101
|
Padmanabhan R, Kheraldine HS, Meskin N, Vranic S, Al Moustafa AE. Crosstalk between HER2 and PD-1/PD-L1 in Breast Cancer: From Clinical Applications to Mathematical Models. Cancers (Basel) 2020; 12:E636. [PMID: 32164163 PMCID: PMC7139939 DOI: 10.3390/cancers12030636] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the major causes of mortality in women worldwide. The most aggressive breast cancer subtypes are human epidermal growth factor receptor-positive (HER2+) and triple-negative breast cancers. Therapies targeting HER2 receptors have significantly improved HER2+ breast cancer patient outcomes. However, several recent studies have pointed out the deficiency of existing treatment protocols in combatting disease relapse and improving response rates to treatment. Overriding the inherent actions of the immune system to detect and annihilate cancer via the immune checkpoint pathways is one of the important hallmarks of cancer. Thus, restoration of these pathways by various means of immunomodulation has shown beneficial effects in the management of various types of cancers, including breast. We herein review the recent progress in the management of HER2+ breast cancer via HER2-targeted therapies, and its association with the programmed death receptor-1 (PD-1)/programmed death ligand-1 (PD-L1) axis. In order to link research in the areas of medicine and mathematics and point out specific opportunities for providing efficient theoretical analysis related to HER2+ breast cancer management, we also review mathematical models pertaining to the dynamics of HER2+ breast cancer and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Regina Padmanabhan
- Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar;
- Biomedical Research Centre, Qatar University, 2713 Doha, Qatar;
| | - Hadeel Shafeeq Kheraldine
- Biomedical Research Centre, Qatar University, 2713 Doha, Qatar;
- College of Pharmacy, QU Health, Qatar University, 2713 Doha, Qatar
| | - Nader Meskin
- Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar;
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar;
| | - Ala-Eddin Al Moustafa
- Biomedical Research Centre, Qatar University, 2713 Doha, Qatar;
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar;
| |
Collapse
|
102
|
Wymant JM, Sayers EJ, Muir D, Jones AT. Strategic Trastuzumab Mediated Crosslinking Driving Concomitant HER2 and HER3 Endocytosis and Degradation in Breast Cancer. J Cancer 2020; 11:3288-3302. [PMID: 32231734 PMCID: PMC7097966 DOI: 10.7150/jca.32470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/04/2020] [Indexed: 01/03/2023] Open
Abstract
Efficacious anticancer therapies for targeting plasma membrane receptors with antibody based therapeutics are often contingent on sufficient endocytic delivery of receptor and conjugate to lysosomes. This results in downregulation of receptor activity and, in the case of antibody-drug conjugates (ADCs), intracellular release of a drug payload. The oncogenic receptor HER2 is a priority therapeutic target in breast cancer. Known as an "endocytosis resistant" receptor, HER2 thwarts the receptor downregulating efficiency of the frontline treatment trastuzumab and reduces the potential of trastuzumab-based therapies such as trastuzumab-emtansine. We previously demonstrated that strategically inducing trastuzumab and HER2 crosslinking in breast cancer cells promoted endocytosis and lysosomal delivery of the HER2-trastuzumab complex, stimulating downregulation of the receptor. Here we reveal that HER3, but not EGFR, is also concomitantly downregulated with HER2 after crosslinking. This is accompanied by strong activation of MEK/ERK pathway that we show does not directly contribute to HER2/trastuzumab endocytosis. We show that crosslinking induced trastuzumab endocytosis occurs via clathrin-dependent and independent pathways and is an actin-dependent process. Detailed ultrastructural studies of the plasma membrane highlight crosslinking-specific remodelling of microvilli and induction of extensive ruffling. Investigations in a cell model of acquired trastuzumab resistance demonstrate, for the first time, that they are refractory to crosslinking induced HER2 endocytosis and downregulation. This implicates further arrest of HER2 internalisation in developing trastuzumab resistance. Overall our findings highlight the potential of receptor crosslinking as a therapeutic strategy for cancer while exposing the ability of cancer cells to develop resistance via endocytic mechanisms.
Collapse
Affiliation(s)
- Jennifer Mary Wymant
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB
| | - Edward John Sayers
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB
| | - Duncan Muir
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT
| | - Arwyn Tomos Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB
| |
Collapse
|
103
|
Wahdan-Alaswad R, Liu B, Thor AD. Targeted lapatinib anti-HER2/ErbB2 therapy resistance in breast cancer: opportunities to overcome a difficult problem. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:179-198. [PMID: 35582612 PMCID: PMC9090587 DOI: 10.20517/cdr.2019.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Approximately 20% of invasive breast cancers have upregulation/gene amplification of the oncogene human epidermal growth factor receptor-2 (HER2/ErbB2). Of these, some also express steroid receptors (the so-called Luminal B subtype), whereas others do not (the HER2 subtype). HER2 abnormal breast cancers are associated with a worse prognosis, chemotherapy resistance, and sensitivity to selected anti-HER2 targeted therapeutics. Transcriptional data from over 3000 invasive breast cancers suggest that this approach is overly simplistic; rather, the upregulation of HER2 expression resulting from gene amplification is a driver event that causes major transcriptional changes involving numerous genes and pathways in breast cancer cells. Most notably, this includes a shift from estrogenic dependence to regulatory controls driven by other nuclear receptors, particularly the androgen receptor. We discuss members of the HER receptor tyrosine kinase family, heterodimer formation, and downstream signaling, with a focus on HER2 associated pathology in breast carcinogenesis. The development and application of anti-HER2 drugs, including selected clinical trials, are discussed. In light of the many excellent reviews in the clinical literature, our emphasis is on recently developed and successful strategies to overcome targeted therapy resistance. These include combining anti-HER2 agents with programmed cell death-1 ligand or cyclin-dependent kinase 4/6 inhibitors, targeting crosstalk between HER2 and other nuclear receptors, lipid/cholesterol synthesis to inhibit receptor tyrosine kinase activation, and metformin, a broadly inhibitory drug. We seek to facilitate a better understanding of new approaches to overcome anti-HER2 drug resistance and encourage exploration of two other therapeutic interventions that may be clinically useful for HER+ invasive breast cancer patients.
Collapse
Affiliation(s)
- Reema Wahdan-Alaswad
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO 80014, USA
| | - Bolin Liu
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ann D Thor
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO 80014, USA
| |
Collapse
|
104
|
IMPRes-Pro: A high dimensional multiomics integration method for in silico hypothesis generation. Methods 2020; 173:16-23. [DOI: 10.1016/j.ymeth.2019.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 01/18/2023] Open
|
105
|
Salazar-González JA, Ruiz-Cruz AA, Bustos-Jaimes I, Moreno-Fierros L. Expression of Breast Cancer-Related Epitopes Targeting the IGF-1 Receptor in Chimeric Human Parvovirus B19 Virus-Like Particles. Mol Biotechnol 2020; 61:742-753. [PMID: 31317318 DOI: 10.1007/s12033-019-00198-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Breast cancer is a worldwide health problem, and the complexity of the disease, as well as the lack of treatment specificity, generates an urgent need for developing prophylactic and therapeutic measures. Searching for novel epitope-based approaches able to induce tumour immunity, we designed virus-like particles (VLPs) derived from Human parvovirus B19 assembled of chimeric VP2 proteins displaying two epitopes from the insulin-like growth factor-1 receptor (IGF-1R). Here, we present the generation of two chimeric VP2s that retain the stability, solubility and conditions of purification and assembly of the native VP2. We generated versatile chimeric multiepitope anti-cancer vaccine candidates, which prevented and delayed tumour growth when used in a prophylactic scheme of 4 weekly immunizations prior to 4T1 cell inoculation in female BALB/c mice. The presence of specific antibodies against the displayed epitopes suggests their participation in the protective effect; in contrast, no significant proliferative T-cell responses were recorded following stimulation by specific epitopes. The results comprise an approach whereby fusing desired epitopes from cancer to the N-terminus of B19 VP2 protein can generate a library of chimeric VP2-desired epitopes for further assembly in a designed and personalized epitope delivery system.
Collapse
Affiliation(s)
- Jorge Alberto Salazar-González
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Mexico.
| | - Alail Antonio Ruiz-Cruz
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Mexico
| | - Ismael Bustos-Jaimes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U., 04510, Mexico City, Mexico
| | - Leticia Moreno-Fierros
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Mexico.
| |
Collapse
|
106
|
Feng WW, Bang S, Kurokawa M. CD36: a key mediator of resistance to HER2 inhibitors in breast cancer. Mol Cell Oncol 2020; 7:1715766. [PMID: 32158927 DOI: 10.1080/23723556.2020.1715766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
Acquired resistance to anti-HER2 therapy is a significant clinical challenge in breast cancer. We recently discovered that during acquisition of resistance to HER2 inhibition, upregulation of the fatty acid transporter CD36 takes place, playing a key role in metabolic rewiring and resistance to anti-HER2 therapy.
Collapse
Affiliation(s)
- William W Feng
- Department of Biological Sciences, Kent State University, Kent, OH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Scott Bang
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, OH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
107
|
Hernández-Ramírez J, Wong-Arce A, González-Ortega O, Rosales-Mendoza S. Expression in algae of a chimeric protein carrying several epitopes from tumor associated antigens. Int J Biol Macromol 2020; 147:46-52. [PMID: 31923507 DOI: 10.1016/j.ijbiomac.2019.12.250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/31/2022]
Abstract
Immunotherapies for cancer treatment constitute promising avenues to fight this global health issue. Algae can be used as both biofactories and delivery vehicles of vaccines; having low cost, fast growth, enhanced safety, and adjuvant effects as advantages. In the present study a multiepitope protein, called BCB, was designed as an attractive approach to develop new cancer immunotherapies. The BCB protein targets epitopes from the following tumor-associated antigens: human epidermal growth factor receptor-2 (HER2), mucin-like glycoprotein 1 (MUC1), Wilms' tumor antigen (WT1), and mammaglobin. Moreover, the BCB protein is based on the B subunit of the heat labile E. coli enterotoxin as immunogenic carrier to brake tolerance against self-antigens. A synthetic BCB-coding gene was obtained and expressed in Schizochytrium sp. using the Algevir system. The BCB protein was successfully expressed in transformed algae at levels up to 637 μg/g fresh weight, retaining the GM1-binding activity. The algae-made BCB showed reactivity towards an anti-serum against the tumor cell line 4T1; evidencing its antigenicity. Moreover the immunogenicity was evidenced in mice immunized with BCB, which developed serum IgG antibodies reacting against the 4T1 lysate. This study constitutes the first step in the development of innovative algae-based vaccines against cancer.
Collapse
Affiliation(s)
- Jesús Hernández-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
| | - Alejandra Wong-Arce
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico.
| |
Collapse
|
108
|
Barok M, Le Joncour V, Martins A, Isola J, Salmikangas M, Laakkonen P, Joensuu H. ARX788, a novel anti-HER2 antibody-drug conjugate, shows anti-tumor effects in preclinical models of trastuzumab emtansine-resistant HER2-positive breast cancer and gastric cancer. Cancer Lett 2020; 473:156-163. [PMID: 31904483 DOI: 10.1016/j.canlet.2019.12.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/09/2019] [Accepted: 12/28/2019] [Indexed: 01/19/2023]
Abstract
The majority of HER2-positive breast or gastric cancers treated with T-DM1 eventually show resistance to this agent. We compared the effects of T-DM1 and ARX788, a novel anti-HER2 antibody-drug conjugate, on cell growth and apoptosis in HER2-positive breast cancer and gastric cancer cell lines sensitive to T-DM1, gastric cancer cell lines resistant to T-DM1, HER2-negative breast cancer cell lines, and T-DM1-resistant xenograft models. ARX788 was effective in T-DM1-resistant in vitro and in vivo models of HER2-positive breast cancer and gastric cancer. ARX788 showed a pronounced growth inhibitory effect on all five HER2-positive cell lines tested, of which two gastric cancer cell lines had acquired resistance to T-DM1. ARX788 evoked more apoptotic events compared to T-DM1. While JIMT-1 and RN-87 xenograft tumors progressed on T-DM1 treatment, all such tumors responded to ARX788, and four out of the six JIMT-1 tumors and nine out of the twelve RN-87 tumors disappeared during the ARX788 treatment. Mice treated with ARX788 survived longer than those treated with T-DM1. The data support evaluation of ARX788 in patients with HER2-positive breast cancer or gastric cancer including cancers that progress during T-DM1 therapy.
Collapse
Affiliation(s)
- Mark Barok
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland; Laboratory of Molecular Oncology, University of Helsinki, Helsinki, FIN-00290, Finland.
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Ana Martins
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Jorma Isola
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Marko Salmikangas
- Laboratory of Molecular Oncology, University of Helsinki, Helsinki, FIN-00290, Finland.
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland; Laboratory Animal Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Heikki Joensuu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland; Laboratory of Molecular Oncology, University of Helsinki, Helsinki, FIN-00290, Finland; Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, FIN-00029, Finland.
| |
Collapse
|
109
|
Cao L, Li Q, Tong Z, Xing Y, Xu K, Yijia Wang J, Li W, Zhao J, Zhao L, Hong Z. HER2-specific immunotoxins constructed based on single-domain antibodies and the improved toxin PE24X7. Int J Pharm 2020; 574:118939. [DOI: 10.1016/j.ijpharm.2019.118939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
|
110
|
Down-regulation of long non-coding RNA HOTAIR sensitizes breast cancer to trastuzumab. Sci Rep 2019; 9:19881. [PMID: 31882666 PMCID: PMC6934784 DOI: 10.1038/s41598-019-53699-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/24/2018] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the roles and possible molecular mechanisms of long non-coding RNA HOTAIR in regulating resistance to trastuzumab in breast cancer. Trastuzumab-resistant breast cancer cell line SK-BR-3-TR was assayed for the expression of HOX antisense intergenic RNA (HOTAIR), epithelial-mesenchymal transition (EMT)-related proteins or genes. Methylation levels of TGF- β, PTEN and cyclin-dependent kinase inhibitor 1B (or P27) were determined. In trastuzumab-resistant cell line, the mRNA level of HOTAIR was significantly up-regulated; in addition, the expression of TGF-β, Snail and Vimentin was also up-regulated, E-cadherin was down-regulated while the expression of HER2, PI3K, AKT, mTOR and MAPK in the HER2 receptor pathway and phosphorylation level of HER2 receptor remained unchanged, the methylation levels of the PTEN gene and TGF-β were increased and decreased, respectively. RNA interference downregulated the HOTAIR level and sensitized the cells to trastuzumab. It also resulted in down-regulation of TGF-β, Snail, Vimentin, p-AKT, p-APK and CyclinD1 and up-regulation of E-cadherin, PTEN and P27. Besides, the methylation levels of the PTEN gene and TGF-β were reduced and increased, respectively. Mouse models grafted with SK-BR-3-TR grew faster than with SK-BR-3-TS and siHOTAIR-SK-BR-3-TR.
Collapse
|
111
|
Lee JH, Paek K, Moon JH, Ham S, Song J, Kim S. Biological Characterization of SB3, a Trastuzumab Biosimilar, and the Influence of Changes in Reference Product Characteristics on the Similarity Assessment. BioDrugs 2019; 33:411-422. [PMID: 31190280 PMCID: PMC6647423 DOI: 10.1007/s40259-019-00362-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background SB3 has been developed as a trastuzumab biosimilar, a therapeutic monoclonal antibody targeted to human epidermal growth factor receptor 2 (HER2), and approved by the European Commission and United States (US) Food and Drug Administration (FDA). During the developmental period of a biosimilar, setting an appropriate quality target is critical for assessing the similarity of the biosimilar product to the reference product. A stepwise approach should be taken to assessing similarity, beginning with extensive characterization of the reference product to establish the quality target. Objective In this study, we evaluated the similarity of SB3 to the reference product and the impact of changes in the biological profile of the reference product on similarity assessment. Methods Analytical similarity was assessed with defined test procedures in terms of critical quality attributes (CQAs) that could affect efficacy, potency, and safety, as well as for the non-CQAs that are related to process consistency. The quality target was established using up to 154 lots of European Union (EU)- and US-sourced Herceptin® (reference product), analyzed during the developmental period of SB3. Results Trends of the EU- and US-sourced reference product showed that the biological profile exhibited two marked changes for Fc-related attributes, and then recovered to pre-change quality level. Since the similarity range set by pre-change lots was considered most relevant, the changed lots were excluded from establishing the similarity range, which resulted in tightened acceptance criteria. As shown in the results of similarity assessment using the stringent quality target ranges, SB3 exhibits highly similar functional activities compared to the reference product in terms of both CQAs and non-CQAs. Conclusion SB3 has been developed as a trastuzumab biosimilar approved in the EU and USA, and its manufacturing process is deemed to be robust and well-controlled within stringent quality target ranges.
Collapse
Affiliation(s)
- Jae Hee Lee
- Quality Evaluation Team, Samsung Bioepis Co., Ltd, 107, Cheomdan-daero, Yeonsu-gu, Incheon, 21987, Republic of Korea.
| | - Kyungyeol Paek
- Quality Evaluation Team, Samsung Bioepis Co., Ltd, 107, Cheomdan-daero, Yeonsu-gu, Incheon, 21987, Republic of Korea
| | - Jae Hyon Moon
- Quality Evaluation Team, Samsung Bioepis Co., Ltd, 107, Cheomdan-daero, Yeonsu-gu, Incheon, 21987, Republic of Korea
| | - Sunyoung Ham
- Quality Evaluation Team, Samsung Bioepis Co., Ltd, 107, Cheomdan-daero, Yeonsu-gu, Incheon, 21987, Republic of Korea
| | - Jinsu Song
- Quality Evaluation Team, Samsung Bioepis Co., Ltd, 107, Cheomdan-daero, Yeonsu-gu, Incheon, 21987, Republic of Korea
| | - Seokkyun Kim
- Quality Evaluation Team, Samsung Bioepis Co., Ltd, 107, Cheomdan-daero, Yeonsu-gu, Incheon, 21987, Republic of Korea
| |
Collapse
|
112
|
Feng WW, Wilkins O, Bang S, Ung M, Li J, An J, Del Genio C, Canfield K, DiRenzo J, Wells W, Gaur A, Robey RB, Guo JY, Powles RL, Sotiriou C, Pusztai L, Febbraio M, Cheng C, Kinlaw WB, Kurokawa M. CD36-Mediated Metabolic Rewiring of Breast Cancer Cells Promotes Resistance to HER2-Targeted Therapies. Cell Rep 2019; 29:3405-3420.e5. [PMID: 31825825 PMCID: PMC6938262 DOI: 10.1016/j.celrep.2019.11.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/22/2019] [Accepted: 11/04/2019] [Indexed: 11/18/2022] Open
Abstract
Although it is established that fatty acid (FA) synthesis supports anabolic growth in cancer, the role of exogenous FA uptake remains elusive. Here we show that, during acquisition of resistance to HER2 inhibition, metabolic rewiring of breast cancer cells favors reliance on exogenous FA uptake over de novo FA synthesis. Through cDNA microarray analysis, we identify the FA transporter CD36 as a critical gene upregulated in cells with acquired resistance to the HER2 inhibitor lapatinib. Accordingly, resistant cells exhibit increased exogenous FA uptake and metabolic plasticity. Genetic or pharmacological inhibition of CD36 suppresses the growth of lapatinib-resistant but not lapatinib-sensitive cells in vitro and in vivo. Deletion of Cd36 in mammary tissues of MMTV-neu mice significantly attenuates tumorigenesis. In breast cancer patients, CD36 expression increases following anti-HER2 therapy, which correlates with a poor prognosis. Our results define CD36-mediated metabolic rewiring as an essential survival mechanism in HER2-positive breast cancer.
Collapse
Affiliation(s)
- William W Feng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Owen Wilkins
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Scott Bang
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Matthew Ung
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jiaqi Li
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jennifer An
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Carmen Del Genio
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Kaleigh Canfield
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - James DiRenzo
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Wendy Wells
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Arti Gaur
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - R Brooks Robey
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; White River Junction Veterans Affairs Medical Center, White River Junction, VT 05009, USA
| | | | - Ryan L Powles
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 05620, USA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Lajos Pusztai
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 05620, USA
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Lebanon, NH 03756, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - William B Kinlaw
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Manabu Kurokawa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
113
|
MiR-205 Dysregulations in Breast Cancer: The Complexity and Opportunities. Noncoding RNA 2019; 5:ncrna5040053. [PMID: 31752366 PMCID: PMC6958506 DOI: 10.3390/ncrna5040053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNAs that downregulate target gene expression by imperfect base-pairing with the 3' untranslated regions (3'UTRs) of target gene mRNAs. MiRNAs play important roles in regulating cancer cell proliferation, stemness maintenance, tumorigenesis, cancer metastasis, and cancer therapeutic resistance. While studies have shown that dysregulation of miRNA-205-5p (miR-205) expression is controversial in different types of human cancers, it is generally observed that miR-205-5p expression level is downregulated in breast cancer and that miR-205-5p exhibits a tumor suppressive function in breast cancer. This review focuses on the role of miR-205-5p dysregulation in different subtypes of breast cancer, with discussions on the effects of miR-205-5p on breast cancer cell proliferation, epithelial-mesenchymal transition (EMT), metastasis, stemness and therapy-resistance, as well as genetic and epigenetic mechanisms that regulate miR-205-5p expression in breast cancer. In addition, the potential diagnostic and therapeutic value of miR-205-5p in breast cancer is also discussed. A comprehensive list of validated miR-205-5p direct targets is presented. It is concluded that miR-205-5p is an important tumor suppressive miRNA capable of inhibiting the growth and metastasis of human breast cancer, especially triple negative breast cancer. MiR-205-5p might be both a potential diagnostic biomarker and a therapeutic target for metastatic breast cancer.
Collapse
|
114
|
MUC4-ErbB2 Oncogenic Complex: Binding studies using Microscale Thermophoresis. Sci Rep 2019; 9:16678. [PMID: 31723153 PMCID: PMC6853952 DOI: 10.1038/s41598-019-53099-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
The MUC4 membrane-bound mucin is a large O-glycoprotein involved in epithelial homeostasis. At the cancer cell surface MUC4 interacts with ErbB2 receptor via EGF domains to promote cell proliferation and migration. MUC4 is highly regarded as a therapeutic target in pancreatic cancer as it is not expressed in healthy pancreas, while it is neoexpressed in early preneoplastic stages (PanINs). However, the association/dissociation constant of MUC4-ErbB2 complex is unknown. Protein-protein interactions (PPIs) have become a major area of research in the past years and the characterization of their interactions, especially by biophysical methods, is intensively used in drug discovery. To characterize the MUC4-ErbB2 interaction, we used MicroScale Thermophoresis (MST), a powerful method for quantitative protein interaction analysis under challenging conditions. We worked with CHO cell lysates containing either the transmembrane β subunit of MUC4 (MUC4β) or a truncated mutant encompassing only the EGF domains (MUC4EGF3+1+2). MST studies have led to the characterization of equilibrium dissociation constants (Kd) for MUC4β-ErbB2 (7–25 nM) and MUC4EGF3+1+2/ErbB2 (65–79 nM) complexes. This work provides new information regarding the MUC4-ErbB2 interaction at the biophysical level and also confirms that the presence of the three EGF domains of MUC4 is sufficient to provide efficient interaction. This technological approach will be very useful in the future to validate small molecule binding affinities targeting MUC4-ErbB2 complex for drug discovery development in cancer. It will also be of high interest for the other known membrane mucins forming oncogenic complexes with ErbBs at the cancer cell surface.
Collapse
|
115
|
Roghanian A, Hu G, Fraser C, Singh M, Foxall RB, Meyer MJ, Lees E, Huet H, Glennie MJ, Beers SA, Lim SH, Ashton-Key M, Thirdborough SM, Cragg MS, Chen J. Cyclophosphamide Enhances Cancer Antibody Immunotherapy in the Resistant Bone Marrow Niche by Modulating Macrophage FcγR Expression. Cancer Immunol Res 2019; 7:1876-1890. [PMID: 31451483 PMCID: PMC7780711 DOI: 10.1158/2326-6066.cir-18-0835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/06/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Therapy-resistant microenvironments represent a major barrier toward effective elimination of disseminated cancer. Many hematologic and solid tumors are resistant to therapeutic antibodies in the bone marrow (BM), but not in the periphery (e.g., spleen). We previously showed that cyclophosphamide (CTX) sensitizes the BM niche to antibody therapeutics. Here, we show that (i) BM resistance was induced not only by the tumor but also by the intrinsic BM microenvironment; (ii) CTX treatment overcame both intrinsic and extrinsic resistance mechanisms by augmenting macrophage activation and phagocytosis, including significant upregulation of activating Fcγ receptors (FcγRIII and FcγRIV) and downregulation of the inhibitory receptor, FcγRIIB; and (iii) CTX synergized with cetuximab (anti-EGFR) and trastuzumab (anti-Her2) in eliminating metastatic breast cancer in the BM of humanized mice. These findings provide insights into the mechanisms by which CTX synergizes with antibody therapeutics in resistant niche-specific organs and its applicability in treating BM-resident tumors.
Collapse
Affiliation(s)
- Ali Roghanian
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton, United Kindgom
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher Fraser
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Maneesh Singh
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Russell B Foxall
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton, United Kindgom
| | - Matthew J Meyer
- Novartis Institute for Biomedical Research, Inc., Cambridge, Massachusetts
| | - Emma Lees
- Novartis Institute for Biomedical Research, Inc., Cambridge, Massachusetts
| | - Heather Huet
- Novartis Institute for Biomedical Research, Inc., Cambridge, Massachusetts
| | - Martin J Glennie
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton, United Kindgom
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton, United Kindgom
| | - Sean H Lim
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton, United Kindgom
| | - Margaret Ashton-Key
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton, United Kindgom
| | | | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton, United Kindgom
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
116
|
Nozaki M, Yasui H, Ohnishi Y. Ligand-Independent EGFR Activation by Anchorage-Stimulated Src Promotes Cancer Cell Proliferation and Cetuximab Resistance via ErbB3 Phosphorylation. Cancers (Basel) 2019; 11:E1552. [PMID: 31615015 PMCID: PMC6826992 DOI: 10.3390/cancers11101552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) pathway plays an important role in the progression of cancer and is associated with a poor prognosis in patients. The monoclonal antibody cetuximab, which displays EGFR extracellular domain-specific binding, has proven effective in the treatment of locally advanced disease and relapsed/metastatic disease. However, the effects of cetuximab are weaker than those of EGFR tyrosine kinase inhibitors (TKIs). This study investigates differences in the effects on cell growth of cetuximab and EGFR TKI AG1478 at the molecular level using oral squamous cell carcinoma (OSCC) cell lines. First, we found that there were EGFR-inhibitor-sensitive (EIS) and EGFR-inhibitor-resistant cell lines. The EIS cell lines expressed not only EGFR but also ErbB3, and both were clearly phosphorylated. The levels of phosphorylated ErbB3 were unaffected by cetuximab but were reduced by AG1478. EGFR ligand treatment increased the levels of phosphorylated EGFR but not phosphorylated ErbB3. Moreover, when EIS cell lines that were only capable of anchorage-dependent growth were grown in suspension, cell growth was suppressed and the levels of phosphorylated focal adhesion kinase (FAK), Src, and ErbB3 were significantly reduced. The levels of phosphorylated ErbB3 were unaffected by the FAK inhibitor PF573228, but were reduced by Src inhibition. Finally, combining cetuximab and a Src inhibitor produced an additive effect on the inhibition of EIS cell line growth.
Collapse
Affiliation(s)
- Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroki Yasui
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan.
| | - Yuichi Ohnishi
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan.
| |
Collapse
|
117
|
Moradipoodeh B, Jamalan M, Zeinali M, Fereidoonnezhad M, Mohammadzadeh G. In vitro and in silico anticancer activity of amygdalin on the SK-BR-3 human breast cancer cell line. Mol Biol Rep 2019; 46:6361-6370. [DOI: 10.1007/s11033-019-05080-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
|
118
|
Interaction of Trastuzumab with biomembrane models at air-water interfaces mimicking cancer cell surfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182992. [DOI: 10.1016/j.bbamem.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
|
119
|
Sanad MF, Shalan AE, Bazid SM, Abu Serea ES, Hashem EM, Nabih S, Ahsan MA. A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 2019; 9:31021-31029. [PMID: 35529359 PMCID: PMC9072570 DOI: 10.1039/c9ra05669f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
There is no doubt that cancer is now one of the most formidable diseases in the world; despite all the efforts and research, common treatment routes, including chemotherapy, photodynamic therapy, and photothermal therapy, suffer from different limitations in terms of their efficiency and performance. For this reason, different strategies are being explored to improve the efficiency of the traditional drugs reported to date. In this study, we have redirected the function of one of these drugs (5-fluorouracil, 5-FU) by combining it with a graphene-gold nanocomposite in different molar ratios that has been exceedingly used for biological research development. The high activity of the graphene-gold material enables it to produce reactive oxygen and ions, which display good anticancer and antioxidant activity through the scavenging of the DPPH, SOD and GP x radicals; in addition, different characterizations have been used to confirm the structure and morphology of the obtained samples. Highly potent cytotoxicity against the MCF-7 cells was achieved with the drug combination containing the nanocomposite. All the results, including those obtained via cytometry, indicate that the combination of 5% graphene-gold nanocomposites with 5-FU exhibits a higher antitumor impact and more drug stability than pure 5-FU.
Collapse
Affiliation(s)
- Mohamed Fathi Sanad
- Basic Science Departments, Modern Academy for Engineering and Technology Maadi Egypt
- The University of Texas at El Paso 500 W University Ave El Paso TX 79968 USA
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P.O. Box 87 Helwan Cairo 11421 Egypt
| | - Shereen Magdy Bazid
- Departments of Biochemistry, Faculty of Science, Mansoura University Mansoura Egypt
| | - Esraa Samy Abu Serea
- Chemistry & Biochemistry Department, Faculty of Science, Cairo University Cairo Egypt
| | - Elhussein M Hashem
- Chemistry Department, Faculty of Science, Ain-Shams University Abbasia Cairo Egypt
| | - Shimaa Nabih
- Basic Science Departments, Modern Academy for Engineering and Technology Maadi Egypt
| | - Md Ariful Ahsan
- The University of Texas at El Paso 500 W University Ave El Paso TX 79968 USA
| |
Collapse
|
120
|
Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019; 47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance develops and thus relapse emerges, resulting in increased mortality. Our attempts to understand the molecular basis underlying these drug resistance phenotypes in pre-clinical models and patient specimens revealed the extreme plasticity and adaptive pathways employed by tumor cells, being under sustained stress and extensive genomic/proteomic instability due to the applied therapeutic regimens. Subsequent efforts have yielded more effective inhibitors and combinatorial approaches (e.g. the use of specific pharmacologic inhibitors with immunotherapy) that exhibit synergistic effects against tumor cells, hence enhancing therapeutic indices. Furthermore, new advanced methodologies that allow for the early detection of genetic/epigenetic alterations that lead to drug chemoresistance and prospective validation of biomarkers which identify patients that will benefit from certain drug classes, have started to improve the clinical outcome. This review discusses emerging principles of drug resistance to cancer therapies targeting a wide array of oncogenic kinases, along with hedgehog pathway and the proteasome and apoptotic inducers, as well as epigenetic and metabolic modulators. We further discuss mechanisms of resistance to monoclonal antibodies, immunomodulators and immune checkpoint inhibitors, potential biomarkers of drug response/drug resistance, along with possible new therapeutic avenues for the clinicians to combat devastating drug resistant malignancies. It is foreseen that these topics will be major areas of focused multidisciplinary translational research in the years to come.
Collapse
Affiliation(s)
- Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
121
|
Jarrett AM, Shah A, Bloom MJ, McKenna MT, Hormuth DA, Yankeelov TE, Sorace AG. Experimentally-driven mathematical modeling to improve combination targeted and cytotoxic therapy for HER2+ breast cancer. Sci Rep 2019; 9:12830. [PMID: 31492947 PMCID: PMC6731321 DOI: 10.1038/s41598-019-49073-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
The goal of this study is to experimentally and computationally investigate combination trastuzumab-paclitaxel therapies and identify potential synergistic effects due to sequencing of the therapies with in vitro imaging and mathematical modeling. Longitudinal alterations in cell confluence are reported for an in vitro model of BT474 HER2+ breast cancer cells following various dosages and timings of paclitaxel and trastuzumab combination regimens. Results of combination drug regimens are evaluated for drug interaction relationships based on order, timing, and quantity of dose of the drugs. Altering the order of treatments, with the same total therapeutic dose, provided significant changes in overall cell confluence (p < 0.001). Two mathematical models are introduced that are constrained by the in vitro data to simulate the tumor cell response to the individual therapies. A collective model merging the two individual drug response models was designed to investigate the potential mechanisms of synergy for paclitaxel-trastuzumab combinations. This collective model shows increased synergy for regimens where trastuzumab is administered prior to paclitaxel and suggests trastuzumab accelerates the cytotoxic effects of paclitaxel. The synergy derived from the model is found to be in agreement with the combination index, where both indicate a spectrum of additive and synergistic interactions between the two drugs dependent on their dose order. The combined in vitro results and development of a mathematical model of drug synergy has potential to evaluate and improve standard-of-care combination therapies in cancer.
Collapse
Affiliation(s)
- Angela M Jarrett
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, USA
| | - Alay Shah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Meghan J Bloom
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Matthew T McKenna
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37232, USA
| | - David A Hormuth
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, USA
| | - Thomas E Yankeelov
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA.
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA.
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas, USA.
- Department of Oncology, The University of Texas at Austin, Austin, Texas, USA.
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35209, USA.
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35209, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35209, USA.
| |
Collapse
|
122
|
Yang F, Fu Z, Yang M, Sun C, Li Y, Chu J, Zhang Y, Li W, Huang X, Li J, Wu H, Ding X, Yin Y. Expression pattern of microRNAs related with response to trastuzumab in breast cancer. J Cell Physiol 2019; 234:16102-16113. [PMID: 30770556 DOI: 10.1002/jcp.28268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Although an immense effort has been made to develop a novel biomarker for response to trastuzumab, no reliable biomarkers are available to guide management, expect for HER2. The aim of this study was to examine the relationship between microRNA (miRNA) expression and resistance to trastuzumab. METHODS Differentially expressed miRNAs between trastuzumab-resistant and trastuzumab-sensitive cell lines were analyzed using microarrays. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to determine the functions of differentially expressed miRNA and their targeted genes. Furthermore, the protein-protein interactions (PPI) network was analyzed. Serum samples were collected from patients with HER2-positive breast cancer who were treated with trastuzumab. We validated the miRNAs expression levels by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in these serums. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performance of the miRNA. RESULTS Using miRNA microarrays, 151 miRNAs that significant differentially expressed between the trastuzumab-resistant and sensitive cells were identified, including 46 upregulated and 105 downregulated miRNAs. Results of real-time PCR confirmed seven miRNAs in cell lines. PI3K-Akt signaling pathway was involved in regulating biological function according to KEGG analysis. Compared with the serums of trastuzumab-sensitive patients, three miRNAs, namely miR-200b, miR-135b, and miR-29a, were identified to be upregulated, and miR-224 was downregulated in the trastuzumab-resistant serums. ROC analysis showed that four miRNAs were correlated with trastuzumab resistance. Furthermore, three subnetwork modules of PPI network were obtained. CONCLUSION The results indicated that miRNAs were reliable predictive biomarkers for response to trastuzumab.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternal and Child Health Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Mengzhu Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaorong Ding
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
123
|
Passariello M, Camorani S, Vetrei C, Cerchia L, De Lorenzo C. Novel Human Bispecific Aptamer-Antibody Conjugates for Efficient Cancer Cell Killing. Cancers (Basel) 2019; 11:E1268. [PMID: 31470510 PMCID: PMC6770524 DOI: 10.3390/cancers11091268] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022] Open
Abstract
Monoclonal antibodies have been approved by the Food and Drug Administration for the treatment of various human cancers. More recently, oligonucleotide aptamers have risen increasing attention for cancer therapy thanks to their low size (efficient tumor penetration) and lack of immunogenicity, even though the short half-life and lack of effector functions still hinder their clinical applications. Here, we demonstrate, for the first time, that two novel bispecific conjugates, consisting of an anti-epidermal growth factor receptor (EGFR) aptamer linked either with an anti-epidermal growth factor receptor 2 (ErbB2) compact antibody or with an immunomodulatory (anti-PD-L1) antibody, were easily and rapidly obtained. These novel aptamer-antibody conjugates retain the targeting ability of both the parental moieties and acquire a more potent cancer cell killing activity by combining their inhibitory properties. Furthermore, the conjugation of the anti-EGFR aptamer with the immunomodulatory antibody allowed for the efficient redirection and activation of T cells against cancer cells, thus dramatically enhancing the cytotoxicity of the two conjugated partners. We think that these bispecific antibody-aptamer conjugates could have optimal biological features for therapeutic applications, such as increased specificity for tumor cells expressing both targets and improved pharmacokinetic and pharmacodynamic properties due to the combined advantages of the aptamer and antibody.
Collapse
Affiliation(s)
- Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Via S. Pansini 5, 80131 Napoli, Italy
| | - Cinzia Vetrei
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Via S. Pansini 5, 80131 Napoli, Italy.
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy.
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy.
| |
Collapse
|
124
|
Assessment of significant procedures in multigene molecular detection for breast cancer in clinical laboratories: from variant detection to targeted therapy. Breast Cancer 2019; 27:111-121. [PMID: 31388961 DOI: 10.1007/s12282-019-01000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND In recent years, numerous novel targeted drugs against breast cancer have been developed because of the rapid progress in multigene molecular testing based on next-generation sequencing (NGS). However, it is a great challenge for clinicians to update the drug information timely, therefore necessitating that clinical laboratories provide adequate and comprehensive targeted drugs information to clinicians as a reference. The premise of providing this information is the accuracy of variant detection. Our study aimed to assess the entire process of variant detection, interpretation, and targeted therapy. METHODS Laboratories were instructed to use routine methods for variant detection. The results were evaluated based on a predefined score system, and differences in variant interpretation were analyzed. Targeted drug information provided by laboratories was also summarized, and its accuracy and sufficiency were assessed. RESULTS Overall, 90.1% (82/91) of the laboratories produced accurate results. 78.9% (15/19) of the errors were false positives or false negatives. Incorrect and insufficient drug information was mainly provided due to failure in timely database updating, inconsistencies with the detected mutations or given clinical information, and negligence during phase I clinical trials. To prioritize providing targeted drug information, laboratories collected data were based on different factors, including variant clinical significance, allele frequency, and variant positions in the signal pathway. CONCLUSION The variant detection capability was satisfactory, but the ability to provide accuracy and comprehensive targeted drug information should be urgently improved. Our study summarized a completed NGS-based multigene molecular detection pipeline, aiming to better inform precision treatment for breast cancer patients.
Collapse
|
125
|
Le Joncour V, Martins A, Puhka M, Isola J, Salmikangas M, Laakkonen P, Joensuu H, Barok M. A Novel Anti-HER2 Antibody–Drug Conjugate XMT-1522 for HER2-Positive Breast and Gastric Cancers Resistant to Trastuzumab Emtansine. Mol Cancer Ther 2019; 18:1721-1730. [DOI: 10.1158/1535-7163.mct-19-0207] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/13/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
|
126
|
Palomeras S, Diaz-Lagares Á, Viñas G, Setien F, Ferreira HJ, Oliveras G, Crujeiras AB, Hernández A, Lum DH, Welm AL, Esteller M, Puig T. Epigenetic silencing of TGFBI confers resistance to trastuzumab in human breast cancer. Breast Cancer Res 2019; 21:79. [PMID: 31277676 PMCID: PMC6612099 DOI: 10.1186/s13058-019-1160-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Background Acquired resistance to trastuzumab is a major clinical problem in the treatment of HER2-positive (HER2+) breast cancer patients. The selection of trastuzumab-resistant patients is a great challenge of precision oncology. The aim of this study was to identify novel epigenetic biomarkers associated to trastuzumab resistance in HER2+ BC patients. Methods We performed a genome-wide DNA methylation (450K array) and a transcriptomic analysis (RNA-Seq) comparing trastuzumab-sensitive (SK) and trastuzumab-resistant (SKTR) HER2+ human breast cancer cell models. The methylation and expression levels of candidate genes were validated by bisulfite pyrosequencing and qRT-PCR, respectively. Functional assays were conducted in the SK and SKTR models by gene silencing and overexpression. Methylation analysis in 24 HER2+ human BC samples with complete response or non-response to trastuzumab-based treatment was conducted by bisulfite pyrosequencing. Results Epigenomic and transcriptomic analysis revealed the consistent hypermethylation and downregulation of TGFBI, CXCL2, and SLC38A1 genes in association with trastuzumab resistance. The DNA methylation and expression levels of these genes were validated in both sensitive and resistant models analyzed. Of the genes, TGFBI presented the highest hypermethylation-associated silencing both at the transcriptional and protein level. Ectopic expression of TGFBI in the SKTR model suggest an increased sensitivity to trastuzumab treatment. In primary tumors, TGFBI hypermethylation was significantly associated with trastuzumab resistance in HER2+ breast cancer patients. Conclusions Our results suggest for the first time an association between the epigenetic silencing of TGFBI by DNA methylation and trastuzumab resistance in HER2+ cell models. These results provide the basis for further clinical studies to validate the hypermethylation of TGFBI promoter as a biomarker of trastuzumab resistance in HER2+ breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s13058-019-1160-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sònia Palomeras
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain
| | - Ángel Diaz-Lagares
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago(CHUS/SERGAS), CIBERONC, Santiago de Compostela, Spain
| | - Gemma Viñas
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain.,Medical Oncology Department, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Girona Biomedical Research Institute (IDIBGI), E-17071, Girona, Catalonia, Spain
| | - Fernando Setien
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Glòria Oliveras
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain.,Pathology Department, Dr. Josep Trueta Hospital and Catalan Institute of Health (ICS), E-17071, Girona, Catalonia, Spain
| | - Ana B Crujeiras
- Laboratory of Epigenomics in Endocrinology and Nutrition, Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela, Spain
| | - Alejandro Hernández
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - David H Lum
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain. .,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain. .,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain. .,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain. .,Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.
| | - Teresa Puig
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain.
| |
Collapse
|
127
|
Ma F, Guan Y, Yi Z, Chang L, Li Q, Chen S, Zhu W, Guan X, Li C, Qian H, Xia X, Yang L, Zhang J, Husain H, Liao Z, Futreal A, Huang J, Yi X, Xu B. Assessing tumor heterogeneity using ctDNA to predict and monitor therapeutic response in metastatic breast cancer. Int J Cancer 2019; 146:1359-1368. [PMID: 31241775 DOI: 10.1002/ijc.32536] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/18/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity was associated with treatment outcome of metastatic cancers but few studies have examined whether tumor heterogeneity in circulating tumor DNA (ctDNA) can be used to predict treatment outcome. ctDNA analysis was performed in 37 HER2-positive metastatic breast cancer patients treated with pyrotinib. Patients with high tumor heterogeneity had significantly worse PFS outcomes, with a median PFS of 30.0 weeks vs. 60.0 weeks for patients with low tumor heterogeneity (hazard ratio [HR], 2.9; p = 0.02). Patients with trunk resistance mutations receiving pyrotinib monotherapy had worse outcomes (HR, 4.5; p = 0.03), with a median PFS of 7.8 weeks vs. 27.4 weeks for those with branch resistance mutations or without any resistance mutations in baseline ctDNA. Longitudinal monitoring of 21 patients during treatment showed that the molecular tumor burden index ([mTBI] a measure of the percentage of ctDNA in samples) was positively correlated with tumor size as evaluated by computed tomography (p < 0.0001, Pearson r = 0.52) and detected disease progression 8-16 weeks earlier. Our current findings suggested that ctDNA could be used to assess tumor heterogeneity and predict treatment outcomes. Furthermore, the mTBI is better for assessing therapeutic response than single gene mutations and might supplement the current therapeutic response evaluation system.
Collapse
Affiliation(s)
- Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfang Guan
- Geneplus-Beijing, Beijing, China.,Geneplus-Beijing Institute, Beijing, China
| | - Zongbi Yi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianpeng Chang
- Geneplus-Beijing, Beijing, China.,Geneplus-Beijing Institute, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Zhu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuwen Guan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefeng Xia
- Houston Methodist Research Institute, Weill Cornell School of Medicine, Houston, TX
| | - Ling Yang
- Geneplus-Beijing, Beijing, China.,Geneplus-Beijing Institute, Beijing, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hatim Husain
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Zhongxing Liao
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrew Futreal
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yi
- Geneplus-Beijing, Beijing, China.,Geneplus-Beijing Institute, Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
128
|
Zhou L, Ren Y, Wang X, Miao D, Lizaso A, Li H, Han-Zhang H, Qian J, Yang H. Efficacy of afatinib in a HER2 amplification-positive endometrioid adenocarcinoma patient- a case report. Onco Targets Ther 2019; 12:5305-5309. [PMID: 31308701 PMCID: PMC6615020 DOI: 10.2147/ott.s206732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/20/2019] [Indexed: 01/03/2023] Open
Abstract
Afatinib has improved the prognosis of epidermal growth factor receptor-positive advanced non-small cell lung cancer and has been explored in the treatment of human epidermal growth factor receptor 2 (HER2)-amplified breast cancer. However, its clinical efficacy in HER2-amplified endometrial cancer has not been reported. Herein, we present the clinical benefit of afatinib in a case of stage IIIC endometrioid adenocarcinoma refractory to multiple lines of chemotherapy and eventually developed pulmonary, abdominal and pelvic metastasis. Upon referral to our clinic, capture-based targeted sequencing was performed on both blood and tumor samples and revealed HER2 amplification. The patient was administered with afatinib and achieved partial response (PR) after two months of treatment, reflected by a significant reduction in pulmonary lesions and serum levels of tumor markers including carcinoembryonic antigen (CEA), cancer antigen (CA) 19-9, 125, 15-3 and cytokeratin 19 fragment antigen 21-1 (CY211). The patient passed away after 3 months of afatinib treatment due to suspected complications of severe intestinal obstruction. Our report demonstrates the efficacy of afatinib in a heavily pre-treated HER2-amplified endometrial cancer patient with multi-organ metastasis. This case also highlights the need to include comprehensive mutational profiling in the standard management of endometrial cancer patients for treatment guidance.
Collapse
Affiliation(s)
- Li Zhou
- Oncology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Yifeng Ren
- Hepatobiliary and Pancreatic Surgery Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Xia Wang
- Oncology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Dongliu Miao
- Interventional Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Analyn Lizaso
- Burning Rock Biotech, Guangzhou, People's Republic of China
| | - Haiyan Li
- Burning Rock Biotech, Guangzhou, People's Republic of China
| | - Han Han-Zhang
- Burning Rock Biotech, Guangzhou, People's Republic of China
| | - Jun Qian
- Oncology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Hui Yang
- Oncology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
129
|
Han Y, Wang J, Liu W, Yuan P, Li Q, Zhang P, Ma F, Luo Y, Fan Y, Chen S, Cai R, Li Q, Xu B. Trastuzumab treatment after progression in HER2-positive metastatic breast cancer following relapse of trastuzumab-based regimens: a meta-analysis. Cancer Manag Res 2019; 11:4699-4706. [PMID: 31213894 PMCID: PMC6536717 DOI: 10.2147/cmar.s198962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Background: This meta-analysis assessed the safety and effectiveness of retreatment with trastuzumab in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (HER2+MBC). Materials and methods: Randomized controlled trials (RCTs) and cohort studies that compared the clinical outcomes of continuation and termination of trastuzumab treatment in HER2+MBC after failure of trastuzumab-based regimens were analyzed. Pooled estimates of time to progression (TTP) survival, overall survival (OS), the incidence of adverse events and central nervous system (CNS) perturbations were determined. Results: Four RCTs and six cohort studies with 2,409 patients were identified. The continuation of trastuzumab presented a statistical significance in prolonging TTP (HR 0.88; 95% CI: 0.82-0.94; P<0.000) and OS (HR 0.87; 95% CI: 0.82-0.93; P<0.000). Furthermore, retreatment with trastuzumab did not add to the risk of cardiac events (relative risk, 2.48; 95% CI: 0.86-7.15) or the incidence of CNS metastasis (P=0.83). Conclusion: Our findings confirm the clinical benefits and safety of retreatment therapy with trastuzumab for HER2-positive patients with metastatic cancer of the breast that had progressed during trastuzumab-based treatment regimens.
Collapse
Affiliation(s)
- Yiqun Han
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiayu Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Weiming Liu
- Department of Critical Care Medicine, China Rehabilitation Research Center, Beijing, People's Republic of China
| | - Peng Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qing Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Pin Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fei Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yang Luo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ying Fan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shanshan Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ruigang Cai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiao Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Binghe Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
130
|
Wang Z, Zhang J, Wang X, Wei D. High level expression and characterization of the recombinant immunotoxin DAB389-4D5 scFv targeting HER2/neu-positive ovarian carcinoma cells. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
131
|
Circulating tumor DNA analyses predict progressive disease and indicate trastuzumab-resistant mechanism in advanced gastric cancer. EBioMedicine 2019; 43:261-269. [PMID: 31031019 PMCID: PMC6562020 DOI: 10.1016/j.ebiom.2019.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Circulating tumor DNA (ctDNA) isolated from plasma contains genetic mutations that can be representative of those found in primary tumor tissue DNA. These samples can provide insights into tumoral heterogeneity in patients with advanced gastric cancer (AGC). Although trastuzumab has been shown to be effective in first-line therapy for patients with metastatic gastric cancer with overexpression of human epidermal growth factor receptor 2 (HER2), the mechanism of AGC resistance is incompletely understood. Methods In this prospective study, we used targeted capture sequencing to analyze 173 serial ctDNA samples from 39 AGC patients. We analyzed cancer cell fractions with PyClone to understand the clonal population structure in cancer, and monitored serial samples during therapy. Serial monitoring of ctDNA using the molecular tumor burden index (mTBI), identified progressive disease before imaging results (mean: 18 weeks). Findings We reconstructed the clonal structure of ctDNA during anti-HER2 treatment, and identified 32 expanding mutations potentially related to trastuzumab resistance. Multiple pathways activating in the same patients revealed heterogeneity in trastuzumab resistance mechanisms in AGC. In patients who received chemotherapy, mTBI was validated for the prediction of progressive disease, with a sensitivity of 94% (15/16). A higher mTBI (≥1%) in pretreatment ctDNA was also a risk factor for progression-free survival. Conclusions Analysis of ctDNA clones based on sequencing is a promising approach to clinical management, and may lead to improved therapeutic strategies for AGC patients. Fund This work was supported by grants from the National International Cooperation Grant (to J.X.; Project No. 2014DFB33160).
Collapse
|
132
|
Braman N, Prasanna P, Whitney J, Singh S, Beig N, Etesami M, Bates DDB, Gallagher K, Bloch BN, Vulchi M, Turk P, Bera K, Abraham J, Sikov WM, Somlo G, Harris LN, Gilmore H, Plecha D, Varadan V, Madabhushi A. Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer. JAMA Netw Open 2019; 2:e192561. [PMID: 31002322 PMCID: PMC6481453 DOI: 10.1001/jamanetworkopen.2019.2561] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE There has been significant recent interest in understanding the utility of quantitative imaging to delineate breast cancer intrinsic biological factors and therapeutic response. No clinically accepted biomarkers are as yet available for estimation of response to human epidermal growth factor receptor 2 (currently known as ERBB2, but referred to as HER2 in this study)-targeted therapy in breast cancer. OBJECTIVE To determine whether imaging signatures on clinical breast magnetic resonance imaging (MRI) could noninvasively characterize HER2-positive tumor biological factors and estimate response to HER2-targeted neoadjuvant therapy. DESIGN, SETTING, AND PARTICIPANTS In a retrospective diagnostic study encompassing 209 patients with breast cancer, textural imaging features extracted within the tumor and annular peritumoral tissue regions on MRI were examined as a means to identify increasingly granular breast cancer subgroups relevant to therapeutic approach and response. First, among a cohort of 117 patients who received an MRI prior to neoadjuvant chemotherapy (NAC) at a single institution from April 27, 2012, through September 4, 2015, imaging features that distinguished HER2+ tumors from other receptor subtypes were identified. Next, among a cohort of 42 patients with HER2+ breast cancers with available MRI and RNaseq data accumulated from a multicenter, preoperative clinical trial (BrUOG 211B), a signature of the response-associated HER2-enriched (HER2-E) molecular subtype within HER2+ tumors (n = 42) was identified. The association of this signature with pathologic complete response was explored in 2 patient cohorts from different institutions, where all patients received HER2-targeted NAC (n = 28, n = 50). Finally, the association between significant peritumoral features and lymphocyte distribution was explored in patients within the BrUOG 211B trial who had corresponding biopsy hematoxylin-eosin-stained slide images. Data analysis was conducted from January 15, 2017, to February 14, 2019. MAIN OUTCOMES AND MEASURES Evaluation of imaging signatures by the area under the receiver operating characteristic curve (AUC) in identifying HER2+ molecular subtypes and distinguishing pathologic complete response (ypT0/is) to NAC with HER2-targeting. RESULTS In the 209 patients included (mean [SD] age, 51.1 [11.7] years), features from the peritumoral regions better discriminated HER2-E tumors (maximum AUC, 0.85; 95% CI, 0.79-0.90; 9-12 mm from the tumor) compared with intratumoral features (AUC, 0.76; 95% CI, 0.69-0.84). A classifier combining peritumoral and intratumoral features identified the HER2-E subtype (AUC, 0.89; 95% CI, 0.84-0.93) and was significantly associated with response to HER2-targeted therapy in both validation cohorts (AUC, 0.80; 95% CI, 0.61-0.98 and AUC, 0.69; 95% CI, 0.53-0.84). Features from the 0- to 3-mm peritumoral region were significantly associated with the density of tumor-infiltrating lymphocytes (R2 = 0.57; 95% CI, 0.39-0.75; P = .002). CONCLUSIONS AND RELEVANCE A combination of peritumoral and intratumoral characteristics appears to identify intrinsic molecular subtypes of HER2+ breast cancers from imaging, offering insights into immune response within the peritumoral environment and suggesting potential benefit for treatment guidance.
Collapse
Affiliation(s)
- Nathaniel Braman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Prateek Prasanna
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jon Whitney
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Salendra Singh
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Niha Beig
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Maryam Etesami
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - David D. B. Bates
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine Gallagher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - B. Nicolas Bloch
- Department of Radiology, Boston Medical Center, Boston, Massachusetts
- Department of Radiology, Boston University School of Medicine, Boston, Massachusetts
| | - Manasa Vulchi
- Department of Hematology and Medical Oncology, The Cleveland Clinic, Cleveland, Ohio
| | - Paulette Turk
- Department of Diagnostic Radiology, The Cleveland Clinic, Cleveland, Ohio
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jame Abraham
- Department of Hematology and Medical Oncology, The Cleveland Clinic, Cleveland, Ohio
| | - William M. Sikov
- Program in Women’s Oncology, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - George Somlo
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - Lyndsay N. Harris
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hannah Gilmore
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Donna Plecha
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio
| |
Collapse
|
133
|
Liu J, Wu X, Lin L, Pan H, Wang Y, Li Y, Zhao Y, Wang Z. Bp-Bs, a Novel T-cell Engaging Bispecific Antibody with Biparatopic Her2 Binding, Has Potent Anti-tumor Activities. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:66-73. [PMID: 31020038 PMCID: PMC6475711 DOI: 10.1016/j.omto.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Patients with Human epidermal growth factor receptor type 2 (Her2) overexpression are associated with aggressive tumor growth and poor clinical outcomes. Bispecific antibodies targeting Her2 have recently exhibited potent effects on Her2 signal inhibition. In this study, a novel biparatopic anti-Her2 bispecific antibody (Bp-Bs) was constructed by linking a single anti-CD3 Fab with two different anti-Her2 single-domain antibodies targeting non-overlapping epitopes of Her2. The Bp-Bs demonstrated strong binding on Her2-positive cells and potent cytotoxicity on Her2-positive tumor cells, even Her2-low expression cells, suggesting that biparatopic bispecific antibodies may have improved therapeutic benefits on broad Her2 patient populations.
Collapse
Affiliation(s)
- Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoqiong Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haitao Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanlan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yumei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yining Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
134
|
Qian XL, Pan YH, Huang QY, Shi YB, Huang QY, Hu ZZ, Xiong LX. Caveolin-1: a multifaceted driver of breast cancer progression and its application in clinical treatment. Onco Targets Ther 2019; 12:1539-1552. [PMID: 30881011 PMCID: PMC6398418 DOI: 10.2147/ott.s191317] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human breast cancer is one of the most frequent cancer diseases and causes of death among female population worldwide. It appears at a high incidence and has a high malignancy, mortality, recurrence rate and poor prognosis. Caveolin-1 (Cav1) is the main component of caveolae and participates in various biological events. More and more experimental studies have shown that Cav1 plays a critical role in the progression of breast cancer including cell proliferation, apoptosis, autophagy, invasion, migration and breast cancer metastasis. Besides, Cav1 has been found to be involved in chemotherapeutics and radiotherapy resistance, which are still the principal problems encountered in clinical breast cancer treatment. In addition, stromal Cav1 may be a potential indicator for breast cancer patients' prognosis. In the current review, we cover the state-of-the-art study, development and progress on Cav1 and breast cancer, altogether describing the role of Cav1 in breast cancer progression and application in clinical treatment, in the hope of providing a basis for further research and promoting CAV1 gene as a potential target to diagnose and treat aggressive breast cancers.
Collapse
Affiliation(s)
- Xian-Ling Qian
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yi-Hang Pan
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Bo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Qing-Yun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Zhen-Zhen Hu
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| |
Collapse
|
135
|
Bekaii-Saab T, Wesolowski R, Ahn DH, Wu C, Mortazavi A, Lustberg M, Ramaswamy B, Fowler J, Wei L, Overholser J, Kaumaya PTP. Phase I Immunotherapy Trial with Two Chimeric HER-2 B-Cell Peptide Vaccines Emulsified in Montanide ISA 720VG and Nor-MDP Adjuvant in Patients with Advanced Solid Tumors. Clin Cancer Res 2019; 25:3495-3507. [PMID: 30804020 DOI: 10.1158/1078-0432.ccr-18-3997] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 02/21/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE This first-in-human phase I study (NCT01417546) evaluated the safety profile, optimal immunologic/biological dose (OID/OBD), and immunogenicity of the combination of two peptide B-cell epitope vaccines engineered to represent the trastuzumab- and pertuzumab-binding sites. Although trastuzumab and pertuzumab have been approved for clinical use, patients often develop resistance to these therapies. We have advanced a new paradigm in immunotherapy that focuses on humoral responses based on conformational B-cell epitope vaccines. PATIENTS AND METHODS The vaccine is comprised of two chimeric HER-2 B-cell peptide vaccines incorporating a "promiscuous T-cell epitope." Patients were immunized with the vaccine constructs emulsified with nor-muramyl-dipeptide adjuvant in a water-in-oil Montanide ISA 720VG vehicle. Eligible patients with metastatic and/or recurrent solid tumors received three inoculations every 3 weeks. RESULTS Forty-nine patients with a median of 4 prior lines of chemotherapy received at least 1 vaccination. Twenty-eight patients completed the 3 vaccination regimens. Six patients received 1 six-month boost after the regimen, and one patient received 7 six-month boosts. No serious adverse reactions or dose-limiting toxicities were observed. The vaccine was well tolerated with dose level 2 as the recommended phase II dose. The most common related toxicity in all patients was injection-site reactions (24%). Two patients had a partial response, 14 had stable disease, and 19 had progressive disease. CONCLUSIONS The study vaccine is safe, exhibits antitumor activity, and shows preliminary indication that peptide vaccination may avoid therapeutic resistance and offer a promising alternative to monoclonal antibody therapies.
Collapse
Affiliation(s)
| | - Robert Wesolowski
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, Ohio.,Arthur G. James Cancer Hospital/Comprehensive Cancer Center, Columbus, Ohio
| | - Daniel H Ahn
- Department of Internal Medicine, Mayo Clinic, Phoenix, Arizona
| | - Christina Wu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Amir Mortazavi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, Ohio.,Arthur G. James Cancer Hospital/Comprehensive Cancer Center, Columbus, Ohio
| | - Maryam Lustberg
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, Ohio.,Arthur G. James Cancer Hospital/Comprehensive Cancer Center, Columbus, Ohio
| | - Bhuvaneswari Ramaswamy
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, Ohio.,Arthur G. James Cancer Hospital/Comprehensive Cancer Center, Columbus, Ohio
| | - Jeffrey Fowler
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Lai Wei
- Arthur G. James Cancer Hospital/Comprehensive Cancer Center, Columbus, Ohio.,Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Jay Overholser
- Arthur G. James Cancer Hospital/Comprehensive Cancer Center, Columbus, Ohio.,Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Pravin T P Kaumaya
- Arthur G. James Cancer Hospital/Comprehensive Cancer Center, Columbus, Ohio. .,Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
136
|
Gandhi N, Das GM. Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications. Cells 2019; 8:cells8020089. [PMID: 30691108 PMCID: PMC6406734 DOI: 10.3390/cells8020089] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Current standard-of-care (SOC) therapy for breast cancer includes targeted therapies such as endocrine therapy for estrogen receptor-alpha (ERα) positive; anti-HER2 monoclonal antibodies for human epidermal growth factor receptor-2 (HER2)-enriched; and general chemotherapy for triple negative breast cancer (TNBC) subtypes. These therapies frequently fail due to acquired or inherent resistance. Altered metabolism has been recognized as one of the major mechanisms underlying therapeutic resistance. There are several cues that dictate metabolic reprogramming that also account for the tumors’ metabolic plasticity. For metabolic therapy to be efficacious there is a need to understand the metabolic underpinnings of the different subtypes of breast cancer as well as the role the SOC treatments play in targeting the metabolic phenotype. Understanding the mechanism will allow us to identify potential therapeutic vulnerabilities. There are some very interesting questions being tackled by researchers today as they pertain to altered metabolism in breast cancer. What are the metabolic differences between the different subtypes of breast cancer? Do cancer cells have a metabolic pathway preference based on the site and stage of metastasis? How do the cell-intrinsic and -extrinsic cues dictate the metabolic phenotype? How do the nucleus and mitochondria coordinately regulate metabolism? How does sensitivity or resistance to SOC affect metabolic reprogramming and vice-versa? This review addresses these issues along with the latest updates in the field of breast cancer metabolism.
Collapse
Affiliation(s)
- Nishant Gandhi
- Department of Pharmacology and Therapeutics, Center for Genetics & Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Center for Genetics & Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
137
|
URG4 expression in invasive breast carcinoma and its relation to clinicopathological characteristics. Breast Cancer 2019; 26:485-491. [PMID: 30680688 DOI: 10.1007/s12282-019-00947-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Upregulated gene 4 (URG4) is a recently described oncogene that upregulates cell proliferation. Its overexpression has been identified in many malignancies, and it is thought to be related to tumour progression, angiogenesis, metastasis and the recurrence of many cancers. This is the first study to show its expression in breast cancer patients and its association with clinicopathological characteristics in these patients. METHODS Fifty invasive ductal breast carcinoma cases and 25 control cases were included in the study. Tumourous tissues and control tissues were assessed molecularly for quantification of mRNA expression of URG4 and immunohistochemically for protein expression of URG4. RESULTS The mean ages of the patients and controls were 54.3 ± 11.3 and 38.9 ± 9.7 years, respectively. The expression levels of URG4 mRNA in tumour tissues were higher compared to control breast tissues (p = 0.023). An immunohistochemical assessment suggested that URG4 is strongly expressed in normal breast tissues and lower-grade (grades I and II) ductal carcinomas of the breast, but it is weakly expressed in high-grade (grade III) ductal breast carcinomas. Additionally, the immunohistochemical and molecular expression results of URG4 were relevant to most prognostic parameters (tumour size, oestrogen and progesterone receptor status, HER2 status and Ki67 proliferative index) for breast cancer. However, unlike the immunohistochemical studies, the molecular studies revealed that there was no significant difference in URG4 expression for different grades of tumour tissues. CONCLUSION The literature data suggest that URG4 overexpression is associated with poor prognosis in many types of cancer. Conversely, our results in breast cancer specimens indicate that URG4 overexpression in breast ductal carcinomas is significantly associated with good prognostic parameters. Nevertheless, these preliminary findings should be confirmed by further studies.
Collapse
|
138
|
Murakami A, Maekawa M, Kawai K, Nakayama J, Araki N, Semba K, Taguchi T, Kamei Y, Takada Y, Higashiyama S. Cullin-3/KCTD10 E3 complex is essential for Rac1 activation through RhoB degradation in human epidermal growth factor receptor 2-positive breast cancer cells. Cancer Sci 2019; 110:650-661. [PMID: 30515933 PMCID: PMC6361568 DOI: 10.1111/cas.13899] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023] Open
Abstract
Rho GTPase Rac1 is a central regulator of F‐actin organization and signal transduction to control plasma membrane dynamics and cell proliferation. Dysregulated Rac1 activity is often observed in various cancers including breast cancer and is suggested to be critical for malignancy. Here, we showed that the ubiquitin E3 ligase complex Cullin‐3 (CUL3)/KCTD10 is essential for epidermal growth factor (EGF)‐induced/human epidermal growth factor receptor 2 (HER2)‐dependent Rac1 activation in HER2‐positive breast cancer cells. EGF‐induced dorsal membrane ruffle formation and cell proliferation that depends on both Rac1 and HER2 were suppressed in CUL3‐ or KCTD10‐depleted cells. Mechanistically, CUL3/KCTD10 ubiquitinated RhoB for degradation, another Rho GTPase that inhibits Rac1 activation at the plasma membrane by suppressing endosome‐to‐plasma membrane traffic of Rac1. In HER2‐positive breast cancers, high expression of Rac1 mRNA significantly correlated with poor prognosis of the patients. This study shows that this novel molecular axis (CUL3/KCTD10/RhoB) positively regulates the activity of Rac1 in HER2‐positive breast cancers, and our findings may lead to new treatment options for HER2‐ and Rac1‐positive breast cancers.
Collapse
Affiliation(s)
- Akari Murakami
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiaki Kamei
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
139
|
Christodoulou C, Oikonomopoulos G, Koliou GA, Kostopoulos I, Kotoula V, Bobos M, Pentheroudakis G, Lazaridis G, Skondra M, Chrisafi S, Koutras A, Bafaloukos D, Razis E, Papadopoulou K, Papakostas P, Kalofonos HP, Pectasides D, Skarlos P, Kalogeras KT, Fountzilas G. Evaluation of the Insulin-like Growth Factor Receptor Pathway in Patients with Advanced Breast Cancer Treated with Trastuzumab. Cancer Genomics Proteomics 2018; 15:461-471. [PMID: 30343280 DOI: 10.21873/cgp.20105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Trastuzumab is a monoclonal antibody against HER2-positive breast cancer. Despite improving the natural history of the disease, there is a number of patients who are resistant to it, whereas all patients will eventually develop resistance and disease will progress. Inconsistent preclinical data show that the IGF-R pathway may contribute to either de novo or acquired resistance to trastuzumab. MATERIALS AND METHODS In total, 227 trastuzumab-treated metastatic breast cancer patients were evaluated for IGF-1, IGF-1R, GLP-1R, Akt1, Akt2 Akt3 mRNA expression, and IGF-1Rα, IGF-1Rβ, IGF-2R protein expression. RESULTS Only 139 patients were truly HER2-positive by central assessment. Among HER2-positive patients, high Akt2 and GLP-1R mRNA expression showed a trend towards higher and lower risk of progression, respectively (HR=1.83, 95%CI=0.90-3.72, p=0.094 and HR=0.62, 95%CI=0.36-1.06, p=0.079), while high Akt1 and GLP-1R mRNA expression presented a trend towards unfavorable survival (HR=1.67, 95%CI=0.93-2.99, p=0.086 and HR=1.67, 95%CI=0.94-2.96, p=0.080). Among HER2-negative patients, high GLP-1R mRNA expression and negative stromal IGF-1Rβ protein expression showed a trend towards worse survival (HR=2.31, 95%CI=0.87-6.13, p=0.094 and HR=2.03, 95%CI=0.94-4.35, p=0.071, respectively). In the multivariate analyses, HER2-positive patients with high Akt1 and GLP-1R mRNA expression had a worse survival (HR=1.86, 95%CI=1.01-3.43, p=0.045 and HR=1.83, 95%CI=0.99-3.41, p=0.055, respectively). CONCLUSION This study revealed a crosstalk between the IGF-R pathway and HER2. There was evidence that high Akt1 and GLP-1R mRNA expression might affect survival among HER2-positive metastatic breast cancer patients treated with trastuzumab.
Collapse
Affiliation(s)
| | | | | | - Ioannis Kostopoulos
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - George Lazaridis
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Maria Skondra
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | | | - Evangelia Razis
- Third Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Haralambos P Kalofonos
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - Pantelis Skarlos
- Department of Radiotherapy, Metropolitan Hospital, Piraeus, Greece
| | - Konstantine T Kalogeras
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Translational Research Section, Hellenic Cooperative Oncology Group, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
140
|
Tumor heterogeneity and nanoparticle-mediated tumor targeting: the importance of delivery system personalization. Drug Deliv Transl Res 2018; 8:1508-1526. [PMID: 30128797 DOI: 10.1007/s13346-018-0578-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
After the discovery of the enhanced permeability and retention effect in 1986, it was envisioned that nanoparticle-mediated tumor-targeted delivery of chemotherapeutics would make a radical change in cancer therapy. However, after three decades of extensive research, only a few nanotherapeutics have been approved for clinical use. Although significant advantages of nanomedicines have been demonstrated in pre-clinical studies, clinical outcome was found to be variable. Advanced research has revealed that significant biochemical and structural variations exist between (and among) different tumors. These variations can considerably affect the tumor delivery and efficacy of nanomedicines. Tumor penetration is an important determining factor for positive therapeutic outcome and same nanomedicine can show diverse efficacy against different tumors depending on the extent of tumor accumulation and penetration. Recent research has started shading light on how the tumor variations can influence nanoparticle tumor delivery. These findings indicate that there is no "ideal" design of nanoparticles for exhibiting equally high efficacy against a broad spectrum of tumors. For achieving maximum benefit of the nanotherapeutics, it is necessary to analyze the tumor microenvironment for understanding the biological and structural characteristics of the tumor. Designing of the nanomedicine should be done according to the tumor characteristics. In this comprehensive review, we have first given a brief overview of the design characteristics of nanomedicine which impact their tumor delivery. Then we discussed about the variability in the tumor architecture and how it influences nanomedicine delivery. Finally, we have discussed the possibility of delivery system personalization based on the tumor characteristics.
Collapse
|
141
|
Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, Grădinaru D, Tsatsakis A, Tsoukalas D, Spandidos DA, Margina D. The Akt pathway in oncology therapy and beyond (Review). Int J Oncol 2018; 53:2319-2331. [PMID: 30334567 PMCID: PMC6203150 DOI: 10.3892/ijo.2018.4597] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Protein kinase B (Akt), similar to many other protein kinases, is at the crossroads of cell death and survival, playing a pivotal role in multiple interconnected cell signaling mechanisms implicated in cell metabolism, growth and division, apoptosis suppression and angiogenesis. Akt protein kinase displays important metabolic effects, among which are glucose uptake in muscle and fat cells or the suppression of neuronal cell death. Disruptions in the Akt-regulated pathways are associated with cancer, diabetes, cardiovascular and neurological diseases. The regulation of the Akt signaling pathway renders Akt a valuable therapeutic target. The discovery process of Akt inhibitors using various strategies has led to the identification of inhibitors with great selectivity, low side-effects and toxicity. The usefulness of Akt emerges beyond cancer therapy and extends to other major diseases, such as diabetes, heart diseases, or neurodegeneration. This review presents key features of Akt structure and functions, and presents the progress of Akt inhibitors in regards to drug development, and their preclinical and clinical activity in regards to therapeutic efficacy and safety for patients.
Collapse
Affiliation(s)
- George Mihai Nitulescu
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Maryna Van De Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Georgiana Nitulescu
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Petras Juzenas
- Department of Pathology, Radiumhospitalet, Oslo University Hospital, 0379 Oslo, Norway
| | - Qian Peng
- Department of Pathology, Radiumhospitalet, Oslo University Hospital, 0379 Oslo, Norway
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Daniela Grădinaru
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitris Tsoukalas
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Denisa Margina
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
142
|
Ding Y, Gong C, Huang D, Chen R, Sui P, Lin KH, Liang G, Yuan L, Xiang H, Chen J, Yin T, Alexander PB, Wang QF, Song EW, Li QJ, Wood KC, Wang XF. Synthetic lethality between HER2 and transaldolase in intrinsically resistant HER2-positive breast cancers. Nat Commun 2018; 9:4274. [PMID: 30323337 PMCID: PMC6189078 DOI: 10.1038/s41467-018-06651-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Intrinsic resistance to anti-HER2 therapy in breast cancer remains an obstacle in the clinic, limiting its efficacy. However, the biological basis for intrinsic resistance is poorly understood. Here we performed a CRISPR/Cas9-mediated loss-of-function genetic profiling and identified TALDO1, which encodes the rate-limiting transaldolase (TA) enzyme in the non-oxidative pentose phosphate pathway, as essential for cellular survival following pharmacological HER2 blockade. Suppression of TA increases cell susceptibility to HER2 inhibition in two intrinsically resistant breast cancer cell lines with HER2 amplification. Mechanistically, TA depletion combined with HER2 inhibition significantly reduces cellular NADPH levels, resulting in excessive ROS production and deficient lipid and nucleotide synthesis. Importantly, higher TA expression correlates with poor response to HER2 inhibition in a breast cancer patient cohort. Together, these results pinpoint TA as a novel metabolic enzyme possessing synthetic lethality with HER2 inhibition that can potentially be exploited as a biomarker or target for combination therapy. Resistance to anti-HER2 therapy in breast cancer remains a major obstacle in the clinic. Here the authors performed a CRISPR-selective vulnerability screen to identify transaldoloase as a target that is synthetically lethal with HER2 inhibition in breast cancer cells.
Collapse
Affiliation(s)
- Yi Ding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Chang Gong
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Rui Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Pinpin Sui
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Gehao Liang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lifeng Yuan
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Handan Xiang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Junying Chen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Er-Wei Song
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA.
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA.
| |
Collapse
|
143
|
Functionalization of gold-nanoparticles by the Clostridium perfringens enterotoxin C-terminus for tumor cell ablation using the gold nanoparticle-mediated laser perforation technique. Sci Rep 2018; 8:14963. [PMID: 30297847 PMCID: PMC6175838 DOI: 10.1038/s41598-018-33392-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
A recombinant produced C-terminus of the C. perfringens enterotoxin (C-CPE) was conjugated to gold nanoparticles (AuNPs) to produce a C-CPE-AuNP complex (C-CPE-AuNP). By binding to claudins, the C- CPE should allow to target the AuNPs onto the claudin expressing tumor cells for a subsequent cell killing by application of the gold nanoparticle-mediated laser perforation (GNOME-LP) technique. Using qPCR and immunocytochemistry, we identified the human Caco-2, MCF-7 and OE-33 as well as the canine TiHoDMglCarc1305 as tumor cells expressing claudin-3, -4 and -7. Transepithelial electrical resistance (TEER) measurements of Caco-2 cell monolayer showed that the recombinant C-CPE bound to the claudins. GNOME-LP at a laser fluence of 60 mJ/cm2 and a scanning speed of 0.5 cm/s specifically eliminated more than 75% of claudin expressing human and canine cells treated with C-CPE-AuNP. The same laser fluence did not affect the cells when non-functionalized AuNPs were used. Furthermore, most of the claudin non-expressing cells treated with C-CPE-AuNP were not killed by GNOME-LP. Additionally, application of C-CPE-AuNP to spheroids formed by MCF-7 and OE-33 cells grown in Matrigel reduced spheroid area. The results demonstrate that specific ablation of claudin expressing tumor cells is efficiently increased by activated C-CPE functionalized AuNPs using optical methods.
Collapse
|
144
|
Nami B, Maadi H, Wang Z. Mechanisms Underlying the Action and Synergism of Trastuzumab and Pertuzumab in Targeting HER2-Positive Breast Cancer. Cancers (Basel) 2018; 10:cancers10100342. [PMID: 30241301 PMCID: PMC6210751 DOI: 10.3390/cancers10100342] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Human epidermal growth factor receptor (HER) 2 (HER2) is overexpressed in 20⁻30% of breast cancers. HER2 is a preferred target for treating HER2-positive breast cancer. Trastuzumab and pertuzumab are two HER2-targeted monoclonal antibodies approved by the Food and Drug Administration (FDA) to use as adjuvant therapy in combination with docetaxel to treat metastatic HER2-positive breast cancer. Adding the monoclonal antibodies to treatment regimen has changed the paradigm for treatment of HER2-positive breast cancer. Despite improving outcomes, the percentage of the patients who benefit from the treatment is still low. Continued research and development of novel agents and strategies of drug combinations is needed. A thorough understanding of the molecular mechanisms underlying the action and synergism of trastuzumab and pertuzumab is essential for moving forward to achieve high efficacy in treating HER2-positive breast cancer. This review examined and analyzed findings and hypotheses regarding the action and synergism of trastuzumab and pertuzumab and proposed a model of synergism based on available information.
Collapse
Affiliation(s)
- Babak Nami
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Hamid Maadi
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
145
|
You HL, Liu TT, Weng SW, Chen CH, Wei YC, Eng HL, Huang WT. Association of IRS2 overexpression with disease progression in intrahepatic cholangiocarcinoma. Oncol Lett 2018; 16:5505-5511. [PMID: 30250623 PMCID: PMC6144925 DOI: 10.3892/ol.2018.9284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022] Open
Abstract
Insulin receptor substrate 2 (IRS2) is a candidate driver oncogene frequently amplified in cancer and is positively associated with IRS2 expression. The overexpression of IRS2 has been suggested to promote tumor metastasis. However, its function in intrahepatic cholangiocarcinoma (iCCA) has not been investigated extensively. The present study examined 86 cases of iCCA to analyze IRS2 expression and its correlation with clinicopathological characteristics using immunohistochemical assays. Three stable cell lines overexpressing IRS2 were established. The mobility potential of cells was compared in the basal condition and following manipulation using cell migration and invasion assays. Epithelial-mesenchymal transition (EMT)-associated proteins were assessed by western blotting. IRS2 was overexpressed in 29 iCCA cases (33.7%) and was significantly more frequent in cases with large tumor size (P=0.033), classified as an advanced stage by the American Joint Committee on Cancer (P=0.046). In comparison with the control cells, the three IRS2-overexpressing iCCA cell lines exhibited a statistically significant increase in mobility potential. Expression analysis of EMT markers demonstrated decreased epithelial marker levels and increased mesenchymal marker levels in IRS2-overexpressing cells compared with their corresponding control cells. The results of the present study indicate that IRS2 overexpression is characterized by a large tumor size and advanced tumor stage in iCCA, and that it may increase tumor mobility potential by regulating EMT pathways. Therefore, it is a valuable predictive indicator of metastasis and may provide a novel direction for targeted therapy in iCCA.
Collapse
Affiliation(s)
- Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan, R.O.C
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Chang-Han Chen
- The Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Yu-Ching Wei
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C
| | - Hock-Liew Eng
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan, R.O.C.,Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| |
Collapse
|
146
|
Decker JT, Hall MS, Blaisdell RB, Schwark K, Jeruss JS, Shea LD. Dynamic microRNA activity identifies therapeutic targets in trastuzumab-resistant HER2 + breast cancer. Biotechnol Bioeng 2018; 115:2613-2623. [PMID: 29981261 DOI: 10.1002/bit.26791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are implicated in numerous physiologic and pathologic processes, such as the development of resistance to chemotherapy. Determining the role of miRNAs in these processes is often accomplished through measuring miRNA abundance by polymerase chain reaction, sequencing, or microarrays. We have developed a system for the large-scale monitoring of dynamic miRNA activity and have applied this system to identify the contribution miRNA activity to the development of trastuzumab resistance in a cell model of HER2+ breast cancer. MiRNA activity measurements identified significantly different activity levels between BT474 cells (HER2 + breast cancer) and BT474R cells (HER2 + breast cancer cells selected for resistance to trastuzumab). We created a library of 32 miRNA reporter constructs, which were delivered by lentiviral transduction into cells, and miRNA activity was quantified by bioluminescence imaging. Upon treatment with the bioimmune therapy, trastuzumab, the activity of 11 miRNAs were significantly altered in parental BT474 cells, and 20 miRNAs had significantly altered activity in the therapy-resistant BT474R cell line. A combination of statistical, network and classification analysis was applied to the dynamic data, which identified miR-21 as a controlling factor in trastuzumab response. Our data suggested downregulation of miR-21 activity was associated with resistance, which was confirmed in an additional HER2 + breast cancer cell line, SKBR3. Collectively, the dynamic miRNA activity measurements and analysis provided a system to identify new potential therapeutic targets in treatment-resistant cancers.
Collapse
Affiliation(s)
- Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Matthew S Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rachel B Blaisdell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kallen Schwark
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
147
|
Pogrebniak KL, Curtis C. Harnessing Tumor Evolution to Circumvent Resistance. Trends Genet 2018; 34:639-651. [PMID: 29903534 DOI: 10.1016/j.tig.2018.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
High-throughput sequencing can be used to measure changes in tumor composition across space and time. Specifically, comparisons of pre- and post-treatment samples can reveal the underlying clonal dynamics and resistance mechanisms. Here, we discuss evidence for distinct modes of tumor evolution and their implications for therapeutic strategies. In addition, we consider the utility of spatial tissue sampling schemes, single-cell analysis, and circulating tumor DNA to track tumor evolution and the emergence of resistance, as well as approaches that seek to forestall resistance by targeting tumor evolution. Ultimately, characterization of the (epi)genomic, transcriptomic, and phenotypic changes that occur during tumor progression coupled with computational and mathematical modeling of tumor evolutionary dynamics may inform personalized treatment strategies.
Collapse
Affiliation(s)
- Katherine L Pogrebniak
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; http://med.stanford.edu/curtislab.html
| | - Christina Curtis
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; http://med.stanford.edu/curtislab.html.
| |
Collapse
|
148
|
Bates JP, Derakhshandeh R, Jones L, Webb TJ. Mechanisms of immune evasion in breast cancer. BMC Cancer 2018; 18:556. [PMID: 29751789 PMCID: PMC5948714 DOI: 10.1186/s12885-018-4441-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Tumors develop multiple mechanisms of immune evasion as they progress, with some cancer types being inherently better at ‘hiding’ than others. With an increased understanding of tumor immune surveillance, immunotherapy has emerged as a promising treatment strategy for breast cancer, despite historically being thought of as an immunologically silent neoplasm. Some types of cancer, such as melanoma, bladder, and renal cell carcinoma, have demonstrated a durable response to immunotherapeutic intervention, however, breast neoplasms have not shown the same efficacy. The causes of breast cancer’s immune silence derive from mechanisms that diminish immune recognition and others that promote strong immunosuppression. It is the mechanisms of immune evasion in breast cancers that are poorly defined. Thus, further characterization is critical for the development of better therapies. This brief review will seek to provide insight into the possible causes of weak immunogenicity and immune suppression mediated by breast cancers and highlight current immunotherapies being used to restore immune responses to breast cancer.
Collapse
Affiliation(s)
- Joshua P Bates
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, 685 West Baltimore St; HSF I- Room 380, Baltimore, MD, 21201, USA
| | - Roshanak Derakhshandeh
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, 685 West Baltimore St; HSF I- Room 380, Baltimore, MD, 21201, USA
| | - Laundette Jones
- Department of Epidemiology and Public Health, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, 685 West Baltimore St; HSF I- Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
149
|
Karakas B, Ozmay Y, Basaga H, Gul O, Kutuk O. Distinct apoptotic blocks mediate resistance to panHER inhibitors in HER2+ breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1073-1087. [PMID: 29733883 DOI: 10.1016/j.bbamcr.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/25/2023]
Abstract
Despite the development of novel targeted therapies, de novo or acquired chemoresistance remains a significant factor for treatment failure in breast cancer therapeutics. Neratinib and dacomitinib are irreversible panHER inhibitors, which block their autophosphorylation and downstream signaling. Moreover, neratinib and dacomitinib have been shown to activate cell death in HER2-overexpressing cell lines. Here we showed that increased MCL1 and decreased BIM and PUMA mediated resistance to neratinib in ZR-75-30 and SKBR3 cells while increased BCL-XL and BCL-2 and decreased BIM and PUMA promoted neratinib resistance in BT474 cells. Cells were also cross-resistant to dacomitinib. BH3 profiles of HER2+ breast cancer cells efficiently predicted antiapoptotic protein dependence and development of resistance to panHER inhibitors. Reactivation of ERK1/2 was primarily responsible for acquired resistance in SKBR3 and ZR-75-30 cells. Adding specific ERK1/2 inhibitor SCH772984 to neratinib or dacomitinib led to increased apoptotic response in neratinib-resistant SKBR3 and ZR-75-30 cells, but we did not detect a similar response in neratinib-resistant BT474 cells. Accordingly, suppression of BCL-2/BCL-XL by ABT-737 was required in addition to ERK1/2 inhibition for neratinib- or dacomitinib-induced apoptosis in neratinib-resistant BT474 cells. Our results showed that different mitochondrial apoptotic blocks mediated acquired panHER inhibitor resistance in HER2+ breast cancer cell lines as well as highlighted the potential of BH3 profiling assay in prediction of panHER inhibitor resistance in breast cancer cells.
Collapse
Affiliation(s)
- Bahriye Karakas
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey
| | - Yeliz Ozmay
- Baskent University School of Medicine, Dept. of Medical Genetics, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Huveyda Basaga
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey
| | - Ozgur Gul
- Bilgi University, Dept. of Genetics and Bioengineering, Istanbul, Turkey
| | - Ozgur Kutuk
- Baskent University School of Medicine, Dept. of Medical Genetics, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey.
| |
Collapse
|
150
|
Wang C, Wang L, Yu X, Zhang Y, Meng Y, Wang H, Yang Y, Gao J, Wei H, Zhao J, Lu C, Chen H, Sun Y, Li B. Combating acquired resistance to trastuzumab by an anti-ErbB2 fully human antibody. Oncotarget 2018; 8:42742-42751. [PMID: 28514745 PMCID: PMC5522102 DOI: 10.18632/oncotarget.17451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/12/2017] [Indexed: 12/02/2022] Open
Abstract
Trastuzumab resistance is a common problem that impedes the effectiveness of trastuzumab in ErbB2-amplified cancers. About 70% of ErbB2-amplified breast cancers do not respond to trastuzumab (de novo resistance), and the majority of the trastuzumab-responsive cancers progress within 1 year (acquired resistance). Different mechanisms exist between de novo and acquired resistance. Innate resistance mechanisms are mainly independent of ErbB2 receptor activity, and acquired resistance involves with alterations depending on ErbB2 activity. We previously reported H2-18, an ErbB2 domain I-specific antibody, which could circumvent de novo resistance to trastuzumab. Here, we modeled the development of acquired resistance by treating human gastric cancer cell line NCI-N87 with trastuzumab to obtain the trastuzumab-resistant subline, NCI-N87-TraRT. Next, we investigated the antitumor efficacy of H2-18 in NCI-N87-TraRT cell line. H2-18 exhibited a significantly greater antitumor activity in NCI-N87-TraRT tumor-bearing nude mice than pertuzumab and trastuzumab, either alone or in combination. The unique ability of H2-18 to overcome acquired resistance may be attributable to its potent programmed cell death-inducing activity, which was probably mediated by RIP1-ROS-JNK-c-Jun pathway. In conclusion, H2-18 may have the potential as an effective agent to circumvent acquired resistance to trastuzumab in ErbB2-overexpressing cancers.
Collapse
Affiliation(s)
- Chao Wang
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Lingfei Wang
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaojie Yu
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Yajun Zhang
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Yanchun Meng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Huajing Wang
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Yang Yang
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Jie Gao
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China
| | - Huafeng Wei
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jian Zhao
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Cuihua Lu
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Han Chen
- Department of General Surgery, 411 Hospital of Chinese People's Liberation Army, Shanghai, China
| | - Yanping Sun
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bohua Li
- International Joint Cancer Institute and Department of Pharmaceutical Sciences, The Second Military Medical University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|