are fundamentally limited by the times that can be reached due to the buildup of entanglement in time, which quickly increases the size of the tensor representation, i.e., the bond dimension. In this Letter, we introduce a dissipation-assisted matrix product factorization (DAMPF) method that combines a tensor network representation of the vibronic state within a pseudomode description of the environment where a continuous bosonic environment is mapped into a few harmonic oscillators under Lindblad damping. This framework is particularly suitable for a tensor network representation, since damping suppresses the entanglement growth among oscillators and significantly reduces the bond dimension required to achieve a desired accuracy. We show that dissipation removes the "time-wall" limitation of existing methods, enabling the long-time simulation of large vibronic systems consisting of 10-50 sites coupled to 100-1000 underdamped modes in total and for a wide range of parameter regimes. For these reasons, we believe that our formalism will facilitate the investigation of spatially extended systems with applications to quantum biology, organic photovoltaics, and quantum thermodynamics.
Collapse
Affiliation(s)
- Alejandro D Somoza
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - Oliver Marty
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - James Lim
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - Susana F Huelga
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| |
Collapse
|
130
|
Eckert PA, Kubarych KJ. Vibrational coherence transfer illuminates dark modes in models of the FeFe hydrogenase active site. J Chem Phys 2019. [DOI: 10.1063/1.5111016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter A. Eckert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
131
|
Insights into the mechanisms and dynamics of energy transfer in plant light-harvesting complexes from two-dimensional electronic spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148050. [PMID: 31326408 DOI: 10.1016/j.bbabio.2019.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022]
Abstract
During the past two decades, two-dimensional electronic spectroscopy (2DES) and related techniques have emerged as a potent experimental toolset to study the ultrafast elementary steps of photosynthesis. Apart from the highly engaging albeit controversial analysis of the role of quantum coherences in the photosynthetic processes, 2DES has been applied to resolve the dynamics and pathways of energy and electron transport in various light-harvesting antenna systems and reaction centres, providing unsurpassed level of detail. In this paper we discuss the main technical approaches and their applicability for solving specific problems in photosynthesis. We then recount applications of 2DES to study the exciton dynamics in plant and photosynthetic light-harvesting complexes, especially light-harvesting complex II (LHCII) and the fucoxanthin-chlorophyll proteins of diatoms, with emphasis on the types of unique information about such systems that 2DES is capable to deliver. This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.
Collapse
|
132
|
Phelan BT, Schultz JD, Zhang J, Huang GJ, Young RM, Wasielewski MR. Quantum coherence in ultrafast photo-driven charge separation. Faraday Discuss 2019; 216:319-338. [PMID: 31066389 DOI: 10.1039/c8fd00218e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coherent interactions are prevalent in photodriven processes, ranging from photosynthetic energy transfer to superexchange-mediated electron transfer, resulting in numerous studies aimed towards identifying and understanding these interactions. A key motivator of this interest is the non-statistical scaling laws that result from coherently traversing multiple pathways due to quantum interference. To that end, we employed ultrafast transient absorption spectroscopy to measure electron transfer in two donor-acceptor molecular systems comprising a p-(9-anthryl)-N,N-dimethylaniline chromophore/electron donor and either one or two equivalent naphthalene-1,8:4,5-bis(dicarboximide) electron acceptors at both ambient and cryogenic temperatures. The two-acceptor compound shows a statistical factor of 2.1 ± 0.2 rate enhancement at room temperature and a non-statistical factor of 2.6 ± 0.2 rate enhancement at cryogenic temperatures, suggesting correlated interactions between the two acceptors with the donor and with the bath modes. Comparing the charge recombination rates indicates that the electron is delocalized over both acceptors at low temperature but localized on a single acceptor at room temperature. These results highlight the importance of shielding the system from bath fluctuations to preserve and ultimately exploit the coherent interactions.
Collapse
Affiliation(s)
- Brian T Phelan
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Jonathan D Schultz
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Jinyuan Zhang
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Guan-Jhih Huang
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Ryan M Young
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Michael R Wasielewski
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| |
Collapse
|
133
|
Mandal A, Schultz JD, Wu YL, Coleman AF, Young RM, Wasielewski MR. Transient Two-Dimensional Electronic Spectroscopy: Coherent Dynamics at Arbitrary Times along the Reaction Coordinate. J Phys Chem Lett 2019; 10:3509-3515. [PMID: 31188611 DOI: 10.1021/acs.jpclett.9b00826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances in two-dimensional electronic spectroscopy (2DES) have enabled identification of fragile quantum coherences in condensed-phase systems near the equilibrium molecular geometry. In general, traditional 2DES cannot measure such coherences associated with photophysical processes that occur at times significantly after the initially prepared state has dephased, such as the evolution of the initial excited state into a charge transfer state. We demonstrate the use of transient two-dimensional electronic spectroscopy (t-2DES) to probe coherences in an electron donor-acceptor dyad consisting of a perylenediimide (PDI) acceptor and a perylene (Per) donor. An actinic pump pulse prepares the lowest excited singlet state of PDI followed by formation of the PDI•--Per•+ ion pair, which is probed at different times following the actinic pulse using 2DES. Analysis of the observed coherences provides information about electronic, vibronic, and vibrational interactions at any time along the reaction coordinate for ion pair formation.
Collapse
Affiliation(s)
- Aritra Mandal
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Yi-Lin Wu
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Adam F Coleman
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| |
Collapse
|
134
|
Wang L, Allodi MA, Engel GS. Quantum coherences reveal excited-state dynamics in biophysical systems. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0109-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
135
|
Meares A, Yu Z, Viswanathan Bhagavathy G, Satraitis A, Ptaszek M. Photoisomerization of Enediynyl Linker Leads to Slipped Cofacial Hydroporphyrin Dyads with Strong Through-Bond and Through-Space Electronic Interactions. J Org Chem 2019; 84:7851-7862. [PMID: 31117562 DOI: 10.1021/acs.joc.9b00731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Photoisomerization of 3,4-di(methoxycarbonyl)-enediyne linker in hydroporphyrin (chlorin or bacteriochlorin) dyads leads to thermally stable cis isomers, where macrocycles adopt a slipped cofacial mutual geometry with an edge-to-edge distance of ∼3.6 Å (determined by density functional theory (DFT) calculations). Absorption spectra exhibit a significant splitting of the long-wavelength Qy band, which indicates a strong electronic coupling with a strength of V = ∼477 cm-1 that increases to 725 cm-1 upon metalation of hydroporphyrins. Each dyad features a broad, structureless emission band, with large Stokes shift, which is indicative of excimer formation. DFT calculations for dyads show both strong through-bond electronic coupling and through-space electronic interactions, due to the overlap of π-orbitals. Overall, geometry, electronic structure, strength of electronic interactions, and optical properties of reported dyads closely resemble those observed for photosynthetic special pairs. Dyads reported here represent a novel type of photoactive arrays with various modes of electronic interactions between chromophores. Combining through-bond and through-space coupling appears to be a viable strategy to engineer novel optical and photochemical properties in organic conjugated materials.
Collapse
Affiliation(s)
- Adam Meares
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , 1000 Hilltop Circle , Baltimore , Maryland 21250 , United States
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , 1000 Hilltop Circle , Baltimore , Maryland 21250 , United States
| | - Ganga Viswanathan Bhagavathy
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , 1000 Hilltop Circle , Baltimore , Maryland 21250 , United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , 1000 Hilltop Circle , Baltimore , Maryland 21250 , United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry , University of Maryland, Baltimore County , 1000 Hilltop Circle , Baltimore , Maryland 21250 , United States
| |
Collapse
|
136
|
|
137
|
Paul J, Stevens CE, Smith RP, Dey P, Mapara V, Semenov D, McGill SA, Kaindl RA, Hilton DJ, Karaiskaj D. Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:063901. [PMID: 31255018 DOI: 10.1063/1.5055891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coherent four-wave mixing signal require phase stability. Therefore, these measurements are difficult to perform in environments prone to mechanical vibrations. Large resistive magnets use extensive quantities of cooling water, which causes mechanical vibrations, making two-dimensional Fourier transform spectroscopy very challenging. Here, we report on the strategies we used to overcome these challenges and maintain the required phase-stability throughout the measurement. A self-contained portable platform was used to set up the experiments within the time frame provided by a user facility. Furthermore, this platform was floated above the optical table in order to isolate it from vibrations originating from the resistive magnet. Finally, we present two-dimensional Fourier transform spectra obtained from GaAs quantum wells at magnetic fields up to 25 T and demonstrate the utility of this technique in providing important details, which are obscured in one dimensional spectroscopy.
Collapse
Affiliation(s)
- Jagannath Paul
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | | | - Ryan P Smith
- Department of Physics, California State University-East Bay, Hayward, California 94542, USA
| | - Prasenjit Dey
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Varun Mapara
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Dimitry Semenov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 30201, USA
| | - Steven A McGill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 30201, USA
| | - Robert A Kaindl
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David J Hilton
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Denis Karaiskaj
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
138
|
Zhu R, Yue S, Li H, Leng X, Wang Z, Chen H, Weng Y. Correction of spectral distortion in two-dimensional electronic spectroscopy arising from the wedge-based delay line. OPTICS EXPRESS 2019; 27:15474-15484. [PMID: 31163743 DOI: 10.1364/oe.27.015474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Unlike the probe wavelength, which is spectrally resolved by monochromator, the excitation wavelength in two-dimensional electronic spectroscopy is retrieved by means of Fourier transform of the interference signal introduced by the coherence delay time between the first and second excitation laser pulses. Hence, the calibration of delay lines would determine its accuracy. In this work, we showed that an inaccurate calibration factor of wedge-based delay line would result in a global peak shift and asymmetric spectral twists along the excitation axis. Both theoretical analysis and experiments have shown that such spectral distortions can be corrected by an accurately predetermined calibration factor. The relative accuracy of calibration factor reaches 3 × 10-5 in our setup. The dispersion effect of wedges also has been considered for the broadband excitation.
Collapse
|
139
|
Wang YC, Zhao Y. Effect of an underdamped vibration with both diagonal and off-diagonal exciton-phonon interactions on excitation energy transfer. J Comput Chem 2019; 40:1097-1104. [PMID: 30549065 DOI: 10.1002/jcc.25611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 11/08/2022]
Abstract
A numerically exact approach, named as the hierarchical stochastic Schrödinger equation, is employed to investigate the resonant vibration-assisted excitation energy transfer in a dimer system, where an underdamped vibration with both diagonal and off-diagonal exciton-phonon interactions is incorporated. From a large parameter space over the site-energy difference, excitonic coupling, and reorganization energy, it is found that the promotion effect of the underdamped vibration is significant only when the excitonic coupling is smaller than the site-energy difference. Under the circumstance, there is an optimal strength ratio between diagonal and off-diagonal exciton-phonon interactions for the resonant vibration-assisted excitation energy transfer as the site-energy difference is greater than the reorganization energy, whereas in the opposite situation the most efficient energy transfer occurs as the exciton-phonon interaction is totally off-diagonal. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu-Chen Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
140
|
Gelzinis A, Augulis R, Butkus V, Robert B, Valkunas L. Two-dimensional spectroscopy for non-specialists. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:271-285. [DOI: 10.1016/j.bbabio.2018.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/14/2018] [Accepted: 12/08/2018] [Indexed: 12/20/2022]
|
141
|
Meneghin E, Pedron D, Collini E. Characterization of the coherent dynamics of bacteriochlorophyll a in solution. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
142
|
Ma F, Romero E, Jones MR, Novoderezhkin VI, van Grondelle R. Both electronic and vibrational coherences are involved in primary electron transfer in bacterial reaction center. Nat Commun 2019; 10:933. [PMID: 30804346 PMCID: PMC6389996 DOI: 10.1038/s41467-019-08751-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022] Open
Abstract
Understanding the mechanism behind the near-unity efficiency of primary electron transfer in reaction centers is essential for designing performance-enhanced artificial solar conversion systems to fulfill mankind’s growing demands for energy. One of the most important challenges is distinguishing electronic and vibrational coherence and establishing their respective roles during charge separation. In this work we apply two-dimensional electronic spectroscopy to three structurally-modified reaction centers from the purple bacterium Rhodobacter sphaeroides with different primary electron transfer rates. By comparing dynamics and quantum beats, we reveal that an electronic coherence with dephasing lifetime of ~190 fs connects the initial excited state, P*, and the charge-transfer intermediate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{P}}_{\mathrm{A}}^ + {\mathrm{P}}_{\mathrm{B}}^ -$$\end{document}PA+PB-; this \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{P}}^ \ast \to {\mathrm{P}}_{\mathrm{A}}^ + {\mathrm{P}}_{\mathrm{B}}^ -$$\end{document}P*→PA+PB- step is associated with a long-lived quasi-resonant vibrational coherence; and another vibrational coherence is associated with stabilizing the primary photoproduct, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{P}}^ + {\mathrm{B}}_{\mathrm{A}}^ -$$\end{document}P+BA-. The results show that both electronic and vibrational coherences are involved in primary electron transfer process and they correlate with the super-high efficiency. Distinguishing electronic and vibrational coherences helps to clarify the near-unity efficiency of primary electron transfer in reaction centres. Here, the authors report their respective correlation with the electron transfer rate by comparing the 2D electronic spectra of three mutant reaction centres.
Collapse
Affiliation(s)
- Fei Ma
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Elisabet Romero
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, Moscow, 119992, Russia
| | - Rienk van Grondelle
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
143
|
Hernández FJ, Bonafé FP, Aradi B, Frauenheim T, Sánchez CG. Simulation of Impulsive Vibrational Spectroscopy. J Phys Chem A 2019; 123:2065-2072. [DOI: 10.1021/acs.jpca.9b00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Federico J. Hernández
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Franco P. Bonafé
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen 28359, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen 28359, Germany
| | - Cristián G. Sánchez
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
144
|
Kunsel T, Tiwari V, Matutes YA, Gardiner AT, Cogdell RJ, Ogilvie JP, Jansen TLC. Simulating Fluorescence-Detected Two-Dimensional Electronic Spectroscopy of Multichromophoric Systems. J Phys Chem B 2019; 123:394-406. [PMID: 30543283 PMCID: PMC6345114 DOI: 10.1021/acs.jpcb.8b10176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 11/28/2022]
Abstract
We present a theory for modeling fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems. The theory is tested by comparison of the predicted spectra of the light-harvesting complex LH2 with experimental data. A qualitative explanation of the strong cross-peaks as compared to conventional two-dimensional electronic spectra is given. The strong cross-peaks are attributed to the clean ground-state signal that is revealed when the annihilation of exciton pairs created on the same LH2 complex cancels oppositely signed signals from the doubly excited state. This annihilation process occurs much faster than the nonradiative relaxation. Furthermore, the line shape difference is attributed to slow dynamics, exciton delocalization within the bands, and intraband exciton-exciton annihilation. This is in line with existing theories presented for model systems. We further propose the use of time-resolved fluorescence-detected two-dimensional spectroscopy to study state-resolved exciton-exciton annihilation.
Collapse
Affiliation(s)
- Tenzin Kunsel
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Vivek Tiwari
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yassel Acosta Matutes
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Richard J. Cogdell
- Institute
for Molecular Biology, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Jennifer P. Ogilvie
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
145
|
Rather SR, Scholes GD. From Fundamental Theories to Quantum Coherences in Electron Transfer. J Am Chem Soc 2019; 141:708-722. [PMID: 30412671 DOI: 10.1021/jacs.8b09059] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photoinduced electron transfer (ET) is a cornerstone of energy transduction from light to chemistry. The past decade has seen tremendous advances in the possible role of quantum coherent effects in the light-initiated energy and ET processes in chemical, biological, and materials systems. The prevalence of such coherence effects holds a promise to increase the efficiency and robustness of transport even in the face of energetic or structural disorder. A primary motive of this Perspective is to work out how to think about "coherence" in ET reactions. We will discuss how the interplay of basic parameters governing ET reactions-like electronic coupling, interactions with the environment, and intramolecular high-frequency quantum vibrations-impact coherences. This includes revisiting the insights from the seminal work on the theory of ET and time-resolved measurements on coherent dynamics to explore the role of coherences in ET reactions. We conclude by suggesting that in addition to optical spectroscopies, validating the functional role of coherences would require simultaneous mapping of correlated electron motion and atomically resolved nuclear structure.
Collapse
Affiliation(s)
- Shahnawaz R. Rather
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - Gregory D Scholes
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
146
|
Kim CW, Lee WG, Kim I, Rhee YM. Effect of Underdamped Vibration on Excitation Energy Transfer: Direct Comparison between Two Different Partitioning Schemes. J Phys Chem A 2019; 123:1186-1197. [DOI: 10.1021/acs.jpca.8b10977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Weon-Gyu Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Inkoo Kim
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon 16678, Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
147
|
Wu EC, Arsenault EA, Bhattacharyya P, Lewis NHC, Fleming GR. Two-dimensional electronic vibrational spectroscopy and ultrafast excitonic and vibronic photosynthetic energy transfer. Faraday Discuss 2019; 216:116-132. [DOI: 10.1039/c8fd00190a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Dimensional electronic vibrational spectroscopy presents a novel experimental and theoretical approach to study energy transfer.
Collapse
Affiliation(s)
- Eric C. Wu
- Department of Chemistry
- University of California
- Berkeley 94720
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| | | | - Pallavi Bhattacharyya
- Department of Chemistry
- University of California
- Berkeley 94720
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| | | | - Graham R. Fleming
- Department of Chemistry
- University of California
- Berkeley 94720
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| |
Collapse
|
148
|
Foster PW, Tiwari V, Peters WK, Jonas DM. Femtosecond nonadiabatic dynamics in photosynthetic light harvesting. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920509036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fast and efficient energy transfer in photosynthetic antennas supports all life on earth. Nonadiabatic energy transfer drives unusual vibrations through tight coupling with electronic motion. Polarization dependent vibrational motion drives polarization independent femtosecond energy transfer.
Collapse
|
149
|
Paleček D, Zigmantas D. Double-crossed polarization transient grating for distinction and characterization of coherences. OPTICS EXPRESS 2018; 26:32900-32907. [PMID: 30645450 DOI: 10.1364/oe.26.032900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
Coherent phenomena have been widely suggested to play a role in efficient photosynthetic light harvesting and charge separation processes. To substantiate these ideas, separation of intramolecular vibrational coherences from purely electronic or mixed vibronic coherences is essential. To this end, polarization-controlled two-dimensional electronic spectroscopy has been shown to provide an effective selectivity. We show that analogous discrimination can be achieved in a transient grating experiment by employing the double-crossed polarization scheme. This is demonstrated in a study of bacterial reaction centers. Significantly faster acquisition times of these experiments make longer population time scans feasible, thereby achieving improved frequency resolution and allowing for accurate extraction of coherence frequencies and dephasing times. These parameters are crucial for the discussion on relevance of the measured coherences to energy or electron transfer phenomena.
Collapse
|
150
|
Khosravi SD, Bishop MM, LaFountain AM, Turner DB, Gibson GN, Frank HA, Berrah N. Addition of a Carbonyl End Group Increases the Rate of Excited-State Decay in a Carotenoid via Conjugation Extension and Symmetry Breaking. J Phys Chem B 2018; 122:10872-10879. [PMID: 30387609 DOI: 10.1021/acs.jpcb.8b06732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state absorption, transient absorption, and transient grating spectroscopies were employed to elucidate the role of a conjugated carbonyl group in the photophysics of carotenoids. Spheroidenone and spheroidene have similar molecular structures and differ only in an additional carbonyl group in spheroidenone. Comparison of the optical responses of these two molecules under similar experimental conditions was used to understand the role of this carbonyl group in the structure. It was found that the carbonyl group has two main effects: first, it dramatically increases the depopulation rate of the excited states of the molecule. The lifetimes of all the excited states of spheroidenone were found to be almost half of the ones for spheroidene. Second, the presence of the carbonyl group in the chain alters the decay mechanism to the symmetry-forbidden S1 state of the molecule, so that the higher vibrational levels of the S1 state are populated much more effectively. It was also revealed that for both molecules, the S2/S x → S1(hot) → S1 decay process is not purely sequential and follows a branched model.
Collapse
Affiliation(s)
| | | | | | - Daniel B Turner
- Department of Chemistry , New York University , New York 10003 , United States
| | | | | | | |
Collapse
|