101
|
Little P, Jo H, Hoyle A, Mazul A, Zhao X, Salazar AH, Farquhar D, Sheth S, Masood M, Hayward MC, Parker JS, Hoadley KA, Zevallos J, Hayes DN. UNMASC: tumor-only variant calling with unmatched normal controls. NAR Cancer 2021; 3:zcab040. [PMID: 34632388 PMCID: PMC8494212 DOI: 10.1093/narcan/zcab040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Despite years of progress, mutation detection in cancer samples continues to require significant manual review as a final step. Expert review is particularly challenging in cases where tumors are sequenced without matched normal control DNA. Attempts have been made to call somatic point mutations without a matched normal sample by removing well-known germline variants, utilizing unmatched normal controls, and constructing decision rules to classify sequencing errors and private germline variants. With budgetary constraints related to computational and sequencing costs, finding the appropriate number of controls is a crucial step to identifying somatic variants. Our approach utilizes public databases for canonical somatic variants as well as germline variants and leverages information gathered about nearby positions in the normal controls. Drawing from our cohort of targeted capture panel sequencing of tumor and normal samples with varying tumortypes and demographics, these served as a benchmark for our tumor-only variant calling pipeline to observe the relationship between our ability to correctly classify variants against a number of unmatched normals. With our benchmarked samples, approximately ten normal controls were needed to maintain 94% sensitivity, 99% specificity and 76% positive predictive value, far outperforming comparable methods. Our approach, called UNMASC, also serves as a supplement to traditional tumor with matched normal variant calling workflows and can potentially extend to other concerns arising from analyzing next generation sequencing data.
Collapse
Affiliation(s)
- Paul Little
- Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Heejoon Jo
- Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Memphis, TN 38163, USA
| | - Alan Hoyle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive Chapel Hill, NC 27514, USA
| | - Angela Mazul
- Otolaryngology Head and Neck Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8115, St. Louis, MO 63110, USA
| | - Xiaobei Zhao
- Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Memphis, TN 38163, USA
| | - Ashley H Salazar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive Chapel Hill, NC 27514, USA
| | - Douglas Farquhar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive Chapel Hill, NC 27514, USA
| | - Siddharth Sheth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive Chapel Hill, NC 27514, USA
| | - Maheer Masood
- Otolaryngology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Michele C Hayward
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive Chapel Hill, NC 27514, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive Chapel Hill, NC 27514, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive Chapel Hill, NC 27514, USA
| | - Jose Zevallos
- Otolaryngology Head and Neck Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8115, St. Louis, MO 63110, USA
| | - D Neil Hayes
- Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Memphis, TN 38163, USA
| |
Collapse
|
102
|
Mukherjee S, Cogan JD, Newman JH, Phillips JA, Hamid R, Meiler J, Capra JA. Identifying digenic disease genes via machine learning in the Undiagnosed Diseases Network. Am J Hum Genet 2021; 108:1946-1963. [PMID: 34529933 PMCID: PMC8546038 DOI: 10.1016/j.ajhg.2021.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Rare diseases affect millions of people worldwide, and discovering their genetic causes is challenging. More than half of the individuals analyzed by the Undiagnosed Diseases Network (UDN) remain undiagnosed. The central hypothesis of this work is that many of these rare genetic disorders are caused by multiple variants in more than one gene. However, given the large number of variants in each individual genome, experimentally evaluating combinations of variants for potential to cause disease is currently infeasible. To address this challenge, we developed the digenic predictor (DiGePred), a random forest classifier for identifying candidate digenic disease gene pairs by features derived from biological networks, genomics, evolutionary history, and functional annotations. We trained the DiGePred classifier by using DIDA, the largest available database of known digenic-disease-causing gene pairs, and several sets of non-digenic gene pairs, including variant pairs derived from unaffected relatives of UDN individuals. DiGePred achieved high precision and recall in cross-validation and on a held-out test set (PR area under the curve > 77%), and we further demonstrate its utility by using digenic pairs from the recent literature. In contrast to other approaches, DiGePred also appropriately controls the number of false positives when applied in realistic clinical settings. Finally, to enable the rapid screening of variant gene pairs for digenic disease potential, we freely provide the predictions of DiGePred on all human gene pairs. Our work enables the discovery of genetic causes for rare non-monogenic diseases by providing a means to rapidly evaluate variant gene pairs for the potential to cause digenic disease.
Collapse
Affiliation(s)
- Souhrid Mukherjee
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Joy D Cogan
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John H Newman
- Pulmonary Hypertension Center, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John A Phillips
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rizwan Hamid
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Institute for Drug Discovery, Leipzig University Medical School, Leipzig 04103, Germany; Department of Chemistry, Leipzig University, Leipzig 04109, Germany; Department of Computer Science, Leipzig University, Leipzig 04109, Germany.
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
103
|
Vorsteveld EE, Hoischen A, van der Made CI. Next-Generation Sequencing in the Field of Primary Immunodeficiencies: Current Yield, Challenges, and Future Perspectives. Clin Rev Allergy Immunol 2021; 61:212-225. [PMID: 33666867 PMCID: PMC7934351 DOI: 10.1007/s12016-021-08838-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Primary immunodeficiencies comprise a group of inborn errors of immunity that display significant clinical and genetic heterogeneity. Next-generation sequencing techniques and predominantly whole exome sequencing have revolutionized the understanding of the genetic and molecular basis of genetic diseases, thereby also leading to a sharp increase in the discovery of new genes associated with primary immunodeficiencies. In this review, we discuss the current diagnostic yield of this generic diagnostic approach by evaluating the studies that have employed next-generation sequencing techniques in cohorts of patients with primary immunodeficiencies. The average diagnostic yield for primary immunodeficiencies is determined to be 29% (range 10-79%) and 38% specifically for whole-exome sequencing (range 15-70%). The significant variation between studies is mainly the result of differences in clinical characteristics of the studied cohorts but is also influenced by varying sequencing approaches and (in silico) gene panel selection. We further discuss other factors contributing to the relatively low yield, including the inherent limitations of whole-exome sequencing, challenges in the interpretation of novel candidate genetic variants, and promises of exploring the non-coding part of the genome. We propose strategies to improve the diagnostic yield leading the way towards expanded personalized treatment in PIDs.
Collapse
Affiliation(s)
- Emil E Vorsteveld
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Caspar I van der Made
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
104
|
Pyrimidine Biosynthetic Enzyme CAD: Its Function, Regulation, and Diagnostic Potential. Int J Mol Sci 2021; 22:ijms221910253. [PMID: 34638594 PMCID: PMC8508918 DOI: 10.3390/ijms221910253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 01/10/2023] Open
Abstract
CAD (Carbamoyl-phosphate synthetase 2, Aspartate transcarbamoylase, and Dihydroorotase) is a multifunctional protein that participates in the initial three speed-limiting steps of pyrimidine nucleotide synthesis. Over the past two decades, extensive investigations have been conducted to unmask CAD as a central player for the synthesis of nucleic acids, active intermediates, and cell membranes. Meanwhile, the important role of CAD in various physiopathological processes has also been emphasized. Deregulation of CAD-related pathways or CAD mutations cause cancer, neurological disorders, and inherited metabolic diseases. Here, we review the structure, function, and regulation of CAD in mammalian physiology as well as human diseases, and provide insights into the potential to target CAD in future clinical applications.
Collapse
|
105
|
Insights into the expanding phenotypic spectrum of inherited disorders of biogenic amines. Nat Commun 2021; 12:5529. [PMID: 34545092 PMCID: PMC8452745 DOI: 10.1038/s41467-021-25515-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/12/2021] [Indexed: 01/04/2023] Open
Abstract
Inherited disorders of neurotransmitter metabolism are rare neurodevelopmental diseases presenting with movement disorders and global developmental delay. This study presents the results of the first standardized deep phenotyping approach and describes the clinical and biochemical presentation at disease onset as well as diagnostic approaches of 275 patients from the registry of the International Working Group on Neurotransmitter related Disorders. The results reveal an increased rate of prematurity, a high risk for being small for gestational age and for congenital microcephaly in some disorders. Age at diagnosis and the diagnostic delay are influenced by the diagnostic methods applied and by disease-specific symptoms. The timepoint of investigation was also a significant factor: delay to diagnosis has decreased in recent years, possibly due to novel diagnostic approaches or raised awareness. Although each disorder has a specific biochemical pattern, we observed confounding exceptions to the rule. The data provide comprehensive insights into the phenotypic spectrum of neurotransmitter disorders. Inherited disorders of neurotransmitter metabolism represent a group of rare neurometabolic diseases characterized by movement disorders and developmental delay. Here, the authors report a standardized evaluation of a registry of 275 patients from 42 countries, and highlight an evolving phenotypic spectrum of this disease group and factors influencing diagnostic processes.
Collapse
|
106
|
Nisar H, Wajid B, Shahid S, Anwar F, Wajid I, Khatoon A, Sattar MU, Sadaf S. Whole-genome sequencing as a first-tier diagnostic framework for rare genetic diseases. Exp Biol Med (Maywood) 2021; 246:2610-2617. [PMID: 34521224 DOI: 10.1177/15353702211040046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rare diseases affect nearly 300 million people globally with most patients aged five or less. Traditional diagnostic approaches have provided much of the diagnosis; however, there are limitations. For instance, simply inadequate and untimely diagnosis adversely affects both the patient and their families. This review advocates the use of whole genome sequencing in clinical settings for diagnosis of rare genetic diseases by showcasing five case studies. These examples specifically describe the utilization of whole genome sequencing, which helped in providing relief to patients via correct diagnosis followed by use of precision medicine.
Collapse
Affiliation(s)
- Haseeb Nisar
- Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54000, Pakistan.,School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54000, Pakistan
| | - Bilal Wajid
- Department of Electrical Engineering, University of Engineering and Technology, Lahore 54000, Pakistan.,Ibn Sina Research & Development Division, Sabz-Qalam, Lahore 54000, Pakistan.,Department of Computer Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Samiah Shahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Faria Anwar
- Out Patient Department, Mayo Hospital, Lahore 54000, Pakistan
| | - Imran Wajid
- Ibn Sina Research & Development Division, Sabz-Qalam, Lahore 54000, Pakistan
| | - Asia Khatoon
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54000, Pakistan
| | - Mian Usman Sattar
- Institute of Social Sciences, Istanbul Commerce University, Istanbul, Turkey
| | - Saima Sadaf
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|
107
|
Chakravarti A. Magnitude of Mendelian versus complex inheritance of rare disorders. Am J Med Genet A 2021; 185:3287-3293. [PMID: 34418293 DOI: 10.1002/ajmg.a.62463] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022]
Abstract
In medical genetics, the vast majority of patients with a currently known genetic basis harbor a rare deleterious allele explaining its Mendelian inheritance. Increasingly, for these phenotypes, we recognize exceptions to Mendelian expectations from non-penetrance of clinical disease to significant inter-individual variation in clinical manifestations, likely reflecting the actions of additional modifier genes. Despite recent progress, we still remain ignorant about the molecular basis for many rare disorders presumed to be Mendelian. The molecular evidence increasingly suggests a role for multiple genes in some of these cases, but for how many? In this article, I discuss why equating a phenotype as Mendelian or complex may be short-sighted or even erroneous. As we learn more about the functions of the human genome with its genes in networks, we should view the phenotype of an individual patient as arising from his or her total genomic deleterious burden in a set of functionally inter-related genes affecting that phenotype. This can sometimes arise from deleterious allele(s) at a single gene (Mendelian inheritance) creating a specific biochemical deficiency (or excess) but could just as frequently arise from the cumulative effects of multiple disease alleles (complex inheritance) leading to the same biochemical deficiency (or excess).
Collapse
Affiliation(s)
- Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
108
|
Beigi F, Del Pozo-Valero M, Martin-Merida I, Manaviat MR, Ayuso C, Ghasemi N. Homozygous females for a X-linked RPGR-ORF15 mutation in an Iranian family with retinitis pigmentosa. Exp Eye Res 2021; 211:108714. [PMID: 34390733 DOI: 10.1016/j.exer.2021.108714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Mutations in Retinitis pigmentosa GTPase regulator gene (RPGR) are the most common cause of X-linked retinitis pigmentosa (RP). Almost 60% of disease-causing RPGR mutations are located in ORF-15 region which cannot be detected by Next Generation Sequencing (NGS) due to the existence of highly repetitive regions. An Iranian family with a priori diagnosis of autosomal dominant RP was studied by Sanger sequencing of ORF15 of RPGR gene after an inconclusive NGS result. A frameshift two-base-pair deletion (c.2323_2324del, p.Arg775Glufs*59) in this region was segregating in both affected hemizygous males and affected homozygous females. To our knowledge, this is the first example of homozygous females for RPGR-ORF15 mutations.
Collapse
Affiliation(s)
- Fahimeh Beigi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marta Del Pozo-Valero
- Department of Clinical Genetics and Genomics, University Hospital Fundacion Jimenez Diaz, Health Research Institute Fundacion Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain; CIBERER (Biomedical Research Network Centre for Rare Diseases), ISCIII, Madrid, Spain
| | - Inmaculada Martin-Merida
- Department of Clinical Genetics and Genomics, University Hospital Fundacion Jimenez Diaz, Health Research Institute Fundacion Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain; CIBERER (Biomedical Research Network Centre for Rare Diseases), ISCIII, Madrid, Spain
| | - Masoud Reza Manaviat
- Department of Ophthalmology, Shahid Sadoughi University of Medical Science, Yazd Diabetes Research Center, Yazd, Iran
| | - Carmen Ayuso
- Department of Clinical Genetics and Genomics, University Hospital Fundacion Jimenez Diaz, Health Research Institute Fundacion Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain; CIBERER (Biomedical Research Network Centre for Rare Diseases), ISCIII, Madrid, Spain.
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
109
|
Abstract
Melanoma is the deadliest form of skin cancer. While clinical developments have significantly improved patient prognosis, effective treatment is often obstructed by limited response rates, intrinsic or acquired resistance to therapy, and adverse events. Melanoma initiation and progression are associated with transcriptional reprogramming of melanocytes to a cell state that resembles the lineage from which the cells are specified during development, that is the neural crest. Convergence to a neural crest cell (NCC)-like state revealed the therapeutic potential of targeting developmental pathways for the treatment of melanoma. Neural crest cells have a unique sensitivity to metabolic dysregulation, especially nucleotide depletion. Mutations in the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) particularly affect neural crest-derived tissues and cause Miller syndrome, a genetic disorder characterized by craniofacial malformations in patients. The developmental susceptibility of the neural crest to nucleotide deficiency is conserved in melanoma and provides a metabolic vulnerability that can be exploited for therapeutic purposes. We review the current knowledge on nucleotide stress responses in neural crest and melanoma and discuss how the recent scientific advances that have improved our understanding of transcriptional regulation during nucleotide depletion can impact melanoma treatment.
Collapse
Affiliation(s)
- Audrey Sporrij
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Leonard I Zon
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
110
|
Loftus SK, Lundh L, Watkins-Chow DE, Baxter LL, Pairo-Castineira E, Nisc Comparative Sequencing Program, Jackson IJ, Oetting WS, Pavan WJ, Adams DR. A custom capture sequence approach for oculocutaneous albinism identifies structural variant alleles at the OCA2 locus. Hum Mutat 2021; 42:1239-1253. [PMID: 34246199 DOI: 10.1002/humu.24257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Oculocutaneous albinism (OCA) is a heritable disorder of pigment production that manifests as hypopigmentation and altered eye development. Exon sequencing of known OCA genes is unsuccessful in producing a complete molecular diagnosis for a significant number of affected individuals. We sequenced the DNA of individuals with OCA using short-read custom capture sequencing that targeted coding, intronic, and noncoding regulatory regions of known OCA genes, and genome-wide association study-associated pigmentation loci. We identified an OCA2 complex structural variant (CxSV), defined by a 143 kb inverted segment reintroduced in intron 1, upstream of the native location. The corresponding CxSV junctions were observed in 11/390 probands screened. The 143 kb CxSV presents in one family as a copy number variant duplication for the 143 kb region. In the remaining 10/11 families, the 143 kb CxSV acquired an additional 184 kb deletion across the same region, restoring exons 3-19 of OCA2 to a copy-number neutral state. Allele-associated haplotype analysis found rare SNVs rs374519281 and rs139696407 are linked with the 143 kb CxSV in both OCA2 alleles. For individuals in which customary molecular evaluation does not reveal a biallelic OCA diagnosis, we recommend preliminary screening for these haplotype-associated rare variants, followed by junction-specific validation for the OCA2 143 kb CxSV.
Collapse
Affiliation(s)
- Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Linnea Lundh
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | | | - Ian J Jackson
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Adams
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
111
|
Birgmeier J, Haeussler M, Deisseroth CA, Steinberg EH, Jagadeesh KA, Ratner AJ, Guturu H, Wenger AM, Diekhans ME, Stenson PD, Cooper DN, Ré C, Beggs AH, Bernstein JA, Bejerano G. AMELIE speeds Mendelian diagnosis by matching patient phenotype and genotype to primary literature. Sci Transl Med 2021; 12:12/544/eaau9113. [PMID: 32434849 DOI: 10.1126/scitranslmed.aau9113] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/14/2019] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
The diagnosis of Mendelian disorders requires labor-intensive literature research. Trained clinicians can spend hours looking for the right publication(s) supporting a single gene that best explains a patient's disease. AMELIE (Automatic Mendelian Literature Evaluation) greatly accelerates this process. AMELIE parses all 29 million PubMed abstracts and downloads and further parses hundreds of thousands of full-text articles in search of information supporting the causality and associated phenotypes of most published genetic variants. AMELIE then prioritizes patient candidate variants for their likelihood of explaining any patient's given set of phenotypes. Diagnosis of singleton patients (without relatives' exomes) is the most time-consuming scenario, and AMELIE ranked the causative gene at the very top for 66% of 215 diagnosed singleton Mendelian patients from the Deciphering Developmental Disorders project. Evaluating only the top 11 AMELIE-scored genes of 127 (median) candidate genes per patient resulted in a rapid diagnosis in more than 90% of cases. AMELIE-based evaluation of all cases was 3 to 19 times more efficient than hand-curated database-based approaches. We replicated these results on a retrospective cohort of clinical cases from Stanford Children's Health and the Manton Center for Orphan Disease Research. An analysis web portal with our most recent update, programmatic interface, and code is available at AMELIE.stanford.edu.
Collapse
Affiliation(s)
- Johannes Birgmeier
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Maximilian Haeussler
- Santa Cruz Genomics Institute, MS CBSE, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Cole A Deisseroth
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ethan H Steinberg
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Karthik A Jagadeesh
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Alexander J Ratner
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Harendra Guturu
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Aaron M Wenger
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Mark E Diekhans
- Santa Cruz Genomics Institute, MS CBSE, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Christopher Ré
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Alan H Beggs
- Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Gill Bejerano
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA. .,Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.,Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
112
|
Antonarakis SE. History of the methodology of disease gene identification. Am J Med Genet A 2021; 185:3266-3275. [PMID: 34159713 PMCID: PMC8596769 DOI: 10.1002/ajmg.a.62400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
The past 45 years have witnessed a triumph in the discovery of genes and genetic variation that cause Mendelian disorders due to high impact variants. Important discoveries and organized projects have provided the necessary tools and infrastructure for the identification of gene defects leading to thousands of monogenic phenotypes. This endeavor can be divided in three phases in which different laboratory strategies were employed for the discovery of disease-related genes: (i) the biochemical phase, (ii) the genetic linkage followed by positional cloning phase, and (iii) the sequence identification phase. However, much more work is needed to identify all the high impact genomic variation that substantially contributes to the phenotypic variation.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- University of Geneva Medical School, Geneva, Switzerland.,Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| |
Collapse
|
113
|
Han Q, Yang Y, Wu S, Liao Y, Zhang S, Liang H, Cram DS, Zhang Y. Cruxome: a powerful tool for annotating, interpreting and reporting genetic variants. BMC Genomics 2021; 22:407. [PMID: 34082700 PMCID: PMC8173893 DOI: 10.1186/s12864-021-07728-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 01/23/2023] Open
Abstract
Background Next-generation sequencing (NGS) is an efficient tool used for identifying pathogenic variants that cause Mendelian disorders. However, the lack of bioinformatics training of researchers makes the interpretation of identified variants a challenge in terms of precision and efficiency. In addition, the non-standardized phenotypic description of human diseases also makes it difficult to establish an integrated analysis pathway for variant annotation and interpretation. Solutions to these bottlenecks are urgently needed. Results We develop a tool named “Cruxome” to automatically annotate and interpret single nucleotide variants (SNVs) and small insertions and deletions (InDels). Our approach greatly simplifies the current burdensome task of clinical geneticists and scientists to identify the causative pathogenic variants and build personal knowledge reference bases. The integrated architecture of Cruxome offers key advantages such as an interactive and user-friendly interface and the assimilation of electronic health records of the patient. By combining a natural language processing algorithm, Cruxome can efficiently process the clinical description of diseases to HPO standardized vocabularies. By using machine learning, in silico predictive algorithms, integrated multiple databases and supplementary tools, Cruxome can automatically process SNVs and InDels variants (trio-family or proband-only cases) and clinical diagnosis records, then annotate, score, identify and interpret pathogenic variants to finally generate a standardized clinical report following American College of Medical Genetics and Genomics/ Association for Molecular Pathology (ACMG/AMP) guidelines. Cruxome also provides supplementary tools to examine and visualize the genes or variations in historical cases, which can help to better understand the genetic basis of the disease. Conclusions Cruxome is an efficient tool for annotation and interpretation of variations and dramatically reduces the workload for clinical geneticists and researchers to interpret NGS results, simplifying their decision-making processes. We present an online version of Cruxome, which is freely available to academics and clinical researchers. The site is accessible at http://114.251.61.49:10024/cruxome/. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07728-6.
Collapse
Affiliation(s)
- Qingmei Han
- Berry Genomics Company Limited, Building 5, Courtyard 4, Shengmingyuan Road, ZGC Life Science Park, Changping District, 102200, Beijing, China
| | - Ying Yang
- Xian Children's Hospital, 710003, Xian, China
| | - Shengyang Wu
- Berry Genomics Company Limited, Building 5, Courtyard 4, Shengmingyuan Road, ZGC Life Science Park, Changping District, 102200, Beijing, China
| | - Yingchun Liao
- Berry Genomics Company Limited, Building 5, Courtyard 4, Shengmingyuan Road, ZGC Life Science Park, Changping District, 102200, Beijing, China
| | - Shuang Zhang
- Berry Genomics Company Limited, Building 5, Courtyard 4, Shengmingyuan Road, ZGC Life Science Park, Changping District, 102200, Beijing, China
| | - Hongbin Liang
- Berry Genomics Company Limited, Building 5, Courtyard 4, Shengmingyuan Road, ZGC Life Science Park, Changping District, 102200, Beijing, China
| | - David S Cram
- Berry Genomics Company Limited, Building 5, Courtyard 4, Shengmingyuan Road, ZGC Life Science Park, Changping District, 102200, Beijing, China.
| | - Yu Zhang
- Berry Genomics Company Limited, Building 5, Courtyard 4, Shengmingyuan Road, ZGC Life Science Park, Changping District, 102200, Beijing, China.
| |
Collapse
|
114
|
Martin LJ, Benson DW. Focused Strategies for Defining the Genetic Architecture of Congenital Heart Defects. Genes (Basel) 2021; 12:827. [PMID: 34071175 PMCID: PMC8228798 DOI: 10.3390/genes12060827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Congenital heart defects (CHD) are malformations present at birth that occur during heart development. Increasing evidence supports a genetic origin of CHD, but in the process important challenges have been identified. This review begins with information about CHD and the importance of detailed phenotyping of study subjects. To facilitate appropriate genetic study design, we review DNA structure, genetic variation in the human genome and tools to identify the genetic variation of interest. Analytic approaches powered for both common and rare variants are assessed. While the ideal outcome of genetic studies is to identify variants that have a causal role, a more realistic goal for genetic analytics is to identify variants in specific genes that influence the occurrence of a phenotype and which provide keys to open biologic doors that inform how the genetic variants modulate heart development. It has never been truer that good genetic studies start with good planning. Continued progress in unraveling the genetic underpinnings of CHD will require multidisciplinary collaboration between geneticists, quantitative scientists, clinicians, and developmental biologists.
Collapse
Affiliation(s)
- Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - D. Woodrow Benson
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI 53226, USA;
| |
Collapse
|
115
|
Innes AM, Lynch DC. Fifty years of recognizable patterns of human malformation: Insights and opportunities. Am J Med Genet A 2021; 185:2653-2669. [PMID: 33951288 DOI: 10.1002/ajmg.a.62240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
Now in its 7th edition, Smith's Recognizable Patterns of Human Malformation was first published in 1970. This 1st edition comprised 135 "dysmorphic syndromes of multiple primary defects" and 12 "single syndromic malformations resulting in secondary defects." Of the former, other than a few chromosomal and environmental disorders, most were heritable conditions of then unknown etiology. In 2021, the majority of these conditions are now "solved," a notable exception is Hallermann-Streiff syndrome. The "solved" conditions were typically clinically delineated decades prior to understanding the underlying etiology, which rarely required recent technologies such as exome sequencing (ES) to elucidate. The 7th edition includes nearly 300 syndromes, sequences, and associations. An increasing number of conditions first appearing in the latest editions are sporadic, with many solved using either array CGH or ES. We have reviewed all syndromes that have appeared in "Smith's" with a focus on inheritance, heterogeneity, and year and method of etiologic discovery. Several themes emerge. Genetic heterogeneity and pleiotropy of genes are frequent. Several of the currently "unresolved" syndromes are clinically diverse such as Dubowitz syndrome. Multiple recurrent constellations of embryonic malformations, with VACTERL association as a paradigm, are increasingly likely to have a shared pathogenesis requiring further study.
Collapse
Affiliation(s)
- A Micheil Innes
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Danielle C Lynch
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
116
|
Beck LC, Granger CL, Masi AC, Stewart CJ. Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Rev Proteomics 2021; 18:247-259. [PMID: 33896313 DOI: 10.1080/14789450.2021.1922278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: At birth, the gastrointestinal (GI) tract is colonized by a complex community of microorganisms, forming the basis of the gut microbiome. The gut microbiome plays a fundamental role in host health, disorders of which can lead to an array of GI diseases, both short and long term. Pediatric GI diseases are responsible for significant morbidity and mortality, but many remain poorly understood. Recent advancements in high-throughput technologies have enabled deeper profiling of GI morbidities. Technologies, such as metagenomics, transcriptomics, proteomics and metabolomics, have already been used to identify associations with specific pathologies, and highlight an exciting area of research. However, since these diseases are often complex and multifactorial by nature, reliance on a single experimental approach may not capture the true biological complexity. Therefore, multi-omics aims to integrate singular omic data to further enhance our understanding of disease.Areas covered: This review will discuss and provide an overview of the main omic technologies that are used to study complex GI pathologies in early life.Expert opinion: Multi-omic technologies can help to unravel the complexities of several diseases during early life, aiding in biomarker discovery and enabling the development of novel therapeutics and augment predictive models.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Claire L Granger
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Newcastle Neonatal Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
117
|
Kose M, Isik E, Aykut A, Durmaz A, Kose E, Ersoy M, Diniz G, Adebali O, Ünalp A, Yilmaz Ü, Karaoğlu P, Edizer S, Tekin HG, Özdemir TR, Atik T, Onay H, Özkınay F. The utility of next-generation sequencing technologies in diagnosis of Mendelian mitochondrial diseases and reflections on clinical spectrum. J Pediatr Endocrinol Metab 2021; 34:417-430. [PMID: 33629572 DOI: 10.1515/jpem-2020-0410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/10/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Diagnostic process of mitochondrial disorders (MD) is challenging because of the clinical variability and genetic heterogeneity of these conditions. Next-Generation Sequencing (NGS) technology offers a high-throughput platform for nuclear MD. METHODS We included 59 of 72 patients that undergone WES and targeted exome sequencing panel suspected to have potential PMDs. Patients who were included in the analysis considering the possible PMD were reviewed retrospectively and scored according to the Mitochondrial Disease Criteria Scale. RESULTS Sixty-one percent of the patients were diagnosed with whole-exome sequencing (WES) (36/59) and 15% with targeted exome sequencing (TES) (9/59). Patients with MD-related gene defects were included in the mito group, patients without MD-related gene defects were included in the nonmito group, and patients in whom no etiological cause could be identified were included in the unknown etiology group. In 11 out of 36 patients diagnosed with WES, a TES panel was applied prior to WES. In 47 probands in 39 genes (SURF1, SDHAF1, MTO1, FBXL4, SLC25A12, GLRX5, C19oRF12, NDUFAF6, DARS2, BOLA3, SLC19A3, SCO1, HIBCH, PDHA1, PDHAX, PC, ETFA, TRMU, TUFM, NDUFS6, WWOX, UBCD TREX1, ATL1, VAC14, GFAP, PLA2G6, TPRKB, ATP8A2, PEX13, IGHMBP2, LAMB2, LPIN1, GFPT1, CLN5, DOLK) (20 mito group, 19 nonmito group) 59 variants (31 mito group, 18 nonmito group) were detected. Seven novel variants in the mito group (SLC25A12, GLRX5, DARS2, SCO1, PC, ETFA, NDUFS6), nine novel variants in the nonmito group (IVD, GCDH, COG4, VAC14, GFAP, PLA2G6, ATP8A2, PEX13, LPIN1) were detected. CONCLUSIONS We explored the feasibility of identifying pathogenic alleles using WES and TES in MD. Our results show that WES is the primary method of choice in the diagnosis of MD until at least all genes responsible for PMD are found and are highly effective in facilitating the diagnosis process.
Collapse
Affiliation(s)
- Melis Kose
- Department of Pediatrics, Division of Inborn Errors of Metabolism, İzmir Katip Çelebi University, Izmir, Turkey.,Department of Pediatrics, Division of Genetics, Ege University, Izmir, Turkey
| | - Esra Isik
- Department of Pediatrics, Division of Genetics, Ege University, Izmir, Turkey
| | - Ayça Aykut
- Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Asude Durmaz
- Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Engin Kose
- Department of Pediatrics, Division of Inborn Errors of Metabolism, Ankara University, Ankara, Turkey
| | - Melike Ersoy
- Department of Pediatrics, Division of Inborn Errors of Metabolism, Health Sciences University, Bakırkoy Sadi Konuk Research and Training Hospital, Istanbul, Turkey
| | - Gulden Diniz
- Department of Pathology, İzmir Democrasy University, Izmir, Turkey
| | - Ogun Adebali
- Adebali Lab, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Aycan Ünalp
- Department of Pediatric Neurology, Health Sciences University Dr. Behçet Uz Children Research and Training Hospital, Izmir, Turkey
| | - Ünsal Yilmaz
- Department of Pediatric Neurology, Health Sciences University Dr. Behçet Uz Children Research and Training Hospital, Izmir, Turkey
| | - Pakize Karaoğlu
- Department of Pediatric Neurology, Health Sciences University Dr. Behçet Uz Children Research and Training Hospital, Izmir, Turkey
| | - Selvinaz Edizer
- Department of Pediatrics, Division of Pediatric Neurology, Kanuni Sultan Suleyman University, Istanbul, Turkey
| | - Hande Gazeteci Tekin
- Department of Pediatrics, Division of Pediatric Neurology, Çiğli Training and Research Hospital, Izmir, Turkey
| | - Taha Reşid Özdemir
- Department of Medical Genetics, Health Sciences University Tepecik Training and Research Hospital, Izmir, Turkey
| | - Tahir Atik
- Department of Pediatrics, Division of Genetics, Ege University, Izmir, Turkey
| | - Hüseyin Onay
- Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Ferda Özkınay
- Department of Pediatrics, Division of Genetics, Ege University, Izmir, Turkey
| |
Collapse
|
118
|
Kamolvisit W, Phowthongkum P, Boonsimma P, Kuptanon C, Rojnueangnit K, Wattanasirichaigoon D, Chanvanichtrakool M, Phuaksaman C, Wiromrat P, Srichomthong C, Ittiwut C, Phokaew C, Ittiwut R, Assawapitaksakul A, Chetruengchai W, Buasong A, Suphapeetiporn K, Shotelersuk V. Rapid exome sequencing as the first-tier investigation for diagnosis of acutely and severely ill children and adults in Thailand. Clin Genet 2021; 100:100-105. [PMID: 33822359 DOI: 10.1111/cge.13963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022]
Abstract
The use of rapid DNA sequencing technology in severely ill children in developed countries can accurately identify diagnoses and positively impact patient outcomes. This study sought to evaluate the outcome of Thai children and adults with unknown etiologies of critical illnesses with the deployment of rapid whole exome sequencing (rWES) in Thailand. We recruited 54 unrelated patients from 11 hospitals throughout Thailand. The median age was 3 months (range, 2 days-55 years) including 47 children and 7 adults with 52% males. The median time from obtaining blood samples to issuing the rWES report was 12 days (range, 5-27 days). A molecular diagnosis was established in 25 patients (46%), resulting in a change in clinical management for 24 patients (44%) resulting in improved clinical outcomes in 16 patients (30%). Four out of seven adult patients (57%) received the molecular diagnosis which led to a change in management. The 25 diagnoses comprised 23 different diseases. Of the 34 identified variants, 15 had never been previously reported. This study suggests that use of rWES as a first-tier investigation tool can provide tremendous benefits in critically ill patients with unknown etiology across age groups in Thailand.
Collapse
Affiliation(s)
- Wuttichart Kamolvisit
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Prasit Phowthongkum
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Division of Medical Genetics and Genomics, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ponghatai Boonsimma
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Chulaluck Kuptanon
- Department of Pediatrics, College of Medicine, Rangsit University, Bangkok, Thailand.,Division of Genetics, Department of Medical Services, Queen Sirikit National Institute of Child Health, Ministry of Public Health, Bangkok, Thailand
| | - Kitiwan Rojnueangnit
- Division of Genetics, Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Chutima Phuaksaman
- Department of Pediatrics, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Pattara Wiromrat
- Section of Endocrinology, Department of Pediatrics, Khon Kaen University, Khon Kaen, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Adjima Assawapitaksakul
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Aayalida Buasong
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
119
|
The Utility of Whole Exome Sequencing in Diagnosing Pediatric Neurological Disorders. Balkan J Med Genet 2021; 23:17-24. [PMID: 33816068 PMCID: PMC8009565 DOI: 10.2478/bjmg-2020-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Pediatric neurological disorders have a wide spectrum of clinical presentations and can be challenging to diagnose. Whole exome sequencing (WES) is increasingly becoming an integral diagnostic tool in medicine. It is cost-effective and has high diagnostic yield, especially in consanguineous populations. This study aims to review WES results and its value in diagnosing neurological disorders. A retrospective chart review was performed for WES results between the period of January 2018 to November 2019. Whole exome sequencing was requested for children with unexplained neurological signs and symptoms such as epilepsy, developmental delay, visual impairment, spasticity, hypotonia and magnetic resonance imaging (MRI) brain changes. It was conducted for children in a pediatric neurology clinic of a tertiary center at Jeddah, Saudi Arabia. Twenty-six children with undiagnosed neurological conditions were identified and underwent WES diagnosis. Nineteen patients (73.0%) of the cohort were diagnosed with pathogenic variants, likely pathogenic variants or variants of unknown significance (VUS). Consanguinity was positive in 18 families of the cohort (69.0%). Seven patients showed homozygous mutations. Five patients had heterozygous mutations. There were six patients with VUS and six patients had negative WES results. Whole exome sequencing showed a high diagnostic rate in this group of children with variable neurological disorders.
Collapse
|
120
|
Vinkšel M, Writzl K, Maver A, Peterlin B. Improving diagnostics of rare genetic diseases with NGS approaches. J Community Genet 2021; 12:247-256. [PMID: 33452619 PMCID: PMC8141085 DOI: 10.1007/s12687-020-00500-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
According to a rough estimate, one in fifteen people worldwide is affected by a rare disease. Rare diseases are therefore common in clinical practice; however, timely diagnosis of rare diseases is still challenging. Introduction of novel methods based on next-generation sequencing (NGS) technology offers a successful diagnosis of genetically heterogeneous disorders, even in case of unclear clinical diagnostic hypothesis. However, the application of novel technology differs among the centres and health systems significantly. Our goal is to discuss the impact of the implementation of NGS in the diagnosis of rare diseases and present advantages along with challenges of diagnostic approach. Systematic implementation of NGS in health systems can significantly improve the access of patients with rare diseases to diagnosis and reduce the dependence of national health systems for cross-border collaboration.
Collapse
Affiliation(s)
- Mateja Vinkšel
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
121
|
Baschiera E, Sorrentino U, Calderan C, Desbats MA, Salviati L. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 2021; 166:277-286. [PMID: 33667628 DOI: 10.1016/j.freeradbiomed.2021.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Coenzyme Q (CoQ) is a redox active lipid that plays a central role in cellular homeostasis. It was discovered more than 60 years ago because of its role as electron transporter in the mitochondrial respiratory chain. Since then it has become evident that CoQ has many other functions, not directly related to bioenergetics. It is a cofactor of several mitochondrial dehydrogenases involved in the metabolism of lipids, amino acids, and nucleotides, and in sulfide detoxification. It is a powerful antioxidant and it is involved in the control of programmed cell death by modulating both apoptosis and ferroptosis. CoQ deficiency is a clinically and genetically heterogeneous group of disorders characterized by the impairment of CoQ biosynthesis. CoQ deficient patients display defects in cellular bioenergetics, but also in the other pathways in which CoQ is involved. In this review we will focus on the functions of CoQ not directly related to the respiratory chain, and on how their impairment is relevant for the pathophysiology of CoQ deficiency. A better understanding of the complex set of events triggered by CoQ deficiency will allow to design novel approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Elisa Baschiera
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Cristina Calderan
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy.
| |
Collapse
|
122
|
Beyzaei Z, Ezgu F, Geramizadeh B, Imanieh MH, Haghighat M, Dehghani SM, Honar N, Zahmatkeshan M, Jassbi A, Mahboubifar M, Alborzi A. Clinical and genetic spectrum of glycogen storage disease in Iranian population using targeted gene sequencing. Sci Rep 2021; 11:7040. [PMID: 33782433 PMCID: PMC8007705 DOI: 10.1038/s41598-021-86338-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/15/2021] [Indexed: 02/05/2023] Open
Abstract
Glycogen storage diseases (GSDs) are known as complex disorders with overlapping manifestations. These features also preclude a specific clinical diagnosis, requiring more accurate paraclinical tests. To evaluate the patients with particular diagnosis features characterizing GSD, an observational retrospective case study was designed by performing a targeted gene sequencing (TGS) for accurate subtyping. A total of the 15 pediatric patients were admitted to our hospital and referred for molecular genetic testing using TGS. Eight genes namely SLC37A4, AGL, GBE1, PYGL, PHKB, PGAM2, and PRKAG2 were detected to be responsible for the onset of the clinical symptoms. A total number of 15 variants were identified i.e. mostly loss-of-function (LoF) variants, of which 10 variants were novel. Finally, diagnosis of GSD types Ib, III, IV, VI, IXb, IXc, X, and GSD of the heart, lethal congenital was made in 13 out of the 14 patients. Notably, GSD-IX and GSD of the heart-lethal congenital (i.e. PRKAG2 deficiency) patients have been reported in Iran for the first time which shown the development of liver cirrhosis with novel variants. These results showed that TGS, in combination with clinical, biochemical, and pathological hallmarks, could provide accurate and high-throughput results for diagnosing and sub-typing GSD and related diseases.
Collapse
Affiliation(s)
- Zahra Beyzaei
- Shiraz Transplant Research Center (STRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatih Ezgu
- Department of Pediatric Metabolism and Genetic, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Bita Geramizadeh
- Shiraz Transplant Research Center (STRC), Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pathology, Shiraz University of Medical Sciences, Khalili St., Research Tower, Seventh Floor, Shiraz Transplant Research Center (STRC), Shiraz, Iran.
| | - Mohammad Hadi Imanieh
- Gastroenterology and Hepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Haghighat
- Gastroenterology and Hepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohsen Dehghani
- Gastroenterology and Hepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naser Honar
- Gastroenterology and Hepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojgan Zahmatkeshan
- Gastroenterology and Hepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Mahboubifar
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Alborzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
123
|
Pan W, Gong D, Sun D, Luo H. HICANCER: accurate and complete cancer genome phasing with Hi-C reads. Sci Rep 2021; 11:6609. [PMID: 33758310 PMCID: PMC7987978 DOI: 10.1038/s41598-021-86104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 11/10/2022] Open
Abstract
Due to the high complexity of cancer genome, it is too difficult to generate complete cancer genome map which contains the sequence of every DNA molecule until now. Nevertheless, phasing each chromosome in cancer genome into two haplotypes according to germline mutations provides a suboptimal solution to understand cancer genome. However, phasing cancer genome is also a challenging problem, due to the limit in experimental and computational technologies. Hi-C data is widely used in phasing in recent years due to its long-range linkage information and provides an opportunity for solving the problem of phasing cancer genome. The existing Hi-C based phasing methods can not be applied to cancer genome directly, because the somatic mutations in cancer genome such as somatic SNPs, copy number variations and structural variations greatly reduce the correctness and completeness. Here, we propose a new Hi-C based pipeline for phasing cancer genome called HiCancer. HiCancer solves different kinds of somatic mutations and variations, and take advantage of allelic copy number imbalance and linkage disequilibrium to improve the correctness and completeness of phasing. According to our experiments in K562 and KBM-7 cell lines, HiCancer is able to generate very high-quality chromosome-level haplotypes for cancer genome with only Hi-C data.
Collapse
Affiliation(s)
- Weihua Pan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Desheng Gong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Da Sun
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Haohui Luo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
124
|
Allele frequency of variants reported to cause adenine phosphoribosyltransferase deficiency. Eur J Hum Genet 2021; 29:1061-1070. [PMID: 33707627 PMCID: PMC8298615 DOI: 10.1038/s41431-020-00805-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 11/15/2022] Open
Abstract
Adenine phosphoribosyltransferase deficiency is a rare, autosomal recessive disorder of purine metabolism that causes nephrolithiasis and progressive chronic kidney disease. The small number of reported cases indicates an extremely low prevalence, although it has been suggested that missed diagnoses may play a role. We assessed the prevalence of APRT deficiency based on the frequency of causally-related APRT sequence variants in a diverse set of large genomic databases. A thorough search was carried out for all APRT variants that have been confirmed as pathogenic under recessive mode of inheritance, and the frequency of the identified variants examined in six population genomic databases: the deCODE genetics database, the UK Biobank, the 100,000 Genomes Project, the Genome Aggregation Database, the Human Genetic Variation Database and the Korean Variant Archive. The estimated frequency of homozygous genotypes was calculated using the Hardy-Weinberg equation. Sixty-two pathogenic APRT variants were identified, including six novel variants. Most common were the missense variants c.407T>C (p.(Met136Thr)) in Japan and c.194A>T (p.(Asp65Val)) in Iceland, as well as the splice-site variant c.400 + 2dup (p.(Ala108Glufs*3)) in the European population. Twenty-nine variants were detected in at least one of the six genomic databases. The highest cumulative minor allele frequency (cMAF) of pathogenic variants outside of Japan and Iceland was observed in the Irish population (0.2%), though no APRT deficiency cases have been reported in Ireland. The large number of cases in Japan and Iceland is consistent with a founder effect in these populations. There is no evidence for widespread underdiagnosis based on the current analysis.
Collapse
|
125
|
Thomas Q, Vitobello A, Tran Mau-Them F, Duffourd Y, Fromont A, Giroud M, Daubail B, Jacquin-Piques A, Hervieu-Begue M, Moreau T, Osseby GV, Garret P, Nambot S, Delanne J, Bruel AL, Sorlin A, Callier P, Denomme-Pichon AS, Faivre L, Béjot Y, Philippe C, Thauvin-Robinet C, Moutton S. High efficiency and clinical relevance of exome sequencing in the daily practice of neurogenetics. J Med Genet 2021; 59:445-452. [PMID: 34085946 DOI: 10.1136/jmedgenet-2020-107369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To assess the efficiency and relevance of clinical exome sequencing (cES) as a first-tier or second-tier test for the diagnosis of progressive neurological disorders in the daily practice of Neurology and Genetic Departments. METHODS Sixty-seven probands with various progressive neurological disorders (cerebellar ataxias, neuromuscular disorders, spastic paraplegias, movement disorders and individuals with complex phenotypes labelled 'other') were recruited over a 4-year period regardless of their age, gender, familial history and clinical framework. Individuals could have had prior genetic tests as long as it was not cES. cES was performed in a proband-only (60/67) or trio (7/67) strategy depending on available samples and was analysed with an in-house pipeline including software for CNV and mitochondrial-DNA variant detection. RESULTS In 29/67 individuals, cES identified clearly pathogenic variants leading to a 43% positive yield. When performed as a first-tier test, cES identified pathogenic variants for 53% of individuals (10/19). Difficult cases were solved including double diagnoses within a kindred or identification of a neurodegeneration with brain iron accumulation in a patient with encephalopathy of suspected mitochondrial origin. CONCLUSION This study shows that cES is a powerful tool for the daily practice of neurogenetics offering an efficient (43%) and appropriate approach for clinically and genetically complex and heterogeneous disorders.
Collapse
Affiliation(s)
- Quentin Thomas
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France .,Genetics Center, FHU-TRANSLAD, Dijon University Hospital, Dijon, Burgundy, France.,Neurology Department, Dijon University Hospital, Dijon, Burgundy, France
| | - Antonio Vitobello
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.,Functional Unity of innovative diagnosis for rare diseases, Dijon Bourgogne University Hospital, Dijon, Burgundy, France
| | - Frederic Tran Mau-Them
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.,Functional Unity of innovative diagnosis for rare diseases, Dijon Bourgogne University Hospital, Dijon, Burgundy, France
| | - Yannis Duffourd
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.,Functional Unity of innovative diagnosis for rare diseases, Dijon Bourgogne University Hospital, Dijon, Burgundy, France
| | - Agnès Fromont
- Neurology Department, Dijon University Hospital, Dijon, Burgundy, France
| | - Maurice Giroud
- Neurology Department, Dijon University Hospital, Dijon, Burgundy, France.,Dijon Stroke Registry, EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases (PEC2), University of Burgundy and Franche-Comté, Dijon, Burgundy, France
| | - Benoit Daubail
- Department of Adult Neurophysiology, Dijon University Hospital, Dijon, Burgundy, France
| | - Agnès Jacquin-Piques
- Department of Adult Neurophysiology, Dijon University Hospital, Dijon, Burgundy, France
| | | | - Thibault Moreau
- Neurology Department, Dijon University Hospital, Dijon, Burgundy, France
| | - Guy-Victor Osseby
- Neurology Department, Dijon University Hospital, Dijon, Burgundy, France
| | - Philippine Garret
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.,Functional Unity of innovative diagnosis for rare diseases, Dijon Bourgogne University Hospital, Dijon, Burgundy, France
| | - Sophie Nambot
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.,Genetics Center, FHU-TRANSLAD, Dijon University Hospital, Dijon, Burgundy, France
| | - Julian Delanne
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.,Genetics Center, FHU-TRANSLAD, Dijon University Hospital, Dijon, Burgundy, France
| | - Ange-Line Bruel
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.,Functional Unity of innovative diagnosis for rare diseases, Dijon Bourgogne University Hospital, Dijon, Burgundy, France
| | - Arthur Sorlin
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.,Functional Unity of innovative diagnosis for rare diseases, Dijon Bourgogne University Hospital, Dijon, Burgundy, France
| | - Patrick Callier
- Functional Unity of innovative diagnosis for rare diseases, Dijon Bourgogne University Hospital, Dijon, Burgundy, France
| | - Anne-Sophie Denomme-Pichon
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.,Functional Unity of innovative diagnosis for rare diseases, Dijon Bourgogne University Hospital, Dijon, Burgundy, France
| | - Laurence Faivre
- Genetics Center, FHU-TRANSLAD, Dijon University Hospital, Dijon, Burgundy, France
| | - Yannick Béjot
- Neurology Department, Dijon University Hospital, Dijon, Burgundy, France.,Dijon Stroke Registry, EA7460, Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases (PEC2), University of Burgundy and Franche-Comté, Dijon, Burgundy, France
| | - Christophe Philippe
- Functional Unity of innovative diagnosis for rare diseases, Dijon Bourgogne University Hospital, Dijon, Burgundy, France
| | - Christel Thauvin-Robinet
- Genetics Center, FHU-TRANSLAD, Dijon University Hospital, Dijon, Burgundy, France.,Functional Unity of innovative diagnosis for rare diseases, Dijon Bourgogne University Hospital, Dijon, Burgundy, France
| | - Sébastien Moutton
- Inserm UMR1231 team GAD, University of Burgundy and Franche-Comté, Dijon, France.,Genetics Center, FHU-TRANSLAD, Dijon University Hospital, Dijon, Burgundy, France
| |
Collapse
|
126
|
Nasreddine G, El Hajj J, Ghassibe-Sabbagh M. Orofacial clefts embryology, classification, epidemiology, and genetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108373. [PMID: 34083042 DOI: 10.1016/j.mrrev.2021.108373] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 01/14/2023]
Abstract
Orofacial clefts (OFCs) rank as the second most common congenital birth defect in the United States after Down syndrome and are the most common head and neck congenital malformations. They are classified as cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO). OFCs have significant psychological and socio-economic impact on patients and their families and require a multidisciplinary approach for management and counseling. A complex interaction between genetic and environmental factors contributes to the incidence and clinical presentation of OFCs. In this comprehensive review, the embryology, classification, epidemiology and etiology of clefts are thoroughly discussed and a "state-of-the-art" snapshot of the recent advances in the genetics of OFCs is presented.
Collapse
Affiliation(s)
- Ghenwa Nasreddine
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| | - Joelle El Hajj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| |
Collapse
|
127
|
Soares de Lima Y, Arnau-Collell C, Díaz-Gay M, Bonjoch L, Franch-Expósito S, Muñoz J, Moreira L, Ocaña T, Cuatrecasas M, Herrera-Pariente C, Carballal S, Moreno L, Díaz de Bustamante A, Castells A, Bujanda L, Cubiella J, Rodríguez-Alcalde D, Balaguer F, Castellví-Bel S. Germline and Somatic Whole-Exome Sequencing Identifies New Candidate Genes Involved in Familial Predisposition to Serrated Polyposis Syndrome. Cancers (Basel) 2021; 13:929. [PMID: 33672345 PMCID: PMC7927050 DOI: 10.3390/cancers13040929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The serrated polyposis syndrome (SPS) is the most common and yet underdiagnosed colorectal polyposis syndrome. It is characterized by multiple and/or large colonic serrated polyps and a higher associated risk for colorectal cancer (CRC). The main objective of this study was to identify new candidate genes involved in the germline predisposition to SPS/CRC. Thirty-nine SPS patients from 16 families (≥2 patients per family) were recruited without alterations in well-known hereditary CRC genes, and germline and somatic whole-exome sequencing were performed. Germline rare variants with plausible pathogenicity, located in genes involved in cancer development, senescence and epigenetic regulation were selected. Somatic mutational profiling and signature analysis was pursued in one sample per family, when possible. After data filtering, ANXA10, ASXL1, CFTR, DOT1L, HIC1, INO80, KLF3, MCM3AP, MCM8, PDLIM2, POLD1, TP53BP1, WNK2 and WRN were highlighted as the more promising candidate genes for SPS germline predisposition with potentially pathogenic variants shared within families. Somatic analysis characterized mutational profiles in advanced serrated polyps/tumors, revealing a high proportion of hypermutated samples, with a prevalence of clock-like mutational signatures in most samples and the presence of DNA mismatch repair-defective signatures in some cases. In conclusion, we identified new candidate genes to be involved in familial SPS. Further functional studies and replication in additional cohorts are required to confirm the selected candidates.
Collapse
Affiliation(s)
- Yasmin Soares de Lima
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Coral Arnau-Collell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Marcos Díaz-Gay
- Moores Cancer Center, Department of Cellular and Molecular Medicine, Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Laia Bonjoch
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Sebastià Franch-Expósito
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Jenifer Muñoz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Leticia Moreira
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Teresa Ocaña
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Miriam Cuatrecasas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Pathology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Tumor Bank-Biobank, Hospital Clínic, 08036 Barcelona, Spain;
| | - Cristina Herrera-Pariente
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Sabela Carballal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Lorena Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | | | - Antoni Castells
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Luis Bujanda
- Gastroenterology Department, Hospital Donostia-Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Basque Country University (UPV/EHU), 20014 San Sebastián, Spain;
| | - Joaquín Cubiella
- Gastroenterology Department, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 32005 Ourense, Spain;
| | | | - Francesc Balaguer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Sergi Castellví-Bel
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| |
Collapse
|
128
|
Detecting Causal Variants in Mendelian Disorders Using Whole-Genome Sequencing. Methods Mol Biol 2021; 2243:1-25. [PMID: 33606250 DOI: 10.1007/978-1-0716-1103-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Increasingly affordable sequencing technologies are revolutionizing the field of genomic medicine. It is now feasible to interrogate all major classes of variation in an individual across the entire genome for less than $1000 USD. While the generation of patient sequence information using these technologies has become routine, the analysis and interpretation of this data remains the greatest obstacle to widespread clinical implementation. This chapter summarizes the steps to identify, annotate, and prioritize variant information required for clinical report generation. We discuss methods to detect each variant class and describe strategies to increase the likelihood of detecting causal variant(s) in Mendelian disease. Lastly, we describe a sample workflow for synthesizing large amount of genetic information into concise clinical reports.
Collapse
|
129
|
Peña-Chilet M, Roldán G, Perez-Florido J, Ortuño FM, Carmona R, Aquino V, Lopez-Lopez D, Loucera C, Fernandez-Rueda JL, Gallego A, García-Garcia F, González-Neira A, Pita G, Núñez-Torres R, Santoyo-López J, Ayuso C, Minguez P, Avila-Fernandez A, Corton M, Moreno-Pelayo MÁ, Morin M, Gallego-Martinez A, Lopez-Escamez JA, Borrego S, Antiñolo G, Amigo J, Salgado-Garrido J, Pasalodos-Sanchez S, Morte B, Carracedo Á, Alonso Á, Dopazo J. CSVS, a crowdsourcing database of the Spanish population genetic variability. Nucleic Acids Res 2021; 49:D1130-D1137. [PMID: 32990755 PMCID: PMC7778906 DOI: 10.1093/nar/gkaa794] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
The knowledge of the genetic variability of the local population is of utmost importance in personalized medicine and has been revealed as a critical factor for the discovery of new disease variants. Here, we present the Collaborative Spanish Variability Server (CSVS), which currently contains more than 2000 genomes and exomes of unrelated Spanish individuals. This database has been generated in a collaborative crowdsourcing effort collecting sequencing data produced by local genomic projects and for other purposes. Sequences have been grouped by ICD10 upper categories. A web interface allows querying the database removing one or more ICD10 categories. In this way, aggregated counts of allele frequencies of the pseudo-control Spanish population can be obtained for diseases belonging to the category removed. Interestingly, in addition to pseudo-control studies, some population studies can be made, as, for example, prevalence of pharmacogenomic variants, etc. In addition, this genomic data has been used to define the first Spanish Genome Reference Panel (SGRP1.0) for imputation. This is the first local repository of variability entirely produced by a crowdsourcing effort and constitutes an example for future initiatives to characterize local variability worldwide. CSVS is also part of the GA4GH Beacon network. CSVS can be accessed at: http://csvs.babelomics.org/.
Collapse
Affiliation(s)
- María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Bioinformatics in Rare Diseases (BiER), Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Sevilla 41013, Spain
- Computational Systems Medicine group, Institute of Biomedicine of Seville (IBIS) Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Gema Roldán
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Javier Perez-Florido
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Computational Systems Medicine group, Institute of Biomedicine of Seville (IBIS) Hospital Virgen del Rocío, Sevilla 41013, Spain
- Functional Genomics Node, FPS/ELIXIR-ES, Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Francisco M Ortuño
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Computational Systems Medicine group, Institute of Biomedicine of Seville (IBIS) Hospital Virgen del Rocío, Sevilla 41013, Spain
- Functional Genomics Node, FPS/ELIXIR-ES, Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Rosario Carmona
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Virginia Aquino
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Daniel Lopez-Lopez
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Computational Systems Medicine group, Institute of Biomedicine of Seville (IBIS) Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Computational Systems Medicine group, Institute of Biomedicine of Seville (IBIS) Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Jose L Fernandez-Rueda
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
| | | | - Francisco García-Garcia
- Unidad de Bioinformática y Bioestadística, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Anna González-Neira
- Human Genotyping Unit–Centro Nacional de Genotipado (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Guillermo Pita
- Human Genotyping Unit–Centro Nacional de Genotipado (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Rocío Núñez-Torres
- Human Genotyping Unit–Centro Nacional de Genotipado (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | | | - Carmen Ayuso
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain
| | - Pablo Minguez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid 28040, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain
| | - Marta Corton
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain
| | - Miguel Ángel Moreno-Pelayo
- Servicio de Genética, Ramón y Cajal Institute of Health Research (IRYCIS) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Madrid 28034, Spain
| | - Matías Morin
- Servicio de Genética, Ramón y Cajal Institute of Health Research (IRYCIS) and Biomedical Network Research Centre on Rare Diseases (CIBERER), Madrid 28034, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENYO), Pfizer University of Granada, Granada 18016, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, IBS. GRANADA, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada 18016, Spain
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENYO), Pfizer University of Granada, Granada 18016, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, IBS. GRANADA, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada 18016, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville 41013, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville 41013, Spain
| | - Jorge Amigo
- Fundación Pública Galega de Medicina Xenómica, SERGAS, IDIS, Santiago de Compostela 15706, Spain
| | - Josefa Salgado-Garrido
- Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), Pamplona, Navarra 31008, Spain
| | - Sara Pasalodos-Sanchez
- Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), Pamplona, Navarra 31008, Spain
| | - Beatriz Morte
- Undiagnosed Rare Diseases Programme (ENoD). Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid 28029, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, SERGAS, IDIS, Santiago de Compostela 15706, Spain
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, España
| | - Ángel Alonso
- Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), Pamplona, Navarra 31008, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Bioinformatics in Rare Diseases (BiER), Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Sevilla 41013, Spain
- Computational Systems Medicine group, Institute of Biomedicine of Seville (IBIS) Hospital Virgen del Rocío, Sevilla 41013, Spain
- Functional Genomics Node, FPS/ELIXIR-ES, Hospital Virgen del Rocío, Sevilla 41013, Spain
| |
Collapse
|
130
|
Bu H, Sun G, Zhu Y, Yang Y, Tan Z, Zhao T, Hu S. The M310T mutation in the GATA4 gene is a novel pathogenic target of the familial atrial septal defect. BMC Cardiovasc Disord 2021; 21:12. [PMID: 33413087 PMCID: PMC7788758 DOI: 10.1186/s12872-020-01822-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although most cases of atrial septal defect (ASD) are sporadic, familial cases have been reported, which may be caused by mutation of transcription factor GATA binding protein 4 (GATA4). Herein we combined whole-exome sequencing and bioinformatics strategies to identify a novel mutation in GATA4 accounting for the etiology in a Chinese family with ASD. METHODS We identified kindred spanning 3 generations in which 3 of 12 (25.0%) individuals had ASD. Punctilious records for the subjects included complete physical examination, transthoracic echocardiography, electrocardiograph and surgical confirming. Whole-exome capture and high-throughput sequencing were performed on the proband III.1. Sanger sequencing was used to validate the candidate variants, and segregation analyses were performed in the family members. RESULTS Direct sequencing of GATA4 from the genomic DNA of family members identified a T-to-C transition at nucleotide 929 in exon 5 that predicted a methionine to threonine substitution at codon 310 (M310T) in the nuclear localization signal (NLS) region. Two affected members (II.2 and III.3) and the proband (III.1) who was recognized as a carrier exhibited this mutation, whereas the other unaffected family members or control individuals did not. More importantly, the mutation GATA4 (c.T929C: p.M310T) has not been reported previously in either familial or sporadic cases of congenital heart defects (CHD). CONCLUSIONS We identified for the first time a novel M310T mutation in the GATA4 gene that is located in the NLS region and leads to family ASD with arrhythmias. However, the mechanism by which this pathogenic mutation contributes to the development of heart defect and tachyarrhythmias remains to be ascertained.
Collapse
Affiliation(s)
- Haisong Bu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Guowen Sun
- Department of Cardiothoracic Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, 423000, Hunan, People's Republic of China
| | - Yun Zhu
- Department of Cardiothoracic Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, 423000, Hunan, People's Republic of China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Zhiping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Tianli Zhao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shijun Hu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China. .,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China. .,Department of Cardiovascular Surgery, The German Heart Centre, 80636, Munich, Germany.
| |
Collapse
|
131
|
Woerner AC, Gallagher RC, Vockley J, Adhikari AN. The Use of Whole Genome and Exome Sequencing for Newborn Screening: Challenges and Opportunities for Population Health. Front Pediatr 2021; 9:663752. [PMID: 34350142 PMCID: PMC8326411 DOI: 10.3389/fped.2021.663752] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Newborn screening (NBS) is a population-based program with a goal of reducing the burden of disease for conditions with significant clinical impact on neonates. Screening tests were originally developed and implemented one at a time, but newer methods have allowed the use of multiplex technologies to expand additions more rapidly to standard panels. Recent improvements in next-generation sequencing are also evolving rapidly from first focusing on individual genes, then panels, and finally all genes as encompassed by whole exome and genome sequencing. The intersection of these two technologies brings the revolutionary possibility of identifying all genetic disorders in newborns, allowing implementation of therapies at the optimum time regardless of symptoms. This article reviews the history of newborn screening and early studies examining the use of whole genome and exome sequencing as a screening tool. Lessons learned from these studies are discussed, along with technical, ethical, and societal challenges to broad implementation.
Collapse
Affiliation(s)
- Audrey C Woerner
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Renata C Gallagher
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Aashish N Adhikari
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States.,Artificial Intelligence Lab, Illumina Inc, Foster City, CA, United States
| |
Collapse
|
132
|
Di Resta C, Pipitone GB, Carrera P, Ferrari M. Current scenario of the genetic testing for rare neurological disorders exploiting next generation sequencing. Neural Regen Res 2021; 16:475-481. [PMID: 32985468 PMCID: PMC7996035 DOI: 10.4103/1673-5374.293135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Next generation sequencing is currently a cornerstone of genetic testing in routine diagnostics, allowing for the detection of sequence variants with so far unprecedented large scale, mainly in genetically heterogenous diseases, such as neurological disorders. It is a fast-moving field, where new wet enrichment protocols and bioinformatics tools are constantly being developed to overcome initial limitations. Despite the as yet undiscussed advantages, however, there are still some challenges in data analysis and the interpretation of variants. In this review, we address the current state of next generation sequencing diagnostic testing for inherited human disorders, particularly giving an overview of the available high-throughput sequencing approaches; including targeted, whole-exome and whole-genome sequencing; and discussing the main critical aspects of the bioinformatic process, from raw data analysis to molecular diagnosis.
Collapse
Affiliation(s)
- Chiara Di Resta
- Vita-Salute San Raffaele University; Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute; Clinical Molecular Biology Laboratory, IRCCS San Raffaele Hospital, Milan, Italy
| | - Maurizio Ferrari
- Vita-Salute San Raffaele University; Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute; Clinical Molecular Biology Laboratory, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
133
|
AHMADNIA N, BEIRAGHI TOOSI M, GHAYOUR KARIMIANI E, ASHRAFZADEH F, FARAJI RAD M. The Results of Whole Exome Sequencing Performed On Previously Undiagnosed Pediatric Neurology Patients. IRANIAN JOURNAL OF CHILD NEUROLOGY 2021; 15:17-31. [PMID: 36213152 PMCID: PMC9376020 DOI: 10.22037/ijcn.v15i2.26401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/20/2020] [Indexed: 11/18/2022]
Abstract
Objective Whole exome sequencing (WES) is a new molecular diagnostic test, used in pediatric medicine, especially pediatric neurology. The diagnostic yield of WES is higher than conventional methods. Therefore, this study aimed to assess the diagnostic yield of WES in a pediatric neurology clinic and to report positive results. Materials & Methods This retrospective study was performed on patients, presenting to the pediatric neurology clinic of Ghaem Hospital in Mashhad, Iran, between March 2015 and March 2017, with various neurological disabilities and unrevealing workup before WES. The patients' clinical features and molecular diagnoses based on the WES results were reported in this study. Results The overall diagnostic yield of WES was 82.71% (67/81 patients). Two patients were excluded for the lack of data. Sixty-five patients with pathogenic or possibly pathogenic variants exhibited various abnormalities, including intellectual disability/developmental delay (n=44), seizure (n=27), developmental regression (n=11), myopathy (n=9), microcephaly (n=8), neuropathy (n=2), autism spectrum disorder (n=2), and neuromuscular disease (n=2). Overall, 93.84% of the patients were born to consanguineous parents. Also, 62 patients had an autosomal recessive disorder, and three patients had an autosomal dominant disorder. Conclusion The present findings indicating the high diagnostic yield of WES, besides the important role of this test in determining the etiology of non-specific and atypical presentations of genetic disorders, support the use of WES in pediatric neurology practice.
Collapse
Affiliation(s)
- Negin AHMADNIA
- Medical Student, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran BEIRAGHI TOOSI
- Neuropediatric Division, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farah ASHRAFZADEH
- Neuropediatric Division, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad FARAJI RAD
- Neurosurgery Department, Ghaem Hospital, Mashhad University of Medical Sciences Mashhad, Iran
| |
Collapse
|
134
|
Raterman ST, Metz JR, Wagener FADTG, Von den Hoff JW. Zebrafish Models of Craniofacial Malformations: Interactions of Environmental Factors. Front Cell Dev Biol 2020; 8:600926. [PMID: 33304906 PMCID: PMC7701217 DOI: 10.3389/fcell.2020.600926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
The zebrafish is an appealing model organism for investigating the genetic (G) and environmental (E) factors, as well as their interactions (GxE), which contribute to craniofacial malformations. Here, we review zebrafish studies on environmental factors involved in the etiology of craniofacial malformations in humans including maternal smoking, alcohol consumption, nutrition and drug use. As an example, we focus on the (cleft) palate, for which the zebrafish ethmoid plate is a good model. This review highlights the importance of investigating ExE interactions and discusses the variable effects of exposure to environmental factors on craniofacial development depending on dosage, exposure time and developmental stage. Zebrafish also promise to be a good tool to study novel craniofacial teratogens and toxin mixtures. Lastly, we discuss the handful of studies on gene–alcohol interactions using mutant sensitivity screens and reverse genetic techniques. We expect that studies addressing complex interactions (ExE and GxE) in craniofacial malformations will increase in the coming years. These are likely to uncover currently unknown mechanisms with implications for the prevention of craniofacial malformations. The zebrafish appears to be an excellent complementary model with high translational value to study these complex interactions.
Collapse
Affiliation(s)
- S T Raterman
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - J R Metz
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes W Von den Hoff
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
135
|
Bukowska-Olech E, Materna-Kiryluk A, Walczak-Sztulpa J, Popiel D, Badura-Stronka M, Koczyk G, Dawidziuk A, Jamsheer A. Targeted Next-Generation Sequencing in the Diagnosis of Facial Dysostoses. Front Genet 2020; 11:580477. [PMID: 33262786 PMCID: PMC7686794 DOI: 10.3389/fgene.2020.580477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Defects in the development of the first and second pharyngeal arches and their derivatives result in abnormal formation of the craniofacial complex, consequently giving rise to facial dysostoses (FDs). FDs represent a group of rare and highly heterogeneous disease entities that encompass mandibulofacial dysostoses (MFDs) with normal extremities and acrofacial dysostoses (AFDs) with limb anomalies in addition to craniofacial defects. Methods We examined 11 families with variable clinical symptoms of FDs, in most of which only one member was affected. We applied two custom gene panels—first comprising 37 genes related to the genetic disorders of craniofacial development such as FDs (On-Demand AmpliSeq Thermo Fisher Scientific gene panel with two primer pools) and second composed of 61 genes and 11 single nucleotide variants (SNVs) known to be involved in the development of skull malformations, mainly in the form of craniosynostoses (SureSelect Agilent Technologies). Targeted next-generation sequencing (NGS) was performed using the Ion Torrent S5 platform. To confirm the presence of each detected variant, we have analyzed a genomic region of interest using Sanger sequencing. Results In this paper, we summarized the results of custom targeted gene panel sequencing in the cohort of sixteen patients from 11 consecutive families affected by distinct forms of FDs. We have found three novel pathogenic variants in the TCOF1 gene—c.2145_2148dupAAAG p.(Ser717Lysfs∗42), c.4370delA p.(Lys1457Argfs∗118), c.83G>C p.(Arg28Pro) causing Treacher Collins syndrome type 1, two novel missense variants in the EFTUD2 gene–c.491A>G p.(Asp164Gly) and c.779T>A p.(Ile260Asn) in two female patients affected by acrofacial dysostosis Guion-Almeida type, one previously reported–c.403C>T (p.Arg135Cys), as well as one novel missense variant–c.128C>T p.(Pro43Leu) in the DHODH gene in the male patient with Miller syndrome and finally one known pathogenic variant c.574G>T p.(Glu192∗) in the SF3B4 gene in the patient with Nager syndrome. Conclusion Our study confirms the efficiency and clinical utility of the targeted gene panel sequencing and shows that this strategy is suitable and efficient in the molecular screening of variable forms of FDs.
Collapse
Affiliation(s)
- Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland.,Centers for Medical Genetics GENESIS, Poznań, Poland
| | | | | | - Magdalena Badura-Stronka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland.,Centers for Medical Genetics GENESIS, Poznań, Poland
| | - Grzegorz Koczyk
- Centers for Medical Genetics GENESIS, Poznań, Poland.,Department of Biometry and Bioinformatics, Institute of Plant Genetics Polish Academy of Sciences, Poznań, Poland
| | | | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland.,Centers for Medical Genetics GENESIS, Poznań, Poland
| |
Collapse
|
136
|
Kanzi AM, San JE, Chimukangara B, Wilkinson E, Fish M, Ramsuran V, de Oliveira T. Next Generation Sequencing and Bioinformatics Analysis of Family Genetic Inheritance. Front Genet 2020; 11:544162. [PMID: 33193618 PMCID: PMC7649788 DOI: 10.3389/fgene.2020.544162] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Mendelian and complex genetic trait diseases continue to burden and affect society both socially and economically. The lack of effective tests has hampered diagnosis thus, the affected lack proper prognosis. Mendelian diseases are caused by genetic mutations in a singular gene while complex trait diseases are caused by the accumulation of mutations in either linked or unlinked genomic regions. Significant advances have been made in identifying novel diseases associated mutations especially with the introduction of next generation and third generation sequencing. Regardless, some diseases are still without diagnosis as most tests rely on SNP genotyping panels developed from population based genetic analyses. Analysis of family genetic inheritance using whole genomes, whole exomes or a panel of genes has been shown to be effective in identifying disease-causing mutations. In this review, we discuss next generation and third generation sequencing platforms, bioinformatic tools and genetic resources commonly used to analyze family based genomic data with a focus on identifying inherited or novel disease-causing mutations. Additionally, we also highlight the analytical, ethical and regulatory challenges associated with analyzing personal genomes which constitute the data used for family genetic inheritance.
Collapse
Affiliation(s)
- Aquillah M. Kanzi
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | | | | |
Collapse
|
137
|
Mollick T, Laín S. Modulating pyrimidine ribonucleotide levels for the treatment of cancer. Cancer Metab 2020; 8:12. [PMID: 33020720 PMCID: PMC7285601 DOI: 10.1186/s40170-020-00218-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
By providing the necessary building blocks for nucleic acids and precursors for cell membrane synthesis, pyrimidine ribonucleotides are essential for cell growth and proliferation. Therefore, depleting pyrimidine ribonucleotide pools has long been considered as a strategy to reduce cancer cell growth. Here, we review the pharmacological approaches that have been employed to modulate pyrimidine ribonucleotide synthesis and degradation routes and discuss their potential use in cancer therapy. New developments in the treatment of myeloid malignancies with inhibitors of pyrimidine ribonucleotide synthesis justify revisiting the literature as well as discussing whether targeting this metabolic pathway can be effective and sufficiently selective for cancer cells to warrant an acceptable therapeutic index in patients.
Collapse
Affiliation(s)
- Tanzina Mollick
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 65, Solna, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 65, Solna, Stockholm, Sweden
| |
Collapse
|
138
|
Lee DJ, Kwon T, Kim CK, Seol YJ, Park DS, Lee TH, Ahn BO. NGS_SNPAnalyzer: a desktop software supporting genome projects by identifying and visualizing sequence variations from next-generation sequencing data. Genes Genomics 2020; 42:1311-1317. [PMID: 32980993 PMCID: PMC7567733 DOI: 10.1007/s13258-020-00997-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/10/2020] [Indexed: 11/21/2022]
Abstract
Background Sequence variations such as single nucleotide polymorphisms are markers for genetic diseases and breeding. Therefore, identifying sequence variations is one of the main objectives of several genome projects. Although most genome project consortiums provide standard operation procedures for sequence variation detection methods, there may be differences in the results because of human selection or error. Objective To standardize the procedure for sequence variation detection and help researchers who are not formally trained in bioinformatics, we developed the NGS_SNPAnalyzer, a desktop software and fully automated graphical pipeline. Methods The NGS_SNPAnalyzer is implemented using JavaFX (version 1.8); therefore, it is not limited to any operating system (OS). The tools employed in the NGS_SNPAnalyzer were compiled on Microsoft Windows (version 7, 10) and Ubuntu Linux (version 16.04, 17.0.4). Results The NGS_SNPAnalyzer not only includes the functionalities for variant calling and annotation but also provides quality control, mapping, and filtering details to support all procedures from next-generation sequencing (NGS) data to variant visualization. It can be executed using pre-set pipelines and options and customized via user-specified options. Additionally, the NGS_SNPAnalyzer provides a user-friendly graphical interface and can be installed on any OS that supports JAVA. Conclusions Although there are several pipelines and visualization tools available for NGS data analysis, we developed the NGS_SNPAnalyzer to provide the user with an easy-to-use interface. The benchmark test results indicate that the NGS_SNPAnayzer achieves better performance than other open source tools. Electronic supplementary material The online version of this article (10.1007/s13258-020-00997-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong-Jun Lee
- Genomics Division, National Institute of Agricultural Science, 370 Nongsaengmyeong-ro, Jeonju, 54874, Republic of Korea.
| | - Taesoo Kwon
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Science, 370 Nongsaengmyeong-ro, Jeonju, 54874, Republic of Korea
| | - Young-Joo Seol
- Gene Engineering Division, National Institute of Agricultural Science, 370 Nongsaengmyeong-ro, Jeonju, 54874, Republic of Korea
| | - Dong-Suk Park
- Genomics Division, National Institute of Agricultural Science, 370 Nongsaengmyeong-ro, Jeonju, 54874, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Science, 370 Nongsaengmyeong-ro, Jeonju, 54874, Republic of Korea
| | - Byung-Ohg Ahn
- Genomics Division, National Institute of Agricultural Science, 370 Nongsaengmyeong-ro, Jeonju, 54874, Republic of Korea
| |
Collapse
|
139
|
Li L, Jing Z, Cheng L, Liu W, Wang H, Xu Y, Zheng X, Yu X, Liu S. Compound heterozygous DYSF variants causing limb-girdle muscular dystrophy type 2B in a Chinese family. J Gene Med 2020; 22:e3272. [PMID: 32889728 DOI: 10.1002/jgm.3272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The dysferlin gene or the DYSF gene encodes the Ca2+ -dependent phospholipid-binding protein dysferlin, which belongs to the ferlin family and is associated with muscle membrane regeneration and repair. Variants in the DYSF gene are responsible for limb-girdle muscular dystrophy type 2B (LGMD2B), also called limb-girdle muscular dystrophy recessive 2 (LGMDR2), a rare subtype of muscular dystrophy involving progressive muscle weakness and atrophy. The present study aimed to identify the variants responsible for the clinical symptoms of a Chinese patient with limb girdle muscular dystrophies (LGMDs) and to explore the genotype-phenotype associations of LGMD2B. METHODS A series of clinical examinations, including blood tests, magnetic resonance imaging scans for the lower legs, electromyography and muscle biopsy, was performed on the proband diagnosed with muscular dystrophies. Whole exome sequencing was conducted to detect the causative variants, followed by Sanger sequencing to validate these variants. RESULTS We identified two compound heterozygous variants in the DYSF gene, c.1058 T>C, p.(Leu353Pro) in exon 12 and c.1461C>A/p.Cys487* in exon 16 in this proband, which were inherited from the father and mother, respectively. In silico analysis for these variants revealed deleterious results by PolyPhen-2 (Polymorphism Phenotyping v2; http://genetics.bwh.harvard.edu/pph2), SIFT (Sorting Intolerant From Tolerant; https://sift.bii.a-star.edu.sg), PROVEAN (Protein Variation Effect Analyzer; http://provean.jcvi.org/seq_submit.php) and MutationTaster (http://www.mutationtaster.org). In addition, the two compound heterozygous variants in the proband were absent in 100 control individuals who had an identical ethnic origin and were from the same region, suggesting that these variants may be the pathogenic variants responsible for the LGMD2B phenotypes for this proband. CONCLUSIONS The present study broadens our understanding of the mutational spectrum of the DYSF gene, which provides a deep insight into the pathogenesis of LGMDs and accelerates the development of a prenatal diagnosis.
Collapse
Affiliation(s)
- Liangshan Li
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Clinical Laboratory, Medical College of Qingdao University, Qingdao, China
| | - Zhongcui Jing
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Cheng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenmiao Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yinglei Xu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueping Zheng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoling Yu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
140
|
Hartley T, Lemire G, Kernohan KD, Howley HE, Adams DR, Boycott KM. New Diagnostic Approaches for Undiagnosed Rare Genetic Diseases. Annu Rev Genomics Hum Genet 2020; 21:351-372. [DOI: 10.1146/annurev-genom-083118-015345] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accurate diagnosis is the cornerstone of medicine; it is essential for informed care and promoting patient and family well-being. However, families with a rare genetic disease (RGD) often spend more than five years on a diagnostic odyssey of specialist visits and invasive testing that is lengthy, costly, and often futile, as 50% of patients do not receive a molecular diagnosis. The current diagnostic paradigm is not well designed for RGDs, especially for patients who remain undiagnosed after the initial set of investigations, and thus requires an expansion of approaches in the clinic. Leveraging opportunities to participate in research programs that utilize new technologies to understand RGDs is an important path forward for patients seeking a diagnosis. Given recent advancements in such technologies and international initiatives, the prospect of identifying a molecular diagnosis for all patients with RGDs has never been so attainable, but achieving this goal will require global cooperation at an unprecedented scale.
Collapse
Affiliation(s)
- Taila Hartley
- CHEO Research Institute, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada;, , , ,
| | - Gabrielle Lemire
- CHEO Research Institute, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada;, , , ,
- Department of Genetics, CHEO, Ottawa, Ontario K1H 8L1, Canada
| | - Kristin D. Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada;, , , ,
- Newborn Screening Ontario, CHEO, Ottawa, Ontario K1H 9M8, Canada
| | - Heather E. Howley
- CHEO Research Institute, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada;, , , ,
| | - David R. Adams
- Office of the Clinical Director, National Human Genome Research Institute and Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kym M. Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada;, , , ,
- Department of Genetics, CHEO, Ottawa, Ontario K1H 8L1, Canada
| |
Collapse
|
141
|
Rymen D, Lindhout M, Spanou M, Ashrafzadeh F, Benkel I, Betzler C, Coubes C, Hartmann H, Kaplan JD, Ballhausen D, Koch J, Lotte J, Mohammadi MH, Rohrbach M, Dinopoulos A, Wermuth M, Willis D, Brugger K, Wevers RA, Boltshauser E, Bierau J, Mayr JA, Wortmann SB. Expanding the clinical and genetic spectrum of CAD deficiency: an epileptic encephalopathy treatable with uridine supplementation. Genet Med 2020; 22:1589-1597. [PMID: 32820246 DOI: 10.1038/s41436-020-0933-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Biallelic CAD variants underlie CAD deficiency (or early infantile epileptic encephalopathy-50, [EIEE-50]), an error of pyrimidine de novo biosynthesis amenable to treatment via the uridine salvage pathway. We further define the genotype and phenotype with a focus on treatment. METHODS Retrospective case series of 20 patients. RESULTS Our study confirms CAD deficiency as a progressive EIEE with recurrent status epilepticus, loss of skills, and dyserythropoietic anemia. We further refine the phenotype by reporting a movement disorder as a frequent feature, and add that milder courses with isolated developmental delay/intellectual disability can occur as well as onset with neonatal seizures. With no biomarker available, the diagnosis relies on genetic testing and functional validation in patient-derived fibroblasts. Underlying pathogenic variants are often rated as variants of unknown significance, which could lead to underrecognition of this treatable disorder. Supplementation with uridine, uridine monophosphate, or uridine triacetate in ten patients was safe and led to significant clinical improvement in most patients. CONCLUSION We advise a trial with uridine (monophosphate) in all patients with developmental delay/intellectual disability, epilepsy, and anemia; all patients with status epilepticus; and all patients with neonatal seizures until (genetically) proven otherwise or proven unsuccessful after 6 months. CAD deficiency might represent a condition for genetic newborn screening.
Collapse
Affiliation(s)
- Daisy Rymen
- Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Martijn Lindhout
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maria Spanou
- 3rd Paediatric Department, Attikon University Hospital, Athens, Greece
| | - Farah Ashrafzadeh
- Department of Pediatric Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ira Benkel
- Klinik für Kinderneurologie und Kinderneurologisches Zentrum, EEG, Sana Kliniken Düsseldorf GmbH, Düsseldorf, Germany
| | - Cornelia Betzler
- Clinic for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik Vogtareuth, Vogtareuth, Germany.,Institute for Transition, Rehabilitation and Palliation, Paracelsus Private Medical University of Salzburg, Salzburg, Austria
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU, Montpellier, France
| | - Hans Hartmann
- Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Julie D Kaplan
- Nemours A.I. DuPont Hospital for Children, Department of Pediatrics, Division of Medical Genetics, Wilmington, Delaware, DE, USA.,Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Diana Ballhausen
- Pediatric unit for metabolic diseases, Woman-Mother-Child Department, University Hospital Lausanne, Lausanne, Switzerland
| | - Johannes Koch
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Jan Lotte
- Clinic for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | | | - Marianne Rohrbach
- Division of Metabolism and Children's Research Centre, University Children's Hospital, 8032, Zürich, Switzerland
| | | | - Marieke Wermuth
- Department of Pediatrics, Klinikum Links der Weser, Bremen, Germany
| | - Daniel Willis
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Karin Brugger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Ron A Wevers
- Department Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - Eugen Boltshauser
- Department of Pediatric Neurology, Children's University Hospital, Zürich, Switzerland
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria. .,Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
142
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
143
|
Xu L, Yang K, Fan Q, Gu Y, Zhang B, Pang C, Ren S. Exome sequencing identification of susceptibility genes in Chinese patients with keratoconus. Ophthalmic Genet 2020; 41:518-525. [PMID: 32744102 DOI: 10.1080/13816810.2020.1799415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Keratoconus (KC) is a corneal ectasia disease with complex genetic heterogeneity. The present study aimed to identify susceptibility genes in Chinese patients with KC. METHODS Exome sequencing (ES) was performed in 28 Chinese KC patients to search for susceptibility genes of the disease. The candidate variants were filtered out by multi-step bioinformatics analysis and validated by Sanger sequencing. Another 100 individuals with KC were also recruited to verify those variants by Sanger sequencing. RESULTS By filtering out nonsynonymous variants located in exon, selecting variants which were presented in two or more samples and applying public databases to remove common variants, along with the inclusion of missense SNVs located in differential expressed genes and protein damaging variants (stop gain/stop loss SNVs and InDels), we have identified 6 SNVs (4 missense SNVs: c.1168 T > C in TRANK1, c.341A>T in ERMP1, c.4346 T > C in SDK2, c.1730A>C in COL6A1; 2 stop gain SNVs: c.1138 C > T in CNBD1, c.241 C > T in KRT82) and 2 InDels (c.193_195del in NSUN5, c.1690_1698del in COL9A3) as candidate variants for KC. The verifying results showed that c.341A>T in ERMP1 and c.193_195del in NSUN5 was found in one and two samples, respectively. CONCLUSIONS Our study suggested that a total of six SNVs in six genes and two InDels in two genes might be considered as candidate variants in Chinese patients with KC.
Collapse
Affiliation(s)
- Liyan Xu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Kaili Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Qi Fan
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Yuwei Gu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Bo Zhang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Chenjiu Pang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| | - Shengwei Ren
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital , Zhengzhou, China
| |
Collapse
|
144
|
Chen Z, Yao N, Zhang S, Song Y, Shao Q, Gu H, Ma J, Chen B, Zhao H, Tian Y. Identification of critical radioresistance genes in esophageal squamous cell carcinoma by whole-exome sequencing. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:998. [PMID: 32953798 PMCID: PMC7475461 DOI: 10.21037/atm-20-5196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancer due to insufficient actionable molecules. Radiotherapy (RT) plays a vital role in the treatment of ESCC, while radioresistance is a significant challenge to RT and results in locoregional and distant failure. Methods Radioresistance is a complex involving confounding factors, and its genetic mechanism is challenging to study. Postoperative recurrence after RT is more likely to be due to genetic causes than recurrence in unoperated patients. Therefore, two independent cohorts of ESCC patients who had received postoperative radiotherapy (PORT) and had opposite prognoses were set up, and whole-exome sequencing (WES) technology was applied. We compared the differences in the mutant spectra between the two groups. Results The mutation rate was slightly higher in the relapsed group than in the stable group [average mutation rate, 1.15 vs. 0.73 mutations per megabyte (Mb)], while the mutation types and proportions in the two groups were not significantly different. In particular, three mutated genes (TTN, MUC19, and NPIPA5) and two copy number alterations (CNAs) (1q amplification and 14q deletion) were identified to be associated with poor RT prognosis, while MUC4 was a favorable factor. Conclusions These radioresistance biomarkers may supply insight into predicting the radioresponse. Further, these findings offer the first data on the mutational landscape of ESCC radioresistance.
Collapse
Affiliation(s)
- Zhiming Chen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ninghua Yao
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yao Song
- Department of Radiation oncology, Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qi Shao
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongmei Gu
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianbo Ma
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Buyou Chen
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongyu Zhao
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ye Tian
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
145
|
Gan L, Yang C, Shu Y, Liu F, Sun R, Deng B, Xu J, Huang G, Qu C, Gong B, Li J. Identification of a novel homozygous nonsense mutation in the CDHR1 gene in a Chinese family with autosomal recessive retinitis pigmentosa. Clin Chim Acta 2020; 507:17-22. [PMID: 32277948 DOI: 10.1016/j.cca.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/07/2020] [Accepted: 04/07/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a group of hereditary retinal diseases that often lead to blindness. Although 80 genes associated with RP have been observed, the genetic mechanism of approximately 40% RP cases remains unknown. This study was to investigate the disease-causing gene in a Han Chinese family with autosomal recessive RP (arRP). METHODS A Chinese arRP family (RP-2373), consisting of three affected siblings and eight unaffected family members, was recruited in this study. All participants underwent complete ophthalmic examinations, including visual field testing, best-corrected visual acuity, fundus photography and electroretinography. Whole exome sequencing was performed on the three patients and Sanger sequencing was utilized to confirm the mutations identified in all family members and 2010 unrelated controls. RESULTS A novel homozygous nonsense mutation, c.1231C > T (p.Q411X) in the Cadherin-Related Family Member 1 (CDHR1) gene was identified in the RP-2373 family. The proband and her two affected sisters were found to carry a homozygous mutation that led to a substitution of Glutamine to a stop codon. Other unaffected members and 2010 ethnic-matched controls lacked this mutation. These data showed a complete co-segregation of the CDHR1 mutation with arRP in this family. The p.Q411X mutation was observed to affect highly conserved amino acid residue of CHDR1. CONCLUSION Our study expanded the CDHR1 mutation spectrum of RP in the Chinese population, which might help to better understand RP molecular pathogenesis.
Collapse
Affiliation(s)
- Li Gan
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chen Yang
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Shu
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiting Sun
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Bolin Deng
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jiaxin Xu
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Guo Huang
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Bo Gong
- Department of Laboratory Medicine and Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu 610072, China.
| | - Jing Li
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
146
|
Chennen K, Weber T, Lornage X, Kress A, Böhm J, Thompson J, Laporte J, Poch O. MISTIC: A prediction tool to reveal disease-relevant deleterious missense variants. PLoS One 2020; 15:e0236962. [PMID: 32735577 PMCID: PMC7394404 DOI: 10.1371/journal.pone.0236962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
The diffusion of next-generation sequencing technologies has revolutionized research and diagnosis in the field of rare Mendelian disorders, notably via whole-exome sequencing (WES). However, one of the main issues hampering achievement of a diagnosis via WES analyses is the extended list of variants of unknown significance (VUS), mostly composed of missense variants. Hence, improved solutions are needed to address the challenges of identifying potentially deleterious variants and ranking them in a prioritized short list. We present MISTIC (MISsense deleTeriousness predICtor), a new prediction tool based on an original combination of two complementary machine learning algorithms using a soft voting system that integrates 113 missense features, ranging from multi-ethnic minor allele frequencies and evolutionary conservation, to physiochemical and biochemical properties of amino acids. Our approach also uses training sets with a wide spectrum of variant profiles, including both high-confidence positive (deleterious) and negative (benign) variants. Compared to recent state-of-the-art prediction tools in various benchmark tests and independent evaluation scenarios, MISTIC exhibits the best and most consistent performance, notably with the highest AUC value (> 0.95). Importantly, MISTIC maintains its high performance in the specific case of discriminating deleterious variants from benign variants that are rare or population-specific. In a clinical context, MISTIC drastically reduces the list of VUS (<30%) and significantly improves the ranking of "causative" deleterious variants. Pre-computed MISTIC scores for all possible human missense variants are available at http://lbgi.fr/mistic.
Collapse
Affiliation(s)
- Kirsley Chennen
- Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory – CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Thomas Weber
- Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory – CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Xavière Lornage
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Arnaud Kress
- Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory – CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Julie Thompson
- Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory – CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Olivier Poch
- Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory – CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| |
Collapse
|
147
|
Wang L, Zou T, Lin Y, Li L, Zhang P, Gong B, Hao J, Zhang H. Identification of a novel homozygous variant in the CNGA1 gene in a Chinese family with autosomal recessive retinitis pigmentosa. Mol Med Rep 2020; 22:2516-2520. [PMID: 32705276 PMCID: PMC7411332 DOI: 10.3892/mmr.2020.11331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/12/2020] [Indexed: 11/30/2022] Open
Abstract
Retinitis pigmentosa (RP) is a complex group of hereditary retinal dystrophies. Although >60 genes have been identified to be associated with non-syndromic RP, the exact genetic variant remains elusive in numerous cases of RP. In the present study, a Chinese pedigree affected by RP with autosomal recessive inheritance, including a total of seven members with one affected patient and six unaffected individuals, was recruited. Comprehensive ophthalmic examinations were performed on the proband and the proband's unaffected daughter. Genomic DNA was extracted from peripheral blood. Whole-exome sequencing (WES) was performed for the affected individual. The candidate pathogenic variant was verified by direct Sanger sequencing. The affected individual presented with classical clinical symptoms of RP. A novel homozygous variant, c.265delC (p.L89Ffs*3) in the cyclic nucleotide-gated channel subunit α 1 gene was identified in the affected patient. This homozygous variant was absent in other unaffected family members and 600 ethnicity-matched healthy controls. The variant was co-segregated with the disease phenotype in an autosomal recessive manner.
Collapse
Affiliation(s)
- Le Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130103, P.R. China
| | - Tongdan Zou
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yongqiong Lin
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Ling Li
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Peng Zhang
- Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130103, P.R. China
| | - Bo Gong
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jilong Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130103, P.R. China
| | - Houbin Zhang
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
148
|
Curi RA, Pereira GL, Alvarez MVN, Baldassini WA, Machado Neto OR, Chardulo LAL. Exome analysis and functional classification of identified variants in racing Quarter Horses. Anim Genet 2020; 51:716-721. [PMID: 32696541 DOI: 10.1111/age.12976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
The main objectives of this study were to identify and functionally classify SNPs and indels by exome sequencing of animals of the racing line of Quarter Horses. Based on the individual genomic estimated breeding values (GEBVs) for maximum speed index (SImax) obtained for 349 animals, two groups of 20 extreme animals were formed. Of these individuals, 20 animals with high GEBVs for SImax and 19 with low GEBVs for SImax had their exons and 5' and 3' UTRs sequenced. Considering SNPs and indels, 105 182 variants were identified in the expressed regions of the Quarter Horse genome. Of these, 72 166 variants were already known and 33 016 are new variants and were deposited in a database. The analysis of the set of gene variants significantly related (Padjusted < 0.05) to extreme animals in conjunction with the predicted impact of the changes and the physiological role of protein product pointed to two candidate genes potentially related to racing performance: SLC3A1 on ECA15 and CCN6 on ECA10.
Collapse
Affiliation(s)
- R A Curi
- Department of Animal Breeding and Nutrition, College of Veterinary and Animal Science, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| | - G L Pereira
- Department of Animal Breeding and Nutrition, College of Veterinary and Animal Science, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| | - M V N Alvarez
- Department of Parasitology, Institute of Biosciences, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| | - W A Baldassini
- Department of Animal Breeding and Nutrition, College of Veterinary and Animal Science, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| | - O R Machado Neto
- Department of Animal Breeding and Nutrition, College of Veterinary and Animal Science, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| | - L A L Chardulo
- Department of Animal Breeding and Nutrition, College of Veterinary and Animal Science, São Paulo State University, Rubião Junior District, Botucatu, São Paulo, 18618-970, Brazil
| |
Collapse
|
149
|
Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB. Genomic Diagnosis for Pediatric Disorders: Revolution and Evolution. Front Pediatr 2020; 8:373. [PMID: 32733828 PMCID: PMC7360789 DOI: 10.3389/fped.2020.00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Powerful, recent advances in technologies to analyze the genome have had a profound impact on the practice of medical genetics, both in the laboratory and in the clinic. Increasing utilization of genome-wide testing such as chromosomal microarray analysis and exome sequencing have lead a shift toward a "genotype-first" approach. Numerous techniques are now available to diagnose a particular syndrome or phenotype, and while traditional techniques remain efficient tools in certain situations, higher-throughput technologies have become the de facto laboratory tool for diagnosis of most conditions. However, selecting the right assay or technology is challenging, and the wrong choice may lead to prolonged time to diagnosis, or even a missed diagnosis. In this review, we will discuss current core technologies for the diagnosis of classic genetic disorders to shed light on the benefits and disadvantages of these strategies, including diagnostic efficiency, variant interpretation, and secondary findings. Finally, we review upcoming technologies posed to impart further changes in the field of genetic diagnostics as we move toward "genome-first" practice.
Collapse
Affiliation(s)
- Emilie Lalonde
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefan Rentas
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cara M. Skraban
- Division of Human Genetics, Department of Pediatrics, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
150
|
Chiu FPC, Doolan BJ, McGrath JA, Onoufriadis A. A decade of next-generation sequencing in genodermatoses: the impact on gene discovery and clinical diagnostics. Br J Dermatol 2020; 184:606-616. [PMID: 32628274 DOI: 10.1111/bjd.19384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Discovering the genetic basis of inherited skin diseases is fundamental to improving diagnostic accuracy and genetic counselling. In the 1990s and 2000s, genetic linkage and candidate gene approaches led to the molecular characterization of several dozen genodermatoses, but over the past decade the advent of next-generation sequencing (NGS) technologies has accelerated diagnostic discovery and precision. OBJECTIVES This review examines the application of NGS technologies from 2009 to 2019 that have (i) led to the initial discovery of gene mutations in known or new genodermatoses and (ii) identified involvement of more than one contributing pathogenic gene in individuals with complex Mendelian skin disorder phenotypes. METHODS A comprehensive review of the PubMed database and dermatology conference abstracts was undertaken between January 2009 and December 2019. The results were collated and cross-referenced with OMIM. RESULTS We identified 166 new disease-gene associations in inherited skin diseases discovered by NGS. Of these, 131 were previously recognized, while 35 were brand new disorders. Eighty-five were autosomal dominant (with 43 of 85 mutations occurring de novo), 78 were autosomal recessive and three were X-linked. We also identified 63 cases harbouring multiple pathogenic mutations, either involving two coexisting genodermatoses (n = 13) or an inherited skin disorder in conjunction with other organ system phenotypes (n = 50). CONCLUSIONS NGS technologies have accelerated disease-gene discoveries in dermatology over the last decade. Moreover, the era of NGS has enabled clinicians to split complex Mendelian phenotypes into separate diseases. These genetic data improve diagnostic precision and make feasible accurate prenatal testing and better-targeted translational research.
Collapse
Affiliation(s)
- F P-C Chiu
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - B J Doolan
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - J A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - A Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|