101
|
Omerbašić D, Schuhmacher LN, Bernal Sierra YA, Smith ESJ, Lewin GR. ASICs and mammalian mechanoreceptor function. Neuropharmacology 2015; 94:80-6. [DOI: 10.1016/j.neuropharm.2014.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
|
102
|
Gundling WE, Wildman DE. A review of inter- and intraspecific variation in the eutherian placenta. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140072. [PMID: 25602076 PMCID: PMC4305173 DOI: 10.1098/rstb.2014.0072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The placenta is one of the most morphologically variable mammalian organs. Four major characteristics are typically discussed when comparing the placentas of different eutherian species: placental shape, maternal-fetal interdigitation, intimacy of the maternal-fetal interface and the pattern of maternal-fetal blood flow. Here, we describe the evolution of three of these features as well as other key aspects of eutherian placentation. In addition to interspecific anatomical variation, there is also variation in placental anatomy and function within a single species. Much of this intraspecific variation occurs in response to different environmental conditions such as altitude and poor maternal nutrition. Examinations of variation in the placenta from both intra- and interspecies perspectives elucidate different aspects of placental function and dysfunction at the maternal-fetal interface. Comparisons within species identify candidate mechanisms that are activated in response to environmental stressors ultimately contributing to the aetiology of obstetric syndromes such as pre-eclampsia. Comparisons above the species level identify the evolutionary lineages on which the potential for the development of obstetric syndromes emerged.
Collapse
Affiliation(s)
- William E Gundling
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Derek E Wildman
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
103
|
Knisbacher BA, Levanon EY. DNA and RNA editing of retrotransposons accelerate mammalian genome evolution. Ann N Y Acad Sci 2015; 1341:115-25. [PMID: 25722083 DOI: 10.1111/nyas.12713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome evolution is commonly viewed as a gradual process that is driven by random mutations that accumulate over time. However, DNA- and RNA-editing enzymes have been identified that can accelerate evolution by actively modifying the genomically encoded information. The apolipoprotein B mRNA editing enzymes, catalytic polypeptide-like (APOBECs) are potent restriction factors that can inhibit retroelements by cytosine-to-uridine editing of retroelement DNA after reverse transcription. In some cases, a retroelement may successfully integrate into the genome despite being hypermutated. Such events introduce unique sequences into the genome and are thus a source of genomic innovation. adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine editing in double-stranded RNA, commonly formed by oppositely oriented retroelements. The RNA editing confers plasticity to the transcriptome by generating many transcript variants from a single genomic locus. If the editing produces a beneficial variant, the genome may maintain the locus that produces the RNA-edited transcript for its novel function. Here, we discuss how these two powerful editing mechanisms, which both target inserted retroelements, facilitate expedited genome evolution.
Collapse
Affiliation(s)
- Binyamin A Knisbacher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
104
|
Delsuc F, Tilak MK. Naked but not Hairless: the pitfalls of analyses of molecular adaptation based on few genome sequence comparisons. Genome Biol Evol 2015; 7:768-74. [PMID: 25714745 PMCID: PMC5322551 DOI: 10.1093/gbe/evv036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The naked mole-rat (Heterocephalus glaber) is the only rodent species that naturally lacks fur. Genome sequencing of this atypical rodent species recently shed light on a number of its morphological and physiological adaptations. More specifically, its hairless phenotype has been traced back to a single amino acid change (C397W) in the hair growth associated (HR) protein (or Hairless). By considering the available species diversity, we show that this specific position is in fact variable across mammals, including in the horse that was misleadingly reported to have the ancestral Cysteine. Moreover, by sequencing the corresponding HR exon in additional rodent species, we demonstrate that the C397W substitution is actually not a peculiarity of the naked mole-rat. Instead, this specific amino acid substitution is present in all hystricognath rodents investigated, which are all fully furred, including the naked mole-rat closest relative, the Damaraland mole-rat (Fukomys damarensis). Overall, we found no statistical correlation between amino acid changes at position 397 of the HR protein and reduced pilosity across the mammalian phylogeny. This demonstrates that this single amino acid change does not explain the naked mole-rat hairless phenotype. Our case study calls for caution before making strong claims regarding the molecular basis of phenotypic adaptation based on the screening of specific amino acid substitutions using only few model species in genome sequence comparisons. It also exposes the more general problem of the dilution of essential information in the supplementary material of genome papers thereby increasing the probability that misleading results will escape the scrutiny of editors, reviewers, and ultimately readers.
Collapse
Affiliation(s)
- Frédéric Delsuc
- Institut des Sciences de l'Evolution, UMR5554, CNRS, IRD, Université de Montpellier, France
| | - Marie-Ka Tilak
- Institut des Sciences de l'Evolution, UMR5554, CNRS, IRD, Université de Montpellier, France
| |
Collapse
|
105
|
Abstract
The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.
Collapse
Affiliation(s)
- Klaus-Peter Koepfli
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russian Federation;
| | | | | |
Collapse
|
106
|
Francia S, Silvotti L, Ghirardi F, Catzeflis F, Percudani R, Tirindelli R. Evolution of spatially coexpressed families of type-2 vomeronasal receptors in rodents. Genome Biol Evol 2014; 7:272-85. [PMID: 25539725 PMCID: PMC4316634 DOI: 10.1093/gbe/evu283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vomeronasal organ (VNO) is an olfactory structure for the detection of pheromones. VNO neurons express three groups of unrelated G-protein-coupled receptors. Type-2 vomeronasal receptors (V2Rs) are specifically localized in the basal neurons of the VNO and are believed to sense protein pheromones eliciting specific reproductive behaviors. In murine species, V2Rs are organized into four families. Family-ABD V2Rs are expressed monogenically and coexpress with family-C V2Rs of either subfamily C1 (V2RC1) or subfamily C2 (V2RC2), according to a coordinate temporal diagram. Neurons expressing the phylogenetically ancient V2RC1 coexpress family-BD V2Rs or a specific group of subfamily-A V2Rs (V2RA8-10), whereas a second neuronal subset (V2RC2-positive) coexpresses a recently expanded group of five subfamily-A V2Rs (V2RA1-5) along with vomeronasal-specific Major Histocompatibility Complex molecules (H2-Mv). Through database mining and Sanger sequencing, we have analyzed the onset, diversification, and expansion of the V2R-families throughout the phylogeny of Rodentia. Our results suggest that the separation of V2RC1 and V2RC2 occurred in a Cricetidae ancestor in coincidence with the evolution of the H2-Mv genes; this phylogenetic event did not correspond with the origin of the coexpressing V2RA1-5 genes, which dates back to an ancestral myomorphan lineage. Interestingly, the evolution of receptors within the V2RA1-5 group may be implicated in the origin and diversification of some of the V2R putative cognate ligands, the exocrine secreting peptides. The establishment of V2RC2, which probably reflects the complex expansion and diversification of family-A V2Rs, generated receptors that have probably acquired a more subtle functional specificity.
Collapse
Affiliation(s)
| | | | | | - François Catzeflis
- Laboratoire de Paleontologie, Institut des Sciences de l'Evolution, UMR 5554 Centre National de la Recherche Scientifique, Université de Montpellier 2, France
| | | | | |
Collapse
|
107
|
Vernochet C, Redelsperger F, Harper F, Souquere S, Catzeflis F, Pierron G, Nevo E, Heidmann T, Dupressoir A. The captured retroviral envelope syncytin-A and syncytin-B genes are conserved in the Spalacidae together with hemotrichorial placentation. Biol Reprod 2014; 91:148. [PMID: 25339103 DOI: 10.1095/biolreprod.114.124818] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Syncytins are fusogenic envelope (env) genes of retroviral origin that have been captured for a function in placentation. Multiple independent events of syncytin gene capture were found to have occurred in primates, rodents, lagomorphs, carnivores, and ruminants. In the mouse, two syncytin-A and -B genes are present, which trigger the formation of the two-layered placental syncytiotrophoblast at the maternal-fetal interface, a structure classified as hemotrichorial. Here, we identified syncytin-A and -B orthologous genes in the genome of all Muroidea species analyzed, thus dating their capture back to about at least 40 million years ago, with evidence that they evolved under strong purifying selection. We further show, in the divergent Spalacidae lineage (blind mole rats [Spalax]), that both syncytins have conserved placenta-specific expression, as revealed by RT-PCR analysis of a panel of Spalax galili tissues, and display fusogenic activity, using ex vivo cell-cell fusion assays. Refined analysis of the placental architecture and ultrastructure revealed that the Spalax placenta displays a hemotrichorial organization of the interhemal membranes, as similarly observed for other Muroidea species, yet with only one trophoblastic cell layer being clearly syncytialized. In situ hybridization experiments further localized syncytin transcripts at the level of these differentiated interhemal membranes. These findings argue for a role of syncytin gene capture in the establishment of the original hemotrichorial placenta of Muroidea, and more generally in the diversity of placental structures among mammals.
Collapse
Affiliation(s)
- Cécile Vernochet
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8122, Institut Gustave Roussy, Villejuif, France Université Paris-Sud, Orsay, France
| | - François Redelsperger
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8122, Institut Gustave Roussy, Villejuif, France Université Paris-Sud, Orsay, France
| | - Francis Harper
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8122, Institut Gustave Roussy, Villejuif, France Université Paris-Sud, Orsay, France
| | - Sylvie Souquere
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8122, Institut Gustave Roussy, Villejuif, France Université Paris-Sud, Orsay, France
| | - François Catzeflis
- Laboratoire de Paléontologie, Phylogénie et Paléobiologie, Centre National de la Recherche Scientifique, Université Montpellier II, Montpellier, France
| | - Gérard Pierron
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8122, Institut Gustave Roussy, Villejuif, France Université Paris-Sud, Orsay, France
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Thierry Heidmann
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8122, Institut Gustave Roussy, Villejuif, France Université Paris-Sud, Orsay, France
| | - Anne Dupressoir
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8122, Institut Gustave Roussy, Villejuif, France Université Paris-Sud, Orsay, France
| |
Collapse
|
108
|
Comparative genetics of longevity and cancer: insights from long-lived rodents. Nat Rev Genet 2014; 15:531-40. [PMID: 24981598 DOI: 10.1038/nrg3728] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammals have evolved a remarkable diversity of ageing rates. Within the single order of Rodentia, maximum lifespans range from 4 years in mice to 32 years in naked mole rats. Cancer rates also differ substantially between cancer-prone mice and almost cancer-proof naked mole rats and blind mole rats. Recent progress in rodent comparative biology, together with the emergence of whole-genome sequence information, has opened opportunities for the discovery of genetic factors that control longevity and cancer susceptibility.
Collapse
|