101
|
GABPA inhibits invasion/metastasis in papillary thyroid carcinoma by regulating DICER1 expression. Oncogene 2018; 38:965-979. [PMID: 30181547 DOI: 10.1038/s41388-018-0483-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
The ETS family transcription factor GABPA is suggested as an oncogenic element, which is further supported by the recent reporting of it as the sole ETS member to activate the mutant TERT promoter in thyroid carcinomas (TC). However, it remains unclear how GABPA contributes to TC pathogenesis. The present study is designed to address this issue. TERT expression was significantly diminished in TERT promoter-mutated TC cells upon GABPA inhibition. Surprisingly, GABPA depletion led to robustly increased cellular invasion independently of TERT promoter mutations and TERT expression. DICER1, a component of the microRNA machinery, was identified as a downstream effector of GABPA. GABPA facilitated Dicer1 transcription while its depletion reduced Dicer1 expression. The mutation of the GABPA binding site in the DICER1 promoter led to diminished basal levels of DICER1 promoter activity and abolishment of GABPA-stimulated promoter activity as well. The forced DICER1 expression abrogated the invasiveness of GABPA-depleted TC cells. Consistently, the analyses of 93 patients with papillary thyroid carcinoma (PTC) revealed a positive correlation between GABPA and DICER1 expression. GABPA expression was negatively associated with TERT expression and promoter mutations, in contrast to published observations in cancer cell lines. Lower GABPA expression was associated with distant metastasis and shorter overall/disease-free survival in PTC patients. Similar results were obtained for PTC cases in the TCGA dataset. In addition, a positive correlation between GABPA and DICER1 expression was seen in multiple types of malignancies. Taken together, despite its stimulatory effect on the mutant TERT promoter and telomerase activation, GABPA may itself act as a tumor suppressor rather than an oncogenic factor to inhibit invasion/metastasis in TCs and be a useful predictor for patient outcomes.
Collapse
|
102
|
da Silva-Diz V, Lorenzo-Sanz L, Bernat-Peguera A, Lopez-Cerda M, Muñoz P. Cancer cell plasticity: Impact on tumor progression and therapy response. Semin Cancer Biol 2018; 53:48-58. [PMID: 30130663 DOI: 10.1016/j.semcancer.2018.08.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/12/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023]
Abstract
Most tumors exhibit intra-tumor heterogeneity, which is associated with disease progression and an impaired response to therapy. Cancer cell plasticity has been proposed as being an important mechanism that, along with genetic and epigenetic alterations, promotes cancer cell diversity and contributes to intra-tumor heterogeneity. Plasticity endows cancer cells with the capacity to shift dynamically between a differentiated state, with limited tumorigenic potential, and an undifferentiated or cancer stem-like cell (CSC) state, which is responsible for long-term tumor growth. In addition, it confers the ability to transit into distinct CSC states with different competence to invade, disseminate and seed metastasis. Cancer cell plasticity has been linked to the epithelial-to-mesenchymal transition program and relies not only on cell-autonomous mechanisms, but also on signals provided by the tumor microenvironment and/or induced in response to therapy. We provide an overview of the dynamic transition for cancer cell states, the mechanisms governing cell plasticity and their impact on tumor progression, metastasis and therapy response. Understanding the mechanisms involved in cancer cell plasticity will provide insights for establishing new therapeutic interventions.
Collapse
Affiliation(s)
| | - Laura Lorenzo-Sanz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Adrià Bernat-Peguera
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta Lopez-Cerda
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Purificación Muñoz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| |
Collapse
|
103
|
Hu Y, Hu D, Yu H, Xu W, Fu R. Hypoxia‑inducible factor 1α and ROCK1 regulate proliferation and collagen synthesis in hepatic stellate cells under hypoxia. Mol Med Rep 2018; 18:3997-4003. [PMID: 30132575 DOI: 10.3892/mmr.2018.9397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/27/2018] [Indexed: 11/06/2022] Open
Abstract
Hypoxia serves a critical role in the pathogenesis of liver fibrosis. Hypoxia‑inducible factor 1α (HIF1‑α) is induced when cells are exposed to low O2 concentrations. Recently, it has been suggested that Rho‑associated coiled‑coil‑forming kinase 1 (ROCK1) may be an important HIF1‑α regulator. In the present study, it was analyzed whether crosstalk between HIF1‑α and ROCK1 regulates cell proliferation and collagen synthesis in hepatic stellate cells (HSCs) under hypoxic conditions. For this purpose, a rat hepatic HSC line (HSC‑T6) was cultured under hypoxic or normoxic conditions, and HIF1‑α and ROCK1 expression was measured at different time points. Additionally, HSC‑T6 cells were transfected with HIF1‑α small interfering RNA (siHIF1‑α), and measured protein expression and mRNA transcript levels of α‑smooth muscle actin, collagen 1A1 and ROCK1. Collagen 3A1 secretion was also measured by ELISA. Cell proliferation was assessed by the MTT assay under these hypoxic conditions. The results indicated that a specific ROCK inhibitor, Y‑27632, increased HIF1‑α and ROCK1 expression over time in HSC‑T6 cells in response to hypoxia. In addition, knockdown of HIF1‑α inhibited HSC‑T6 proliferation, suppressed collagen 1A1 expression, decreased collagen 3A1 secretion and attenuated ROCK1 expression. Notably, ROCK1 inhibition caused HSC‑T6 quiescence, suppressed collagen secretion and downregulated HIF1‑α expression. Collectively, these findings indicated that the interplay between HIF1‑α and ROCK1 may be a critical factor that regulates cell proliferation and collagen synthesis in rat HSCs under hypoxia.
Collapse
Affiliation(s)
- Yibing Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Danping Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Huanhuan Yu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Wangwang Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Rongquan Fu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| |
Collapse
|
104
|
Gharpure KM, Pradeep S, Sans M, Rupaimoole R, Ivan C, Wu SY, Bayraktar E, Nagaraja AS, Mangala LS, Zhang X, Haemmerle M, Hu W, Rodriguez-Aguayo C, McGuire M, Mak CSL, Chen X, Tran MA, Villar-Prados A, Pena GA, Kondetimmanahalli R, Nini R, Koppula P, Ram P, Liu J, Lopez-Berestein G, Baggerly K, S Eberlin L, Sood AK. FABP4 as a key determinant of metastatic potential of ovarian cancer. Nat Commun 2018; 9:2923. [PMID: 30050129 PMCID: PMC6062524 DOI: 10.1038/s41467-018-04987-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
The standard treatment for high-grade serous ovarian cancer is primary debulking surgery followed by chemotherapy. The extent of metastasis and invasive potential of lesions can influence the outcome of these primary surgeries. Here, we explored the underlying mechanisms that could increase metastatic potential in ovarian cancer. We discovered that FABP4 (fatty acid binding protein) can substantially increase the metastatic potential of cancer cells. We also found that miR-409-3p regulates FABP4 in ovarian cancer cells and that hypoxia decreases miR-409-3p levels. Treatment with DOPC nanoliposomes containing either miR-409-3p mimic or FABP4 siRNA inhibited tumor progression in mouse models. With RPPA and metabolite arrays, we found that FABP4 regulates pathways associated with metastasis and affects metabolic pathways in ovarian cancer cells. Collectively, these findings demonstrate that FABP4 is functionally responsible for aggressive patterns of disease that likely contribute to poor prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Kshipra M Gharpure
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Rajesha Rupaimoole
- Department of Pathology and Institute of RNA Medicine, Beth Israel Deaconess Medical Center Cancer Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Archana S Nagaraja
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Xinna Zhang
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Monika Haemmerle
- Martin-Luther-University Halle-Wittenberg, Institute of Pathology, 06112, Halle (Saale), Germany
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael McGuire
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Celia Sze Ling Mak
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Michelle A Tran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Alejandro Villar-Prados
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Guillermo Armaiz Pena
- Department of Pharmacology, Ponce Health Sciences University, Ponce, 00716, Puerto Rico
| | | | - Ryan Nini
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pranavi Koppula
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Prahlad Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jinsong Liu
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keith Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
105
|
Hirst J, Pathak HB, Hyter S, Pessetto ZY, Ly T, Graw S, Koestler DC, Krieg AJ, Roby KF, Godwin AK. Licofelone Enhances the Efficacy of Paclitaxel in Ovarian Cancer by Reversing Drug Resistance and Tumor Stem-like Properties. Cancer Res 2018; 78:4370-4385. [PMID: 29891506 DOI: 10.1158/0008-5472.can-17-3993] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/22/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
Abstract
Drug development for first-line treatment of epithelial ovarian cancer (EOC) has been stagnant for almost three decades. Traditional cell culture methods for primary drug screening do not always accurately reflect clinical disease. To overcome this barrier, we grew a panel of EOC cell lines in three-dimensional (3D) cell cultures to form multicellular tumor spheroids (MCTS). We characterized these MCTS for molecular and cellular features of EOC and performed a comparative screen with cells grown using two-dimensional (2D) cell culture to identify previously unappreciated anticancer drugs. MCTS exhibited greater resistance to chemotherapeutic agents, showed signs of senescence and hypoxia, and expressed a number of stem cell-associated transcripts including ALDH1A and CD133, also known as PROM1 Using a library of clinically repurposed drugs, we identified candidates with preferential activity in MCTS over 2D cultured cells. One of the lead compounds, the dual COX/LOX inhibitor licofelone, reversed the stem-like properties of ovarian MCTS. Licofelone also synergized with paclitaxel in ovarian MCTS models and in a patient-derived tumor xenograft model. Importantly, the combination of licofelone with paclitaxel prolonged the median survival of mice (>141 days) relative to paclitaxel (115 days), licofelone (37 days), or vehicle (30 days). Increased efficacy was confirmed by Mantel-Haenszel HR compared with vehicle (HR = 0.037) and paclitaxel (HR = 0.017). These results identify for the first time an unappreciated, anti-inflammatory drug that can reverse chemotherapeutic resistance in ovarian cancer, highlighting the need to clinically evaluate licofelone in combination with first-line chemotherapy in primary and chemotherapy-refractory EOC.Significance: This study highlights the use of an in vitro spheroid 3D drug screening model to identify new therapeutic approaches to reverse chemotherapy resistance in ovarian cancer. Cancer Res; 78(15); 4370-85. ©2018 AACR.
Collapse
Affiliation(s)
- Jeff Hirst
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Stephen Hyter
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ziyan Y Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Thuc Ly
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Stefan Graw
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Katherine F Roby
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas.,Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas. .,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
106
|
Tong WW, Tong GH, Liu Y. Cancer stem cells and hypoxia-inducible factors (Review). Int J Oncol 2018; 53:469-476. [PMID: 29845228 DOI: 10.3892/ijo.2018.4417] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are a subpopulation of tumor cells that exhibit properties similar to those of normal stem cells. Oxygen is an important regulator of cellular metabolism; hypoxia-inducible factors (HIFs) mediate metabolic switches in cells in hypoxic environments. Hypoxia clearly has the potential to exert a significant effect on the maintenance and evolution of CSCs. Both HIF‑1α and HIF‑2α may contribute to the regulation of cellular adaptation to hypoxia and resistance to cancer therapies. This review provides an overview of the roles of HIFs in CSCs. HIF‑1α and HIF‑2α have significant prognostic and predictive value in the clinic and the concept of personalized medicine should be applied in designing clinical trials for HIF inhibitors.
Collapse
Affiliation(s)
- Wei-Wei Tong
- Department of Laboratory Medicine, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Guang-Hui Tong
- Department of Laboratory Medicine, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
107
|
Serocki M, Bartoszewska S, Janaszak-Jasiecka A, Ochocka RJ, Collawn JF, Bartoszewski R. miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis 2018; 21:183-202. [PMID: 29383635 PMCID: PMC5878208 DOI: 10.1007/s10456-018-9600-2] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
The decline of oxygen tension in the tissues below the physiological demand leads to the hypoxic adaptive response. This physiological consequence enables cells to recover from this cellular insult. Understanding the cellular pathways that mediate recovery from hypoxia is therefore critical for developing novel therapeutic approaches for cardiovascular diseases and cancer. The master regulators of oxygen homeostasis that control angiogenesis during hypoxia are hypoxia-inducible factors (HIFs). HIF-1 and HIF-2 function as transcriptional regulators and have both unique and overlapping target genes, whereas the role of HIF-3 is less clear. HIF-1 governs the acute adaptation to hypoxia, whereas HIF-2 and HIF-3 expressions begin during chronic hypoxia in human endothelium. When HIF-1 levels decline, HIF-2 and HIF-3 increase. This switch from HIF-1 to HIF-2 and HIF-3 signaling is required in order to adapt the endothelium to prolonged hypoxia. During prolonged hypoxia, the HIF-1 levels and activity are reduced, despite the lack of oxygen-dependent protein degradation. Although numerous protein factors have been proposed to modulate the HIF pathways, their application for HIF-targeted therapy is rather limited. Recently, the miRNAs that endogenously regulate gene expression via the RNA interference (RNAi) pathway have been shown to play critical roles in the hypoxia response pathways. Furthermore, these classes of RNAs provide therapeutic possibilities to selectively target HIFs and thus modulate the HIF switch. Here, we review the significance of the microRNAs on the relationship between the HIFs under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Anna Janaszak-Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - Renata J Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
108
|
Barbier J, Chen X, Sanchez G, Cai M, Helsmoortel M, Higuchi T, Giraud P, Contreras X, Yuan G, Feng Z, Nait-Saidi R, Deas O, Bluy L, Judde JG, Rouquier S, Ritchie W, Sakamoto S, Xie D, Kiernan R. An NF90/NF110-mediated feedback amplification loop regulates dicer expression and controls ovarian carcinoma progression. Cell Res 2018; 28:556-571. [PMID: 29563539 DOI: 10.1038/s41422-018-0016-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/16/2023] Open
Abstract
Reduced expression of DICER, a key enzyme in the miRNA pathway, is frequently associated with aggressive, invasive disease, and poor survival in various malignancies. Regulation of DICER expression is, however, poorly understood. Here, we show that NF90/NF110 facilitates DICER expression by controlling the processing of a miRNA, miR-3173, which is embedded in DICER pre-mRNA. As miR-3173 in turn targets NF90, a feedback amplification loop controlling DICER expression is established. In a nude mouse model, NF90 overexpression reduced proliferation of ovarian cancer cells and significantly reduced tumor size and metastasis, whereas overexpression of miR-3173 dramatically increased metastasis in an NF90- and DICER-dependent manner. Clinically, low NF90 expression and high miR-3173-3p expression were found to be independent prognostic markers of poor survival in a cohort of ovarian carcinoma patients. These findings suggest that, by facilitating DICER expression, NF90 can act as a suppressor of ovarian carcinoma.
Collapse
Affiliation(s)
- Jérôme Barbier
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Xin Chen
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Gabriel Sanchez
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Marion Helsmoortel
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Takuma Higuchi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan
| | - Pierre Giraud
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Xavier Contreras
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Gangjun Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zihao Feng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rima Nait-Saidi
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Olivier Deas
- XenTech SAS, 4 rue Pierre Fontaine, Evry, 91000, France
| | - Lisa Bluy
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | | | - Sylvie Rouquier
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - William Ritchie
- Institut de Génétique Humaine, CNRS, University of Montpellier, Machine Learning and Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, 34396, France
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Rosemary Kiernan
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France.
| |
Collapse
|
109
|
Shan W, Sun C, Zhou B, Guo E, Lu H, Xia M, Li K, Weng D, Lin X, Meng L, Ma D, Chen G. Role of Dicer as a prognostic predictor for survival in cancer patients: a systematic review with a meta-analysis. Oncotarget 2018; 7:72672-72684. [PMID: 27682871 PMCID: PMC5341936 DOI: 10.18632/oncotarget.12183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 09/12/2016] [Indexed: 01/17/2023] Open
Abstract
Objective The role of Dicer in the prognosis of cancer patients remains controversial. This systematic review is attempted to assess the influence of Dicer as a prognostic predictor for survival in diverse types of cancers. Methods Studies were selected as candidates if they published an independent evaluation of Dicer expression level together with the correlation with prognosis in cancers. Random-effect model was applied in this meta-analysis. Heterogeneity between studies was assessed by Q-statistic with P < 0.10 to be statistically significant. Publication bias was investigated using funnel plot and test with Begg's and Egger's test. P < 0.05 was regarded as statistically significant. Results 24 of 44 articles revealed low Dicer status as a predictor of poor prognosis. The aggregate result of overall survival (OS) indicated that low Dicer expression level resulted in poor clinical outcomes, and subgroup of IHC and RT-PCR method both revealed the same result. Overall analysis of progression-free survival (PFS) showed the same result as OS, and both the two subgroups divided by laboratory method revealed positive results. Subgroup analysis by tumor types showed low dicer levels were associated with poor prognosis in ovarian cancer (HR = 1.93, 95% CI: 1.19-3.15), otorhinolaryngological tumors (HR = 2.39, 95% CI: 1.70-3.36), hematological malignancies (HR = 2.45, 95% CI: 1.69-3.56) and neuroblastoma (HR = 4.03, 95% CI: 1.91-8.50). Conclusion Low Dicer status was associated with poor prognosis in ovarian cancer, otorhinolaryngological tumors and ematological malignancies. More homogeneous studies with high quality are needed to further confirm our conclusion and make Dicer a useful parameter in clinical application.
Collapse
Affiliation(s)
- Wanying Shan
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Chaoyang Sun
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Bo Zhou
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Ensong Guo
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Hao Lu
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Meng Xia
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Kezhen Li
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Danhui Weng
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Xingguang Lin
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Li Meng
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Ding Ma
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Gang Chen
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| |
Collapse
|
110
|
High expression of microRNA-454 is associated with poor prognosis in triple-negative breast cancer. Oncotarget 2018; 7:64900-64909. [PMID: 27588500 PMCID: PMC5323124 DOI: 10.18632/oncotarget.11764] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/26/2016] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-454 (miR-454) has been reported to play an oncogenic or tumor suppressor role in most cancers. However, the clinical relevance of miR-454 in breast cancer remains unclear. We examined the expression of miR-454 in a tissue microarray containing 534 breast cancer specimens from female patients at Fudan University Shanghai Cancer Center using in situ hybridization (ISH). Of these, 250 patients formed the training set and the other 284 were the validation set. The relationship between miR-454 and clinical outcome was analyzed by the Kaplan-Meier method. High expression of miR-454 indicated worse disease-free survival (DFS) in both cohorts (P = 0.006 for training set; P = 0.010 for validation set). Furthermore, in the triple-negative breast cancer (TNBC) subtype, miR-454 was positively correlated with worse clinical outcome (P = 0.013 for training set, P = 0.014 for validation set). In addition, patients in the low miR-454 expression cohort had better response to anthracycline compared to non-anthracycline chemotherapy (P = 0.056), but this difference was not observed in the high miR-454 expression cohort. Our findings indicated that miR-454 is a potential predictor of prognosis and chemotherapy response in TNBC.
Collapse
|
111
|
Choudhry H, Harris AL. Advances in Hypoxia-Inducible Factor Biology. Cell Metab 2018; 27:281-298. [PMID: 29129785 DOI: 10.1016/j.cmet.2017.10.005] [Citation(s) in RCA: 527] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factor (HIF), a central regulator for detecting and adapting to cellular oxygen levels, transcriptionally activates genes modulating oxygen homeostasis and metabolic activation. Beyond this, HIF influences many other processes. Hypoxia, in part through HIF-dependent mechanisms, influences epigenetic factors, including DNA methylation and histone acetylation, which modulate hypoxia-responsive gene expression in cells. Hypoxia profoundly affects expression of many noncoding RNAs classes that have clinicopathological implications in cancer. HIF can regulate noncoding RNAs production, while, conversely, noncoding RNAs can modulate HIF expression. There is recent evidence for crosstalk between circadian rhythms and hypoxia-induced signaling, suggesting involvement of molecular clocks in adaptation to fluxes in nutrient and oxygen sensing. HIF induces increased production of cellular vesicles facilitating intercellular communication at a distance-for example, promoting angiogenesis in hypoxic tumors. Understanding the complex networks underlying cellular and genomic regulation in response to hypoxia via HIF may identify novel and specific therapeutic targets.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
112
|
Wei LZ, Wang YQ, Chang YL, An N, Wang X, Zhou PJ, Zhu HH, Fang YX, Gao WQ. Imbalance of a KLF4-miR-7 auto-regulatory feedback loop promotes prostate cancer cell growth by impairing microRNA processing. Am J Cancer Res 2018; 8:226-244. [PMID: 29511594 PMCID: PMC5835691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/14/2017] [Indexed: 06/08/2023] Open
Abstract
The microRNA-transcription factor auto-regulatory feedback loop is a pivotal mechanism for homeostatic regulation of gene expression, and dysregulation of the feedback loop is tightly associated with tumorigenesis and progression. However, the mechanism underlying such dysregulation is still not well-understood. Here we reported that Krüppel-like factor 4 (KLF4), a stemness-associated transcription factor, promotes the transcription of miR-7 to repress its own translation so that a KLF4-miR-7 auto-regulatory feedback loop is established for mutual regulation of their expression. Interestingly, this feedback loop is unbalanced in prostate cancer (PCa) cell lines and patient samples due to an impaired miR-7-processing, leading to decreased mature miR-7 production and attenuated inhibition of KLF4 translation. Mechanistically, enhanced oncogenic Yes associated protein (YAP) nuclear translocation mediates sequestration of p72, a co-factor of the Drosha/DGCR8 complex for pri-miR-7s processing, leading to attenuation of microprocessors' efficiency. Knockdown of YAP or transfection with a mature miR-7 mimic can significantly recover miR-7 expression to restore this feedback loop, and in turn to inhibit cancer cell growth by repressing KLF4 expression in vitro. Thus, our findings indicate that targeting the KLF4-miR-7 feedback loop might be a potential strategy for PCa therapy.
Collapse
Affiliation(s)
- Lian-Zi Wei
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Yan-Qing Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Yun-Li Chang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Na An
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Pei-Jie Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong UniversityShanghai, China
- Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
113
|
Assenov Y, Brocks D, Gerhäuser C. Intratumor heterogeneity in epigenetic patterns. Semin Cancer Biol 2018; 51:12-21. [PMID: 29366906 DOI: 10.1016/j.semcancer.2018.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/24/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023]
Abstract
Analogous to life on earth, tumor cells evolve through space and time and adapt to different micro-environmental conditions. As a result, tumors are composed of millions of genetically diversified cells at the time of diagnosis. Profiling these variants contributes to understanding tumors' clonal origins and might help to better understand response to therapy. However, even genetically homogenous cell populations show remarkable diversity in their response to different environmental stimuli, suggesting that genetic heterogeneity does not explain the full spectrum of tumor plasticity. Understanding epigenetic diversity across cancer cells provides important additional information about the functional state of subclones and therefore allows better understanding of tumor evolution and resistance to current therapies.
Collapse
Affiliation(s)
- Yassen Assenov
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David Brocks
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Clarissa Gerhäuser
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
114
|
Mansouri S, Singh S, Alamsahebpour A, Burrell K, Li M, Karabork M, Ekinci C, Koch E, Solaroglu I, Chang JT, Wouters B, Aldape K, Zadeh G. DICER governs characteristics of glioma stem cells and the resulting tumors in xenograft mouse models of glioblastoma. Oncotarget 2018; 7:56431-56446. [PMID: 27421140 PMCID: PMC5302925 DOI: 10.18632/oncotarget.10570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
The RNAse III endonuclease DICER is a key regulator of microRNA (miRNA) biogenesis and is frequently decreased in a variety of malignancies. We characterized the role of DICER in glioblastoma (GB), specifically demonstrating its effects on the ability of glioma stem-like cells (GSCs) to form tumors in a mouse model of GB. DICER silencing in GSCs reduced their stem cell characteristics, while tumors arising from these cells were more aggressive, larger in volume, and displayed a higher proliferation index and lineage differentiation. The resulting tumors, however, were more sensitive to radiation treatment. Our results demonstrate that DICER silencing enhances the tumorigenic potential of GSCs, providing a platform for analysis of specific relevant miRNAs and development of potentially novel therapies against GB.
Collapse
Affiliation(s)
- Sheila Mansouri
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Sanjay Singh
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Amir Alamsahebpour
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Kelly Burrell
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Mira Li
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Merve Karabork
- School of Medicine, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Can Ekinci
- School of Medicine, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Elizabeth Koch
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ihsan Solaroglu
- School of Medicine, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey.,Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Jeffery T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Bradly Wouters
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kenneth Aldape
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada.,Department of Neurosurgery, Toronto Western Hospital, University Health Network, 4W-436, Toronto, ON, Canada
| |
Collapse
|
115
|
Abstract
Aldehyde dehydrogenase and mammosphere assays enable the cost-effective quantification and characterization of cancer stem cells (CSCs) from cancer cell lines as well as cancer tissue. Here we describe the quantification of CSCs in breast cancer cell lines using aldehyde dehydrogenase and mammosphere assays under hypoxic (1% O2) and non-hypoxic (20% O2) culture conditions. Using this method, a significant enrichment of CSCs compared to bulk populations is observed when breast cancer cells are exposed to 1% O2 for 72 h.
Collapse
Affiliation(s)
- Debangshu Samanta
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregg L Semenza
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Johns Hopkins Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
116
|
Kim JA, Yeom YI. Metabolic Signaling to Epigenetic Alterations in Cancer. Biomol Ther (Seoul) 2018; 26:69-80. [PMID: 29212308 PMCID: PMC5746039 DOI: 10.4062/biomolther.2017.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.
Collapse
Affiliation(s)
- Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young Il Yeom
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
117
|
Olejniczak M, Kotowska-Zimmer A, Krzyzosiak W. Stress-induced changes in miRNA biogenesis and functioning. Cell Mol Life Sci 2018; 75:177-191. [PMID: 28717872 PMCID: PMC5756259 DOI: 10.1007/s00018-017-2591-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in the regulation of cellular homeostasis in eukaryotic organisms. There is emerging evidence that some of these processes are influenced by various forms of cellular stresses, including DNA damage, pathogen invasion or chronic stress associated with diseases. Many reports over the last decade demonstrate examples of stress-induced miRNA deregulation at the level of transcription, processing, subcellular localization and functioning. Moreover, core miRNA biogenesis proteins and their interactions with partners can be selectively regulated in response to stress signaling. However, little is known about the role of isomiRs and the interactions of miRNA with non-canonical targets in the context of the stress response. In this review, we summarize the current knowledge on miRNA functions under various stresses, including chronic stress and miRNA deregulation in the pathogenesis of age-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Marta Olejniczak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| | - Anna Kotowska-Zimmer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Wlodzimierz Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
118
|
Lai HH, Li JN, Wang MY, Huang HY, Croce CM, Sun HL, Lyu YJ, Kang JW, Chiu CF, Hung MC, Suzuki HI, Chen PS. HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis. J Clin Invest 2017; 128:625-643. [PMID: 29251629 DOI: 10.1172/jci89212] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
HIF-1α, one of the most extensively studied oncogenes, is activated by a variety of microenvironmental factors. The resulting biological effects are thought to depend on its transcriptional activity. The RNAse enzyme Dicer is frequently downregulated in human cancers, which has been functionally linked to enhanced metastatic properties; however, current knowledge of the upstream mechanisms regulating Dicer is limited. In the present study, we identified Dicer as a HIF-1α-interacting protein in multiple types of cancer cell lines and different human tumors. HIF-1α downregulated Dicer expression by facilitating its ubiquitination by the E3 ligase Parkin, thereby enhancing autophagy-mediated degradation of Dicer, which further suppressed the maturation of known tumor suppressors, such as the microRNA let-7 and microRNA-200b. Consequently, expression of HIF-1α facilitated epithelial-mesenchymal transition (EMT) and metastasis in tumor-bearing mice. Thus, this study uncovered a connection between oncogenic HIF-1α and the tumor-suppressive Dicer. This function of HIF-1α is transcription independent and occurs through previously unrecognized protein interaction-mediated ubiquitination and autophagic proteolysis.
Collapse
Affiliation(s)
- Hui-Huang Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, NCKU, Tainan, Taiwan
| | - Jie-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, NCKU, Tainan, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Hui-Lung Sun
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Yu-Jhen Lyu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, NCKU, Tainan, Taiwan
| | - Jui-Wen Kang
- Department of Internal Medicine, NCKU Hospital, Tainan, Taiwan
| | - Ching-Feng Chiu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, NCKU, Tainan, Taiwan
| |
Collapse
|
119
|
Daly CS, Flemban A, Shafei M, Conway ME, Qualtrough D, Dean SJ. Hypoxia modulates the stem cell population and induces EMT in the MCF-10A breast epithelial cell line. Oncol Rep 2017; 39:483-490. [PMID: 29207201 PMCID: PMC5783614 DOI: 10.3892/or.2017.6125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
A common feature among pre-malignant lesions is the induction of hypoxia through increased cell propagation and reduced access to blood flow. Hypoxia in breast cancer has been associated with poor patient prognosis, resistance to chemotherapy and increased metastasis. Although hypoxia has been correlated with factors associated with the latter stages of cancer progression, it is not well documented how hypoxia influences cells in the earliest stages of transformation. Using the immortalized MCF-10A breast epithelial cell line, we used hypoxic culture conditions to mimic reduced O2 levels found within early pre-malignant lesions and assessed various cellular parameters. In this non-transformed mammary cell line, O2 deprivation led to some changes not immediately associated with cancer progression, such as decreased proliferation, cell cycle arrest and increased apoptosis. In contrast, hypoxia did induce other changes more consistent with an increased metastatic potential. A rise in the CD44+CD24-/low-labeled cell sub-population along with increased colony forming capability indicated an expanded stem cell population. Hypoxia also induced cellular and molecular changes consistent with an epithelial-to-mesenchymal transition (EMT). Furthermore, these cells now exhibited increased migratory and invasive abilities. These results underscore the contribution of the hypoxic tumour microenvironment in cancer progression and dissemination.
Collapse
Affiliation(s)
- Carl S Daly
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol, BS16 1QY, UK
| | - Arwa Flemban
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol, BS16 1QY, UK
| | - Mai Shafei
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol, BS16 1QY, UK
| | - Myra E Conway
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol, BS16 1QY, UK
| | - David Qualtrough
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol, BS16 1QY, UK
| | - Sarah J Dean
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol, BS16 1QY, UK
| |
Collapse
|
120
|
Kerur N, Fukuda S, Banerjee D, Kim Y, Fu D, Apicella I, Varshney A, Yasuma R, Fowler BJ, Baghdasaryan E, Marion KM, Huang X, Yasuma T, Hirano Y, Serbulea V, Ambati M, Ambati VL, Kajiwara Y, Ambati K, Hirahara S, Bastos-Carvalho A, Ogura Y, Terasaki H, Oshika T, Kim KB, Hinton DR, Leitinger N, Cambier JC, Buxbaum JD, Kenney MC, Jazwinski SM, Nagai H, Hara I, West AP, Fitzgerald KA, Sadda SR, Gelfand BD, Ambati J. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat Med 2017; 24:50-61. [PMID: 29176737 PMCID: PMC5760363 DOI: 10.1038/nm.4450] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Geographic atrophy is a blinding form of age-related macular degeneration characterized by death of the retinal pigmented epithelium (RPE). In this disease, the RPE displays evidence of DICER1 deficiency, resultant accumulation of endogenous Alu retroelement RNA, and NLRP3 inflammasome activation. How the inflammasome is activated in this untreatable disease is largely unknown. Here we demonstrate that RPE degeneration in human cell culture and in mouse models is driven by a non-canonical inflammasome pathway that results in activation of caspase-4 (caspase-11 in mice) and caspase-1, and requires cyclic GMP-AMP synthase (cGAS)-dependent interferon-β (IFN-β) production and gasdermin D-dependent interleukin-18 (IL-18) secretion. Reduction of DICER1 levelsor accumulation of Alu RNA triggers cytosolic escape of mitochondrial DNA, which engages cGAS. Moreover, caspase-4, gasdermin D, IFN-β, and cGAS levels are elevated in the RPE of human eyes with geographic atrophy. Collectively, these data highlight an unexpected role for cGAS in responding to mobile element transcripts, reveal cGAS-driven interferon signaling as a conduit for mitochondrial damage-induced inflammasome activation, expand the immune sensing repertoire of cGAS and caspase-4 to non-infectious human disease, and identify new potential targets for treatment of a major cause of blindness.
Collapse
Affiliation(s)
- Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan
| | - Daipayan Banerjee
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Younghee Kim
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Dongxu Fu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Akhil Varshney
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Reo Yasuma
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Elmira Baghdasaryan
- Doheny Eye Institute, Los Angeles, Los Angeles, California, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Xiwen Huang
- Doheny Eye Institute, Los Angeles, Los Angeles, California, USA
| | - Tetsuhiro Yasuma
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan.,Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshio Hirano
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan.,Department of Ophthalmology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Meenakshi Ambati
- Center for Digital Image Evaluation, Charlottesville, Virginia, USA
| | - Vidya L Ambati
- Center for Digital Image Evaluation, Charlottesville, Virginia, USA
| | - Yuji Kajiwara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kameshwari Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ana Bastos-Carvalho
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Yuichiro Ogura
- Department of Ophthalmology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - David R Hinton
- Departments of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M Cristina Kenney
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Hiroshi Nagai
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, USA
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, Los Angeles, California, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
121
|
BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1. Aging (Albany NY) 2017; 8:1670-89. [PMID: 27454161 PMCID: PMC5032689 DOI: 10.18632/aging.101000] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/08/2016] [Indexed: 01/03/2023]
Abstract
For the application of mesenchymal stem cells (MSCs) as clinical therapeutics, the regulation of cellular aging is important to protect hMSCs from an age-associated decline in their function. In this study, we evaluated the effects of hypoxia on cellular senescence and the immunomodulatory abilities of hUCB-MSCs. Hypoxic-cultured hUCB-MSCs showed enhanced proliferation and had increased immunosuppressive effects on mitogen-induced mononuclear cell proliferation. We found that BMI1, a member of the polycomb repressive complex protein group, showed increased expression in hypoxic-cultured hUCB-MSCs, and the further knock-down of BMI1 in hypoxic cells induced decreased proliferative and immunomodulatory abilities in hUCB-MSCs, along with COX-2/PGE2 down-regulation. Furthermore, the expression of phosphorylated p38 MAP kinase increased in response to the over-expression of BMI1 in normoxic conditions, suggesting that BMI1 regulates the immunomodulatory properties of hUCB-MSCs via p38 MAP kinase-mediated COX-2 expression. More importantly, we identified BMI1 as a direct repressor of MAP kinase phosphatase-1 (MKP-1)/DUSP1, which suppresses p38 MAP kinase activity. In conclusion, our results demonstrate that BMI1 plays a key role in the regulation of the immunomodulatory properties of hUCB-MSCs, and we suggest that these findings might provide a strategy to enhance the functionality of hUCB-MSCs for use in therapeutic applications.
Collapse
|
122
|
Lei H, Shan H, Wu Y. Targeting deubiquitinating enzymes in cancer stem cells. Cancer Cell Int 2017; 17:101. [PMID: 29142505 PMCID: PMC5670729 DOI: 10.1186/s12935-017-0472-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) are rare but accounted for tumor initiation, progression, metastasis, relapse and therapeutic resistance. Ubiquitination and deubiquitination of stemness-related proteins are essential for CSC maintenance and differentiation, even leading to execute various stem cell fate choices. Deubiquitinating enzymes (DUBs), specifically disassembling ubiquitin chains, are important to maintain the balance between ubiquitination and deubiquitination. In this review, we have focused on the DUBs regulation of stem cell fate determination. For example, we discuss deubiquitinase inhibition may lead stem cell transcription factors and CSCs-related protein degradation. Also, CSCs microenvironment is regulated by DUBs activity. Our review provides a new insight into DUBs activity by emphasizing their cellular role in regulating stem cell fate and illustrates the opportunities for the application of DUBs inhibitors in the CSC-targeted therapy.
Collapse
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Huizhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
123
|
Gao XL, Zhang M, Tang YL, Liang XH. Cancer cell dormancy: mechanisms and implications of cancer recurrence and metastasis. Onco Targets Ther 2017; 10:5219-5228. [PMID: 29138574 PMCID: PMC5667781 DOI: 10.2147/ott.s140854] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
More recently, disease metastasis and relapse in many cancer patients several years (even some decades) after surgical remission are regarded as tumor dormancy. However, the knowledge of this phenomenon is cripplingly limited. Substantial quantities of reviews have summarized three main potential models that can be put forth to explain such process, including angiogenic dormancy, immunologic dormancy, and cellular dormancy. In this review, newly uncovered mechanisms governing cancer cell dormancy are discussed, with an emphasis on the cross talk between dormant cancer cells and their microenvironments. In addition, potential mechanisms of reactivation of these dormant cells in certain anatomic sites including lymph nodes and bone marrow are discussed. Molecular mechanism of cellular dormancy in head and neck cancer is also involved.
Collapse
Affiliation(s)
- Xiao-Lei Gao
- State Key Laboratory of Oral Diseases.,Department of Oral and Maxillofacial Surgery
| | - Mei Zhang
- State Key Laboratory of Oral Diseases.,Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases.,Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases.,Department of Oral and Maxillofacial Surgery
| |
Collapse
|
124
|
Tumor Microenvironment and Models of Ovarian Cancer: The 11th Biennial Rivkin Center Ovarian Cancer Research Symposium. Int J Gynecol Cancer 2017; 27:S2-S9. [PMID: 29049091 DOI: 10.1097/igc.0000000000001119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The aim of this study was to review the latest research advances on the topics of the ovarian cancer tumor microenvironment and models of ovarian cancer. METHODS In September 2016, a symposium of the leaders in the field of ovarian cancer research was convened to present and discuss current advances and future directions in ovarian cancer research. RESULTS One session was dedicated to Tumor Microenvironment and Models of Ovarian Cancer, and included a keynote presentation from Anil Sood, MD, and an invited oral presentation from David Huntsman, MD. Eight additional oral presentations were selected from abstract submissions. Twenty-nine abstracts were presented in poster format and can be grouped into the categories of stromal cells in the microenvironment, immune cells in the microenvironment, epithelial-mesenchymal transition and metastasis, metabolomics, and model systems including spheroids, murine models, and other animal models. CONCLUSIONS Rapid advances continue in our understanding of the influence of the tumor microenvironment on ovarian cancer progression and metastasis. Vascular endothelial cells, stromal cells, and immune cells all modulate epithelial tumor cell biology and therefore serve as potential targets for improved treatment responses either in conjunction with or instead of current treatment modalities. Characterization of the underlying genetic alterations in both the tumor cells and surrounding microenvironment cells enhances our understanding of tumor biology. Model systems including both in vitro and in vivo approaches allow novel advances. Technological advances including sequencing strategies, use of mass spectrometry for metabolomics and other studies, and bioengineering approaches all complement conventional methodologies to push forward our understanding and ultimately the treatment of ovarian cancer.
Collapse
|
125
|
Alu RNA accumulation induces epithelial-to-mesenchymal transition by modulating miR-566 and is associated with cancer progression. Oncogene 2017; 37:627-637. [PMID: 28991230 PMCID: PMC5799714 DOI: 10.1038/onc.2017.369] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/08/2017] [Accepted: 08/12/2017] [Indexed: 12/16/2022]
Abstract
Alu sequences are the most abundant short interspersed repeated elements in the human genome. Here we show that in a cell culture model of colorectal cancer (CRC) progression, we observe accumulation of Alu RNA that is associated with reduced DICER1 levels. Alu RNA induces epithelial-to-mesenchymal transition (EMT) by acting as a molecular sponge of miR-566. Moreover, Alu RNA accumulates as consequence of DICER1 deficit in colorectal, ovarian, renal and breast cancer cell lines. Interestingly, Alu RNA knockdown prevents DICER1 depletion-induced EMT despite global microRNA (miRNA) downregulation. Alu RNA expression is also induced by transforming growth factor-β1, a major driver of EMT. Corroborating this data, we found that non-coding Alu RNA significantly correlates with tumor progression in human CRC patients. Together, these findings reveal an unexpected DICER1-dependent, miRNA-independent role of Alu RNA in cancer progression that could bring mobile element transcripts in the fields of cancer therapeutic and prognosis.
Collapse
|
126
|
Hathaway QA, Pinti MV, Durr AJ, Waris S, Shepherd DL, Hollander JM. Regulating microRNA expression: at the heart of diabetes mellitus and the mitochondrion. Am J Physiol Heart Circ Physiol 2017; 314:H293-H310. [PMID: 28986361 DOI: 10.1152/ajpheart.00520.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus is a major risk factor for cardiovascular disease and mortality. Uncontrolled type 2 diabetes mellitus results in a systemic milieu of increased circulating glucose and fatty acids. The development of insulin resistance in cardiac tissue decreases cellular glucose import and enhances mitochondrial fatty acid uptake. While triacylglycerol and cytotoxic lipid species begin to accumulate in the cardiomyocyte, the energy substrate utilization ratio of free fatty acids to glucose changes to almost entirely free fatty acids. Accumulating evidence suggests a role of miRNA in mediating this metabolic transition. Energy substrate metabolism, apoptosis, and the production and response to excess reactive oxygen species are regulated by miRNA expression. The current momentum for understanding the dynamics of miRNA expression is limited by a lack of understanding of how miRNA expression is controlled. While miRNAs are important regulators in both normal and pathological states, an additional layer of complexity is added when regulation of miRNA regulators is considered. miRNA expression is known to be regulated through a number of mechanisms, which include, but are not limited to, epigenetics, exosomal transport, processing, and posttranscriptional sequestration. The purpose of this review is to outline how mitochondrial processes are regulated by miRNAs in the diabetic heart. Furthermore, we will highlight the regulatory mechanisms, such as epigenetics, exosomal transport, miRNA processing, and posttranslational sequestration, that participate as regulators of miRNA expression. Additionally, current and future treatment strategies targeting dysfunctional mitochondrial processes in the diseased myocardium, as well as emerging miRNA-based therapies, will be summarized.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia.,Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Mark V Pinti
- Division of Pharmaceutical and Pharmacological Sciences, West Virginia School of Pharmacy , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Shanawar Waris
- Department of Biomedical Engineering, West Virginia College of Engineering , Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia.,Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
127
|
miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol 2017; 19:1286-1296. [PMID: 28920955 PMCID: PMC5658024 DOI: 10.1038/ncb3615] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
The mechanisms by which hypoxic tumors evade immunological pressure and anti-tumor immunity remain elusive. Here, we report that two hypoxia-responsive microRNAs, miR25 and miR93, are important for establishing an immunosuppressive tumor microenvironment by down-regulating expression of the DNA-sensor cGAS. Mechanistically, miR25/93 targets NCOA3, an epigenetic factor that maintains basal levels of cGAS expression, leading to repression of cGAS upon hypoxia. This allows hypoxic tumor cells to escape immunological responses induced by damage-associated molecular pattern molecules (DAMPs), specifically the release of mtDNA. Moreover, restoring cGAS expression results in an anti-tumor immune response. Clinically, decreased levels of cGAS are associated with poor prognosis for patients with breast cancer harboring high levels of miR25/93. Together, these data suggest that inactivation of the cGAS pathway plays a critical role in tumor progression, and reveals a direct link between hypoxia-responsive miRNAs and adaptive immune responses to the hypoxic tumor microenvironment, thus unveiling potential new therapeutic strategies.
Collapse
|
128
|
Taube JH, Sphyris N, Johnson KS, Reisenauer KN, Nesbit TA, Joseph R, Vijay GV, Sarkar TR, Bhangre NA, Song JJ, Chang JT, Lee MG, Soundararajan R, Mani SA. The H3K27me3-demethylase KDM6A is suppressed in breast cancer stem-like cells, and enables the resolution of bivalency during the mesenchymal-epithelial transition. Oncotarget 2017; 8:65548-65565. [PMID: 29029452 PMCID: PMC5630352 DOI: 10.18632/oncotarget.19214] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the metastatic cascade. The reverse process, known as the mesenchymal-epithelial transition (MET), is necessary for efficient colonization. Here, we identify numerous genes associated with differentiation, proliferation and intercellular adhesion that are repressed through the acquisition of bivalency during EMT, and re-expressed following MET. The majority of EMT-associated bivalent domains arise through H3K27me3 deposition at H3K4me3-marked promoters. Accordingly, we show that the expression of the H3K27me3-demethylase KDM6A is reduced in cells that have undergone EMT, stem-like subpopulations of mammary cell lines and stem cell-enriched triple-negative breast cancers. Importantly, KDM6A levels are restored following MET, concomitant with CDH1/E-cadherin reactivation through H3K27me3 removal. Moreover, inhibition of KDM6A, using the H3K27me3-demethylase inhibitor GSK-J4, prevents the re-expression of bivalent genes during MET. Our findings implicate KDM6A in the resolution of bivalency accompanying MET, and suggest KDM6A inhibition as a viable strategy to suppress metastasis formation in breast cancer.
Collapse
Affiliation(s)
- Joseph H. Taube
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
- Institute of Biomedical Sciences, Baylor University, Waco, Texas, USA
| | - Nathalie Sphyris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | - Robiya Joseph
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Geraldine V. Vijay
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapasree R. Sarkar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Integrative Bioscience, Texas A & M University, College Station, Texas, USA
| | - Neeraja A. Bhangre
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joon Jin Song
- Depatment of Statistical Science, Baylor University, Waco, Texas, USA
| | - Jeffrey T. Chang
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Texas, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Texas, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
129
|
Abstract
The EGLN (also called PHD) prolyl hydroxylase enzymes and their canonical targets, the HIFα subunits, represent the core of an ancient oxygen-monitoring machinery used by metazoans. In this review, we highlight recent progress in understanding the overlapping versus specific roles of EGLN enzymes and HIF isoforms and discuss how feedback loops based on recently identified noncoding RNAs introduce additional layers of complexity to the hypoxic response. Based on novel interactions identified upstream and downstream of EGLNs, an integrated network connecting oxygen-sensing functions to metabolic and signaling pathways is gradually emerging with broad therapeutic implications.
Collapse
Affiliation(s)
- Mircea Ivan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - William G Kaelin
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
130
|
Tumor Suppressor microRNAs Contribute to the Regulation of PD-L1 Expression in Malignant Pleural Mesothelioma. J Thorac Oncol 2017. [DOI: 10.1016/j.jtho.2017.05.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
131
|
Fan X, Chen W, Fu Z, Zeng L, Yin Y, Yuan H. MicroRNAs, a subpopulation of regulators, are involved in breast cancer progression through regulating breast cancer stem cells. Oncol Lett 2017; 14:5069-5076. [PMID: 29142594 DOI: 10.3892/ol.2017.6867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs; also known as tumor-initiating cells) are essential effectors of tumor progression due to their self-renewal capacity, differentiation potential, tumorigenic ability and resistance to chemotherapy, all of which contribute to cancer relapse, metastasis and a poor prognosis. Breast cancer stem cells (BCSCs) have been identified to be involved in the processes of BC initiation, growth and recurrence. MicroRNAs (miRNAs) are a class of non-coding small RNAs of 19-23 nucleotides in length that regulate gene expression at the post-transcriptional level through various mechanisms, and serve critical roles in cancer progression. miRNAs have been demonstrated to elicit effects on BCSCs characteristics via the targeting of oncogenes or tumor suppressor genes. The present study focused on the effect of miRNAs on BCSC, including BCSC formation, self-renewal and differentiation, by which miRNAs may inhibit BCSC invasion and metastasis, modulate clonogenicity and tumorigenicity of BCSCs as well as regulate chemotherapy resistance to BC. Through an improved understanding of the association between BCSCs and miRNAs, a novel and safer therapeutic target for BC may be identified.
Collapse
Affiliation(s)
- Xuemei Fan
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Wei Chen
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Lihua Zeng
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Yongmei Yin
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongyan Yuan
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
132
|
Qiu GZ, Jin MZ, Dai JX, Sun W, Feng JH, Jin WL. Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeutic Strategies. Trends Pharmacol Sci 2017; 38:669-686. [DOI: 10.1016/j.tips.2017.05.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/06/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
|
133
|
Markopoulos GS, Roupakia E, Tokamani M, Chavdoula E, Hatziapostolou M, Polytarchou C, Marcu KB, Papavassiliou AG, Sandaltzopoulos R, Kolettas E. A step-by-step microRNA guide to cancer development and metastasis. Cell Oncol (Dordr) 2017; 40:303-339. [DOI: 10.1007/s13402-017-0341-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 01/17/2023] Open
|
134
|
Hauth F, Toulany M, Zips D, Menegakis A. Cell-line dependent effects of hypoxia prior to irradiation in squamous cell carcinoma lines. Clin Transl Radiat Oncol 2017; 5:12-19. [PMID: 29594212 PMCID: PMC5833923 DOI: 10.1016/j.ctro.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/25/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
Purpose To assess the impact of hypoxia exposure on cellular radiation sensitivity and survival of tumor cells with diverse intrinsic radiation sensitivity under normoxic conditions. Materials and methods Three squamous cell carcinoma (SCC) cell lines, with pronounced differences in radiation sensitivity, were exposed to hypoxia prior, during or post irradiation. Cells were seeded in parallel for colony formation assay (CFA) and stained for γH2AX foci or processed for western blot analysis. Results Hypoxia during irradiation led to increased cellular survival and reduced amount of residual γH2AX foci in all the cell lines with similar oxygen enhancement ratios (OER SKX: 2.31, FaDu: 2.44, UT-SCC5: 2.32), while post-irradiation hypoxia did not alter CFA nor residual γH2AX foci. Interestingly, prolonged exposure to hypoxia prior to irradiation resulted in differential outcome, assessed as Hypoxia modifying factor (HMF) namely radiosensitization (SKX HMF: 0.76), radioresistance (FaDu HMF: 1.54) and no effect (UT SCC-5 HMF: 1.1). Notably, radiosensitization was observed in the ATM-deficient SKX cell line while UT SCC-5 and to a lesser extent also FaDu cells showed radiation- and hypoxia-induced upregulation of ATM phosphorylation. Across all the cell lines Rad51 was downregulated whereas phosphor-DNA-PKcs was enhanced under hypoxia for FaDu and UTSCC-5 and was delayed in the SKX cell line. Conclusion We herein report a key role of ATM in the cellular fitness of cells exposed to prolonged moderate hypoxia prior to irradiation. While DNA damage response post-irradiation seem to be mainly driven by non-homologous end joining repair pathway in these conditions, our data suggest an important role for ATM kinase in hypoxia-driven modification of radiation response.
Collapse
Affiliation(s)
- Franziska Hauth
- Division of Radiobiology & Molecular Environmental Research Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology & Molecular Environmental Research Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Division of Radiobiology & Molecular Environmental Research Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Sites Tübingen, Germany
| | - Apostolos Menegakis
- Division of Radiobiology & Molecular Environmental Research Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
- Corresponding author at: Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Hoppe-Seylerstrasse 3, 72076 Tuebingen, Germany.Department of Radiation OncologyMedical Faculty and University HospitalEberhard Karls University TübingenHoppe-Seylerstrasse 372076 TuebingenGermany
| |
Collapse
|
135
|
|
136
|
Nijhuis A, Thompson H, Adam J, Parker A, Gammon L, Lewis A, Bundy JG, Soga T, Jalaly A, Propper D, Jeffery R, Suraweera N, McDonald S, Thaha MA, Feakins R, Lowe R, Bishop CL, Silver A. Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance. Hum Mol Genet 2017; 26:1552-1564. [PMID: 28207045 PMCID: PMC5393147 DOI: 10.1093/hmg/ddx059] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
Solid tumours have oxygen gradients and areas of near and almost total anoxia. Hypoxia reduces sensitivity to 5-fluorouracil (5-FU)-chemotherapy for colorectal cancer (CRC). MicroRNAs (miRNAs) are hypoxia sensors and were altered consistently in six CRC cell lines (colon cancer: DLD-1, HCT116 and HT29; rectal cancer: HT55, SW837 and VACO4S) maintained in hypoxia (1 and 0.2% oxygen) compared with normoxia (20.9%). CRC cell lines also showed altered amino acid metabolism in hypoxia and hypoxia-responsive miRNAs were predicted to target genes in four metabolism pathways: beta-alanine; valine, leucine, iso-leucine; aminoacyl-tRNA; and alanine, aspartate, glutamate. MiR-210 was increased in hypoxic areas of CRC tissues and hypoxia-responsive miR-21 and miR-30d, but not miR-210, were significantly increased in 5-FU resistant CRCs. Treatment with miR-21 and miR-30d antagonists sensitized hypoxic CRC cells to 5-FU. Our data highlight the complexity and tumour heterogeneity caused by hypoxia. MiR-210 as a hypoxic biomarker, and the targeting of miR-21 and miR-30d and/or the amino acid metabolism pathways may offer translational opportunities.
Collapse
Affiliation(s)
- Anke Nijhuis
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Hannah Thompson
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Julie Adam
- Radcliffe Department of Medicine, OCDEM, University of Oxford, Oxford OX3 7LJ, UK
| | - Alexandra Parker
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Luke Gammon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Amy Lewis
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Jacob G Bundy
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Aisha Jalaly
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - David Propper
- Department of Medical Oncology, St Bartholomew's Hospital, Gloucester House, Little Britain, London EC1A 7BE, UK
| | - Rosemary Jeffery
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Nirosha Suraweera
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Sarah McDonald
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Mohamed A Thaha
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK.,Academic Surgical Unit, The Royal London Hospital, Whitechapel, London E1 1BB, UK
| | - Roger Feakins
- Department of Histopathology, Royal London Hospital, Whitechapel, London, UK
| | - Robert Lowe
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK
| |
Collapse
|
137
|
Bertero T, Rezzonico R, Pottier N, Mari B. Impact of MicroRNAs in the Cellular Response to Hypoxia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:91-158. [PMID: 28729029 DOI: 10.1016/bs.ircmb.2017.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mammalian cells, hypoxia, or inadequate oxygen availability, regulates the expression of a specific set of MicroRNAs (MiRNAs), termed "hypoxamiRs." Over the past 10 years, the appreciation of the importance of hypoxamiRs in regulating the cellular adaptation to hypoxia has grown dramatically. At the cellular level, each hypoxamiR, including the master hypoxamiR MiR-210, can simultaneously regulate expression of multiple target genes in order to fine-tune the adaptive response of cells to hypoxia. This review addresses the complex molecular regulation of MiRNAs in both physiological and pathological conditions of low oxygen adaptation and the multiple functions of hypoxamiRs in various hypoxia-associated biological processes, including apoptosis, survival, proliferation, angiogenesis, inflammation, and metabolism. From a clinical perspective, we also discuss the potential use of hypoxamiRs as new biomarkers and/or therapeutic targets in cancer and aging-associated diseases including cardiovascular and fibroproliferative disorders.
Collapse
Affiliation(s)
- Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Nice, France
| | - Roger Rezzonico
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Sophia-Antipolis, France
| | | | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Sophia-Antipolis, France.
| |
Collapse
|
138
|
Lin HC, Liu SY, Yen EY, Li TK, Lai IR. microRNA-183 Mediates Protective Postconditioning of the Liver by Repressing Apaf-1. Antioxid Redox Signal 2017; 26:583-597. [PMID: 27580417 DOI: 10.1089/ars.2016.6679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Ischemic postconditioning (iPoC) is known to mitigate ischemia-reperfusion (IR) injury of the liver, the mechanisms of which remain to be elucidated. This study explored the role of microRNA-183 (miR-183) in the protective mechanism of iPoC. RESULTS Microarray analysis showed miR-183 was robustly expressed in rats' livers with iPoC. miR-183 repressed the mRNA expression of Apaf-1, which is an apoptosis promoting factor. Using an oxygen-glucose deprivation (OGD) injury model in Clone 9 cells, hypoxic postconditioning (HPoC) and an miR-183 mimetic significantly decreased cell death after OGD, but miR-183 inhibitors eliminated the protection of HPoC. The increased expression of Apaf-1 and the downstream activation of capsase-3/9 after OGD were mitigated by HPoC or the addition of miR-183 mimetics, whereas miR-183 inhibitor diminished the effect of HPoC on Apaf-1-caspase signaling. In the in vivo experiment, iPoC and agomiR-183 decreased the expression of serum ALT after liver IR in the mice, but antagomiR-183 mitigated the effect of iPoC. The results of hematoxylin and eosin and TUNEL staining were compatible with the biochemical assay. Moreover, iPoC and agomiR-183 decreased the expression of Apaf-1 and 4-HNE after IR injury in mouse livers, whereas the antagomiR-mediated prevention of miR-183 expression led to increased protein expression of Apaf-1 and 4-HNE in the postischemic livers. INNOVATION Our experiment showed the first time that miR-183 was induced in protective postconditioning and reduced reperfusion injury of the livers via the targeting of apoptotic signaling. CONCLUSION miR-183 mediated the tolerance induced by iPoC in livers via Apaf-1 repressing. Antioxid. Redox Signal. 26, 583-597.
Collapse
Affiliation(s)
- Han-Chen Lin
- 1 Department of Anatomy and Cell Biology, Medical College, National Taiwan University , Taipei, Taiwan .,2 Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shin-Yun Liu
- 1 Department of Anatomy and Cell Biology, Medical College, National Taiwan University , Taipei, Taiwan
| | - Er-Yen Yen
- 1 Department of Anatomy and Cell Biology, Medical College, National Taiwan University , Taipei, Taiwan
| | - Tsai-Kun Li
- 3 Graduate Institute of Microbiology, Medical College, National Taiwan University , Taipei, Taiwan
| | - I-Rue Lai
- 1 Department of Anatomy and Cell Biology, Medical College, National Taiwan University , Taipei, Taiwan .,4 Department of Surgery, National Taiwan University Hospital , Taipei, Taiwan
| |
Collapse
|
139
|
Hirakawa Y, Tanaka T, Nangaku M. Mechanisms of metabolic memory and renal hypoxia as a therapeutic target in diabetic kidney disease. J Diabetes Investig 2017; 8:261-271. [PMID: 28097824 PMCID: PMC5415475 DOI: 10.1111/jdi.12624] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a worldwide public health problem. The definition of DKD is under discussion. Although the term DKD was originally defined as ‘kidney disease specific to diabetes,’ DKD frequently means chronic kidney disease with diabetes mellitus and includes not only classical diabetic nephropathy, but also kidney dysfunction as a result of nephrosclerosis and other causes. Metabolic memory plays a crucial role in the progression of various complications of diabetes, including DKD. The mechanisms of metabolic memory in DKD are supposed to include advanced glycation end‐products, deoxyribonucleic acid methylation, histone modifications and non‐coding ribonucleic acid including micro ribonucleic acid. Regardless of the presence of diabetes mellitus, the final common pathway in chronic kidney disease is chronic kidney hypoxia, which influences epigenetic processes, including deoxyribonucleic acid methylation, histone modification, and conformational changes in micro ribonucleic acid and chromatin. Therefore, hypoxia and oxidative stress are appropriate targets of therapies against DKD. Prolyl hydroxylase domain inhibitor enhances the defensive mechanisms against hypoxia. Bardoxolone methyl protects against oxidative stress, and can even reverse impaired renal function; a phase 2 trial with considerable attention to heart complications is currently ongoing in Japan.
Collapse
Affiliation(s)
- Yosuke Hirakawa
- Division of Nephrology and Endocrinology, the University of Tokyo School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, the University of Tokyo School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, the University of Tokyo School of Medicine, Tokyo, Japan
| |
Collapse
|
140
|
Andersson KM, Turkkila M, Erlandsson MC, Bossios A, Silfverswärd ST, Hu D, Ekerljung L, Malmhäll C, Weiner HL, Lundbäck B, Bokarewa MI. Survivin controls biogenesis of microRNA in smokers: A link to pathogenesis of rheumatoid arthritis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:663-673. [DOI: 10.1016/j.bbadis.2016.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
|
141
|
Wang M, Li X, Zhang J, Yang Q, Chen W, Jin W, Huang YR, Yang R, Gao WQ. AHNAK2 is a Novel Prognostic Marker and Oncogenic Protein for Clear Cell Renal Cell Carcinoma. Am J Cancer Res 2017; 7:1100-1113. [PMID: 28435451 PMCID: PMC5399579 DOI: 10.7150/thno.18198] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/17/2016] [Indexed: 11/25/2022] Open
Abstract
Integrative database analysis was performed to identify novel candidate oncogene AHNAK2 overexpressed in clear cell renal cell carcinoma (ccRCC). However, the function of AHNAK2 in cancer cells is currently unknown. In this study, we first confirmed the upregulation of AHNAK2 in ccRCC tissues compared with adjacent normal tissues in 15 pairs of samples. Then we analyzed AHNAK2 expression in a large cohort of ccRCC patient samples (n = 355), and found that up-regulation of AHNAK2 was positively correlated with tumor progression and poor survival (p = 0.032). Knockdown of AHNAK2 inhibited cancer cell proliferation, colony formation and migration in vitro and tumorigenic ability in vivo. Meanwhile, knockdown of AHNAK2 impaired the cell oncologic-metabolism by inhibiting lipid synthesis. Moreover, we observed that expression of AHNAK2 was greatly upregulated, at least in part, by hypoxia in cancer cells. By using chromatin immune-precipitation (CHIP) and promoter-luciferase reporter assays, we identified that upregulation of AHNAK2 induced by hypoxia was hypoxia-inducible factor-1α (HIF1α)-dependent. Knockdown of AHNAK2 impaired hypoxia-induced epithelial-mesenchymal transition (EMT) and stem cell-like properties. Considered together, we reveal that AHNAK2 is upregulated in cancer cells and hypoxic upregulation of AHNAK2 can drive tumorigenesis and progression by supporting EMT and cancer cell stemness. Thus, AHNAK2 is a novel prognostic marker and an oncogenic protein for ccRCC.
Collapse
|
142
|
MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16:203-222. [PMID: 28209991 DOI: 10.1038/nrd.2016.246] [Citation(s) in RCA: 3261] [Impact Index Per Article: 465.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In just over two decades since the discovery of the first microRNA (miRNA), the field of miRNA biology has expanded considerably. Insights into the roles of miRNAs in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that miRNA dysregulation is causal in many cases of cancer, with miRNAs acting as tumour suppressors or oncogenes (oncomiRs), and miRNA mimics and molecules targeted at miRNAs (antimiRs) have shown promise in preclinical development. Several miRNA-targeted therapeutics have reached clinical development, including a mimic of the tumour suppressor miRNA miR-34, which reached phase I clinical trials for treating cancer, and antimiRs targeted at miR-122, which reached phase II trials for treating hepatitis. In this article, we describe recent advances in our understanding of miRNAs in cancer and in other diseases and provide an overview of current miRNA therapeutics in the clinic. We also discuss the challenge of identifying the most efficacious therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics.
Collapse
|
143
|
Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 2017; 16:41. [PMID: 28209166 PMCID: PMC5314464 DOI: 10.1186/s12943-017-0600-4] [Citation(s) in RCA: 486] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor heterogeneity represents an ongoing challenge in the field of cancer therapy. Heterogeneity is evident between cancers from different patients (inter-tumor heterogeneity) and within a single tumor (intra-tumor heterogeneity). The latter includes phenotypic diversity such as cell surface markers, (epi)genetic abnormality, growth rate, apoptosis and other hallmarks of cancer that eventually drive disease progression and treatment failure. Cancer stem cells (CSCs) have been put forward to be one of the determining factors that contribute to intra-tumor heterogeneity. However, recent findings have shown that the stem-like state in a given tumor cell is a plastic quality. A corollary to this view is that stemness traits can be acquired via (epi)genetic modification and/or interaction with the tumor microenvironment (TME). Here we discuss factors contributing to this CSC heterogeneity and the potential implications for cancer therapy.
Collapse
Affiliation(s)
- Pramudita R Prasetyanti
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, 1105AZ, Amsterdam, The Netherlands.,Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, 1105AZ, Amsterdam, The Netherlands. .,Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands. .,Academic Medical Center, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
144
|
Ibrahim AA, Schmithals C, Kowarz E, Köberle V, Kakoschky B, Pleli T, Kollmar O, Nitsch S, Waidmann O, Finkelmeier F, Zeuzem S, Korf HW, Schmid T, Weigert A, Kronenberger B, Marschalek R, Piiper A. Hypoxia Causes Downregulation of Dicer in Hepatocellular Carcinoma, Which Is Required for Upregulation of Hypoxia-Inducible Factor 1α and Epithelial-Mesenchymal Transition. Clin Cancer Res 2017; 23:3896-3905. [PMID: 28167508 DOI: 10.1158/1078-0432.ccr-16-1762] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/16/2022]
Abstract
Purpose: A role of Dicer, which converts precursor miRNAs to mature miRNAs, in the tumor-promoting effect of hypoxia is currently emerging in some tumor entities. Its role in hepatocellular carcinoma (HCC) is unknown.Experimental Design: HepG2 and Huh-7 cells were stably transfected with an inducible Dicer expression vector and were exposed to hypoxia/normoxia. HepG2-Dicer xenografts were established in nude mice; hypoxic areas and Dicer were detected in HCC xenografts and HCCs from mice with endogenous hepatocarcinogenesis; and epithelial-mesenchymal transition (EMT) markers were analyzed by immunohistochemistry or by immunoblotting. The correlation between Dicer and carbonic anhydrase 9 (CA9), a marker of hypoxia, was investigated in resected human HCCs.Results: Hypoxia increased EMT markers in vitro and in vivo and led to a downregulation of Dicer in HCC cells. The levels of Dicer were downregulated in hypoxic tumor regions in mice with endogenous hepatocarcinogenesis and in HepG2 xenografts. In human HCCs, the levels of Dicer correlated inversely with those of CA9, indicating that the negative regulation of Dicer by hypoxia also applies to HCC patients. Forced expression of Dicer prevented the hypoxia-induced increase in hypoxia-inducible factor 1α (HIF1α), HIF2α, hypoxia-inducible genes (CA9, glucose transporter 1), EMT markers, and cell migration.Conclusions: We here identify downmodulation of Dicer as novel essential process in hypoxia-induced EMT in HCC and demonstrate that induced expression of Dicer counteracted hypoxia-induced EMT. Thus, targeting hypoxia-induced downmodulation of Dicer is a promising novel strategy to reduce HCC progression. Clin Cancer Res; 23(14); 3896-905. ©2017 AACR.
Collapse
Affiliation(s)
- Ahmed Atef Ibrahim
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany.,The Immunology and Infectious Diseases Laboratory, Therapeutic Chemistry Department, The National Research Center, Dokki, Cairo, Egypt
| | | | - Erik Kowarz
- Institute of Pharmaceutical Biology, Goethe-University of Frankfurt Biocenter, Frankfurt/Main, Germany
| | - Verena Köberle
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Bianca Kakoschky
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas Pleli
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Otto Kollmar
- Department of General and Visceral Surgery, HELIOS Dr. Horst Schmidt-Kliniken, Wiesbaden, Germany
| | - Scarlett Nitsch
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany.,Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Oliver Waidmann
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Horst-Werner Korf
- Institute of Anatomy 2, University Hospital Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Bernd Kronenberger
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University of Frankfurt Biocenter, Frankfurt/Main, Germany
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
145
|
Hassan A, Mosley J, Singh S, Zinn PO. A Comprehensive Review of Genomics and Noncoding RNA in Gliomas. Top Magn Reson Imaging 2017; 26:3-14. [PMID: 28079712 DOI: 10.1097/rmr.0000000000000111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glioblastoma (GBM) is the most malignant primary adult brain tumor. In spite of our greater understanding of the biology of GBMs, clinical outcome of GBM patients remains poor, as their median survival with best available treatment is 12 to 18 months. Recent efforts of The Cancer Genome Atlas (TCGA) have subgrouped patients into 4 molecular/transcriptional subgroups: proneural, neural, classical, and mesenchymal. Continuing efforts are underway to provide a comprehensive map of the heterogeneous makeup of GBM to include noncoding transcripts, genetic mutations, and their associations to clinical outcome. In this review, we introduce key molecular events (genetic and epigenetic) that have been deemed most relevant as per studies such as TCGA, with a specific focus on noncoding RNAs such as microRNAs (miRNA) and long noncoding RNAs (lncRNA). One of our main objectives is to illustrate how miRNAs and lncRNAs play a pivotal role in brain tumor biology to define tumor heterogeneity at molecular and cellular levels. Ultimately, we elaborate how radiogenomics-based predictive models can describe miRNA/lncRNA-driven networks to better define heterogeneity of GBM with clinical relevance.
Collapse
Affiliation(s)
- Ahmed Hassan
- *Department of Diagnostic Radiology †Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center ‡Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | | | | | | |
Collapse
|
146
|
Baran N, Konopleva M. Molecular Pathways: Hypoxia-Activated Prodrugs in Cancer Therapy. Clin Cancer Res 2017; 23:2382-2390. [PMID: 28137923 DOI: 10.1158/1078-0432.ccr-16-0895] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Abstract
Hypoxia is a known feature of aggressive solid tumors as well as a critical hallmark of the niche in aggressive hematologic malignances. Hypoxia is associated with insufficient response to standard therapy, resulting in disease progression and curtailed patients' survival through maintenance of noncycling cancer stem-like cells. A better understanding of the mechanisms and signaling pathways induced by hypoxia is essential to overcoming these effects. Recent findings demonstrate that bone marrow in the setting of hematologic malignancies is highly hypoxic, and that progression of the disease is associated with expansion of hypoxic niches and stabilization of the oncogenic hypoxia-inducible factor-1alpha (HIF1α). Solid tumors have also been shown to harbor hypoxic areas, maintaining survival of cancer cells via the HIF1α pathway. Developing new strategies for targeting hypoxia has become a crucial approach in modern cancer therapy. The number of preclinical and clinical trials targeting low-oxygen tumor compartments or the hypoxic bone marrow niche via hypoxia-activated prodrugs is increasing. This review discusses the development of the hypoxia-activated prodrugs and their applicability in treating both hematologic malignancies and solid tumors. Clin Cancer Res; 23(10); 2382-90. ©2017 AACR.
Collapse
Affiliation(s)
- Natalia Baran
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
147
|
Targeting pH regulating proteins for cancer therapy-Progress and limitations. Semin Cancer Biol 2017; 43:66-73. [PMID: 28137473 DOI: 10.1016/j.semcancer.2017.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Abstract
Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pHi) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pHi regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pHi in the continued presence of external acidification (pHe). Considerable experimentation has revealed targets that successfully disrupt tumour pHi regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na+/H+ exchangers (NHEs), carbonic anhydrases (CAs), Na+/HCO3- co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pHi when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives.
Collapse
|
148
|
Müller S, Cañeque T, Acevedo V, Rodriguez R. Targeting Cancer Stem Cells with Small Molecules. Isr J Chem 2017. [DOI: 10.1002/ijch.201600109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sebastian Müller
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| | - Tatiana Cañeque
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| | - Verónica Acevedo
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| | - Raphaël Rodriguez
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| |
Collapse
|
149
|
Molecular targeting of hypoxia in radiotherapy. Adv Drug Deliv Rev 2017; 109:45-62. [PMID: 27771366 DOI: 10.1016/j.addr.2016.10.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/02/2016] [Accepted: 10/15/2016] [Indexed: 12/21/2022]
Abstract
Hypoxia (low O2) is an essential microenvironmental driver of phenotypic diversity in human solid cancers. Hypoxic cancer cells hijack evolutionarily conserved, O2- sensitive pathways eliciting molecular adaptations that impact responses to radiotherapy, tumor recurrence and patient survival. In this review, we summarize the radiobiological, genetic, epigenetic and metabolic mechanisms orchestrating oncogenic responses to hypoxia. In addition, we outline emerging hypoxia- targeting strategies that hold promise for individualized cancer therapy in the context of radiotherapy and drug delivery.
Collapse
|
150
|
Oxidative stress induces the acquisition of cancer stem-like phenotype in breast cancer detectable by using a Sox2 regulatory region-2 (SRR2) reporter. Oncotarget 2016; 7:3111-27. [PMID: 26683522 PMCID: PMC4823094 DOI: 10.18632/oncotarget.6630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/14/2015] [Indexed: 12/20/2022] Open
Abstract
We have previously identified a novel intra-tumoral dichotomy in breast cancer based on the differential responsiveness to a Sox2 reporter (SRR2), with cells responsive to SRR2 (RR) being more stem-like than unresponsive cells (RU). Here, we report that RR cells derived from MCF7 and ZR751 displayed a higher tolerance to oxidative stress than their RU counterparts, supporting the concept that the RR phenotype correlates with cancer stemness. Sox2 is directly implicated in this differential H2O2 tolerance, since siRNA knockdown of Sox2 in RR cells leveled this difference. Interestingly, H2O2 converted a proportion of RU cells into RR cells, as evidenced by their expression of luciferase and GFP, markers of SRR2 activity. Compared to RU cells, converted RR cells showed a significant increase in mammosphere formation and tolerance to H2O2. Converted RR cells also adopted the biochemical features of RR cells, as evidenced by their substantial increase in Sox2-SRR2 binding and the expression of 3 signature genes of RR cells (CD133, GPR49 and MUC15). Lastly, the H2O2-induced RU/RR conversion was detectable in a SCID mouse xenograft model and primary tumor cells. To conclude, the H2O2-induced RU/RR conversion has provided a novel model to study the acquisition of cancer stemness and plasticity.
Collapse
|