102
|
Nyberg M, Piil P, Kiehn OT, Maagaard C, Jørgensen TS, Egelund J, Isakson BE, Nielsen MS, Gliemann L, Hellsten Y. Probenecid Inhibits α-Adrenergic Receptor-Mediated Vasoconstriction in the Human Leg Vasculature. Hypertension 2018; 71:151-159. [PMID: 29084879 PMCID: PMC5876717 DOI: 10.1161/hypertensionaha.117.10251] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/11/2017] [Accepted: 10/09/2017] [Indexed: 01/07/2023]
Abstract
Coordination of vascular smooth muscle cell tone in resistance arteries plays an essential role in the regulation of peripheral resistance and overall blood pressure. Recent observations in animals have provided evidence for a coupling between adrenoceptors and Panx1 (pannexin-1) channels in the regulation of sympathetic nervous control of peripheral vascular resistance and blood pressure; however, evidence for a functional coupling in humans is lacking. We determined Panx1 expression and effects of treatment with the pharmacological Panx1 channel inhibitor probenecid on the vasoconstrictor response to α1- and α2-adrenergic receptor stimulation in the human forearm and leg vasculature of young healthy male subjects (23±3 years). By use of immunolabeling and confocal microscopy, Panx1 channels were found to be expressed in vascular smooth muscle cells of arterioles in human leg skeletal muscle. Probenecid treatment increased (P<0.05) leg vascular conductance at baseline by ≈15% and attenuated (P<0.05) the leg vasoconstrictor response to arterial infusion of tyramine (α1- and α2-adrenergic receptor stimulation) by ≈15%, whereas the response to the α1-agonist phenylephrine was unchanged. Inhibition of α1-adrenoceptors prevented the probenecid-induced increase in baseline leg vascular conductance, but did not alter the effect of probenecid on the vascular response to tyramine. No differences with probenecid treatment were detected in the forearm. These observations provide the first line of evidence in humans for a functional role of Panx1 channels in setting resting tone via α1-adrenoceptors and in the constrictive effect of noradrenaline via α2-adrenoceptors, thereby contributing to the regulation of peripheral vascular resistance and blood pressure in humans.
Collapse
Affiliation(s)
- Michael Nyberg
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Peter Piil
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Oliver T Kiehn
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Christian Maagaard
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Tue S Jørgensen
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Jon Egelund
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Brant E Isakson
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Morten S Nielsen
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Lasse Gliemann
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Ylva Hellsten
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.).
| |
Collapse
|
103
|
Good ME, Chiu YH, Poon IKH, Medina CB, Butcher JT, Mendu SK, DeLalio LJ, Lohman AW, Leitinger N, Barrett E, Lorenz UM, Desai BN, Jaffe IZ, Bayliss DA, Isakson BE, Ravichandran KS. Pannexin 1 Channels as an Unexpected New Target of the Anti-Hypertensive Drug Spironolactone. Circ Res 2017; 122:606-615. [PMID: 29237722 DOI: 10.1161/circresaha.117.312380] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Resistant hypertension is a major health concern with unknown cause. Spironolactone is an effective antihypertensive drug, especially for patients with resistant hypertension, and is considered by the World Health Organization as an essential medication. Although spironolactone can act at the mineralocorticoid receptor (MR; NR3C2), there is increasing evidence of MR-independent effects of spironolactone. OBJECTIVE Here, we detail the unexpected discovery that Panx1 (pannexin 1) channels could be a relevant in vivo target of spironolactone. METHODS AND RESULTS First, we identified spironolactone as a potent inhibitor of Panx1 in an unbiased small molecule screen, which was confirmed by electrophysiological analysis. Next, spironolactone inhibited α-adrenergic vasoconstriction in arterioles from mice and hypertensive humans, an effect dependent on smooth muscle Panx1, but independent of the MR NR3C2. Last, spironolactone acutely lowered blood pressure, which was dependent on smooth muscle cell expression of Panx1 and independent of NR3C2. This effect, however, was restricted to steroidal MR antagonists as a nonsteroidal MR antagonist failed to reduced blood pressure. CONCLUSIONS These data suggest new therapeutic modalities for resistant hypertension based on Panx1 inhibition.
Collapse
Affiliation(s)
- Miranda E Good
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Yu-Hsin Chiu
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Ivan K H Poon
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Christopher B Medina
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Joshua T Butcher
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Suresh K Mendu
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Leon J DeLalio
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Alexander W Lohman
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Norbert Leitinger
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Eugene Barrett
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Ulrike M Lorenz
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Bimal N Desai
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Iris Z Jaffe
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Douglas A Bayliss
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Brant E Isakson
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.).
| | - Kodi S Ravichandran
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| |
Collapse
|