101
|
Mosleh B, Schelch K, Mohr T, Klikovits T, Wagner C, Ratzinger L, Dong Y, Sinn K, Ries A, Berger W, Grasl‐Kraupp B, Hoetzenecker K, Laszlo V, Dome B, Hegedus B, Jakopovic M, Hoda MA, Grusch M. Circulating FGF18 is decreased in pleural mesothelioma but not correlated with disease prognosis. Thorac Cancer 2023; 14:2177-2186. [PMID: 37340889 PMCID: PMC10396789 DOI: 10.1111/1759-7714.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is a relatively rare malignancy with limited treatment options and dismal prognosis. We have previously found elevated FGF18 expression in PM tissue specimens compared with normal mesothelium. The objective of the current study was to further explore the role of FGF18 in PM and evaluate its suitability as a circulating biomarker. METHODS FGF18 mRNA expression was analyzed by real-time PCR in cell lines and in silico in datasets from the Cancer Genome Atlas (TCGA). Cell lines overexpressing FGF18 were generated by retroviral transduction and cell behavior was investigated by clonogenic growth and transwell assays. Plasma was collected from 40 PM patients, six patients with pleural fibrosis, and 40 healthy controls. Circulating FGF18 was measured by ELISA and correlated to clinicopathological parameters. RESULTS FGF18 showed high mRNA expression in PM and PM-derived cell lines. PM patients with high FGF18 mRNA expression showed a trend toward longer overall survival (OS) in the TCGA dataset. In PM cells with low endogenous FGF18 expression, forced overexpression of FGF18 resulted in reduced growth but increased migration. Surprisingly, despite the high FGF18 mRNA levels observed in PM, circulating FGF18 protein was significantly lower in PM patients and patients with pleural fibrosis than in healthy controls. No significant association of circulating FGF18 with OS or other disease parameters of PM patients was observed. CONCLUSIONS FGF18 is not a prognostic biomarker in PM. Its role in PM tumor biology and the clinical significance of decreased plasma FGF18 in PM patients warrant further investigation.
Collapse
Affiliation(s)
- Berta Mosleh
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Karin Schelch
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Thomas Klikovits
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Christina Wagner
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Lukas Ratzinger
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Yawen Dong
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Katharina Sinn
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Alexander Ries
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Walter Berger
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | | | | | - Viktoria Laszlo
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Balazs Dome
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
- National Koranyi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgeryNational Institute of Oncology‐Semmelweis UniversityBudapestHungary
| | - Balazs Hegedus
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Marko Jakopovic
- Department for Respiratory Diseases JordanovacUniversity of Zagreb School of Medicine, University Hospital Centre ZagrebZagrebCroatia
| | - Mir Alireza Hoda
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Michael Grusch
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
102
|
Dietz MV, van Kooten JP, Paats MS, Aerts JGVJ, Verhoef C, Madsen EVE, Dubbink HJ, von der Thüsen JH. Molecular alterations and potential actionable mutations in peritoneal mesothelioma: a scoping review of high-throughput sequencing studies. ESMO Open 2023; 8:101600. [PMID: 37453150 PMCID: PMC10368826 DOI: 10.1016/j.esmoop.2023.101600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Peritoneal mesothelioma (PeM) is a rare malignancy with a poor prognosis. Currently there is a lack of effective systemic therapies. Due to the rarity of PeM, it is challenging to study new treatment options. Off-label use of targeted drugs could be an effective approach. This scoping review aims to explore the genomic landscape of PeM to identify potential therapeutic targets. MATERIALS AND METHODS A systematic literature search of Embase, Medline, Web of Science, the Cochrane Library, and Google Scholar was carried out up to 1 November 2022. Studies that reported on molecular alterations in PeM detected by high-throughput sequencing techniques were included. Genes that were altered in ≥1% of PeMs were selected for the identification of potential targeted therapies. RESULTS Thirteen articles were included, comprising 824 PeM patients. In total, 142 genes were altered in ≥1% of patients, of which 7 genes were altered in ≥10%. BAP1 was the most commonly altered gene (50%). Other commonly altered genes were NF2 (25%), CDKN2A (23%), CDKN2B (17%), PBRM1 (15%), TP53 (14%), and SETD2 (13%). In total, 17% of PeM patients were carriers of a germline mutation, mainly in BAP1 (7%). CONCLUSIONS This scoping review provides an overview of the mutational landscape of PeM. Germline mutations might be a larger contributor to the incidence of PeM than previously thought. Currently available targeted therapy options are limited, but several targeted agents [such as poly (ADP-ribose) polymerase (PARP), enhancer of zeste homolog 2 (EZH2), and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors] were identified that might provide new targeted therapy options in the future.
Collapse
Affiliation(s)
| | | | - M S Paats
- Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam
| | - J G V J Aerts
- Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam
| | | | | | - H J Dubbink
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
103
|
Mitchell OD, Gilliam K, del Gaudio D, McNeely KE, Smith S, Acevedo M, Gaduraju M, Hodge R, Ramsland ASS, Segal J, Das S, Hathaway F, Bryan DS, Tawde S, Galasinski S, Wang P, Tjota MY, Husain AN, Armato SG, Donington J, Ferguson MK, Turaga K, Churpek JE, Kindler HL, Drazer MW. Germline Variants Incidentally Detected via Tumor-Only Genomic Profiling of Patients With Mesothelioma. JAMA Netw Open 2023; 6:e2327351. [PMID: 37556141 PMCID: PMC10413174 DOI: 10.1001/jamanetworkopen.2023.27351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 08/10/2023] Open
Abstract
IMPORTANCE Patients with mesothelioma often have next-generation sequencing (NGS) of their tumor performed; tumor-only NGS may incidentally identify germline pathogenic or likely pathogenic (P/LP) variants despite not being designed for this purpose. It is unknown how frequently patients with mesothelioma have germline P/LP variants incidentally detected via tumor-only NGS. OBJECTIVE To determine the prevalence of incidental germline P/LP variants detected via tumor-only NGS of mesothelioma. DESIGN, SETTING, AND PARTICIPANTS A series of 161 unrelated patients with mesothelioma from a high-volume mesothelioma program had tumor-only and germline NGS performed during April 2016 to October 2021. Follow-up ranged from 18 months to 7 years. Tumor and germline assays were compared to determine which P/LP variants identified via tumor-only NGS were of germline origin. Data were analyzed from January to March 2023. MAIN OUTCOMES AND MEASURES The proportion of patients with mesothelioma who had P/LP germline variants incidentally detected via tumor-only NGS. RESULTS Of 161 patients with mesothelioma, 105 were male (65%), the mean (SD) age was 64.7 (11.2) years, and 156 patients (97%) self-identified as non-Hispanic White. Most (126 patients [78%]) had at least 1 potentially incidental P/LP germline variant. The positive predictive value of a potentially incidental germline P/LP variant on tumor-only NGS was 20%. Overall, 26 patients (16%) carried a P/LP germline variant. Germline P/LP variants were identified in ATM, ATR, BAP1, CHEK2, DDX41, FANCM, HAX1, MRE11A, MSH6, MUTYH, NF1, SAMD9L, and TMEM127. CONCLUSIONS AND RELEVANCE In this case series of 161 patients with mesothelioma, 16% had confirmed germline P/LP variants. Given the implications of a hereditary cancer syndrome diagnosis for preventive care and familial counseling, clinical approaches for addressing incidental P/LP germline variants in tumor-only NGS are needed. Tumor-only sequencing should not replace dedicated germline testing. Universal germline testing is likely needed for patients with mesothelioma.
Collapse
Affiliation(s)
- Owen D. Mitchell
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Katie Gilliam
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | | | - Kelsey E. McNeely
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Shaili Smith
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Maria Acevedo
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Meghana Gaduraju
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Rachel Hodge
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | | | - Jeremy Segal
- Department of Pathology, The University of Chicago, Illinois
| | - Soma Das
- Department of Human Genetics, The University of Chicago, Illinois
| | - Feighanne Hathaway
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | | | - Sanjukta Tawde
- Department of Human Genetics, The University of Chicago, Illinois
| | | | - Peng Wang
- Department of Pathology, The University of Chicago, Illinois
| | | | - Aliya N. Husain
- Department of Pathology, The University of Chicago, Illinois
| | | | | | | | - Kiran Turaga
- Department of Surgery, The University of Chicago, Illinois
| | - Jane E. Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin, Madison
| | - Hedy L. Kindler
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| | - Michael W. Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Illinois
| |
Collapse
|
104
|
Xu M, Tu Y, Bi W, Lundberg MZ, Klooster I, Fletcher JA, Ou WB. SETDB1 tumour suppressor roles in near-haploid mesothelioma involve TP53. Br J Cancer 2023; 129:531-540. [PMID: 37369845 PMCID: PMC10403575 DOI: 10.1038/s41416-023-02330-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Mutational inactivation of the SETDB1 histone methyltransferase is found in a subset of mesothelioma, particularly in cases with near-haploidy and TP53 mutations. However, the tumourigenic consequences of SETDB1 inactivation are poorly understood. METHODS In this study, we investigated SETDB1 tumour suppressor functions in mesothelioma and explored biologic relationships between SETDB1 and TP53. RESULTS Immunoblotting of early passage cultures showed that SETDB1 was undetectable in 7 of 8 near-haploid mesotheliomas whereas SETDB1 expression was retained in each of 13 near-diploid mesotheliomas. TP53 aberrations were present in 5 of 8 near-haploid mesotheliomas compared to 2 of 13 near-diploid mesotheliomas, and BAP1 inactivation was demonstrated only in near-diploid mesotheliomas, indicating that near-haploid and near-diploid mesothelioma have distinct molecular and biologic profiles. Lentiviral SETDB1 restoration in near-haploid mesotheliomas (MESO257 and MESO542) reduced cell viability, colony formation, reactive oxygen species levels, proliferative marker cyclin A expression, and inhibited growth of MESO542 xenografts. The combination of SETDB1 restoration with pemetrexed and/or cisplatin treatment additively inhibited tumour growth in vitro and in vivo. Furthermore, SETDB1 restoration upregulated TP53 expression in MESO542 and MESO257, whereas SETDB1 knockdown inhibited mutant TP53 expression in JMN1B near-haploid mesothelioma cells. Likewise, TP53 knockdown inhibited SETDB1 expression. Similarly, immunoblotting evaluations of ten near-diploid mesothelioma biopsies and analysis of TCGA expression profiles showed that SETDB1 expression levels paralleled TP53 expression. CONCLUSION These findings demonstrate that SETDB1 inactivation in near-haploid mesothelioma is generally associated with complete loss of SETDB1 protein expression and dysregulates TP53 expression. Targeting SETDB1 pathways could be an effective therapeutic strategy in these often untreatable tumours.
Collapse
Affiliation(s)
- Mengting Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuqing Tu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenhui Bi
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meijun Z Lundberg
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isabella Klooster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
105
|
Parisi A, Rossi F, De Filippis C, Paoloni F, Felicetti C, Mammarella A, Pecci F, Lupi A, Berardi R. Current Evidence and Future Perspectives about the Role of PARP Inhibitors in the Treatment of Thoracic Cancers. Onco Targets Ther 2023; 16:585-613. [PMID: 37485307 PMCID: PMC10362869 DOI: 10.2147/ott.s272563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, poly (ADP-ribose) polymerase (PARP) inhibition has become a promising therapeutic option for several tumors, especially for those harboring a BRCA 1-2 mutation or a deficit in the homologous recombination repair (HRR) pathway. Nevertheless, to date, PARP inhibitors are still not largely used for thoracic malignancies neither as a single agent nor in combination with other treatments. Recently, a deeper understanding of HRR mechanisms, alongside the development of new targeted and immunotherapy agents, particularly against HRR-deficient tumors, traced the path to new treatment strategies for many tumor types including lung cancer and malignant pleural mesothelioma. The aim of this review is to sum up the current knowledge about cancer-DNA damage response pathways inhibition and to update the status of recent clinical trials investigating the use of PARP inhibitors, either as monotherapy or in combination with other agents for the treatment of thoracic malignancies. We will also briefly discuss available evidence on Poly(ADP-Ribose) Glycohydrolase (PARG) inhibitors, a novel promising therapeutic option in oncology.
Collapse
Affiliation(s)
- Alessandro Parisi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Francesca Rossi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Chiara De Filippis
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Francesco Paoloni
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Cristiano Felicetti
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Alex Mammarella
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Federica Pecci
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Alessio Lupi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Rossana Berardi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| |
Collapse
|
106
|
Torricelli F, Donati B, Reggiani F, Manicardi V, Piana S, Valli R, Lococo F, Ciarrocchi A. Spatially resolved, high-dimensional transcriptomics sorts out the evolution of biphasic malignant pleural mesothelioma: new paradigms for immunotherapy. Mol Cancer 2023; 22:114. [PMID: 37460925 PMCID: PMC10351128 DOI: 10.1186/s12943-023-01816-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Malignant Pleural Mesothelioma (MPM) is a dreadful disease escaping the classical genetic model of cancer evolution and characterized by wide heterogeneity and transcriptional plasticity. Clinical evolution of MPM is marked by a progressive transdifferentiation that converts well differentiated epithelioid (E) cells into undifferentiated and pleomorphic sarcomatoid (S) phenotypes. Catching the way this transition takes place is necessary to understand how MPM develops and progresses and it is mandatory to improve patients' management and life expectancy. Bulk transcriptomic approaches, while providing a significant overview, failed to resolve the timing of this evolution and to identify the hierarchy of molecular events through which this transition takes place. METHODS We applied a spatially resolved, high-dimensional transcriptomic approach to study MPM morphological evolution. 139 regions across 8 biphasic MPMs (B-MPMs) were profiled using the GeoMx™Digital Spatial Profiler to reconstruct the positional context of transcriptional activities and the spatial topology of MPM cells interactions. Validation was conducted on an independent large cohort of 84 MPMs by targeted digital barcoding analysis. RESULTS Our results demonstrated the existence of a complex circular ecosystem in which, within a strong asbestos-driven inflammatory environment, MPM and immune cells affect each other to support S-transdifferentiation. We also showed that TGFB1 polarized M2-Tumor Associated Macrophages foster immune evasion and that TGFB1 expression correlates with reduced survival probability. CONCLUSIONS Besides providing crucial insights into the multidimensional interactions governing MPM clinical evolution, these results open new perspectives to improve the use of immunotherapy in this disease.
Collapse
Affiliation(s)
- F Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - B Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - F Reggiani
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - V Manicardi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - S Piana
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - R Valli
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - F Lococo
- Thoracic Surgery Unit, IRCCS-Fondazione Policlinico Gemelli, Roma, Italia
- Catholic University of the Sacred Heart, Roma, Italia
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy.
| |
Collapse
|
107
|
Cedres S, Serna G, Gonzalez-Medina A, Valdivia A, Assaf-Pastrana JD, Iranzo P, Callejo A, Pardo N, Navarro A, Martinez-Marti A, Priano I, Fasani R, Guardia X, Gonzalo J, Carbonell C, Frigola J, Amat R, Navarro V, Dienstmann R, Vivancos A, Nuciforo P, Felip E. Expression of TILs and Patterns of Gene Expression from Paired Samples of Malignant Pleural Mesothelioma (MPM) Patients. Cancers (Basel) 2023; 15:3611. [PMID: 37509274 PMCID: PMC10377125 DOI: 10.3390/cancers15143611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
MPM is an aggressive disease with an immunosuppressive tumor microenvironment, and interest in exploring immunotherapy in this disease has been increasing. In the first line of treatment, the combination of nivolumab and ipilimumab demonstrated an improvement in survival over chemotherapy. The presence of TILs has been recognized as a marker of antitumor immune response to chemotherapy in solid tumors. The aim of our study is to identify the effect of treatment on immune cells and the immune gene profile in MPM. We investigated the changes in expression of TILs in 10 human MPM paired tumor tissues using immunohistochemistry and gene expression analysis from paired untreated and treated samples. In this small series, we demonstrated that during the evolution of disease without any treatment there was an increase in the inflammatory component in tumor samples. After systemic treatment there was a decrease in the number of TILs. We observed that after systemic treatment or disease progression immune gene signatures were suppressed. Our integrated analysis of paired samples with immune profile and genomic changes on MPM suggested that during the evolution of the disease the immune system tends to switch, turning off with treatment.
Collapse
Affiliation(s)
- Susana Cedres
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Garazi Serna
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | | | - Augusto Valdivia
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Juan David Assaf-Pastrana
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Patricia Iranzo
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ana Callejo
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Nuria Pardo
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Alejandro Navarro
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Alex Martinez-Marti
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ilaria Priano
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Roberta Fasani
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Xavier Guardia
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Javier Gonzalo
- Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Caterina Carbonell
- Clinical Research Department, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Joan Frigola
- Clinical Research Department, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ramon Amat
- Clinical Research Department, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Victor Navarro
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Lab, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Enriqueta Felip
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
108
|
Niedra H, Konrade I, Peculis R, Isajevs S, Saksis R, Skapars R, Sivins A, Daukste BE, Mezaka D, Rovite V. Solitary fibrous tumor with IGF-II-induced non-islet cell tumor hypoglycemia: a case report and molecular characterization by next-generation sequencing. Front Oncol 2023; 13:1188579. [PMID: 37469410 PMCID: PMC10352493 DOI: 10.3389/fonc.2023.1188579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Background Non-islet cell tumor-induced hypoglycemia (NICTH) is a rare, life-threatening medical condition caused by excessive insulin-like growth factor II (IGF-II) secretion from tumors of most commonly mesenchymal origin. Using next-generation sequencing, we have characterized the genome and transcriptome of the resected IGF-II-secreting solitary fibrous tumor from a patient with severe hypoglycemia accompanied by hypoglycemia unawareness. Case presentation A 69-year-old male patient presenting with abdominal discomfort was examined using computer tomography, revealing a large lesion at the lesser pelvis extending above the umbilicus. As no bone and lymph node metastases were detected, the patient was scheduled for laparotomy. Before surgery, the patient presented with symptoms of severe hypoglycemia. Suppressed C-peptide levels and subsequent hypokalemia indicated a possible case of NICTH. The patient was treated with methylprednisolone (8 mg) to assess hypoglycemia. After the surgery, mild hypoglycemia was present for the postoperative period, and no radiological recurrences were observed 3 and 12 months after discharge. Histopathological examination results were consistent with the diagnosis of malignant solitary fibrous tumor (SFT). Overexpression of IGF-II was confirmed by both immunohistochemistry and RNA sequencing. Further NGS analysis revealed an SFT characteristic alteration-NAB2-STAT6 fusion. Additionally, three deleterious missense variants were detected in oncogenes BIRC6, KIT, and POLQ, and one homozygous in-frame deletion in the RBM10 tumor suppressor gene. Conclusion While the NAB2-STAT6 fusions are well characterized, the mutational landscape of SFTs remains understudied. This study reports the importance of NGS to characterize SFTs as we detected four coding variants in genes (BIRC6, KIT, POLQ, and RBM10) associated with tumorigenesis that could potentially contribute to the overall pathogenesis of SFT.
Collapse
Affiliation(s)
- Helvijs Niedra
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilze Konrade
- RigaEast Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Raitis Peculis
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Rihards Saksis
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | - Dace Mezaka
- RigaEast Clinical University Hospital, Riga, Latvia
| | - Vita Rovite
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
109
|
Barbosa IAM, Gopalakrishnan R, Mercan S, Mourikis TP, Martin T, Wengert S, Sheng C, Ji F, Lopes R, Knehr J, Altorfer M, Lindeman A, Russ C, Naumann U, Golji J, Sprouffske K, Barys L, Tordella L, Schübeler D, Schmelzle T, Galli GG. Cancer lineage-specific regulation of YAP responsive elements revealed through large-scale functional epigenomic screens. Nat Commun 2023; 14:3907. [PMID: 37400441 DOI: 10.1038/s41467-023-39527-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
YAP is a key transcriptional co-activator of TEADs, it regulates cell growth and is frequently activated in cancer. In Malignant Pleural Mesothelioma (MPM), YAP is activated by loss-of-function mutations in upstream components of the Hippo pathway, while, in Uveal Melanoma (UM), YAP is activated in a Hippo-independent manner. To date, it is unclear if and how the different oncogenic lesions activating YAP impact its oncogenic program, which is particularly relevant for designing selective anti-cancer therapies. Here we show that, despite YAP being essential in both MPM and UM, its interaction with TEAD is unexpectedly dispensable in UM, limiting the applicability of TEAD inhibitors in this cancer type. Systematic functional interrogation of YAP regulatory elements in both cancer types reveals convergent regulation of broad oncogenic drivers in both MPM and UM, but also strikingly selective programs. Our work reveals unanticipated lineage-specific features of the YAP regulatory network that provide important insights to guide the design of tailored therapeutic strategies to inhibit YAP signaling across different cancer types.
Collapse
Affiliation(s)
- Inês A M Barbosa
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rajaraman Gopalakrishnan
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
- Alltrna Inc., One Kendall Square, Cambridge, MA, USA
| | - Samuele Mercan
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thanos P Mourikis
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Typhaine Martin
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Simon Wengert
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Helmholtz Pioneer Campus, Helmholtz Zentrum München GmbH German Research Center for Environmental Health, Neuherberg, Germany
| | - Caibin Sheng
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Fei Ji
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Rui Lopes
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Judith Knehr
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marc Altorfer
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alicia Lindeman
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Carsten Russ
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Ulrike Naumann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Javad Golji
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Kathleen Sprouffske
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Louise Barys
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Luca Tordella
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Tobias Schmelzle
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Giorgio G Galli
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
110
|
Assié JB, Jean D. Pleural mesothelioma: a snapshot of emerging drug targets and opportunities for non-surgical therapeutic advancement. Expert Opin Ther Targets 2023; 27:1059-1069. [PMID: 37902459 DOI: 10.1080/14728222.2023.2277224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Pleural mesothelioma is a rare and aggressive cancer originating in the pleura, with a devastating prognosis and limited treatment options. There have been significant advancements in the management of this disease in recent years. Since 2021, nivolumab and ipilimumab immune checkpoint inhibitors have become the new standard of care for first-line treatment of pleural mesothelioma. AREAS COVERED While a combination of chemotherapy and immune checkpoint inhibitors appears to be the next step, targeted therapies are emerging thanks to our understanding of the oncogenesis of pleural mesothelioma. Moreover, several new strategies are currently being investigated, including viral therapy, antibody-drug conjugates, and even cell therapies with CAR-T cells or dendritic cells. In this review, we will explore the various future opportunities that could potentially transform patients' lives in light of the clinical trials that have been conducted. EXPERT OPINION Future clinical studies aim to rebiopsy patients after disease progression to identify new molecular alterations and to be associated with ancillary studies, guiding subsequent therapy decisions. Predicting and investigating treatment resistance mechanisms will lead to innovative approaches and improved treatment outcomes.
Collapse
Affiliation(s)
- Jean-Baptiste Assié
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Functional Genomics of Solid Tumors Laboratory, Paris, France
- GRC OncoThoParisEst, Service de Pneumologie, Centre Hospitalier IntercommunaI, UPEC, Créteil, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Functional Genomics of Solid Tumors Laboratory, Paris, France
| |
Collapse
|
111
|
Farahmand P, Gyuraszova K, Rooney C, Raffo-Iraolagoitia XL, Jayasekera G, Hedley A, Johnson E, Chernova T, Malviya G, Hall H, Monteverde T, Blyth K, Duffin R, Carlin LM, Lewis D, Le Quesne J, MacFarlane M, Murphy DJ. Asbestos accelerates disease onset in a genetic model of malignant pleural mesothelioma. FRONTIERS IN TOXICOLOGY 2023; 5:1200650. [PMID: 37441092 PMCID: PMC10333928 DOI: 10.3389/ftox.2023.1200650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothesis: Asbestos-driven inflammation contributes to malignant pleural mesothelioma beyond the acquisition of rate-limiting mutations. Methods: Genetically modified conditional allelic mice that were previously shown to develop mesothelioma in the absence of exposure to asbestos were induced with lentiviral vector expressing Cre recombinase with and without intrapleural injection of amosite asbestos and monitored until symptoms required euthanasia. Resulting tumours were examined histologically and by immunohistochemistry for expression of lineage markers and immune cell infiltration. Results: Injection of asbestos dramatically accelerated disease onset and end-stage tumour burden. Tumours developed in the presence of asbestos showed increased macrophage infiltration. Pharmacological suppression of macrophages in mice with established tumours failed to extend survival or to enhance response to chemotherapy. Conclusion: Asbestos-driven inflammation contributes to the severity of mesothelioma beyond the acquisition of rate-limiting mutations, however, targeted suppression of macrophages in established epithelioid mesothelioma showed no therapeutic benefit.
Collapse
Affiliation(s)
- Pooyeh Farahmand
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Claire Rooney
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Respiratory Medicine, Royal Infirmary, Glasgow, United Kingdom
| | | | - Geeshath Jayasekera
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Ann Hedley
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Emma Johnson
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Tatyana Chernova
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Gaurav Malviya
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Holly Hall
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Tiziana Monteverde
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
- Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Rodger Duffin
- Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Leo M. Carlin
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - David Lewis
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - John Le Quesne
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
- Department of Histopathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| |
Collapse
|
112
|
Digifico E, Erreni M, Mannarino L, Marchini S, Ummarino A, Anfray C, Bertola L, Recordati C, Pistillo D, Roncalli M, Bossi P, Zucali PA, D’Incalci M, Belgiovine C, Allavena P. Important functional role of the protein osteopontin in the progression of malignant pleural mesothelioma. Front Immunol 2023; 14:1116430. [PMID: 37398648 PMCID: PMC10312076 DOI: 10.3389/fimmu.2023.1116430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
Background Malignant Pleural Mesothelioma (MPM) is an aggressive cancer of the mesothelial lining associated with exposure to airborne non-degradable asbestos fibers. Its poor response to currently available treatments prompted us to explore the biological mechanisms involved in its progression. MPM is characterized by chronic non-resolving inflammation; in this study we investigated which inflammatory mediators are mostly expressed in biological tumor samples from MPM patients, with a focus on inflammatory cytokines, chemokines and matrix components. Methods Expression and quantification of Osteopontin (OPN) was detected in tumor and plasma samples of MPM patients by mRNA, immunohistochemistry and ELISA. The functional role of OPN was investigated in mouse MPM cell lines in vivo using an orthotopic syngeneic mouse model. Results In patients with MPM, the protein OPN was significantly more expressed in tumors than in normal pleural tissues and predominantly produced by mesothelioma cells; plasma levels were elevated in patients and associated with poor prognosis. However, modulation of OPN levels was not significantly different in a series of 18 MPM patients receiving immunotherapy with durvalumab alone or with pembrolizumab in combination with chemotherapy, some of whom achieved a partial clinical response. Two established murine mesothelioma cell lines: AB1 and AB22 of sarcomatoid and epithelioid histology, respectively, spontaneously produced high levels of OPN. Silencing of the OPN gene (Spp1) dramatically inhibited tumor growth in vivo in an orthotopic model, indicating that OPN has an important promoting role in the proliferation of MPM cells. Treatment of mice with anti-CD44 mAb, blocking a major OPN receptor, significantly reduced tumor growth in vivo. Conclusion These results demonstrate that OPN is an endogenous growth factor for mesothelial cells and inhibition of its signaling may be helpful to restrain tumor progression in vivo. These findings have translational potential to improve the therapeutic response of human MPM.
Collapse
Affiliation(s)
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, Milano, Italy
| | - Laura Mannarino
- Lab. Cancer Pharmacology, IRCCS Humanitas Research Hospital, Milano, Italy
- Department Biomedical Sciences, Humanitas University, Milano, Italy
| | - Sergio Marchini
- Lab. Cancer Pharmacology, IRCCS Humanitas Research Hospital, Milano, Italy
| | - Aldo Ummarino
- Department Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department Biomedical Sciences, Humanitas University, Milano, Italy
| | - Clément Anfray
- Department Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Bertola
- Mouse and Animal Pathology Lab., Fondazione Unimi, and Department of Veterinary Medicine and Animal Sciences, University of Milano, Lodi, Italy
| | - Camilla Recordati
- Mouse and Animal Pathology Lab., Fondazione Unimi, and Department of Veterinary Medicine and Animal Sciences, University of Milano, Lodi, Italy
| | - Daniela Pistillo
- Biobank, Humanitas IRCCS Humanitas Research Hospital, Milano, Italy
| | - Massimo Roncalli
- Department Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paola Bossi
- Department Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo Andrea Zucali
- Department Biomedical Sciences, Humanitas University, Milano, Italy
- Department Oncology, IRCCS Humanitas Research Hospital, Milano, Italy
| | - Maurizio D’Incalci
- Lab. Cancer Pharmacology, IRCCS Humanitas Research Hospital, Milano, Italy
- Department Biomedical Sciences, Humanitas University, Milano, Italy
| | | | - Paola Allavena
- Department Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department Biomedical Sciences, Humanitas University, Milano, Italy
| |
Collapse
|
113
|
Desai AP, Kosari F, Disselhorst M, Yin J, Agahi A, Peikert T, Udell J, Johnson SH, Smadbeck J, Murphy S, Karagouga G, McCune A, Schaefer-Klein J, Borad MJ, Cheville J, Vasmatzis G, Baas P, Mansfield A. Dynamics and survival associations of T cell receptor clusters in patients with pleural mesothelioma treated with immunotherapy. J Immunother Cancer 2023; 11:e006035. [PMID: 37279993 PMCID: PMC10255162 DOI: 10.1136/jitc-2022-006035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are now a first-line treatment option for patients with pleural mesothelioma with the recent approval of ipilimumab and nivolumab. Mesothelioma has a low tumor mutation burden and no robust predictors of survival with ICI. Since ICIs enable adaptive antitumor immune responses, we investigated T-cell receptor (TCR) associations with survival in participants from two clinical trials treated with ICI. METHODS We included patients with pleural mesothelioma who were treated with nivolumab (NivoMes, NCT02497508) or nivolumab and ipilimumab (INITIATE, NCT03048474) after first-line therapy. TCR sequencing was performed with the ImmunoSEQ assay in 49 and 39 pretreatment and post-treatment patient peripheral blood mononuclear cell (PBMC) samples. These data were integrated with TCR sequences found in bulk RNAseq data by TRUST4 program in 45 and 35 pretreatment and post-treatment tumor biopsy samples and TCR sequences from over 600 healthy controls. The TCR sequences were clustered into groups of shared antigen specificity using GIANA. Associations of TCR clusters with overall survival were determined by cox proportional hazard analysis. RESULTS We identified 4.2 million and 12 thousand complementarity-determining region 3 (CDR3) sequences from PBMCs and tumors, respectively, in patients treated with ICI. These CDR3 sequences were integrated with 2.1 million publically available CDR3 sequences from healthy controls and clustered. ICI-enhanced T-cell infiltration and expanded T cell diversity in tumors. Cases with TCR clones in the top tertile in the pretreatment tissue or in circulation had significantly better survival than the bottom two tertiles (p<0.04). Furthermore, a high number of shared TCR clones between pretreatment tissue and in circulation was associated with improved survival (p=0.01). To potentially select antitumor clusters, we filtered for clusters that were (1) not found in healthy controls, (2) recurrent in multiple patients with mesothelioma, and (3) more prevalent in post-treatment than pretreatment samples. The detection of two-specific TCR clusters provided significant survival benefit compared with detection of 1 cluster (HR<0.001, p=0.026) or the detection of no TCR clusters (HR=0.10, p=0.002). These two clusters were not found in bulk tissue RNA-seq data and have not been reported in public CDR3 databases. CONCLUSIONS We identified two unique TCR clusters that were associated with survival on treatment with ICI in patients with pleural mesothelioma. These clusters may enable approaches for antigen discovery and inform future targets for design of adoptive T cell therapies.
Collapse
Affiliation(s)
- Aakash P Desai
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Farhad Kosari
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Disselhorst
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jun Yin
- Quantitative Health Sciences, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Alireza Agahi
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Tobias Peikert
- Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia Udell
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Sarah H Johnson
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - James Smadbeck
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Stephen Murphy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Giannoula Karagouga
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Alexa McCune
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Janet Schaefer-Klein
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Mitesh J Borad
- Hematology/Medical Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - John Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul Baas
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aaron Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
114
|
Qi S, Zhong Z, Zhu Y, Wang Y, Ma M, Wang Y, Liu X, Jin R, Jiao Z, Zhu R, Sha Z, Dang K, Liu Y, Lim D, Mao J, Zhang L, Yu F. Two Hippo signaling modules orchestrate liver size and tumorigenesis. EMBO J 2023; 42:e112126. [PMID: 36919851 PMCID: PMC10233384 DOI: 10.15252/embj.2022112126] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
The Hippo pathway is a central regulator of organ size and tumorigenesis and is commonly depicted as a kinase cascade, with an increasing number of regulatory and adaptor proteins linked to its regulation over recent years. Here, we propose that two Hippo signaling modules, MST1/2-SAV1-WWC1-3 (HPO1) and MAP4K1-7-NF2 (HPO2), together regulate the activity of LATS1/2 kinases and YAP/TAZ transcriptional co-activators. In mouse livers, the genetic inactivation of either HPO1 or HPO2 module results in partial activation of YAP/TAZ, bile duct hyperplasia, and hepatocellular carcinoma (HCC). On the contrary, inactivation of both HPO1 and HPO2 modules results in full activation of YAP/TAZ, rapid development of intrahepatic cholangiocarcinoma (iCCA), and early lethality. Interestingly, HPO1 has a predominant role in regulating organ size. HPO1 inactivation causes a homogenous YAP/TAZ activation and cell proliferation across the whole liver, resulting in a proportional and rapid increase in liver size. Thus, this study has reconstructed the order of the Hippo signaling network and suggests that LATS1/2 and YAP/TAZ activities are finetuned by HPO1 and HPO2 modules to cause different cell fates, organ size changes, and tumorigenesis trajectories.
Collapse
Affiliation(s)
- Sixian Qi
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhenxing Zhong
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuwen Zhu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yebin Wang
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Mingyue Ma
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu Wang
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xincheng Liu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ruxin Jin
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhihan Jiao
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Rui Zhu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhao Sha
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Kyvan Dang
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Dae‐Sik Lim
- Department of Biological Sciences, National Creative Research Initiatives CenterKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Junhao Mao
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Fa‐Xing Yu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
115
|
Felley-Bosco E. Exploring the Expression of the «Dark Matter» of the Genome in Mesothelioma for Potentially Predictive Biomarkers for Prognosis and Immunotherapy. Cancers (Basel) 2023; 15:cancers15112969. [PMID: 37296931 DOI: 10.3390/cancers15112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Recent high-throughput RNA sequencing technologies have confirmed that a large part of the non-coding genome is transcribed. The priority for further investigations is nevertheless generally given in cancer to coding sequences, due to the obvious interest of finding therapeutic targets. In addition, several RNA-sequencing pipelines eliminate repetitive sequences, which are difficult to analyze. In this review, we shall focus on endogenous retroviruses. These sequences are remnants of ancestral germline infections by exogenous retroviruses. These sequences represent 8% of human genome, meaning four-fold the fraction of the genome encoding for proteins. These sequences are generally mostly repressed in normal adult tissues, but pathological conditions lead to their de-repression. Specific mesothelioma-associated endogenous retrovirus expression and their association to clinical outcome is discussed.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Zürich University Hospital, 8091 Zurich, Switzerland
| |
Collapse
|
116
|
Borea F, Franczak MA, Garcia M, Perrino M, Cordua N, Smolenski RT, Peters GJ, Dziadziuszko R, Santoro A, Zucali PA, Giovannetti E. Target Therapy in Malignant Pleural Mesothelioma: Hope or Mirage? Int J Mol Sci 2023; 24:ijms24119165. [PMID: 37298116 DOI: 10.3390/ijms24119165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a rare neoplasm that is typically diagnosed in a locally advanced stage, making it not eligible for radical surgery and requiring systemic treatment. Chemotherapy with platinum compounds and pemetrexed has been the only approved standard of care for approximately 20 years, without any relevant therapeutic advance until the introduction of immune checkpoint inhibitors. Nevertheless, the prognosis remains poor, with an average survival of only 18 months. Thanks to a better understanding of the molecular mechanisms underlying tumor biology, targeted therapy has become an essential therapeutic option in several solid malignancies. Unfortunately, most of the clinical trials evaluating potentially targeted drugs for MPM have failed. This review aims to present the main findings of the most promising targeted therapies in MPM, and to explore possible reasons leading to treatments failures. The ultimate goal is to determine whether there is still a place for continued preclinical/clinical research in this area.
Collapse
Affiliation(s)
- Federica Borea
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marika A Franczak
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Maria Garcia
- Faculty of Experimental Science, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Matteo Perrino
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nadia Cordua
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paolo A Zucali
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| |
Collapse
|
117
|
Agaimy A, Brcic L, Briski LM, Hung YP, Michal M, Michal M, Nielsen GP, Stoehr R, Rosenberg AE. NR4A3 fusions characterize a distinctive peritoneal mesothelial neoplasm of uncertain biological potential with pure adenomatoid/microcystic morphology. Genes Chromosomes Cancer 2023; 62:256-266. [PMID: 36524687 DOI: 10.1002/gcc.23118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
A focal adenomatoid-microcystic pattern is not uncommon in peritoneal mesothelioma, but tumors composed almost exclusively of this pattern are distinctly rare and have not been well characterized. A small subset of mesotheliomas (mostly in children and young adults) are characterized by gene fusions including EWSR1/FUS::ATF1, EWSR1::YY1, and NTRK and ALK rearrangements, and often have epithelioid morphology. Herein, we describe five peritoneal mesothelial neoplasms (identified via molecular screening of seven histologically similar tumors) that are pure adenomatoid/microcystic in morphology and unified by the presence of an NR4A3 fusion. Patients were three males and two females aged 31-70 years (median, 40 years). Three presented with multifocal/diffuse and two with a localized disease. The size of the individual lesions ranged from 1.5 to 8 cm (median, 4.7). The unifocal lesions originated in the small bowel mesentery and the mesosigmoid. Treatment included surgery, either alone (three) or combined with hyperthermic intraperitoneal chemotherapy (two), and neoadjuvant or adjuvant chemotherapy (one case each). At the last follow-up (6-13 months), all five patients were alive and disease-free. All tumors were morphologically similar, characterized by extensive sieve-like microcystic growth with bland-looking flattened cells lining variably sized microcystic spaces and lacked a conventional epithelioid or sarcomatoid component. Immunohistochemistry confirmed mesothelial differentiation, but most cases showed limited expression of D2-40 and calretinin. Targeted RNA sequencing revealed an NR4A3 fusion (fusion partners were EWSR1 in three cases and CITED2 and NIPBL in one case each). The nosology and behavior of this morphomolecularly defined novel peritoneal mesothelial neoplasm of uncertain biological potential and its distinction from adenomatoid variants of conventional mesothelioma merit further delineation as more cases become recognized.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Laurence M Briski
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Michal
- Department of Pathology, Charles University, Faculty of Medicine in Plzen, Pilsen, Czech Republic
| | - Michal Michal
- Department of Pathology, Charles University, Faculty of Medicine in Plzen, Pilsen, Czech Republic
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert Stoehr
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
118
|
Michal M, Kravtsov O, Ross JS, Skanderová D, Martínek P, Mosaieby E, Mata DA, Williams EA, Hung YP. Clear cell mesotheliomas with inactivating VHL mutations and near-haploid genomic features. Genes Chromosomes Cancer 2023; 62:267-274. [PMID: 36515470 DOI: 10.1002/gcc.23119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Clear cell mesothelioma is uncommon and shows predominance of clear cells with resemblance to clear cell carcinomas. Clinicopathologic and molecular descriptions of clear cell mesothelioma remained limited. In this study, we identified an index patient with clear cell mesothelioma, confirmed by immunohistochemical and ultrastructural studies. Targeted next-generation sequencing revealed the presence of an inactivating VHL mutation. We then systematically searched for VHL-mutant mesotheliomas in a comprehensive genomic profiling database of 1532 mesotheliomas. Collectively, we identified a cohort of four VHL-mutant clear cell mesotheliomas, including three peritoneal and one pleural tumors from three females and one male, with age range of 47-68 (median 63) years. Histologically, each tumor showed a microcystic to tubulopapillary architecture with prominent clear cells. By next-generation DNA sequencing, each of the four clear cell mesotheliomas harbored inactivating VHL mutations, while lacking other alterations typical of mesotheliomas such as BAP1, NF2, SETD2, CDKN2A, CDKN2B, TP53, and PTEN. By using low-pass whole genome sequencing on the index case and targeted next-generation sequencing on the remaining three cases, we identified extensive loss of heterozygosity throughout the genome but consistently sparing chromosomes 5, 7, and 20, characteristic of genomic near-haploidization. In summary, clear cell mesotheliomas were characterized by inactivating VHL mutations and genomic near-haploidization and appeared to represent a distinct clinicopathologic and molecular category of mesotheliomas. Our findings implicate VHL in the pathogenesis of a subset of mesotheliomas, particularly those with clear cell morphology.
Collapse
Affiliation(s)
- Michael Michal
- Department of Pathology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
- Department of Pathology, Bioptical Laboratory Ltd., Plzen, Czech Republic
| | - Oleksandr Kravtsov
- Department of Pathology, State University of New York Upstate Medical University, New York, New York, USA
| | - Jeffrey S Ross
- Department of Pathology, State University of New York Upstate Medical University, New York, New York, USA
- Department of Pathology, Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Daniela Skanderová
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Martínek
- Department of Pathology, Bioptical Laboratory Ltd., Plzen, Czech Republic
| | - Elaheh Mosaieby
- Department of Pathology, Bioptical Laboratory Ltd., Plzen, Czech Republic
| | - Douglas A Mata
- Department of Pathology, Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Erik A Williams
- Department of Pathology, Foundation Medicine, Inc., Cambridge, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, and Jackson Memorial Hospitals, University of Miami, Miami, Florida, USA
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
119
|
Barnett SE, Kenyani J, Tripari M, Butt Z, Grosman R, Querques F, Shaw L, Silva LC, Goate Z, Marciniak SJ, Rassl DM, Jackson R, Lian LY, Szlosarek PW, Sacco JJ, Coulson JM. BAP1 Loss Is Associated with Higher ASS1 Expression in Epithelioid Mesothelioma: Implications for Therapeutic Stratification. Mol Cancer Res 2023; 21:411-427. [PMID: 36669126 PMCID: PMC10150242 DOI: 10.1158/1541-7786.mcr-22-0635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
The nuclear deubiquitylase BRCA1-associated protein 1 (BAP1) is frequently inactivated in malignant pleural mesothelioma (MPM) and germline BAP1 mutation predisposes to cancers including MPM. To explore the influence on cell physiology and drug sensitivity, we sequentially edited a predisposition mutation (w-) and a promoter trap (KO) into human mesothelial cells. BAP1w-/KO MeT5A cells express less BAP1 protein and phenocopy key aspects of BAP1 loss in MPM. Stable isotope labeling with amino acids in cell culture-mass spectrometry revealed evidence of metabolic adaptation, with concomitant alteration of cellular metabolites. In MeT5A, BAP1 deficiency reduces glycolytic enzyme levels but increases enzymes involved in the tricarboxylic acid cycle and anaplerotic pathways. Notably both argininosuccinate synthase 1 (ASS1), essential for cellular synthesis of arginine, and its substrate aspartate, are elevated in BAP1w-/KO MeT5A cells. Likewise, ASS1 expression is higher in BAP1-altered MPM cell lines, and inversely correlates with BAP1 in The Cancer Genome Atlas MESO dataset. Elevated ASS1 is also evident by IHC staining in epithelioid MPM lacking nuclear BAP1 expression, with improved survival among patients with BAP1-negative/ASS1-expressing tumors. Alterations in arginine metabolism may sensitize cells to metabolic drugs and we find that BAP1-negative/ASS1-expressing MPM cell lines are more sensitive to ASS1 inhibition, although not to inhibition of purine synthesis by mizoribine. Importantly, BAP1w-/KO MeT5A become desensitized to arginine deprivation by pegylated arginine deiminase (ADI-PEG20), phenocopying BAP1-negative/ASS1-expressing MPM cell lines. IMPLICATIONS Our data reveal an interrelationship between BAP1 and arginine metabolism, providing a potential means of identifying patients with epithelioid MPM likely to benefit from ADI-PEG20.
Collapse
Affiliation(s)
- Sarah E. Barnett
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Jenna Kenyani
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Martina Tripari
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Zohra Butt
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Rudi Grosman
- Biochemistry and Systems Biology, University of Liverpool, Liverpool, United Kingdom
| | - Francesca Querques
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Liam Shaw
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Luisa C. Silva
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Zoe Goate
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Doris M. Rassl
- Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Richard Jackson
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, United Kingdom
| | - Lu-Yun Lian
- Biochemistry and Systems Biology, University of Liverpool, Liverpool, United Kingdom
| | - Peter W. Szlosarek
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Joseph J. Sacco
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, United Kingdom
| | - Judy M. Coulson
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
120
|
Shivarov V, Blazhev G, Yordanov A. A Novel Two-Gene Expression-Based Prognostic Score in Malignant Pleural Mesothelioma. Diagnostics (Basel) 2023; 13:diagnostics13091556. [PMID: 37174947 PMCID: PMC10177801 DOI: 10.3390/diagnostics13091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare cancer type with an increasing incidence worldwide. We aimed to develop a rational gene expression-based prognostic score in MPM using publicly available datasets. METHODS We developed and validated a two-gene prognostic score (2-PS) using three independent publicly available gene expression datasets. The 2-PS was built using the Robust Likelihood-Based Survival Modeling with Microarray Data method. RESULTS We narrowed down the model building to the analysis of 179 genes, which have been shown previously to be of importance to MPM development. Our statistical approach showed that a model including two genes (GOLT1B and MAD2L1) was the best predictor for overall survival (OS) (p < 0.0001). The binary score based on the median of the continuous score stratified the patients into low and high score groups and also showed statistical significance in uni- and multivariate models. The 2-PS was validated using two independent transcriptomic datasets. Furthermore, gene set enrichment analysis using training and validation datasets showed that high score patients had distinct gene expression profiles. Our 2-PS also showed a correlation with the estimated infiltration by some immune cell fractions such as CD8+ T cells and M1/2 macrophages. Finally, 2-PS correlated with sensitivity or resistance to some commonly used chemotherapeutic drugs. CONCLUSION This is the first study to demonstrate good performance of only two-gene expression-based prognostic scores in MPM. Our initial approach for features selection allowed for an increased likelihood for the predictive value of the developed score, which we were also able to demonstrate.
Collapse
Affiliation(s)
- Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Georgi Blazhev
- Department of Genetics, Faculty of Biology, St. Kliment Ohridski Sofia University, 1164 Sofia, Bulgaria
| | - Angel Yordanov
- Department of Gynaecological Oncology, Medical University Pleven, 5800 Pleven, Bulgaria
| |
Collapse
|
121
|
Xu X, Li H, Xie M, Zhou Z, Wang D, Mao W. LncRNAs and related molecular basis in malignant pleural mesothelioma: challenges and potential. Crit Rev Oncol Hematol 2023; 186:104012. [PMID: 37116816 DOI: 10.1016/j.critrevonc.2023.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare but invasive cancer, which mainly arises from mesothelial tissues of pleura, peritoneum and pericardium. Despite significant advances in treatments, the prognosis of MPM patients remains poor, and the 5-year survival rate is less than 10%. Therefore, it is urgent to explore novel therapeutic targets for the treatment of MPM. Growing evidence has indicated that long non-coding RNAs (lncRNAs) potentially could be promising therapeutic targets for numerous cancers. In this regard, lncRNAs might also potentially therapeutic targets for MPM. Recent advances have been made to investigate the molecular basis of MPM. This review first provides a comprehensive overview of roles of lncRNAs in MPM and then discusses the relationship between molecular basis of MPM and MPM-related lncRNAs to implement them as promising therapeutic targets for MPM.
Collapse
Affiliation(s)
- Xiaoling Xu
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huihui Li
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mingying Xie
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zichao Zhou
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ding Wang
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weimin Mao
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Department of Thoracic Surgery, Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang Province, China.
| |
Collapse
|
122
|
Sekido Y, Sato T. NF2 alteration in mesothelioma. FRONTIERS IN TOXICOLOGY 2023; 5:1161995. [PMID: 37180489 PMCID: PMC10168293 DOI: 10.3389/ftox.2023.1161995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The NF2 tumor suppressor gene is a frequent somatically mutated gene in mesothelioma, with 30%-40% mesotheliomas showing NF2 inactivation. NF2 encodes merlin, a member of the ezrin, radixin, and moesin (ERM) family of proteins that regulate cytoskeleton and cell signaling. Recent genome analysis revealed that NF2 alteration may be a late event in mesothelioma development, suggesting that NF2 mutation confers a more aggressive phenotype to mesothelioma cells and may not be directly caused by asbestos exposure. The Hippo tumor-suppressive and mTOR prooncogenic signaling pathways are crucial cell-signaling cascades regulated by merlin. Although the exact role and timing of NF2 inactivation in mesothelioma cells remain to be elucidated, targeting the NF2/merlin-Hippo pathway may be a new therapeutic strategy for patients with mesothelioma.
Collapse
Affiliation(s)
- Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
123
|
Mishra-Gorur K, Barak T, Kaulen LD, Henegariu O, Jin SC, Aguilera SM, Yalbir E, Goles G, Nishimura S, Miyagishima D, Djenoune L, Altinok S, Rai DK, Viviano S, Prendergast A, Zerillo C, Ozcan K, Baran B, Sencar L, Goc N, Yarman Y, Ercan-Sencicek AG, Bilguvar K, Lifton RP, Moliterno J, Louvi A, Yuan S, Deniz E, Brueckner M, Gunel M. Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease. Proc Natl Acad Sci U S A 2023; 120:e2214997120. [PMID: 37043537 PMCID: PMC10120005 DOI: 10.1073/pnas.2214997120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 04/13/2023] Open
Abstract
While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leon D. Kaulen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | | | - Ezgi Yalbir
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Gizem Goles
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Lydia Djenoune
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Devendra K. Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Andrew Prendergast
- Department of Internal Medicine, Section of Cardiology, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT06510
| | - Cynthia Zerillo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Burcin Baran
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leman Sencar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Nukte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| | - Shiaulou Yuan
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Martina Brueckner
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| |
Collapse
|
124
|
Dincer A, Morales-Valero SF, Robert SM, Tabor JK, O'Brien J, Yalcin K, Fulbright RK, Erson-Omay Z, Dunn IF, Moliterno J. Surgical strategies for intracranial meningioma in the molecular era. J Neurooncol 2023; 162:253-265. [PMID: 37010677 PMCID: PMC10167142 DOI: 10.1007/s11060-023-04272-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/16/2023] [Indexed: 04/04/2023]
Abstract
INTRODUCTION Surgical resection has long been the treatment of choice for meningiomas and is considered curative in many cases. Indeed, the extent of resection (EOR) remains a significant factor in determining disease recurrence and outcome optimization for patients undergoing surgery. Although the Simpson Grading Scale continues to be widely accepted as the measure of EOR and is used to predict symptomatic recurrence, its utility is under increasing scrutiny. The influence of surgery in the definitive management of meningioma is being re-appraised considering the rapid evolution of our understanding of the biology of meningioma. DISCUSSION Although historically considered "benign" lesions, meningioma natural history can vary greatly, behaving with unexpectedly high recurrence rates and growth which do not always behave in accordance with their WHO grade. Histologically confirmed WHO grade 1 tumors may demonstrate unexpected recurrence, malignant transformation, and aggressive behavior, underscoring the molecular complexity and heterogeneity. CONCLUSION As our understanding of the clinical predictive power of genomic and epigenomic factors matures, we here discuss the importance of surgical decision-making paradigms in the context of our rapidly evolving understanding of these molecular features.
Collapse
Affiliation(s)
- Alper Dincer
- Department of Neurosurgery, Tufts Medical Center, Boston, MA, USA
| | - Saul F Morales-Valero
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Joanna K Tabor
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Joseph O'Brien
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Kanat Yalcin
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Robert K Fulbright
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
| | - Ian F Dunn
- Department of Neurosurgery, Oklahoma University Medical Center, Oklahoma City, OK, USA
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, 15 York Street, LLCI 810, New Haven, CT, 06510, USA.
- The Chenevert Family Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA.
| |
Collapse
|
125
|
Mangiante L, Alcala N, Sexton-Oates A, Di Genova A, Gonzalez-Perez A, Khandekar A, Bergstrom EN, Kim J, Liu X, Blazquez-Encinas R, Giacobi C, Le Stang N, Boyault S, Cuenin C, Tabone-Eglinger S, Damiola F, Voegele C, Ardin M, Michallet MC, Soudade L, Delhomme TM, Poret A, Brevet M, Copin MC, Giusiano-Courcambeck S, Damotte D, Girard C, Hofman V, Hofman P, Mouroux J, Cohen C, Lacomme S, Mazieres J, de Montpreville VT, Perrin C, Planchard G, Rousseau N, Rouquette I, Sagan C, Scherpereel A, Thivolet F, Vignaud JM, Jean D, Ilg AGS, Olaso R, Meyer V, Boland-Auge A, Deleuze JF, Altmuller J, Nuernberg P, Ibáñez-Costa A, Castaño JP, Lantuejoul S, Ghantous A, Maussion C, Courtiol P, Hernandez-Vargas H, Caux C, Girard N, Lopez-Bigas N, Alexandrov LB, Galateau-Salle F, Foll M, Fernandez-Cuesta L. Multiomic analysis of malignant pleural mesothelioma identifies molecular axes and specialized tumor profiles driving intertumor heterogeneity. Nat Genet 2023; 55:607-618. [PMID: 36928603 PMCID: PMC10101853 DOI: 10.1038/s41588-023-01321-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/26/2023] [Indexed: 03/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with rising incidence and challenging clinical management. Through a large series of whole-genome sequencing data, integrated with transcriptomic and epigenomic data using multiomics factor analysis, we demonstrate that the current World Health Organization classification only accounts for up to 10% of interpatient molecular differences. Instead, the MESOMICS project paves the way for a morphomolecular classification of MPM based on four dimensions: ploidy, tumor cell morphology, adaptive immune response and CpG island methylator profile. We show that these four dimensions are complementary, capture major interpatient molecular differences and are delimited by extreme phenotypes that-in the case of the interdependent tumor cell morphology and adapted immune response-reflect tumor specialization. These findings unearth the interplay between MPM functional biology and its genomic history, and provide insights into the variations observed in the clinical behavior of patients with MPM.
Collapse
Affiliation(s)
- Lise Mangiante
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nicolas Alcala
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Alex Di Genova
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
- Centro de Modelamiento Matemático UMI-CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jaehee Kim
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Xiran Liu
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ricardo Blazquez-Encinas
- Maimonides Biomedical Research Institute of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Colin Giacobi
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Nolwenn Le Stang
- UMR INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, MESOPATH-MESOBANK, Department of Biopathology, Cancer Centre Léon Bérard, Lyon, France
| | - Sandrine Boyault
- Cancer Genomic Platform, Translational Research and Innovation Department, Centre Léon Bérard, Lyon, France
| | - Cyrille Cuenin
- EpiGenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Severine Tabone-Eglinger
- UMR INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, MESOPATH-MESOBANK, Department of Biopathology, Cancer Centre Léon Bérard, Lyon, France
| | - Francesca Damiola
- UMR INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, MESOPATH-MESOBANK, Department of Biopathology, Cancer Centre Léon Bérard, Lyon, France
| | - Catherine Voegele
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Maude Ardin
- Tumor Escape, Resistance and Immunity Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Marie-Cecile Michallet
- Tumor Escape, Resistance and Immunity Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Lorraine Soudade
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Tiffany M Delhomme
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Arnaud Poret
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | | | - Marie-Christine Copin
- University of Lille, Centre Hospitalier Universitaire Lille, Institut de Pathologie, Tumorothèque du Centre de Référence Régional en Cancérologie, Lille, France
| | | | - Diane Damotte
- Centre de Recherche des Cordeliers, Inflammation, Complement and Cancer Team, Sorbonne Université, INSERM, Université de Paris, Paris, France
- Department of Pathology, Hôpitaux Universitaire Paris Centre, Tumorothèque/CRB Cancer, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cecile Girard
- Tumorothèque Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Veronique Hofman
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Nice Center Hospital, FHU OncoAge, Biobank BB-0033-00025 and IRCAN Inserm U1081/CNRS 7284, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Nice Center Hospital, FHU OncoAge, Biobank BB-0033-00025 and IRCAN Inserm U1081/CNRS 7284, Nice, France
| | - Jérôme Mouroux
- Université Côte d'Azur, Department of Thoracic Surgery, Nice Center Hospital, FHU OncoAge and IRCAN Inserm U1081/CNRS 7284, Nice, France
| | - Charlotte Cohen
- Department of Thoracic Surgery, FHU OncoAge, Nice Pasteur Hospital, Université Côte d'Azur, Nice, France
| | - Stephanie Lacomme
- Nancy Regional University Hospital, Centre Hospitalier Régional Universitaire, CRB BB-0033-00035, INSERM U1256, Nancy, France
| | - Julien Mazieres
- Toulouse University Hospital, Université Paul Sabatier, Toulouse, France
| | | | - Corinne Perrin
- Hospices Civils de Lyon, Institut de Pathologie, Centre de Ressources Biologiques des HCL, Tissu-Tumorothèque Est, Lyon, France
| | - Gaetane Planchard
- Centre Hospitalier Universitaire de Caen, MESOPATH Regional Center, Caen, France
| | - Nathalie Rousseau
- Centre Hospitalier Universitaire de Caen, MESOPATH Regional Center, Caen, France
| | - Isabelle Rouquette
- Centre de Pathologie des Côteaux, Centre de Ressources Biologiques (CRB Cancer), IUCT Oncopole, Toulouse, France
| | - Christine Sagan
- Tumorothèque Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Arnaud Scherpereel
- University of Lille, Centre Hospitalier Universitaire Lille, INSERM, OncoThAI, NETMESO Network, Lille, France
| | - Francoise Thivolet
- Hospices Civils de Lyon, Institut de Pathologie, Centre de Ressources Biologiques des HCL, Tissu-Tumorothèque Est, Lyon, France
| | - Jean-Michel Vignaud
- Department of Biopathology, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre-les-Nancy, France
- BRC, BB-0033-00035, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre-les-Nancy, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | | | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Vincent Meyer
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Anne Boland-Auge
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Jean-Francois Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | | | | | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Sylvie Lantuejoul
- UMR INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, MESOPATH-MESOBANK, Department of Biopathology, Cancer Centre Léon Bérard, Lyon, France
- Grenoble Alpes University, Saint-Martin-d'Hères, France
| | - Akram Ghantous
- EpiGenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | | | | | - Hector Hernandez-Vargas
- UMR INSERM 1052, CNRS 5286, UCBL1, Centre Léon Bérard, Lyon, France
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Christophe Caux
- Tumor Escape, Resistance and Immunity Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Nicolas Girard
- Institut Curie, Institut du Thorax Curie Montsouris, Paris, France
- Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, Versailles, France
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer, Instituto de Salud Carlos III, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Françoise Galateau-Salle
- UMR INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, MESOPATH-MESOBANK, Department of Biopathology, Cancer Centre Léon Bérard, Lyon, France
| | - Matthieu Foll
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France.
| | - Lynnette Fernandez-Cuesta
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France.
| |
Collapse
|
126
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
127
|
Vannucchi M, Pennati V, Mencaroni C, Defraia C, Bardhi L, Castiglione F, Bellan C, Comin CE. KRAS Mutations Are Associated with Shortened Survival in Patients with Epithelioid Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:cancers15072072. [PMID: 37046732 PMCID: PMC10093256 DOI: 10.3390/cancers15072072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy of the pleural surface that includes three major histologic subtypes, epitheliod, sarcomatoid and biphasic. Epithelioid mesothelioma is usually associated with better prognosis. The genetic mechanisms driving MPM, the possible target mutations and the correlation with overall survival remain largely unsettled. We performed target exome sequencing in 29 cases of MPM aimed at identifying somatic mutations and, eventually, their correlation with phenotypic traits and prognostic significance. We found that KRAS mutations, occurring in 13.7% of cases, were associated with shortened median survival (7.6 versus 32.6 months in KRAS wild-type; p = 0.005), as it was the occurrence of any ≥3 mutations (7.6 versus 37.6 months; p = 0.049). Conversely, the presence of KDR single nucleotide polymorphism p.V297I (rs2305948) resulted in a favorable variable for survival (NR versus 23.4 months; p = 0.026). With the intrinsic limitations of a small number of cases and patient heterogeneity, results of this study contribute to the characterization of the mutation profile of MPM and the impact of selected somatic mutations, and possibly KDR polymorphism, on prognosis.
Collapse
Affiliation(s)
- Margherita Vannucchi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
- Correspondence:
| | - Veronica Pennati
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Clelia Mencaroni
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Chiara Defraia
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Ledi Bardhi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Francesca Castiglione
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Cristiana Bellan
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Camilla Eva Comin
- Department of Experimental and Clinical Medicine, Section of Surgery, Histopathology and Molecular Pathology, University of Florence, 50121 Florence, Italy
| |
Collapse
|
128
|
Guo X, Lin L, Zhu J. Immunotherapy vs. Chemotherapy in Subsequent Treatment of Malignant Pleural Mesothelioma: Which Is Better? J Clin Med 2023; 12:jcm12072531. [PMID: 37048614 PMCID: PMC10095244 DOI: 10.3390/jcm12072531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Background: Malignant pleural mesothelioma (MPM) is a rare but aggressive tumor arising from the pleural surface. For relapsed MPM, there is no accepted standard of- are for subsequent treatment. Thus, we aimed to compare the efficacy of chemotherapy, targeting drugs, and immune-checkpoint inhibitors (ICIs) as subsequent therapy for relapsed MPM. (2) Methods: The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched several acknowledged databases. Primary outcomes were defined as overall median progressive survival (mPFS) and median overall survival (mOS) in different treatment groups. Secondary outcomes were defined as objective response rate (ORR), the proportion of stable disease (SD), and progressive disease (PD). (3) Results: Ultimately, 43 articles were selected for the meta-analysis. According to the results of a pooled analysis of single-arm studies, ICIs showed a slight advantage in mOS, while chemotherapy showed a slight advantage in mPFS (mOS: 11.2 m vs. 10.39 m and mPFS: 4.42 m vs. 5.08 m for ICIs group and chemotherapy group, respectively). We identified only a few studies that directly compared the efficacy of ICIs with that of chemotherapy, and ICIs did not show significant benefits over chemotherapy based on mOS. (4) Conclusions: Based on current evidence, we considered that immunotherapy might not be superior to chemotherapy as a subsequent therapy for relapsed MPM. Although several studies investigated the efficacy of ICIs, targeting drugs, and chemotherapy in relapsed MPM, there was still no standard of care. Further randomized control trials with consistent criteria and outcomes are recommended to guide subsequent therapy in relapsed MPM and identify patients with certain characteristics that might benefit from such subsequent therapy.
Collapse
|
129
|
The Impact of Adjuvant Hemithoracic Radiation on Outcomes in Patients With Stage I-III Malignant Pleural Mesothelioma: A Dual Registry Analysis. Ann Surg 2023; 277:e648-e656. [PMID: 34091506 DOI: 10.1097/sla.0000000000004976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The outcomes associated with receipt of adjuvant radiation in patients after surgery for MPM are poorly understood. OBJECTIVE The objective of this study was to use 2 registries to compare the outcomes of patients receiving adjuvant radiation or no radiation after definitive surgery for pathologic stage I-III MPM. METHODS Patients with resected pathologic stage I-III MPM were identified from the Duke University registry (1996-2016) and National Cancer Database (NCDB) (2004-2015). The primary outcome was overall survival. Propensity score-matched and landmark subgroup analyses were performed. RESULTS A total of 212 institutional and 1615 NCDB patients met criteria. In both cohorts, patients who underwent radiation were more likely to have margin-negative resection and more advanced pathologic stage. At a landmark time of 4.4 and 4.7 months from surgery, Duke [hazard ratio (HR) 1.14; 95% confidence interval (CI) 0.62-2.11] and NCDB patients (HR 0.97; 95% CI 0.81-1.17) who received adjuvant radiation did not experience improved survival compared to those who did not receive radiation in multivariable analysis. Duke patients who received radiation had similar incidence of recurrence and time to both overall recurrence and ipsilateral recurrence (HR 0.87; 95% CI 0.43-1.77) compared to those who did not. Duke patients experienced 100 grade 1/2, 21 grade 3/4, and one grade 5 toxicity events during radiation. CONCLUSIONS In this dual registry analysis of patients with resected stage I-III MPM, the receipt of adjuvant hemithoracic radiation was not associated with improved survival compared to no radiation.
Collapse
|
130
|
Li Y, Yang SR, Chen YB, Adusumilli PS, Bialik A, Bodd FM, Ladanyi M, Lopardo J, Offin MD, Rusch VW, Travis WD, Zauderer MG, Chang JC, Sauter JL. Neurofibromatosis Type 2-Yes-Associated Protein and Transcriptional Coactivator With PDZ-Binding Motif Dual Immunohistochemistry Is a Reliable Marker for the Detection of Neurofibromatosis Type 2 Alterations in Diffuse Pleural Mesothelioma. Mod Pathol 2023; 36:100030. [PMID: 36788094 PMCID: PMC10428583 DOI: 10.1016/j.modpat.2022.100030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofibromatosis type 2 (NF2) loss occurs in approximately 30% to 50% of diffuse pleural mesothelioma (DPM) with accumulation of yes-associated protein (YAP) 1 and transcriptional coactivator with PDZ-binding motif (TAZ) in tumor nuclei. NF2 and YAP/TAZ represent potential therapeutic targets. We investigated the performance of NF2-YAP/TAZ dual immunohistochemistry (IHC) in identifying DPM that harbors NF2 alterations and in distinguishing DPM from benign mesothelial proliferations. NF2-YAP/TAZ IHC was subsequently performed in a Discovery cohort of DPMs with (n = 10) or without (n = 10) NF2 alterations detected by next-generation sequencing (NGS) and 9 benign cases. The cutoff values for loss of NF2 expression and YAP/TAZ overexpression using IHC were determined in the Discovery cohort. The performance characteristics of NF2-YAP/TAZ IHC were investigated in a Validation cohort (20 DPMs and 10 benign cases). In the Discovery cohort, all DPMs with NF2 alterations using NGS showed NF2 IHC scores of <2, whereas all NF2-wild-type DPMs showed scores of ≥2. NF2-altered DPMs had significantly higher YAP/TAZ H-scores (P < .001) than NF2-wild-type DPM and benign pleura (median H-scores: 237.5 [range, 185-275], 130.0 [range, 40-225], and 10.0 [range, 0-75], respectively). NF2-YAP/TAZ IHC demonstrated 95.2% sensitivity, 100% specificity, 100% positive predictive value, and 95% negative predictive value for detecting NF2 alterations in DPM (n = 40) with NGS as the gold standard and 87.5% sensitivity and 100% specificity for distinguishing DPM (n = 40) from benign mesothelial proliferations (n = 19). NF2-YAP/TAZ IHC has a high sensitivity and specificity for detecting NF2 alterations in DPM and a high specificity for malignancy, highlighting potential utility for guiding NF2-targeted therapies and distinguishing DPM from benign mimics.
Collapse
Affiliation(s)
- Yan Li
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ann Bialik
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francis M Bodd
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jessica Lopardo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael D Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Valerie W Rusch
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jason C Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
131
|
Bonde A, Singh R, Prasad SR, Kamireddy D, Aggarwal A, Ramani N, Saboo S, Shanbhogue K, Dasyam AK, Katabathina VS. Mesotheliomas and Benign Mesothelial Tumors: Update on Pathologic and Imaging Findings. Radiographics 2023; 43:e220128. [PMID: 36757881 DOI: 10.1148/rg.220128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A diverse spectrum of benign entities and malignant neoplasms originate from the monotonous mesothelium that lines the serosal membranes of the pleural, pericardial, and peritoneal cavities. The mesothelium of myriad sites shows a common origin from the lateral plate mesoderm; primary mesothelial tumors thus demonstrate similar pathogenesis, imaging findings, and treatment options. Significant changes have been made in the 2021 World Health Organization (WHO) classification schemata of the pleural and pericardial tumors on the basis of recent advances in pathology and genetics. While malignant mesotheliomas are biologically aggressive malignancies that occur primarily in patients exposed to asbestos with attendant poor survival rates, well-differentiated papillary mesothelial tumors and adenomatoid tumors charter a benign clinical course with an excellent prognosis. Mesothelioma in situ is a newly characterized entity represented by recurrent unexplained pleural effusions without any identifiable mass at imaging or thoracoscopy. Immunohistochemical markers based on BAP1, MTAP, CDKN2A, and TRAF7 gene mutations help differentiate diffuse mesotheliomas from benign mesothelial proliferations and localized mesotheliomas. Cross-sectional imaging modalities, including US, CT, MRI, and fluorine 18-fluorodeoxyglucose (FDG) PET/CT, permit diagnosis and play a major role in staging and assessing surgical resectability. Imaging studies are invaluable in providing noninvasive and quantitative assessment of tumor response in patients with unresectable disease. Owing to significant overlap in patient characteristics and pathomorphology, accurate diagnosis based on advanced histopathology techniques and genetic abnormalities is imperative for optimal management and prognostication. While patients with nonepithelioid pleural mesotheliomas benefit from immunotherapy, novel targeted therapies for CDKN2A-, NF2-, and BAP1-altered mesotheliomas are under consideration. © RSNA, 2023 Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- Apurva Bonde
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., D.K., A.A., S.S., V.S.K.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (R.S.); Departments of Radiology (S.R.P.) and Pathology (N.R.), University of Texas M. D. Anderson Cancer Center, Houston, Tex; Department of Radiology, NYU Medical Center, New York, NY (K.S.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Ramandeep Singh
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., D.K., A.A., S.S., V.S.K.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (R.S.); Departments of Radiology (S.R.P.) and Pathology (N.R.), University of Texas M. D. Anderson Cancer Center, Houston, Tex; Department of Radiology, NYU Medical Center, New York, NY (K.S.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Srinivasa R Prasad
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., D.K., A.A., S.S., V.S.K.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (R.S.); Departments of Radiology (S.R.P.) and Pathology (N.R.), University of Texas M. D. Anderson Cancer Center, Houston, Tex; Department of Radiology, NYU Medical Center, New York, NY (K.S.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Dhiraj Kamireddy
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., D.K., A.A., S.S., V.S.K.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (R.S.); Departments of Radiology (S.R.P.) and Pathology (N.R.), University of Texas M. D. Anderson Cancer Center, Houston, Tex; Department of Radiology, NYU Medical Center, New York, NY (K.S.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Aarushi Aggarwal
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., D.K., A.A., S.S., V.S.K.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (R.S.); Departments of Radiology (S.R.P.) and Pathology (N.R.), University of Texas M. D. Anderson Cancer Center, Houston, Tex; Department of Radiology, NYU Medical Center, New York, NY (K.S.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Nisha Ramani
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., D.K., A.A., S.S., V.S.K.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (R.S.); Departments of Radiology (S.R.P.) and Pathology (N.R.), University of Texas M. D. Anderson Cancer Center, Houston, Tex; Department of Radiology, NYU Medical Center, New York, NY (K.S.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Sachin Saboo
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., D.K., A.A., S.S., V.S.K.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (R.S.); Departments of Radiology (S.R.P.) and Pathology (N.R.), University of Texas M. D. Anderson Cancer Center, Houston, Tex; Department of Radiology, NYU Medical Center, New York, NY (K.S.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Krishna Shanbhogue
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., D.K., A.A., S.S., V.S.K.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (R.S.); Departments of Radiology (S.R.P.) and Pathology (N.R.), University of Texas M. D. Anderson Cancer Center, Houston, Tex; Department of Radiology, NYU Medical Center, New York, NY (K.S.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Anil K Dasyam
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., D.K., A.A., S.S., V.S.K.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (R.S.); Departments of Radiology (S.R.P.) and Pathology (N.R.), University of Texas M. D. Anderson Cancer Center, Houston, Tex; Department of Radiology, NYU Medical Center, New York, NY (K.S.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Venkata S Katabathina
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., D.K., A.A., S.S., V.S.K.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (R.S.); Departments of Radiology (S.R.P.) and Pathology (N.R.), University of Texas M. D. Anderson Cancer Center, Houston, Tex; Department of Radiology, NYU Medical Center, New York, NY (K.S.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| |
Collapse
|
132
|
Al Khatib MHDO, Pinton G, Moro L, Porta C. Benefits and Challenges of Inhibiting EZH2 in Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:1537. [PMID: 36900330 PMCID: PMC10000483 DOI: 10.3390/cancers15051537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive thoracic cancer that is mainly associated with prior exposure to asbestos fibers. Despite being a rare cancer, its global rate is increasing and the prognosis remains extremely poor. Over the last two decades, despite the constant research of new therapeutic options, the combination chemotherapy with cisplatin and pemetrexed has remained the only first-line therapy for MPM. The recent approval of immune checkpoint blockade (ICB)-based immunotherapy has opened new promising avenues of research. However, MPM is still a fatal cancer with no effective treatments. Enhancer of zeste homolog 2 (EZH2) is a histone methyl transferase that exerts pro-oncogenic and immunomodulatory activities in a variety of tumors. Accordingly, a growing number of studies indicate that EZH2 is also an oncogenic driver in MPM, but its effects on tumor microenvironments are still largely unexplored. This review describes the state-of-the-art of EZH2 in MPM biology and discusses its potential use both as a diagnostic and therapeutic target. We highlight current gaps of knowledge, the filling of which will likely favor the entry of EZH2 inhibitors within the treatment options for MPM patients.
Collapse
Affiliation(s)
- MHD Ouis Al Khatib
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | - Giulia Pinton
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| |
Collapse
|
133
|
The Evolving Role of Immune-Checkpoint Inhibitors in Malignant Pleural Mesothelioma. J Clin Med 2023; 12:jcm12051757. [PMID: 36902544 PMCID: PMC10003250 DOI: 10.3390/jcm12051757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer usually caused by asbestos exposure and associated with a very poor prognosis. After more than a decade without new therapeutic options, immune checkpoint inhibitors (ICIs) demonstrated superiority over standard chemotherapy, with improved overall survival in the first and later-line settings. However, a significant proportion of patients still do not derive benefit from ICIs, highlighting the need for new treatment strategies and predictive biomarkers of response. Combinations with chemo-immunotherapy or ICIs and anti-VEGF are currently being evaluated in clinical trials and might change the standard of care in the near future. Alternatively, some non-ICI immunotherapeutic approaches, such as mesothelin targeted CAR-T cells or denditric-cells vaccines, have shown promising results in early phases of trials and are still in development. Finally, immunotherapy with ICIs is also being evaluated in the peri-operative setting, in the minority of patients presenting with resectable disease. The goal of this review is to discuss the current role of immunotherapy in the management of malignant pleural mesothelioma, as well as promising future therapeutic directions.
Collapse
|
134
|
Prognostic Value of EMT Gene Signature in Malignant Mesothelioma. Int J Mol Sci 2023; 24:ijms24054264. [PMID: 36901697 PMCID: PMC10001510 DOI: 10.3390/ijms24054264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Malignant mesothelioma (MESO) consists of epithelioid, biphasic, and sarcomatoid subtypes with different epithelial-mesenchymal transition (EMT) phenotypes. We previously identified a panel of four MESO EMT genes correlating with an immunosuppressive tumor microenvironment and poor survival. In this study, we investigated the correlation between these MESO EMT genes, the immune profile, and the genomic and epigenomic alterations to identify potential therapeutic targets to prevent or reverse the EMT process. Using multiomic analysis, we observed that the MESO EMT genes were positively correlated with hypermethylation of epigenetic genes and loss of CDKN2A/B expression. MESO EMT genes such as COL5A2, ITGAV, SERPINH1, CALD1, SPARC, and ACTA2 were associated with upregulation of TGF-β signaling, hedgehog signaling, and IL-2-STAT5 signaling and downregulation of the IFN-α and IFN-γ response. Immune checkpoints such as CTLA4, CD274 (PD-L1), PDCD1LG2 (PD-L2), PDCD1 (PD-1), and TIGIT were upregulated, while LAG3, LGALS9, and VTCN1 were downregulated with the expression of MESO EMT genes. CD160, KIR2DL1, and KIR2DL3 were also broadly downregulated with the expression of MESO EMT genes. In conclusion, we observed that the expression of a panel of MESO EMT genes was associated with hypermethylation of epigenetic genes and loss of expression of CDKN2A and CDKN2B. Expression of MESO EMT genes was associated with downregulation of the type I and type II IFN response, loss of cytotoxicity and NK cell activity, and upregulation of specific immune checkpoints, as well as upregulation of the TGF-β1/TGFBR1 pathway.
Collapse
|
135
|
Nair NU, Jiang Q, Wei JS, Misra VA, Morrow B, Kesserwan C, Hermida LC, Lee JS, Mian I, Zhang J, Lebensohn A, Miettinen M, Sengupta M, Khan J, Ruppin E, Hassan R. Genomic and transcriptomic analyses identify a prognostic gene signature and predict response to therapy in pleural and peritoneal mesothelioma. Cell Rep Med 2023; 4:100938. [PMID: 36773602 PMCID: PMC9975319 DOI: 10.1016/j.xcrm.2023.100938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
Malignant mesothelioma is an aggressive cancer with limited treatment options and poor prognosis. A better understanding of mesothelioma genomics and transcriptomics could advance therapies. Here, we present a mesothelioma cohort of 122 patients along with their germline and tumor whole-exome and tumor RNA sequencing data as well as phenotypic and drug response information. We identify a 48-gene prognostic signature that is highly predictive of mesothelioma patient survival, including CCNB1, the expression of which is highly predictive of patient survival on its own. In addition, we analyze the transcriptomics data to study the tumor immune microenvironment and identify synthetic-lethality-based signatures predictive of response to therapy. This germline and somatic whole-exome sequencing as well as transcriptomics data from the same patient are a valuable resource to address important biological questions, including prognostic biomarkers and determinants of treatment response in mesothelioma.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Qun Jiang
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | - Betsy Morrow
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Leandro C Hermida
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joo Sang Lee
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Idrees Mian
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Jingli Zhang
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | - Manjistha Sengupta
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Javed Khan
- Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Raffit Hassan
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
136
|
Pandey GK, Landman N, Neikes HK, Hulsman D, Lieftink C, Beijersbergen R, Kolluri KK, Janes SM, Vermeulen M, Badhai J, van Lohuizen M. Genetic screens reveal new targetable vulnerabilities in BAP1-deficient mesothelioma. Cell Rep Med 2023; 4:100915. [PMID: 36657447 PMCID: PMC9975229 DOI: 10.1016/j.xcrm.2022.100915] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/06/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023]
Abstract
More than half of patients with malignant mesothelioma show alterations in the BAP1 tumor-suppressor gene. Being a member of the Polycomb repressive deubiquitinating (PR-DUB) complex, BAP1 loss results in an altered epigenome, which may create new vulnerabilities that remain largely unknown. Here, we performed a CRISPR-Cas9 kinome screen in mesothelioma cells that identified two kinases in the mevalonate/cholesterol biosynthesis pathway. Furthermore, our analysis of chromatin, expression, and genetic perturbation data in mesothelioma cells suggests a dependency on PR complex 2 (PRC2)-mediated silencing. Pharmacological inhibition of PRC2 elevates the expression of cholesterol biosynthesis genes only in BAP1-deficient mesothelioma, thereby sensitizing these cells to the combined targeting of PRC2 and the mevalonate pathway. Finally, by subjecting autochthonous Bap1-deficient mesothelioma mice or xenografts to mevalonate pathway inhibition (zoledronic acid) and PRC2 inhibition (tazemetostat), we demonstrate a potent anti-tumor effect, suggesting a targeted combination therapy for Bap1-deficient mesothelioma.
Collapse
Affiliation(s)
- Gaurav Kumar Pandey
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Nick Landman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hannah K Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Danielle Hulsman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis, NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Krishna Kalyan Kolluri
- Lung for Living Research Centre, UCL Respiratory, University College London, Rayne Building, London, UK
| | - Sam M Janes
- Lung for Living Research Centre, UCL Respiratory, University College London, Rayne Building, London, UK
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Jitendra Badhai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
137
|
MEK1 drives oncogenic signaling and interacts with PARP1 for genomic and metabolic homeostasis in malignant pleural mesothelioma. Cell Death Discov 2023; 9:55. [PMID: 36765038 PMCID: PMC9918536 DOI: 10.1038/s41420-023-01307-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 02/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis.
Collapse
|
138
|
The Genes-Stemness-Secretome Interplay in Malignant Pleural Mesothelioma: Molecular Dynamics and Clinical Hints. Int J Mol Sci 2023; 24:ijms24043496. [PMID: 36834912 PMCID: PMC9963101 DOI: 10.3390/ijms24043496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
MPM has a uniquely poor somatic mutational landscape, mainly driven by environmental selective pressure. This feature has dramatically limited the development of effective treatment. However, genomic events are known to be associated with MPM progression, and specific genetic signatures emerge from the exceptional crosstalk between neoplastic cells and matrix components, among which one main area of focus is hypoxia. Here we discuss the novel therapeutic strategies focused on the exploitation of MPM genetic asset and its interconnection with the surrounding hypoxic microenvironment as well as transcript products and microvesicles representing both an insight into the pathogenesis and promising actionable targets.
Collapse
|
139
|
The Pattern of RNA Editing Changes in Pleural Mesothelioma upon Epithelial-Mesenchymal Transition. Int J Mol Sci 2023; 24:ijms24032874. [PMID: 36769192 PMCID: PMC9917482 DOI: 10.3390/ijms24032874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Pleural mesothelioma (PM) is a cancer where epithelioid, biphasic and sarcomatoid histotypes are observed. Sarcomatoid PM is characterized by mesenchymal features. Multi-omics have been used to characterize the epithelial-to-mesenchymal (EMT) phenotype at the molecular level. We contribute to this effort by including the analysis of RNA editing. We extracted samples with the highest vs. lowest Epithelial score from two PM cohorts and observed increased RNA editing in introns and decreased RNA editing in 3'UTR upon EMT. The same was observed in primary PM primary cultures stratified by transcriptomics analysis into two groups, one of them enriched with mesenchymal features. Our data demonstrate that, as has been observed in other cancer types, RNA editing associates to EMT phenotype in PM.
Collapse
|
140
|
Dermawan JK, Villafania L, Bale T, Singer S, D’Angelo SP, Tap WD, Antonescu CR. TRAF7-mutated Fibromyxoid Spindle Cell Tumors Are Associated With an Aggressive Clinical Course and Harbor an Undifferentiated Sarcoma Methylation Signature: A Molecular and Clinicopathologic Study of 3 Cases. Am J Surg Pathol 2023; 47:270-277. [PMID: 36395468 PMCID: PMC9840690 DOI: 10.1097/pas.0000000000001997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TRAF7 somatic mutations are rare and have been reported in meningiomas, intraneural perineuriomas, and mesotheliomas. Triggered by an index case of an unclassified low-grade mesenchymal tumor with TRAF7 mutation as the only genetic alteration, we searched our files and identified 2 additional cases with similar features. The tumors arose in 2 females and 1 male, aged 63 to 75 years old (median: 67 y). They were infiltrative deep soft tissue masses involving the shoulder, chest wall, and thigh, measuring 7.0 to 9.1 cm in greatest dimensions. One tumor was locally aggressive, and 2 were associated with lung and bone metastases. The tumors displayed alternating fibrous and myxoid stroma with mild to moderate cellularity and consisted of uniform spindle cells with open chromatin, inconspicuous nucleoli and scant cytoplasm. Significant mitotic activity or necrosis were not present. However, the metastatic tumor of 1 case showed an epithelioid morphology and brisk mitotic activity. Immunohistochemically, the tumors showed nonspecific and focal smooth muscle actin or CD34 expression. By DNA sequencing, all 3 cases harbored TRAF7 missense mutations involving the C-terminal WD40 domains as the only somatic mutations, showed nonrecurrent focal copy number alterations, and were negative for gene fusions by targeted RNA sequencing. On methylation profiling, the tumors clustered with the undifferentiated sarcoma and myxofibrosarcoma methylation classes and were distinct from morphologic mimics. On follow-up (5 to 36 mo), 2 patients died of disease following aggressive chemotherapeutic regimens. We describe a novel TRAF7- mutated mesenchymal tumor characterized by aggressive clinical behavior despite the histologic appearance of a low-grade fibromyxoid spindle cell tumor.
Collapse
Affiliation(s)
- Josephine K. Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Liliana Villafania
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tejus Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Singer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sandra P. D’Angelo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William D. Tap
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
141
|
Paajanen J, Jaklitsch MT, Bueno R. Contemporary issues in the surgical management of pleural mesothelioma. J Surg Oncol 2023; 127:343-354. [PMID: 36630097 PMCID: PMC9839311 DOI: 10.1002/jso.27152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 01/12/2023]
Abstract
The surgical management of pleural mesothelioma (PM) can be divided into diagnostic, staging, palliation, and cytoreductive surgery. In the cytoreductive surgical setting, the combination of different treatment modalities has led to better outcomes than surgery alone. The scarcity of high-quality studies has led to heterogeneity in management of PM across the mesothelioma treatment centers. Here, we review the literature regarding the most important open questions and ongoing clinical trials.
Collapse
Affiliation(s)
- Juuso Paajanen
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program (www.impmeso.org), Division of Thoracic Surgery and the Lung Center, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Michael T. Jaklitsch
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program (www.impmeso.org), Division of Thoracic Surgery and the Lung Center, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Raphael Bueno
- The Thoracic Surgery Oncology laboratory and the International Mesothelioma Program (www.impmeso.org), Division of Thoracic Surgery and the Lung Center, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
142
|
Cunningham R, Jia S, Purohit K, Salem O, Hui NS, Lin Y, Carragher NO, Hansen CG. YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations. Clin Transl Med 2023; 13:e1190. [PMID: 36740402 PMCID: PMC9899629 DOI: 10.1002/ctm2.1190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
The Hippo signalling pathway is dysregulated across a wide range of cancer types and, although driver mutations that directly affect the core Hippo components are rare, a handful is found within pleural mesothelioma (PM). PM is a deadly disease of the lining of the lung caused by asbestos exposure. By pooling the largest-scale clinical datasets publicly available, we here interrogate associations between the most prevalent driver mutations within PM and Hippo pathway disruption in patients, while assessing correlations with a variety of clinical markers. This analysis reveals a consistent worse outcome in patients exhibiting transcriptional markers of YAP/TAZ activation, pointing to the potential of leveraging Hippo pathway transcriptional activation status as a metric by which patients may be meaningfully stratified. Preclinical models recapitulating disease are transformative in order to develop new therapeutic strategies. We here establish an isogenic cell-line model of PM, which represents the most frequently mutated genes and which faithfully recapitulates the molecular features of clinical PM. This preclinical model is developed to probe the molecular basis by which the Hippo pathway and key driver mutations affect cancer initiation and progression. Implementing this approach, we reveal the role of NF2 as a mechanosensory component of the Hippo pathway in mesothelial cells. Cellular NF2 loss upon physiological stiffnesses analogous to the tumour niche drive YAP/TAZ-dependent anchorage-independent growth. Consequently, the development and characterisation of this cellular model provide a unique resource to obtain molecular insights into the disease and progress new drug discovery programs together with future stratification of PM patients.
Collapse
Affiliation(s)
- Richard Cunningham
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Siyang Jia
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Krishna Purohit
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Omar Salem
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Ning Sze Hui
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Yue Lin
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Neil O. Carragher
- Cancer Research UK Scotland CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Carsten Gram Hansen
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| |
Collapse
|
143
|
Jiang Y, Zhang C, Chen Y, Zhao S, He Y, He J. Prognostic risk assessment model for alternative splicing events and splicing factors in malignant pleural mesothelioma. Cancer Med 2023; 12:4895-4906. [PMID: 36031798 PMCID: PMC9972025 DOI: 10.1002/cam4.5174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare and highly malignant thoracic tumor. Although alternative splicing (AS) is associated with tumor prognosis, the prognostic significance of AS in MPM is unknown. METHODS Transcriptomic data, clinical information, and splicing percentage values for MPM were obtained from The Cancer Genome Atlas (TCGA) and TCGA SpliceSeq databases. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox analyses were performed to establish a model affecting the prognosis of MPM. Survival and ROC analyses were used to test the effects of the prognostic model. LASSO/multivariate Cox analysis was used to construct the MPM prognostic splicing factor (SF) model. The SF-AS interaction network was analyzed using Spearman correlation and visualized using Cytoscape. The association between the MPM prognostic SF model and drug sensitivity to chemotherapeutic agents such as cisplatin was analyzed using pRRophetic.R. RESULTS The LASSO/multivariate Cox analysis identified 41 AS events and 2 SFs that were mostly associated with survival. Nine prognostic prediction models (i.e., seven types of AS model, total AS model, and SF model) were developed. An MPM prognostic SF-AS regulatory network was subsequently constructed with decreased drug sensitivity in the SF model high-risk group (p = 0.025). CONCLUSION This study provides the first comprehensive analysis of the prognostic value of AS events and SFs in MPM. The SF-AS regulatory network established in this study and our drug sensitivity analysis using the SF model may provide novel targets for pharmacological studies of MPM.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Chengda Zhang
- Department of Gastroenterology, The Third Hospital of Mian Yang (Sichuan Mental Health Center), Mianyang, China
| | - Yang Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shiyu Zhao
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yipeng He
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jun He
- Department of Oncology, The Third Hospital of Mian Yang (Sichuan Mental Health Center), Mianyang, China
| |
Collapse
|
144
|
Li HT, Jang HJ, Rohena-Rivera K, Liu M, Gujar H, Kulchycki J, Zhao S, Billet S, Zhou X, Weisenberger DJ, Gill I, Jones PA, Bhowmick NA, Liang G. RNA mis-splicing drives viral mimicry response after DNMTi therapy in SETD2-mutant kidney cancer. Cell Rep 2023; 42:112016. [PMID: 36662621 PMCID: PMC10034851 DOI: 10.1016/j.celrep.2023.112016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Tumors with mutations in chromatin regulators present attractive targets for DNA hypomethylating agent 5-aza-2'-deoxycytidine (DAC) therapy, which further disrupts cancer cells' epigenomic fidelity and reactivates transposable element (TE) expression to drive viral mimicry responses. SETD2 encodes a histone methyltransferase (H3K36me3) and is prevalently mutated in advanced kidney cancers. Here, we show that SETD2-mutant kidney cancer cells are especially sensitive in vitro and in vivo to DAC treatment. We find that the viral mimicry response are direct consequences of mis-splicing events, such as exon inclusions or extensions, triggered by DAC treatment in an SETD2-loss context. Comprehensive epigenomic analysis reveals H3K9me3 deposition, rather than DNA methylation dynamics, across intronic TEs might contribute to elevated mis-splicing rates. Through epigenomic and transcriptomic analyses, we show that SETD2-deficient kidney cancers are prone to mis-splicing, which can be therapeutically exacerbated with DAC treatment to increase viral mimicry activation and provide synergy with combinatorial immunotherapy approaches.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - H Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Krizia Rohena-Rivera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Minmin Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hemant Gujar
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Justin Kulchycki
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Shuqing Zhao
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Sandrin Billet
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xinyi Zhou
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Inderbir Gill
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Neil A Bhowmick
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
145
|
Perrino M, De Vincenzo F, Cordua N, Borea F, Aliprandi M, Santoro A, Zucali PA. Immunotherapy with immune checkpoint inhibitors and predictive biomarkers in malignant mesothelioma: Work still in progress. Front Immunol 2023; 14:1121557. [PMID: 36776840 PMCID: PMC9911663 DOI: 10.3389/fimmu.2023.1121557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Malignant mesothelioma (MM) is a rare and aggressive neoplasm, usually associated with a poor prognosis (5 years survival rate <10%). For unresectable disease, platinum and pemetrexed chemotherapy has been the only standard of care in first line for more than two decades, while no standard treatments have been approved in subsequent lines. Recently, immunotherapy has revolutionized the therapeutic landscape of MM. In fact, the combination of ipilimumab plus nivolumab has been approved in first line setting. Moreover, immune checkpoint inhibitors (ICIs) showed promising results also in second-third line setting after platinum-based chemotherapy. Unfortunately, approximately 20% of patients are primary refractory to ICIs and there is an urgent need for reliable biomarkers to improve patient's selection. Several biological and molecular features have been studied for this goal. In particular, histological subtype (recognized as prognostic factor for MM and predictive factor for chemotherapy response), programmed death ligand 1 (PD-L1) expression, and tumor mutational burden (widely hypothesized as predictive biomarkers for ICIs in several solid tumors) have been evaluated, but with unconclusive results. On the other hand, the deep analysis of tumor infiltrating microenvironment and the improvement in genomic profiling techniques has led to a better knowledge of several mechanisms underlying the MM biology and a greater or poorer immune activation. Consequentially, several potential biomarkers predictive of response to immunotherapy in patients with MM have been identified, also if all these elements need to be further investigated and prospectively validated. In this paper, the main evidences about clinical efficacy of ICIs in MM and the literature data about the most promising predictive biomarkers to immunotherapy are reviewed.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Fabio De Vincenzo
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Federica Borea
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Aliprandi
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy,*Correspondence: Paolo Andrea Zucali,
| |
Collapse
|
146
|
Pobbati AV, Kumar R, Rubin BP, Hong W. Therapeutic targeting of TEAD transcription factors in cancer. Trends Biochem Sci 2023; 48:450-462. [PMID: 36709077 DOI: 10.1016/j.tibs.2022.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
The Hippo signaling pathway inhibits the activity of the oncogenic YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex. In cancers, inactivating mutations in upstream Hippo components and/or enhanced activity of YAP/TAZ and TEAD have been observed. The activity of this transcriptional complex can be effectively inhibited by targeting the TEAD family of transcription factors. The development of TEAD inhibitors has been driven by the discovery that TEAD has druggable hydrophobic pockets, and is currently at the clinical development stage. Three small molecule TEAD inhibitors are currently being tested in Phase I clinical trials. In this review, we highlight the role of TEADs in cancer, discuss various avenues through which TEAD activity can be inhibited, and outline the opportunities for the administration of TEAD inhibitors.
Collapse
Affiliation(s)
- Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673.
| |
Collapse
|
147
|
Stern E, Caruso S, Meiller C, Mishalian I, Hirsch TZ, Bayard Q, Tadmor CT, Wald H, Jean D, Wald O. Deep dive into the immune response against murine mesothelioma permits design of novel anti-mesothelioma therapeutics. Front Immunol 2023; 13:1026185. [PMID: 36685577 PMCID: PMC9846605 DOI: 10.3389/fimmu.2022.1026185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 01/06/2023] Open
Abstract
Given the need to improve the efficacy of standard-of-care immunotherapy (anti-CTLA-4 + anti-PD-1) in human malignant pleural mesothelioma (hMPM), we thoroughly characterized the immunobiology of the AB12 murine mesothelioma (MM) model, aiming to increase its accuracy in predicting the response of hMPM to immunotherapy and in designing novel anti-hMPM treatments. Specifically, we used immunologic, transcriptomic and survival analyses, to synchronize the MM tumor growth phases and immune evolution with the histo-molecular and immunological characteristics of hMPM while also determining the anti-MM efficacy of standard-of-care anti-hMPM immunotherapy as a benchmark that novel therapeutics should meet. We report that early-, intermediate- and advanced- AB12 tumors are characterized by a bell-shaped anti-tumor response that peaks in intermediate tumors and decays in advanced tumors. We further show that intermediate- and advanced- tumors match with immune active ("hot") and immune inactive ("cold") hMPM respectively, and that they respond to immunotherapy in a manner that corresponds well with its performance in real-life settings. Finally, we show that in advanced tumors, addition of cisplatin to anti CTLA-4 + anti PD-1 can extend mice survival and invigorate the decaying anti-tumor response. Therefore, we highlight this triple combination as a worthy candidate to improve clinical outcomes in hMPM.
Collapse
Affiliation(s)
- Esther Stern
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Clément Meiller
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Inbal Mishalian
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Theo Z. Hirsch
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Carmit T. Tadmor
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Hanna Wald
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Ori Wald
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiothoracic Surgery, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
148
|
Martin SD, Cheung S, Churg A. Immunohistochemical Demonstration of Merlin/NF2 Loss in Mesothelioma. Mod Pathol 2023; 36:100036. [PMID: 36788071 DOI: 10.1016/j.modpat.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Spencer D Martin
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simon Cheung
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Andrew Churg
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
149
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
150
|
Singh A, Busacca S, Gaba A, Sheaff M, Poile C, Nakas A, Dzialo J, Bzura A, Dawson AG, Fennell DA, Fry AM. BAP1 loss induces mitotic defects in mesothelioma cells through BRCA1-dependent and independent mechanisms. Oncogene 2023; 42:572-585. [PMID: 36550359 PMCID: PMC9937923 DOI: 10.1038/s41388-022-02577-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The tumour suppressor BRCA1-associated protein 1 (BAP1) is the most frequently mutated cancer gene in mesothelioma. Here we report novel functions for BAP1 in mitotic progression highlighting the relationship between BAP1 and control of genome stability in mesothelioma cells with therapeutic implications. Depletion of BAP1 protein induced proteasome-mediated degradation of BRCA1 in mesothelioma cells while loss of BAP1 correlated with BRCA1 loss in mesothelioma patient tumour samples. BAP1 loss also led to mitotic defects that phenocopied the loss of BRCA1 including spindle assembly checkpoint failure, centrosome amplification and chromosome segregation errors. However, loss of BAP1 also led to additional mitotic changes that were not observed upon BRCA1 loss, including an increase in spindle length and enhanced growth of astral microtubules. Intriguingly, these consequences could be explained by loss of expression of the KIF18A and KIF18B kinesin motors that occurred upon depletion of BAP1 but not BRCA1, as spindle and astral microtubule defects were rescued by re-expression of KIF18A and KIF18B, respectively. We therefore propose that BAP1 inactivation causes mitotic defects through BRCA1-dependent and independent mechanisms revealing novel routes by which mesothelioma cells lacking BAP1 may acquire genome instability and exhibit altered responses to microtubule-targeted agents.
Collapse
Affiliation(s)
- Anita Singh
- grid.9918.90000 0004 1936 8411Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN UK ,grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Sara Busacca
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Aarti Gaba
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Michael Sheaff
- Department of Histopathology, Barts Health NHS Trust, Queen Mary University of London, The Royal London Hospital, London, E1 2ES UK
| | - Charlotte Poile
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Apostolos Nakas
- grid.412925.90000 0004 0400 6581University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, LE3 9QP UK
| | - Joanna Dzialo
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Aleksandra Bzura
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Alan G. Dawson
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK ,grid.412925.90000 0004 0400 6581University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, LE3 9QP UK
| | - Dean A. Fennell
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK ,grid.412925.90000 0004 0400 6581University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, LE3 9QP UK
| | - Andrew M. Fry
- grid.9918.90000 0004 1936 8411Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN UK
| |
Collapse
|