101
|
Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 2016; 21:379-404. [PMID: 26865365 PMCID: PMC4837186 DOI: 10.1007/s12192-016-0676-6] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 01/23/2023] Open
Abstract
The 70-kDa heat shock protein (HSP70) family of molecular chaperones represents one of the most ubiquitous classes of chaperones and is highly conserved in all organisms. Members of the HSP70 family control all aspects of cellular proteostasis such as nascent protein chain folding, protein import into organelles, recovering of proteins from aggregation, and assembly of multi-protein complexes. These chaperones augment organismal survival and longevity in the face of proteotoxic stress by enhancing cell viability and facilitating protein damage repair. Extracellular HSP70s have a number of cytoprotective and immunomodulatory functions, the latter either in the context of facilitating the cross-presentation of immunogenic peptides via major histocompatibility complex (MHC) antigens or in the context of acting as "chaperokines" or stimulators of innate immune responses. Studies have linked the expression of HSP70s to several types of carcinoma, with Hsp70 expression being associated with therapeutic resistance, metastasis, and poor clinical outcome. In malignantly transformed cells, HSP70s protect cells from the proteotoxic stress associated with abnormally rapid proliferation, suppress cellular senescence, and confer resistance to stress-induced apoptosis including protection against cytostatic drugs and radiation therapy. All of the cellular activities of HSP70s depend on their adenosine-5'-triphosphate (ATP)-regulated ability to interact with exposed hydrophobic surfaces of proteins. ATP hydrolysis and adenosine diphosphate (ADP)/ATP exchange are key events for substrate binding and Hsp70 release during folding of nascent polypeptides. Several proteins that bind to distinct subdomains of Hsp70 and consequently modulate the activity of the chaperone have been identified as HSP70 co-chaperones. This review focuses on the regulation, function, and relevance of the molecular Hsp70 chaperone machinery to disease and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jürgen Radons
- Scientific Consulting International, Mühldorfer Str. 64, 84503, Altötting, Germany.
| |
Collapse
|
102
|
Finka A, Mattoo RUH, Goloubinoff P. Experimental Milestones in the Discovery of Molecular Chaperones as Polypeptide Unfolding Enzymes. Annu Rev Biochem 2016; 85:715-42. [PMID: 27050154 DOI: 10.1146/annurev-biochem-060815-014124] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.
Collapse
Affiliation(s)
- Andrija Finka
- Laboratory of Biophysical Statistics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rayees U H Mattoo
- Department of Structural Biology, Stanford University, Stanford, California 94305;
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
103
|
Mack KL, Shorter J. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity. Front Mol Biosci 2016; 3:8. [PMID: 27014702 PMCID: PMC4791398 DOI: 10.3389/fmolb.2016.00008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 11/17/2022] Open
Abstract
Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector.
Collapse
Affiliation(s)
- Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
104
|
Andreini C, Banci L, Rosato A. Exploiting Bacterial Operons To Illuminate Human Iron–Sulfur Proteins. J Proteome Res 2016; 15:1308-22. [DOI: 10.1021/acs.jproteome.6b00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
105
|
Hentze N, Le Breton L, Wiesner J, Kempf G, Mayer MP. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. eLife 2016; 5. [PMID: 26785146 PMCID: PMC4775227 DOI: 10.7554/elife.11576] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/18/2016] [Indexed: 01/06/2023] Open
Abstract
The heat shock response is a universal homeostatic cell autonomous reaction of organisms to cope with adverse environmental conditions. In mammalian cells, this response is mediated by the heat shock transcription factor Hsf1, which is monomeric in unstressed cells and upon activation trimerizes, and binds to promoters of heat shock genes. To understand the basic principle of Hsf1 activation we analyzed temperature-induced alterations in the conformational dynamics of Hsf1 by hydrogen exchange mass spectrometry. We found a temperature-dependent unfolding of Hsf1 in the regulatory region happening concomitant to tighter packing in the trimerization region. The transition to the active DNA binding-competent state occurred highly cooperative and was concentration dependent. Surprisingly, Hsp90, known to inhibit Hsf1 activation, lowered the midpoint temperature of trimerization and reduced cooperativity of the process thus widening the response window. Based on our data we propose a kinetic model of Hsf1 trimerization.
Collapse
Affiliation(s)
- Nikolai Hentze
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Laura Le Breton
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Jan Wiesner
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Georg Kempf
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
106
|
Pathways of allosteric regulation in Hsp70 chaperones. Nat Commun 2015; 6:8308. [PMID: 26383706 PMCID: PMC4595643 DOI: 10.1038/ncomms9308] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/09/2015] [Indexed: 12/13/2022] Open
Abstract
Central to the protein folding activity of Hsp70 chaperones is their ability to interact with protein substrates in an ATP-controlled manner, which relies on allosteric regulation between their nucleotide-binding (NBD) and substrate-binding domains (SBD). Here we dissect this mechanism by analysing mutant variants of the Escherichia coli Hsp70 DnaK blocked at distinct steps of allosteric communication. We show that the SBD inhibits ATPase activity by interacting with the NBD through a highly conserved hydrogen bond network, and define the signal transduction pathway that allows bound substrates to trigger ATP hydrolysis. We identify variants deficient in only one direction of allosteric control and demonstrate that ATP-induced substrate release is more important for chaperone activity than substrate-stimulated ATP hydrolysis. These findings provide evidence of an unexpected dichotomic allostery mechanism in Hsp70 chaperones and provide the basis for a comprehensive mechanical model of allostery in Hsp70s. Hsp70 chaperones are essential for cellular proteostasis, and their function depends on allosteric communication between their nucleotide- and substrate-binding domains. Here, Kityk et al. provide a mechanical model of allostery and demonstrate that ATP-induced substrate release is more important for chaperone activity than substrate-stimulated ATP hydrolysis.
Collapse
|
107
|
Mapping the conformation of a client protein through the Hsp70 functional cycle. Proc Natl Acad Sci U S A 2015; 112:10395-400. [PMID: 26240333 DOI: 10.1073/pnas.1508504112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 70 kDa heat shock protein (Hsp70) chaperone system is ubiquitous, highly conserved, and involved in a myriad of diverse cellular processes. Its function relies on nucleotide-dependent interactions with client proteins, yet the structural features of folding-competent substrates in their Hsp70-bound state remain poorly understood. Here we use NMR spectroscopy to study the human telomere repeat binding factor 1 (hTRF1) in complex with Escherichia coli Hsp70 (DnaK). In the complex, hTRF1 is globally unfolded with up to 40% helical secondary structure in regions distal to the binding site. Very similar conformational ensembles are observed for hTRF1 bound to ATP-, ADP- and nucleotide-free DnaK. The patterns in substrate helicity mirror those found in the unfolded state in the absence of denaturants except near the site of chaperone binding, demonstrating that DnaK-bound hTRF1 retains its intrinsic structural preferences. To our knowledge, our study presents the first atomic resolution structural characterization of a client protein bound to each of the three nucleotide states of DnaK and establishes that the large structural changes in DnaK and the associated energy that accompanies ATP binding and hydrolysis do not affect the overall conformation of the bound substrate protein.
Collapse
|
108
|
Heterogeneous binding of the SH3 client protein to the DnaK molecular chaperone. Proc Natl Acad Sci U S A 2015. [PMID: 26195753 DOI: 10.1073/pnas.1505173112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The molecular chaperone heat shock protein 70 (Hsp70) plays a vital role in cellular processes, including protein folding and assembly, and helps prevent aggregation under physiological and stress-related conditions. Although the structural changes undergone by full-length client proteins upon interaction with DnaK (i.e., Escherichia coli Hsp70) are fundamental to understand chaperone-mediated protein folding, these changes are still largely unexplored. Here, we show that multiple conformations of the SRC homology 3 domain (SH3) client protein interact with the ADP-bound form of the DnaK chaperone. Chaperone-bound SH3 is largely unstructured yet distinct from the unfolded state in the absence of DnaK. The bound client protein shares a highly flexible N terminus and multiple slowly interconverting conformations in different parts of the sequence. In all, there is significant structural and dynamical heterogeneity in the DnaK-bound client protein, revealing that proteins may undergo some conformational sampling while chaperone-bound. This result is important because it shows that the surface of the Hsp70 chaperone provides an aggregation-free environment able to support part of the search for the native state.
Collapse
|
109
|
Finka A, Sood V, Quadroni M, Rios PDL, Goloubinoff P. Quantitative proteomics of heat-treated human cells show an across-the-board mild depletion of housekeeping proteins to massively accumulate few HSPs. Cell Stress Chaperones 2015; 20:605-20. [PMID: 25847399 PMCID: PMC4463922 DOI: 10.1007/s12192-015-0583-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 11/18/2022] Open
Abstract
Classic semiquantitative proteomic methods have shown that all organisms respond to a mild heat shock by an apparent massive accumulation of a small set of proteins, named heat-shock proteins (HSPs) and a concomitant slowing down in the synthesis of the other proteins. Yet unexplained, the increased levels of HSP messenger RNAs (mRNAs) may exceed 100 times the ensuing relative levels of HSP proteins. We used here high-throughput quantitative proteomics and targeted mRNA quantification to estimate in human cell cultures the mass and copy numbers of the most abundant proteins that become significantly accumulated, depleted, or unchanged during and following 4 h at 41 °C, which we define as mild heat shock. This treatment caused a minor across-the-board mass loss in many housekeeping proteins, which was matched by a mass gain in a few HSPs, predominantly cytosolic HSPCs (HSP90s) and HSPA8 (HSC70). As the mRNAs of the heat-depleted proteins were not significantly degraded and less ribosomes were recruited by excess new HSP mRNAs, the mild depletion of the many housekeeping proteins during heat shock was attributed to their slower replenishment. This differential protein expression pattern was reproduced by isothermal treatments with Hsp90 inhibitors. Unexpectedly, heat-treated cells accumulated 55 times more new molecules of HSPA8 (HSC70) than of the acknowledged heat-inducible isoform HSPA1A (HSP70), implying that when expressed as net copy number differences, rather than as mere "fold change" ratios, new biologically relevant information can be extracted from quantitative proteomic data. Raw data are available via ProteomeXchange with identifier PXD001666.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Laboratoire de Biophysique Statistique, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vishal Sood
- Laboratoire de Biophysique Statistique, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Manfredo Quadroni
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
110
|
Finka A, Sharma SK, Goloubinoff P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front Mol Biosci 2015; 2:29. [PMID: 26097841 PMCID: PMC4456865 DOI: 10.3389/fmolb.2015.00029] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) and related HSP110s (HSPHs), contribute about 3% of the total protein mass of human cells. The HSP70s carry out a plethora of housekeeping cellular functions, such as assisting proper de novo folding, assembly and disassembly of protein complexes, pulling polypeptides out of the ribosome and across membrane pores, activating and inactivating signaling proteins and controlling their degradation. The HSP70s can induce structural changes in alternatively folded protein conformers, such as clathrin cages, hormone receptors and transcription factors, thereby regulating vesicular trafficking, hormone signaling and cell differentiation in development and cancer. To carry so diverse cellular housekeeping and stress-related functions, the HSP70s act as ATP-fuelled unfolding nanomachines capable of switching polypeptides between different folded states. During stress, the HSP70s can bind (hold) and prevent the aggregation of misfolding proteins and thereafter act alone or in collaboration with other unfolding chaperones to solubilize protein aggregates. Here, we discuss the common ATP-dependent mechanisms of holding, unfolding-by-clamping and unfolding-by-entropic pulling, by which the HSP70s can apparently convert various alternatively folded and misfolded polypeptides into differently active conformers. Understanding how HSP70s can prevent the formation of cytotoxic protein aggregates, pull, unfold, and solubilize them into harmless species is central to the design of therapies against protein conformational diseases.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland ; Laboratoire de Biophysique Statistique, School of Basic Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
111
|
Substrate-binding domain conformational dynamics mediate Hsp70 allostery. Proc Natl Acad Sci U S A 2015; 112:E2865-73. [PMID: 26038563 DOI: 10.1073/pnas.1506692112] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Binding of ATP to the N-terminal nucleotide-binding domain (NBD) of heat shock protein 70 (Hsp70) molecular chaperones reduces the affinity of their C-terminal substrate-binding domain (SBD) for unfolded protein substrates. ATP binding to the NBD leads to docking between NBD and βSBD and releasing of the α-helical lid that covers the substrate-binding cleft in the SBD. However, these structural changes alone do not fully account for the allosteric mechanism of modulation of substrate affinity and binding kinetics. Through a multipronged study of the Escherichia coli Hsp70 DnaK, we found that changes in conformational dynamics within the βSBD play a central role in interdomain allosteric communication in the Hsp70 DnaK. ATP-mediated NBD conformational changes favor formation of NBD contacts with lynchpin sites on the βSBD and force disengagement of SBD strand β8 from strand β7, which leads to repacking of a βSBD hydrophobic cluster and disruption of the hydrophobic arch over the substrate-binding cleft. In turn, these structural rearrangements drastically enhance conformational dynamics throughout the entire βSBD and particularly around the substrate-binding site. This negative, entropically driven allostery between two functional sites of the βSBD-the NBD binding interface and the substrate-binding site-confers upon the SBD the plasticity needed to bind to a wide range of chaperone clients without compromising precise control of thermodynamics and kinetics of chaperone-client interactions.
Collapse
|
112
|
Individual and collective contributions of chaperoning and degradation to protein homeostasis in E. coli. Cell Rep 2015; 11:321-33. [PMID: 25843722 DOI: 10.1016/j.celrep.2015.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/29/2015] [Accepted: 03/07/2015] [Indexed: 11/24/2022] Open
Abstract
The folding fate of a protein in vivo is determined by the interplay between a protein's folding energy landscape and the actions of the proteostasis network, including molecular chaperones and degradation enzymes. The mechanisms of individual components of the E. coli proteostasis network have been studied extensively, but much less is known about how they function as a system. We used an integrated experimental and computational approach to quantitatively analyze the folding outcomes (native folding versus aggregation versus degradation) of three test proteins biosynthesized in E. coli under a variety of conditions. Overexpression of the entire proteostasis network benefited all three test proteins, but the effect of upregulating individual chaperones or the major degradation enzyme, Lon, varied for proteins with different biophysical properties. In sum, the impact of the E. coli proteostasis network is a consequence of concerted action by the Hsp70 system (DnaK/DnaJ/GrpE), the Hsp60 system (GroEL/GroES), and Lon.
Collapse
|
113
|
Burmann BM, Hiller S. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:41-64. [PMID: 25919198 DOI: 10.1016/j.pnmrs.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/20/2023]
Abstract
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution.
Collapse
Affiliation(s)
- Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
114
|
Barducci A, De Los Rios P. Non-equilibrium conformational dynamics in the function of molecular chaperones. Curr Opin Struct Biol 2015; 30:161-169. [PMID: 25771489 DOI: 10.1016/j.sbi.2015.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/23/2015] [Accepted: 02/13/2015] [Indexed: 01/18/2023]
Abstract
Why do chaperones need ATP hydrolysis to help proteins reach their native, functional states? In this review, we highlight the most recent experimental and theoretical evidences suggesting that ATP hydrolysis allows molecular chaperones to escape the bounds imposed by equilibrium thermodynamics. We argue here that energy consumption must be fully taken into account to understand the mechanism of these intrinsically non-equilibrium machines and we propose a novel perspective in the way the relation between function and ATP hydrolysis is viewed.
Collapse
Affiliation(s)
- Alessandro Barducci
- Laboratoire de Biophysique Statistique, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland.
| | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland.
| |
Collapse
|
115
|
Clerico EM, Tilitsky JM, Meng W, Gierasch LM. How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol 2015; 427:1575-88. [PMID: 25683596 DOI: 10.1016/j.jmb.2015.02.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/27/2022]
Abstract
Hsp70 molecular chaperones are implicated in a wide variety of cellular processes, including protein biogenesis, protection of the proteome from stress, recovery of proteins from aggregates, facilitation of protein translocation across membranes, and more specialized roles such as disassembly of particular protein complexes. It is a fascinating question to ask how the mechanism of these deceptively simple molecular machines is matched to their roles in these wide-ranging processes. The key is a combination of the nature of the recognition and binding of Hsp70 substrates and the impact of Hsp70 action on their substrates. In many cases, the binding, which relies on interaction with an extended, accessible short hydrophobic sequence, favors more unfolded states of client proteins. The ATP-mediated dissociation of the substrate thus releases it in a relatively less folded state for downstream folding, membrane translocation, or hand-off to another chaperone. There are cases, such as regulation of the heat shock response or disassembly of clathrin coats, however, where binding of a short hydrophobic sequence selects conformational states of clients to favor their productive participation in a subsequent step. This Perspective discusses current understanding of how Hsp70 molecular chaperones recognize and act on their substrates and the relationships between these fundamental processes and the functional roles played by these molecular machines.
Collapse
Affiliation(s)
- Eugenia M Clerico
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Life Sciences Laboratory, University of Massachusetts Amherst, 240 Thatcher Way, Amherst, MA 01003, USA
| | - Joseph M Tilitsky
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Life Sciences Laboratory, University of Massachusetts Amherst, 240 Thatcher Way, Amherst, MA 01003, USA
| | - Wenli Meng
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Life Sciences Laboratory, University of Massachusetts Amherst, 240 Thatcher Way, Amherst, MA 01003, USA
| | - Lila M Gierasch
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Life Sciences Laboratory, University of Massachusetts Amherst, 240 Thatcher Way, Amherst, MA 01003, USA.
| |
Collapse
|
116
|
Du Z, Nandakumar R, Nickerson KW, Li X. Proteomic adaptations to starvation prepare Escherichia coli for disinfection tolerance. WATER RESEARCH 2015; 69:110-119. [PMID: 25463932 PMCID: PMC4351261 DOI: 10.1016/j.watres.2014.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 05/10/2023]
Abstract
Despite the low nutrient level and constant presence of secondary disinfectants, bacterial re-growth still occurs in drinking water distribution systems. The molecular mechanisms that starved bacteria use to survive low-level chlorine-based disinfectants are not well understood. The objective of this study is to investigate these molecular mechanisms at the protein level that prepare starved cells for disinfection tolerance. Two commonly used secondary disinfectants chlorine and monochloramine, both at 1 mg/L, were used in this study. The proteomes of normal and starved Escherichia coli (K12 MG1655) cells were studied using quantitative proteomics. Over 60-min disinfection, starved cells showed significantly higher disinfection tolerance than normal cells based on the inactivation curves for both chlorine and monochloramine. Proteomic analyses suggest that starvation may prepare cells for the oxidative stress that chlorine-based disinfection will cause by affecting glutathione metabolism. In addition, proteins involved in stress regulation and stress responses were among the ones up-regulated under both starvation and chlorine/monochloramine disinfection. By comparing the fold changes under different conditions, it is suggested that starvation prepares E. coli for disinfection tolerance by increasing the expression of enzymes that can help cells survive chlorine/monochloramine disinfection. Protein co-expression analyses show that proteins in glycolysis and pentose phosphate pathway that were up-regulated under starvation are also involved in disinfection tolerance. Finally, the production and detoxification of methylglyoxal may be involved in the chlorine-based disinfection and cell defense mechanisms.
Collapse
Affiliation(s)
- Zhe Du
- Department of Civil Engineering, University of Nebraska-Lincoln, USA
| | - Renu Nandakumar
- Proteomics and Metabolomics Core Facility, Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, USA
| | | | - Xu Li
- Department of Civil Engineering, University of Nebraska-Lincoln, USA.
| |
Collapse
|
117
|
Trösch R, Mühlhaus T, Schroda M, Willmund F. ATP-dependent molecular chaperones in plastids--More complex than expected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:872-88. [PMID: 25596449 DOI: 10.1016/j.bbabio.2015.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Raphael Trösch
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany; HU Berlin, Institute of Biology, Chausseestraße 117, 10115 Berlin, Germany; TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Timo Mühlhaus
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Michael Schroda
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Felix Willmund
- TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| |
Collapse
|
118
|
Mashaghi A, Mashaghi S, Tans SJ. Misfolding of Luciferase at the Single-Molecule Level. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
119
|
Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein. Proc Natl Acad Sci U S A 2014; 111:13355-60. [PMID: 25165400 DOI: 10.1073/pnas.1407086111] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular chaperones are an essential part of the machinery that avoids protein aggregation and misfolding in vivo. However, understanding the molecular basis of how chaperones prevent such undesirable interactions requires the conformational changes within substrate proteins to be probed during chaperone action. Here we use single-molecule fluorescence spectroscopy to investigate how the DnaJ-DnaK chaperone system alters the conformational distribution of the denatured substrate protein rhodanese. We find that in a first step the ATP-independent binding of DnaJ to denatured rhodanese results in a compact denatured ensemble of the substrate protein. The following ATP-dependent binding of multiple DnaK molecules, however, leads to a surprisingly large expansion of denatured rhodanese. Molecular simulations indicate that hard-core repulsion between the multiple DnaK molecules provides the underlying mechanism for disrupting even strong interactions within the substrate protein and preparing it for processing by downstream chaperone systems.
Collapse
|
120
|
Beyer C, Christen P, Jelesarov I, Fröhlich J. Real-time assessment of possible electromagnetic-field-induced changes in protein conformation and thermal stability. Bioelectromagnetics 2014; 35:470-8. [PMID: 25123495 DOI: 10.1002/bem.21865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 06/12/2014] [Indexed: 01/20/2023]
Abstract
Previous studies on possible interactions of radiofrequency electromagnetic fields (RF EMFs) with proteins have suggested that RF EMFs might affect protein structure and folding kinetics. In this study, the isolated thermosensor protein GrpE of the Hsp70 chaperone system of Escherichia coli was exposed to EMFs of various frequencies and field strengths under strictly controlled conditions. Circular dichroism spectroscopy was used to monitor possible structural changes. Simultaneously, temperature was recorded at each point of observation. The coiled-coil part of GrpE has been reported to undergo a well-defined and fully reversible folding/unfolding transition, thus facilitating the differentiation between thermal and non-thermal effects of RF EMFs. Any direct effect of EMF on the conformation and/or stability would result in a shift of the conformational equilibrium of the protein at a given temperature. Possible immediate (t ≤ 0.1 s) and delayed (t ≥ 30 s) effects of RF EMFs were investigated with sinusoidal signals of 0.1, 1.0, and 1.9 GHz at various field strengths up to 5.0 kV/m and with GSM signals at 0.3 kV/m in the protein solution. Taking the overall uncertainty of the experimental system into account, possible RF EMF-induced shifts in the conformational equilibrium of less than 1% of its total range might have been detected. The results obtained with the different experimental protocols indicate, however, that the conformational equilibrium of GrpE is insensitive to electromagnetic fields in the tested range of frequency and field strength.
Collapse
Affiliation(s)
- Christian Beyer
- Laboratory for Electromagnetics Fields and Microwave Electronics (IFH), ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
121
|
Mashaghi A, Mashaghi S, Tans SJ. Misfolding of luciferase at the single-molecule level. Angew Chem Int Ed Engl 2014; 53:10390-3. [PMID: 25124399 DOI: 10.1002/anie.201405566] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Indexed: 01/30/2023]
Abstract
The folding of complex proteins can be dramatically affected by misfolding transitions. Directly observing misfolding and distinguishing it from aggregation is challenging. Experiments with optical tweezers revealed transitions between the folded states of a single protein in the absence of mechanical tension. Nonfolded chains of the multidomain protein luciferase folded within seconds to different partially folded states, one of which was stable over several minutes and was more resistant to forced unfolding than other partially folded states. Luciferase monomers can thus adopt a stable misfolded state and can do so without interacting with aggregation partners. This result supports the notion that luciferase misfolding is the cause of the low refolding yields and aggregation observed with this protein. This approach could be used to study misfolding transitions in other large proteins, as well as the factors that affect misfolding.
Collapse
Affiliation(s)
- Alireza Mashaghi
- FOM institute AMOLF, Science Park 104, 1098 XG Amsterdam (The Netherlands)
| | | | | |
Collapse
|
122
|
Mattoo RUH, Farina Henriquez Cuendet A, Subanna S, Finka A, Priya S, Sharma SK, Goloubinoff P. Synergism between a foldase and an unfoldase: reciprocal dependence between the thioredoxin-like activity of DnaJ and the polypeptide-unfolding activity of DnaK. Front Mol Biosci 2014; 1:7. [PMID: 25988148 PMCID: PMC4428491 DOI: 10.3389/fmolb.2014.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/13/2014] [Indexed: 11/17/2022] Open
Abstract
The role of bacterial Hsp40, DnaJ, is to co-chaperone the binding of misfolded or alternatively folded proteins to bacterial Hsp70, DnaK, which is an ATP-fuelled unfolding chaperone. In addition to its DnaK targeting activity, DnaJ has a weak thiol-reductase activity. In between the substrate-binding domain and the J-domain anchor to DnaK, DnaJ has a unique domain with four conserved CXXC motives that bind two Zn2+ and partly contribute to polypeptide binding. Here, we deleted in DnaJ this Zn-binding domain, which is characteristic to type I but not of type II or III J-proteins. This caused a loss of the thiol-reductase activity and strongly reduced the ability of DnaJ to mediate the ATP- and DnaK-dependent unfolding/refolding of mildly oxidized misfolded polypeptides, an inhibition that was alleviated in the presence of thioredoxin or DTT. We suggest that in addition to their general ability to target misfolded polypeptide substrates to the Hsp70/Hsp110 chaperone machinery, Type I J-proteins carry an ancillary protein dithiol-isomerase function that can synergize the unfolding action of the chaperone, in the particular case of substrates that are further stabilized by non-native disulfide bonds. Whereas the unfoldase can remain ineffective without the transient untying of disulfide bonds by the foldase, the foldase can remain ineffective without the transient ATP-fuelled unfolding of wrong local structures by the unfoldase.
Collapse
Affiliation(s)
- Rayees U H Mattoo
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | | | - Sujatha Subanna
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Andrija Finka
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Smriti Priya
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Sandeep K Sharma
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Pierre Goloubinoff
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
123
|
Zhang P, Leu JIJ, Murphy ME, George DL, Marmorstein R. Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate. PLoS One 2014; 9:e103518. [PMID: 25058147 PMCID: PMC4110032 DOI: 10.1371/journal.pone.0103518] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
The HSP70 family of molecular chaperones function to maintain protein quality control and homeostasis. The major stress-induced form, HSP70 (also called HSP72 or HSPA1A) is considered an important anti-cancer drug target because it is constitutively overexpressed in a number of human cancers and promotes cancer cell survival. All HSP70 family members contain two functional domains: an N-terminal nucleotide binding domain (NBD) and a C-terminal protein substrate-binding domain (SBD); the latter is subdivided into SBDα and SBDβ subdomains. The NBD and SBD structures of the bacterial ortholog, DnaK, have been characterized, but only the isolated NBD and SBDα segments of eukaryotic HSP70 proteins have been determined. Here we report the crystal structure of the substrate-bound human HSP70-SBD to 2 angstrom resolution. The overall fold of this SBD is similar to the corresponding domain in the substrate-bound DnaK structures, confirming a similar overall architecture of the orthologous bacterial and human HSP70 proteins. However, conformational differences are observed in the peptide-HSP70-SBD complex, particularly in the loop Lα, β that bridges SBDα to SBDβ, and the loop LL,1 that connects the SBD and NBD. The interaction between the SBDα and SBDβ subdomains and the mode of substrate recognition is also different between DnaK and HSP70. This suggests that differences may exist in how different HSP70 proteins recognize their respective substrates. The high-resolution structure of the substrate-bound-HSP70-SBD complex provides a molecular platform for the rational design of small molecule compounds that preferentially target this C-terminal domain, in order to modulate human HSP70 function.
Collapse
Affiliation(s)
- Pingfeng Zhang
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julia I-Ju Leu
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (JI-JL) (JL); (RM) (RM)
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Donna L. George
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronen Marmorstein
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (JI-JL) (JL); (RM) (RM)
| |
Collapse
|
124
|
Pechmann S, Frydman J. Interplay between chaperones and protein disorder promotes the evolution of protein networks. PLoS Comput Biol 2014; 10:e1003674. [PMID: 24968255 PMCID: PMC4072544 DOI: 10.1371/journal.pcbi.1003674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 05/03/2014] [Indexed: 11/19/2022] Open
Abstract
Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular context and integrated approaches for understanding proteome evolution. We feel that the development of λ may be a valuable addition to the toolbox applied to understand the molecular basis of evolution.
Collapse
Affiliation(s)
- Sebastian Pechmann
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (SP); (JF)
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (SP); (JF)
| |
Collapse
|
125
|
In vitro characterization of bacterial and chloroplast Hsp70 systems reveals an evolutionary optimization of the co-chaperones for their Hsp70 partner. Biochem J 2014; 460:13-24. [PMID: 24564700 DOI: 10.1042/bj20140001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chloroplast Hsp70 (heat-shock protein of 70 kDa) system involved in protein folding in Chlamydomonas reinhardtii consists of HSP70B, the DnaJ homologue CDJ1 and the GrpE-type nucleotide-exchange factor CGE1. The finding that HSP70B needs to be co-expressed with HEP2 (Hsp70 escort protein 2) to become functional allowed the reconstitution of the chloroplast Hsp70 system in vitro and comparison with the homologous Escherichia coli system. Both systems support luciferase refolding and display ATPase and holdase activities. Steady-state activities are low and strongly stimulated by the co-chaperones, whose concentrations need to be balanced to optimally support luciferase refolding. Although the co-chaperones of either system generally stimulate ATPase and folding-assistance activities of the other, luciferase refolding is reduced ~10-fold and <2-fold if either Hsp70 is supplemented with the foreign DnaJ and GrpE protein respectively, suggesting an evolutionary specialization of the co-chaperones for their Hsp70 partner. Distinct features are that HSP70B's steady-state ATPase exhibits ~20-fold higher values for Vmax and Km and that the HSP70B system displays a ~6-fold higher folding assistance on denatured luciferase. Although truncating up to 16 N-terminal amino acids of CGE1 does not affect HSP70B's general ATPase and folding-assistance activities in the physiological temperature range, further deletions hampering dimerization of CGE1 via its N-terminal coiled coil do.
Collapse
|
126
|
Chen DH, Huang Y, Liu C, Ruan Y, Shen WH. Functional conservation and divergence of J-domain-containing ZUO1/ZRF orthologs throughout evolution. PLANTA 2014; 239:1159-1173. [PMID: 24659052 DOI: 10.1007/s00425-014-2058-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Heat shock protein 40s (Hsp40s), also known as J-proteins, are conserved in prokaryotes and eukaryotes. The Zuotin/Zuotin-related factor (ZUO1/ZRF) family belongs to a novel Hsp40 clade exclusively found in eukaryotes. Zuotin/Zuotin-related factor proteins are characterized by a large N terminal ZUO1 domain originally identified in the yeast ZUO1 protein. The ZUO1 domain is characterized by a highly conserved J-domain, together with an atypical UBD domain first identified in the human ZRF1 protein. Furthermore, ZUO1/ZRF protein families in animals and plants harbor a pair of C terminal SANT domains, suggesting the divergence of their functions with those in fungi. Zuotin/Zuotin-related factor proteins retain the ancestral function as an Hsp70co-chaperone implicated in protein folding and renaturation after stress; these proteins also perform diverse neofunctions in the cytoplasm and transcriptional and/or epigenetic regulatory functions in the nucleus. Therefore, these proteins are involved in translational fidelity control, ribosomal biogenesis, asymmetric cell division, cell cycle, apoptosis, differentiation, and tumorigenesis. The results of sequence and domain organization analysis of proteins from diverse organisms provided valuable insights into the evolutionary conservation and diversity of ZUO1/ZRF protein family. Further, phylogenetic analysis provides a platform for future functional investigation on the ZUO1/ZRF protein family, particularly in higher plants.
Collapse
|
127
|
Mattoo RUH, Goloubinoff P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell Mol Life Sci 2014; 71:3311-25. [PMID: 24760129 PMCID: PMC4131146 DOI: 10.1007/s00018-014-1627-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023]
Abstract
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed “holdases”. Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.
Collapse
Affiliation(s)
- Rayees U H Mattoo
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | |
Collapse
|
128
|
Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 2014; 4:252-67. [PMID: 24970215 PMCID: PMC4030994 DOI: 10.3390/biom4010252] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 11/30/2022] Open
Abstract
While the toxicity of metals and metalloids, like arsenic, cadmium, mercury, lead and chromium, is undisputed, the underlying molecular mechanisms are not entirely clear. General consensus holds that proteins are the prime targets; heavy metals interfere with the physiological activity of specific, particularly susceptible proteins, either by forming a complex with functional side chain groups or by displacing essential metal ions in metalloproteins. Recent studies have revealed an additional mode of metal action targeted at proteins in a non-native state; certain heavy metals and metalloids have been found to inhibit the in vitro refolding of chemically denatured proteins, to interfere with protein folding in vivo and to cause aggregation of nascent proteins in living cells. Apparently, unfolded proteins with motile backbone and side chains are considerably more prone to engage in stable, pluridentate metal complexes than native proteins with their well-defined 3D structure. By interfering with the folding process, heavy metal ions and metalloids profoundly affect protein homeostasis and cell viability. This review describes how heavy metals impede protein folding and promote protein aggregation, how cells regulate quality control systems to protect themselves from metal toxicity and how metals might contribute to protein misfolding disorders.
Collapse
|
129
|
Essential role of TID1 in maintaining mitochondrial membrane potential homogeneity and mitochondrial DNA integrity. Mol Cell Biol 2014; 34:1427-37. [PMID: 24492964 DOI: 10.1128/mcb.01021-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tumorous imaginal disc 1 (TID1) protein localizes mainly to the mitochondrial compartment, wherein its function remains largely unknown. Here we report that TID1 regulates the steady-state homogeneity of the mitochondrial membrane potential (Δψ) and maintains the integrity of mitochondrial DNA (mtDNA). Silencing of TID1 with RNA interference leads to changes in the distribution of Δψ along the mitochondrial network, characterized by an increase in Δψ in focal regions. This effect can be rescued by ectopic expression of a TID1 construct with an intact J domain. Chronic treatment with a low dose of oligomycin, an inhibitor of F1Fo ATP synthase, decreases the cellular ATP content and phenocopies TID1 loss of function, indicating a connection between the disruption of mitochondrial bioenergetics and hyperpolarization. Prolonged silencing of TID1 or low-dose oligomycin treatment leads to the loss of mtDNA and the consequent inhibition of oxygen consumption. Biochemical and colocalization data indicate that complex I aggregation underlies the focal accumulation of Δψ in TID1-silenced cells. Given that TID1 is proposed to function as a cochaperone, these data show that TID1 prevents complex I aggregation and support the existence of a TID1-mediated stress response to ATP synthase inhibition.
Collapse
|
130
|
Nakamoto H, Fujita K, Ohtaki A, Watanabe S, Narumi S, Maruyama T, Suenaga E, Misono TS, Kumar PKR, Goloubinoff P, Yoshikawa H. Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins. J Biol Chem 2014; 289:6110-9. [PMID: 24415765 DOI: 10.1074/jbc.m113.524801] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.
Collapse
|
131
|
Finka A, Goloubinoff P. The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane. Cell Stress Chaperones 2014; 19:83-90. [PMID: 23666745 PMCID: PMC3857430 DOI: 10.1007/s12192-013-0436-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/24/2022] Open
Abstract
Land plants need precise thermosensors to timely establish molecular defenses in anticipation of upcoming noxious heat waves. The plasma membrane-embedded cyclic nucleotide-gated Ca(2+) channels (CNGCs) can translate mild variations of membrane fluidity into an effective heat shock response, leading to the accumulation of heat shock proteins (HSP) that prevent heat damages in labile proteins and membranes. Here, we deleted by targeted mutagenesis the CNGCd gene in two Physcomitrella patens transgenic moss lines containing either the heat-inducible HSP-GUS reporter cassette or the constitutive UBI-Aequorin cassette. The stable CNGCd knockout mutation caused a hyper-thermosensitive moss phenotype, in which the heat-induced entry of apoplastic Ca(2+) and the cytosolic accumulation of GUS were triggered at lower temperatures than in wild type. The combined effects of an artificial membrane fluidizer and elevated temperatures suggested that the gene products of CNGCd and CNGCb are paralogous subunits of Ca(2+)channels acting as a sensitive proteolipid thermocouple. Depending on the rate of temperature increase, the duration and intensity of the heat priming preconditions, terrestrial plants may thus acquire an array of HSP-based thermotolerance mechanisms against upcoming, otherwise lethal, extreme heat waves.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
132
|
Identification of key hinge residues important for nucleotide-dependent allostery in E. coli Hsp70/DnaK. PLoS Comput Biol 2013; 9:e1003279. [PMID: 24277995 PMCID: PMC3836694 DOI: 10.1371/journal.pcbi.1003279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/29/2013] [Indexed: 01/20/2023] Open
Abstract
DnaK is a molecular chaperone that has important roles in protein folding. The hydrolysis of ATP is essential to this activity, and the effects of nucleotides on the structure and function of DnaK have been extensively studied. However, the key residues that govern the conformational motions that define the apo, ATP-bound, and ADP-bound states are not entirely clear. Here, we used molecular dynamics simulations, mutagenesis, and enzymatic assays to explore the molecular basis of this process. Simulations of DnaK's nucleotide-binding domain (NBD) in the apo, ATP-bound, and ADP/Pi-bound states suggested that each state has a distinct conformation, consistent with available biochemical and structural information. The simulations further suggested that large shearing motions between subdomains I-A and II-A dominated the conversion between these conformations. We found that several evolutionally conserved residues, especially G228 and G229, appeared to function as a hinge for these motions, because they predominantly populated two distinct states depending on whether ATP or ADP/Pi was bound. Consistent with the importance of these “hinge” residues, alanine point mutations caused DnaK to have reduced chaperone activities in vitro and in vivo. Together, these results clarify how sub-domain motions communicate allostery in DnaK. DnaK belongs to the highly conserved heat shock protein 70 (Hsp70) family, a group of ATP-dependent molecular chaperones that regulates proteostasis. Studies have suggested that global movements of the subdomains in the nucleotide-binding domain (NBD) of DnaK regulate its catalytic activity. However, there is less known about the key residues involved in these subdomain motions and whether these residues might also regulate inter-domain allostery with the substrate-binding domain (SBD). To examine the motions in the NBD, dynamics simulations of DnaK's NBD in the apo, ATP-bound, and ADP/Pi-bound states were performed. Through essential dynamics and torsion angle analyses, we identified motions and highly conserved hinge residues between subdomains IIA and IIB that are likely to be important for nucleotide cycling and for communicating the nucleotide state to the SBD. Supporting this model, mutating these conserved hinge residues affected ATPase activity and chaperone functions in vitro and in bacteria, suggesting their importance in the nucleotide-dependent motions in DnaK.
Collapse
|
133
|
Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 2013; 14:630-42. [PMID: 24026055 DOI: 10.1038/nrm3658] [Citation(s) in RCA: 754] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular chaperones are diverse families of multidomain proteins that have evolved to assist nascent proteins to reach their native fold, protect subunits from heat shock during the assembly of complexes, prevent protein aggregation or mediate targeted unfolding and disassembly. Their increased expression in response to stress is a key factor in the health of the cell and longevity of an organism. Unlike enzymes with their precise and finely tuned active sites, chaperones are heavy-duty molecular machines that operate on a wide range of substrates. The structural basis of their mechanism of action is being unravelled (in particular for the heat shock proteins HSP60, HSP70, HSP90 and HSP100) and typically involves massive displacements of 20-30 kDa domains over distances of 20-50 Å and rotations of up to 100°.
Collapse
Affiliation(s)
- Helen Saibil
- Department of Crystallography, Institute for Structural and Molecular Biology, Birkbeck College London, UK
| |
Collapse
|
134
|
Mayer MP. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 2013; 38:507-14. [PMID: 24012426 DOI: 10.1016/j.tibs.2013.08.001] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/09/2023]
Abstract
The chaperone functions of heat shock protein (Hsp)70 involve an allosteric control mechanism between the nucleotide-binding domain (NBD) and polypeptide substrate-binding domain (SBD): ATP binding and hydrolysis regulates the affinity for polypeptides, and polypeptide binding accelerates ATP hydrolysis. These data suggest that Hsp70s exist in at least two conformational states. Although structural information on the conformation with high affinity for polypeptides has been available for several years, the conformation with an open polypeptide binding cleft was elucidated only recently. In addition, other biophysical studies have revealed a more dynamic picture of Hsp70s, shedding light on the molecular mechanism by which Hsp70s assist protein folding. In this review recent insights into the structure and mechanism of Hsp70s are discussed.
Collapse
Affiliation(s)
- Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany.
| |
Collapse
|
135
|
Mashaghi A, Kramer G, Lamb DC, Mayer MP, Tans SJ. Chaperone Action at the Single-Molecule Level. Chem Rev 2013; 114:660-76. [DOI: 10.1021/cr400326k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alireza Mashaghi
- AMOLF Institute, Science Park
104, 1098 XG Amsterdam, The Netherlands
| | - Günter Kramer
- Zentrum
für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Don C. Lamb
- Physical
Chemistry, Department of Chemistry, Munich Center for Integrated Protein
Science (CiPSM) and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Gerhard-Ertl-Building, 81377 Munich, Germany
| | - Matthias P. Mayer
- Zentrum
für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Sander J. Tans
- AMOLF Institute, Science Park
104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
136
|
Finka A, Goloubinoff P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 2013; 18:591-605. [PMID: 23430704 PMCID: PMC3745260 DOI: 10.1007/s12192-013-0413-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022] Open
Abstract
In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here "the chaperome," which can prevent formation of potentially harmful misfolded protein conformers and use the energy of adenosine triphosphate (ATP) to rehabilitate already formed toxic aggregates into native functional proteins. In an attempt to extend knowledge of chaperome mechanisms in cellular proteostasis, we performed a meta-analysis of human chaperome using high-throughput proteomic data from 11 immortalized human cell lines. Chaperome polypeptides were about 10% of total protein mass of human cells, half of which were Hsp90s and Hsp70s. Knowledge of cellular concentrations and ratios among chaperome polypeptides provided a novel basis to understand mechanisms by which the Hsp60, Hsp70, Hsp90, and small heat shock proteins (HSPs), in collaboration with cochaperones and folding enzymes, assist de novo protein folding, import polypeptides into organelles, unfold stress-destabilized toxic conformers, and control the conformal activity of native proteins in the crowded environment of the cell. Proteomic data also provided means to distinguish between stable components of chaperone core machineries and dynamic regulatory cochaperones.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
137
|
Mashaghi A, Kramer G, Bechtluft P, Zachmann-Brand B, Driessen AJM, Bukau B, Tans SJ. Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature 2013; 500:98-101. [DOI: 10.1038/nature12293] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/14/2013] [Indexed: 12/20/2022]
|
138
|
Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 2013; 3:1310. [PMID: 23250440 PMCID: PMC3639100 DOI: 10.1038/ncomms2306] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/15/2012] [Indexed: 11/08/2022] Open
Abstract
One-fourth of Plasmodium falciparum proteins have asparagine repeats that increase the propensity for aggregation, especially at elevated temperatures that occur routinely in malaria-infected patients. Here we report that a Plasmodium Asn repeat-containing protein (PFI1155w) formed aggregates in mammalian cells at febrile temperatures, as did a yeast Asn/Gln-rich protein (Sup35). Co-expression of the cytoplasmic P. falciparum heat shock protein 110 (PfHsp110c) prevented aggregation. Human or yeast orthologs were much less effective. All-Asn and all-Gln versions of Sup35 were protected from aggregation by PfHsp110c, suggesting that this chaperone is not limited to handling runs of asparagine. PfHsp110c gene-knockout parasites were not viable and conditional knockdown parasites died slowly in the absence of protein-stabilizing ligand. When exposed to brief heat shock, these knockdowns were unable to prevent aggregation of PFI1155w or Sup35 and died rapidly. We conclude that PfHsp110c protects the parasite from harmful effects of its asparagine repeat-rich proteome during febrile episodes.
Collapse
|
139
|
Mattoo RUH, Sharma SK, Priya S, Finka A, Goloubinoff P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem 2013; 288:21399-21411. [PMID: 23737532 DOI: 10.1074/jbc.m113.479253] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable protein aggregates into native proteins. Using stably misfolded and aggregated polypeptides as substrates in optimized in vitro chaperone assays, we show that the human cytosolic Hsp110s (HSPH1 and HSPH2) are bona fide chaperones on their own that collaborate with Hsp40 (DNAJA1 and DNAJB1) to hydrolyze ATP and unfold and thus convert stable misfolded polypeptides into natively refolded proteins. Moreover, equimolar Hsp70 (HSPA1A) and Hsp110 (HSPH1) formed a powerful molecular machinery that optimally reactivated stable luciferase aggregates in an ATP- and DNAJA1-dependent manner, in a disaggregation mechanism whereby the two paralogous chaperones alternatively activate the release of bound unfolded polypeptide substrates from one another, leading to native protein refolding.
Collapse
Affiliation(s)
- Rayees U H Mattoo
- From the Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland and
| | - Sandeep K Sharma
- From the Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland and; the Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Smriti Priya
- From the Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland and
| | - Andrija Finka
- From the Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland and
| | - Pierre Goloubinoff
- From the Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland and.
| |
Collapse
|
140
|
Priya S, Sharma SK, Goloubinoff P. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett 2013; 587:1981-7. [PMID: 23684649 DOI: 10.1016/j.febslet.2013.05.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Stress-denatured or de novo synthesized and translocated unfolded polypeptides can spontaneously reach their native state without assistance of other proteins. Yet, the pathway to native folding is complex, stress-sensitive and prone to errors. Toxic misfolded and aggregated conformers may accumulate in cells and lead to degenerative diseases. Members of the canonical conserved families of molecular chaperones, Hsp100s, Hsp70/110/40s, Hsp60/CCTs, the small Hsps and probably also Hsp90s, can recognize and bind with high affinity, abnormally exposed hydrophobic surfaces on misfolded and aggregated polypeptides. Binding to Hsp100, Hsp70, Hsp110, Hsp40, Hsp60, CCTs and Trigger factor may cause partial unfolding of the misfolded polypeptide substrates, and ATP hydrolysis can induce further unfolding and release from the chaperone, leading to spontaneous refolding into native proteins with low-affinity for the chaperones. Hence, specific chaperones act as catalytic polypeptide unfolding isomerases, rerouting cytotoxic misfolded and aggregated polypeptides back onto their physiological native refolding pathway, thus averting the onset of protein conformational diseases.
Collapse
Affiliation(s)
- Smriti Priya
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
141
|
GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP. Proc Natl Acad Sci U S A 2013; 110:7199-204. [PMID: 23584019 DOI: 10.1073/pnas.1219867110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chaperonins are cage-like complexes in which nonnative polypeptides prone to aggregation are thought to reach their native state optimally. However, they also may use ATP to unfold stably bound misfolded polypeptides and mediate the out-of-cage native refolding of large proteins. Here, we show that even without ATP and GroES, both GroEL and the eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) can unfold stable misfolded polypeptide conformers and readily release them from the access ways to the cage. Reconciling earlier disparate experimental observations to ours, we present a comprehensive model whereby following unfolding on the upper cavity, in-cage confinement is not needed for the released intermediates to slowly reach their native state in solution. As over-sticky intermediates occasionally stall the catalytic unfoldase sites, GroES mobile loops and ATP are necessary to dissociate the inhibitory species and regenerate the unfolding activity. Thus, chaperonin rings are not obligate confining antiaggregation cages. They are polypeptide unfoldases that can iteratively convert stable off-pathway conformers into functional proteins.
Collapse
|
142
|
Diversity in the origins of proteostasis networks--a driver for protein function in evolution. Nat Rev Mol Cell Biol 2013; 14:237-48. [PMID: 23463216 DOI: 10.1038/nrm3542] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the sequence of a protein largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms--Bacteria, Archaea and Eukarya--have evolved a protein homeostasis, or proteostasis, network comprising chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype.
Collapse
|
143
|
Tiwari S, Kumar V, Jayaraj GG, Maiti S, Mapa K. Unique structural modulation of a non-native substrate by cochaperone DnaJ. Biochemistry 2013; 52:1011-8. [PMID: 23331070 DOI: 10.1021/bi301543g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.
Collapse
Affiliation(s)
- Satyam Tiwari
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Delhi 110020, India
| | | | | | | | | |
Collapse
|
144
|
Natalello A, Mattoo RUH, Priya S, Sharma SK, Goloubinoff P, Doglia SM. Biophysical characterization of two different stable misfolded monomeric polypeptides that are chaperone-amenable substrates. J Mol Biol 2013; 425:1158-71. [PMID: 23306033 DOI: 10.1016/j.jmb.2012.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/21/2012] [Accepted: 12/31/2012] [Indexed: 11/27/2022]
Abstract
Misfolded polypeptide monomers may be regarded as the initial species of many protein aggregation pathways, which could accordingly serve as primary targets for molecular chaperones. It is therefore of paramount importance to study the cellular mechanisms that can prevent misfolded monomers from entering the toxic aggregation pathway and moreover rehabilitate them into active proteins. Here, we produced two stable misfolded monomers of luciferase and rhodanese, which we found to be differently processed by the Hsp70 chaperone machinery and whose conformational properties were investigated by biophysical approaches. In spite of their monomeric nature, they displayed enhanced thioflavin T fluorescence, non-native β-sheets, and tertiary structures with surface-accessible hydrophobic patches, but differed in their conformational stability and aggregation propensity. Interestingly, minor structural differences between the two misfolded species could account for their markedly different behavior in chaperone-mediated unfolding/refolding assays. Indeed, only a single DnaK molecule was sufficient to unfold by direct clamping a misfolded luciferase monomer, while, by contrast, several DnaK molecules were necessary to unfold the more resistant misfolded rhodanese monomer by a combination of direct clamping and cooperative entropic pulling.
Collapse
Affiliation(s)
- Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
145
|
Zuiderweg ERP, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A. Allostery in the Hsp70 chaperone proteins. Top Curr Chem (Cham) 2013; 328:99-153. [PMID: 22576356 PMCID: PMC3623542 DOI: 10.1007/128_2012_323] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heat shock 70-kDa (Hsp70) chaperones are essential to in vivo protein folding, protein transport, and protein re-folding. They carry out these activities using repeated cycles of binding and release of client proteins. This process is under allosteric control of nucleotide binding and hydrolysis. X-ray crystallography, NMR spectroscopy, and other biophysical techniques have contributed much to the understanding of the allosteric mechanism linking these activities and the effect of co-chaperones on this mechanism. In this chapter these findings are critically reviewed. Studies on the allosteric mechanisms of Hsp70 have gained enhanced urgency, as recent studies have implicated this chaperone as a potential drug target in diseases such as Alzheimer's and cancer. Recent approaches to combat these diseases through interference with the Hsp70 allosteric mechanism are discussed.
Collapse
Affiliation(s)
- Erik R P Zuiderweg
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
146
|
Liu YH, Offler CE, Ruan YL. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. FRONTIERS IN PLANT SCIENCE 2013; 4:282. [PMID: 23914195 PMCID: PMC3729977 DOI: 10.3389/fpls.2013.00282] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/10/2013] [Indexed: 05/21/2023]
Abstract
A large body of evidence shows that sugars function both as nutrients and signals to regulate fruit and seed set under normal and stress conditions including heat and drought. Inadequate sucrose import to, and its degradation within, reproductive organs cause fruit and seed abortion under heat and drought. As nutrients, sucrose-derived hexoses provide carbon skeletons and energy for growth and development of fruits and seeds. Sugar metabolism can also alleviate the impact of stress on fruit and seed through facilitating biosynthesis of heat shock proteins (Hsps) and non-enzymic antioxidants (e.g., glutathione, ascorbic acid), which collectively maintain the integrity of membranes and prevent programmed cell death (PCD) through protecting proteins and scavenging reactive oxygen species (ROS). In parallel, sugars (sucrose, glucose, and fructose), also exert signaling roles through cross-talk with hormone and ROS signaling pathways and by mediating cell division and PCD. At the same time, emerging data indicate that sugar-derived signaling systems, including trehalose-6 phosphate (T6P), sucrose non-fermenting related kinase-1 (SnRK), and the target of rapamycin (TOR) kinase complex also play important roles in regulating plant development through modulating nutrient and energy signaling and metabolic processes, especially under abiotic stresses where sugar availability is low. This review aims to evaluate recent progress of research on abiotic stress responses of reproductive organs focusing on roles of sugar metabolism and signaling and addressing the possible biochemical and molecular mechanism by which sugars regulate fruit and seed set under heat and drought.
Collapse
Affiliation(s)
- Yong-Hua Liu
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Christina E. Offler
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
| | - Yong-Ling Ruan
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- *Correspondence: Yong-Ling Ruan, Department of Biology, School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia e-mail:
| |
Collapse
|
147
|
Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A. Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 2012; 7:e51426. [PMID: 23251530 PMCID: PMC3520893 DOI: 10.1371/journal.pone.0051426] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes.
Collapse
Affiliation(s)
- Milena Wiech
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- The Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Maciej B. Olszewski
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- The Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Bartosz Wawrzynow
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
148
|
Bogumil D, Dagan T. Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 2012; 51:9941-53. [PMID: 23167595 DOI: 10.1021/bi3013643] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular chaperones support protein folding and unfolding along with assembly and translocation of protein complexes. Chaperones have been recognized as important mediators between an organismal genotype and phenotype as well as important maintainers of cellular fitness under environmental conditions that induce high mutational loads. Here we review recent studies revealing that the folding assistance supplied by chaperones is evident in genomic sequences implicating chaperone-mediated folding as an influential factor during protein evolution. Interaction of protein with chaperones ensures a proper folding and function, yet an adaptation to obligatory dependence on such assistance may be irreversible, representing an evolutionary trap. A correlation between the requirement for a chaperone and protein expression level indicates that the evolution of substrate-chaperone interaction is bounded by the required substrate abundance within the cell. Accumulating evidence suggests that the utility of chaperones is governed by a delicate balance between their help in mitigating the risks of protein misfolding and aggregate formation on one hand and the slower rate of protein maturation and the energetic cost of chaperone synthesis on the other.
Collapse
Affiliation(s)
- David Bogumil
- Institute for Genomic Microbiology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
149
|
Seyffer F, Kummer E, Oguchi Y, Winkler J, Kumar M, Zahn R, Sourjik V, Bukau B, Mogk A. Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces. Nat Struct Mol Biol 2012; 19:1347-55. [PMID: 23160352 DOI: 10.1038/nsmb.2442] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/15/2012] [Indexed: 11/09/2022]
Abstract
Bacteria, fungi and plants rescue aggregated proteins using a powerful bichaperone system composed of an Hsp70 chaperone and an Hsp100 AAA+ disaggregase. In Escherichia coli, the Hsp70 chaperone DnaK binds aggregates and targets the disaggregase ClpB to the substrate. ClpB hexamers use ATP to thread substrate polypeptides through the central pore, driving disaggregation. How ClpB finds DnaK and regulates threading remains unclear. To dissect the disaggregation mechanism, we separated these steps using primarily chimeric ClpB-ClpV constructs that directly recognize alternative substrates, thereby obviating DnaK involvement. We show that ClpB has low intrinsic disaggregation activity that is normally repressed by the ClpB middle (M) domain. In the presence of aggregate, DnaK directly binds M-domain motif 2, increasing ClpB ATPase activity to unleash high ClpB threading power. Our results uncover a new function for Hsp70: the coupling of substrate targeting to AAA+ chaperone activation at aggregate surfaces.
Collapse
Affiliation(s)
- Fabian Seyffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
A bacteriophage-encoded J-domain protein interacts with the DnaK/Hsp70 chaperone and stabilizes the heat-shock factor σ32 of Escherichia coli. PLoS Genet 2012; 8:e1003037. [PMID: 23133404 PMCID: PMC3486835 DOI: 10.1371/journal.pgen.1003037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/04/2012] [Indexed: 01/21/2023] Open
Abstract
The universally conserved J-domain proteins (JDPs) are obligate cochaperone partners of the Hsp70 (DnaK) chaperone. They stimulate Hsp70's ATPase activity, facilitate substrate delivery, and confer specific cellular localization to Hsp70. In this work, we have identified and characterized the first functional JDP protein encoded by a bacteriophage. Specifically, we show that the ORFan gene 057w of the T4-related enterobacteriophage RB43 encodes a bona fide JDP protein, named Rki, which specifically interacts with the Escherichia coli host multifunctional DnaK chaperone. However, in sharp contrast with the three known host JDP cochaperones of DnaK encoded by E. coli, Rki does not act as a generic cochaperone in vivo or in vitro. Expression of Rki alone is highly toxic for wild-type E. coli, but toxicity is abolished in the absence of endogenous DnaK or when the conserved J-domain of Rki is mutated. Further in vivo analyses revealed that Rki is expressed early after infection by RB43 and that deletion of the rki gene significantly impairs RB43 proliferation. Furthermore, we show that mutations in the host dnaK gene efficiently suppress the growth phenotype of the RB43 rki deletion mutant, thus indicating that Rki specifically interferes with DnaK cellular function. Finally, we show that the interaction of Rki with the host DnaK chaperone rapidly results in the stabilization of the heat-shock factor σ32, which is normally targeted for degradation by DnaK. The mechanism by which the Rki-dependent stabilization of σ32 facilitates RB43 bacteriophage proliferation is discussed. Bacteriophages are the most abundant biological entities on earth. As a consequence, they represent the largest reservoir of unexplored genetic information. They control bacterial growth, mediate horizontal gene transfer, and thus exert profound influence on microbial ecology and growth. One of the striking features of bacteriophages is that they code for many open reading frames of thus far unknown biological function (called ORFans), which have been referred to as the dark matter of our biosphere. Here we have extensively characterized such a novel ORFan-encoded protein, Rki, encoded by the large, virulent enterobacteriaceae bacteriophage RB43. We show that Rki functions to control the host stress-response during the early stages of bacteriophage infection, specifically by interacting with the host DnaK/Hsp70 chaperone to stabilize the major host heat-shock factor, σ32.
Collapse
|