101
|
Birner C, Dietl A, Deutzmann R, Schröder J, Schmid P, Jungbauer C, Resch M, Endemann D, Stark K, Riegger G, Luchner A. Proteomic profiling implies mitochondrial dysfunction in tachycardia-induced heart failure. J Card Fail 2012; 18:660-73. [PMID: 22858083 DOI: 10.1016/j.cardfail.2012.06.418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 05/09/2012] [Accepted: 06/08/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Molecular mechanisms of congestive heart failure as reflected by alterations of protein expression patterns are still incompletely analyzed. We therefore investigated intraventricular (ie, left ventricular congestive heart failure [LV-CHF] vs. LV-control [CTRL], and right ventricular [RV]-CHF vs. RV-CTRL) and interventricular (ie, LV-CHF vs. RV-CHF, and LV-CTRL vs. RV-CTRL) protein expression differences in an animal model. METHODS The model of rapid ventricular pacing in rabbits was combined with a proteomic approach using 2-dimensional gel electrophoresis. Identification of proteins was done by matrix-assisted laser desorption/ionization-tandem mass spectrometry (MALDI-MS/MS). RESULTS Rapid ventricular pacing-induced heart failure was characterized by LV dilatation, dysfunction, and hypotension as well as by increased BNP gene expression. By comparing LV-CHF vs. LV-CTRL, proteins were found to be underexpressed at 3 crucial points of cellular energy metabolism. In RV-CHF vs. RV-CTRL, proteins belonging to respiratory chain complexes were underexpressed, but additionally a disturbance in the nitric oxide-generating enzymatic apparatus was seen. Regarding the interventricular analyses, a stronger expression of energetic pathways was accompanied by an underexpression of contractile and stress response proteins in failing left vs. right ventricles. Finally, significant protein expression differences were found in LV-CTRL vs. RV-CTRL reflecting a higher expression of contractile, stress response, and respiratory chain proteins in LV tissue. CONCLUSIONS In tachycardia-induced heart failure, significant inter- and intraventricular protein expression patterns were found with a predominance of proteins, which are involved in cellular energy metabolism.
Collapse
Affiliation(s)
- Christoph Birner
- Department of Internal Medicine II, University Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Landstrom AP, Ackerman MJ. Beyond the cardiac myofilament: hypertrophic cardiomyopathy- associated mutations in genes that encode calcium-handling proteins. Curr Mol Med 2012; 12:507-18. [PMID: 22515980 DOI: 10.2174/156652412800620020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/30/2011] [Accepted: 01/11/2012] [Indexed: 12/30/2022]
Abstract
Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium-handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.
Collapse
Affiliation(s)
- A P Landstrom
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
103
|
Moore JR, Leinwand L, Warshaw DM. Understanding cardiomyopathy phenotypes based on the functional impact of mutations in the myosin motor. Circ Res 2012; 111:375-85. [PMID: 22821910 DOI: 10.1161/circresaha.110.223842] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypertrophic (HCM) and dilated (DCM) cardiomyopathies are inherited diseases with a high incidence of death due to electric abnormalities or outflow tract obstruction. In many of the families afflicted with either disease, causative mutations have been identified in various sarcomeric proteins. In this review, we focus on mutations in the cardiac muscle molecular motor, myosin, and its associated light chains. Despite the >300 identified mutations, there is still no clear understanding of how these mutations within the same myosin molecule can lead to the dramatically different clinical phenotypes associated with HCM and DCM. Localizing mutations within myosin's molecular structure provides insight into the potential consequence of these perturbations to key functional domains of the motor. Review of biochemical and biophysical data that characterize the functional capacities of these mutant myosins suggests that mutant myosins with enhanced contractility lead to HCM, whereas those displaying reduced contractility lead to DCM. With gain and loss of function potentially being the primary consequence of a specific mutation, how these functional changes trigger the hypertrophic response and lead to the distinct HCM and DCM phenotypes will be the future investigative challenge.
Collapse
Affiliation(s)
- Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
104
|
Heavy and light roles: myosin in the morphogenesis of the heart. Cell Mol Life Sci 2012; 70:1221-39. [PMID: 22955375 PMCID: PMC3602621 DOI: 10.1007/s00018-012-1131-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 01/10/2023]
Abstract
Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies suggest that both myosin heavy-chain and myosin light-chain proteins are required for a correctly formed heart. Myosins are structural proteins that are not only expressed from early stages of heart development, but when mutated in humans they may give rise to congenital heart defects. This review will discuss the roles of myosin, specifically with regards to the developing heart. The expression of each myosin protein will be described, and the effects that altering expression has on the heart in embryogenesis in different animal models will be discussed. The human molecular genetics of the myosins will also be reviewed.
Collapse
|
105
|
Abstract
D166V point mutation in the ventricular myosin regulatory light chain (RLC) is one of the causes of familial hypertrophic cardiomyopathy (FHC). We show here that the rates of cross-bridge attachment and dissociation are significantly different in isometrically contracting cardiac myofibrils from right ventricle of WT and Tg-D166V mice. To avoid averaging over ensembles of molecules composing muscle fibers, the data was collected from a single molecule. Kinetics were derived by tracking the orientation of a single actin molecule by fluorescence anisotropy. Orientation oscillated between two states, corresponding to the actin-bound and actin-free states of the myosin cross-bridge. The cross-bridge in a wild-type (healthy) heart stayed attached and detached from thin filament on average for 0.7 and 2.7 s, respectively. In FHC heart, these numbers increased to 2.5 and 5.8 s, respectively. These findings suggest that alterations in myosin cross-bridge kinetics associated with D166V mutation of RLC ultimately affect the ability of a heart to efficiently pump the blood.
Collapse
|
106
|
Cardiomyopathy classification: ongoing debate in the genomics era. Biochem Res Int 2012; 2012:796926. [PMID: 22924131 PMCID: PMC3423823 DOI: 10.1155/2012/796926] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/14/2012] [Accepted: 05/31/2012] [Indexed: 01/19/2023] Open
Abstract
Cardiomyopathies represent a group of diseases of the myocardium of the heart and include diseases both primarily of the cardiac muscle and systemic diseases leading to adverse effects on the heart muscle size, shape, and function. Traditionally cardiomyopathies were defined according to phenotypical appearance. Now, as our understanding of the pathophysiology of the different entities classified under each of the different phenotypes improves and our knowledge of the molecular and genetic basis for these entities progresses, the traditional classifications seem oversimplistic and do not reflect current understanding of this myriad of diseases and disease processes. Although our knowledge of the exact basis of many of the disease processes of cardiomyopathies is still in its infancy, it is important to have a classification system that has the ability to incorporate the coming tide of molecular and genetic information. This paper discusses how the traditional classification of cardiomyopathies based on morphology has evolved due to rapid advances in our understanding of the genetic and molecular basis for many of these clinical entities.
Collapse
|
107
|
Abstract
Rapid advances in DNA sequencing promise to enable new diagnostics and individualized therapies. Achieving personalized medicine, however, will require extensive research on highly reidentifiable, integrated datasets of genomic and health information. To assist with this, participants in the Personal Genome Project choose to forgo privacy via our institutional review board- approved "open consent" process. The contribution of public data and samples facilitates both scientific discovery and standardization of methods. We present our findings after enrollment of more than 1,800 participants, including whole-genome sequencing of 10 pilot participant genomes (the PGP-10). We introduce the Genome-Environment-Trait Evidence (GET-Evidence) system. This tool automatically processes genomes and prioritizes both published and novel variants for interpretation. In the process of reviewing the presumed healthy PGP-10 genomes, we find numerous literature references implying serious disease. Although it is sometimes impossible to rule out a late-onset effect, stringent evidence requirements can address the high rate of incidental findings. To that end we develop a peer production system for recording and organizing variant evaluations according to standard evidence guidelines, creating a public forum for reaching consensus on interpretation of clinically relevant variants. Genome analysis becomes a two-step process: using a prioritized list to record variant evaluations, then automatically sorting reviewed variants using these annotations. Genome data, health and trait information, participant samples, and variant interpretations are all shared in the public domain-we invite others to review our results using our participant samples and contribute to our interpretations. We offer our public resource and methods to further personalized medical research.
Collapse
|
108
|
Manning EP, Tardiff JC, Schwartz SD. Molecular effects of familial hypertrophic cardiomyopathy-related mutations in the TNT1 domain of cTnT. J Mol Biol 2012; 421:54-66. [PMID: 22579624 DOI: 10.1016/j.jmb.2012.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/30/2012] [Accepted: 05/04/2012] [Indexed: 11/26/2022]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is one of the most common genetic causes of heart disease. Approximately 15% of FHC-related mutations are found in cTnT [cardiac troponin (cTn) T]. Most of the cTnT FHC-related mutations are in or flanking the N-tail TNT1 domain that directly interacts with overlapping tropomyosin (Tm). We investigate two sets of cTnT mutations at opposite ends of TNT1, mutations in residue 92 in the Tm-Tm overlap region of TNT1 and mutations in residues 160 and 163 in the C-terminal portion of TNT1 adjacent to the cTnT H1-H2 linker. Though all the mutations are located within TNT1, they have widely different phenotypes clinically and biophysically. Using a complete atomistic model of the cTn-Tm complex, we identify mechanisms by which the effects of TNT1 mutations propagate to the cTn core and site II of cTnC, where calcium binding and dissociation occurs. We find that mutations in TNT1 alter the flexibility of TNT1, which is inversely proportional to the cooperativity of calcium activation of the thin filament. Further, we identify a pathway of propagation of structural and dynamic changes from TNT1 to site II of cTnC, including TNT1, cTnT linker, I-T arm, regulatory domain of cTnI, the D-E linker of cTnC, and site II cTnC. Mutationally induced changes at site II of cTnC alter calcium coordination that corresponds to biophysical measurements of calcium sensitivity. Finally, we compare this pathway of mutational propagation with that of the calcium activation of the thin filament and find that they are identical but opposite in direction.
Collapse
Affiliation(s)
- Edward P Manning
- Department of Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | |
Collapse
|
109
|
Abstract
Cardiovascular disease encompasses a range of conditions extending from myocardial infarction to congenital heart disease, most of which are heritable. Enormous effort has been invested in understanding the genes and specific DNA sequence variants that are responsible for this heritability. Here, we review the lessons learned for monogenic and common, complex forms of cardiovascular disease. We also discuss key challenges that remain for gene discovery and for moving from genomic localization to mechanistic insights, with an emphasis on the impact of next-generation sequencing and the use of pluripotent human cells to understand the mechanism by which genetic variation contributes to disease.
Collapse
Affiliation(s)
- Sekar Kathiresan
- Center for Human Genetic Research and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
110
|
Wen JJ, Zago MP, Nuñez S, Gupta S, Burgos FN, Garg NJ. Serum proteomic signature of human chagasic patients for the identification of novel potential protein biomarkers of disease. Mol Cell Proteomics 2012; 11:435-52. [PMID: 22543060 DOI: 10.1074/mcp.m112.017640] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chagas disease is initiated upon infection by Trypanosoma cruzi. Among the health consequences is a decline in heart function, and the pathophysiological mechanisms underlying this manifestation are not well understood. To explore the possible mechanisms, we employed IgY LC10 affinity chromatography in conjunction with ProteomeLab PF2D and two-dimensional gel electrophoresis to resolve the proteome signature of high and low abundance serum proteins in chagasic patients. MALDI-TOF MS/MS analysis yielded 80 and 14 differentially expressed proteins associated with cardiomyopathy of chagasic and other etiologies, respectively. The extent of oxidative stress-induced carbonyl modifications of the differentially expressed proteins (n = 26) was increased and coupled with a depression of antioxidant proteins. Functional annotation of the top networks developed by ingenuity pathway analysis of proteome database identified dysregulation of inflammation/acute phase response signaling and lipid metabolism relevant to production of prostaglandins and arachidonic acid in chagasic patients. Overlay of the major networks identified prothrombin and plasminogen at a nodal position with connectivity to proteome signature indicative of heart disease (i.e., thrombosis, angiogenesis, vasodilatation of blood vessels or the aorta, and increased permeability of blood vessel and endothelial tubes), and inflammatory responses (e.g., platelet aggregation, complement activation, and phagocyte activation and migration). The detection of cardiac proteins (myosin light chain 2 and myosin heavy chain 11) and increased levels of vinculin and plasminogen provided a comprehensive set of biomarkers of cardiac muscle injury and development of clinical Chagas disease in human patients. These results provide an impetus for biomarker validation in large cohorts of clinically characterized chagasic patients.
Collapse
Affiliation(s)
- Jian-Jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
111
|
A novel Myosin essential light chain mutation causes hypertrophic cardiomyopathy with late onset and low expressivity. Biochem Res Int 2012; 2012:685108. [PMID: 22957257 PMCID: PMC3432877 DOI: 10.1155/2012/685108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/07/2012] [Indexed: 02/02/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is caused by mutations in genes encoding sarcomere proteins. Mutations in MYL3, encoding the essential light chain of myosin, are rare and have been associated with sudden death. Both recessive and dominant patterns of inheritance have been suggested. We studied a large family with a 38-year-old asymptomatic HCM-affected male referred because of a murmur. The patient had HCM with left ventricular hypertrophy (max WT 21 mm), a resting left ventricular outflow gradient of 36 mm Hg, and left atrial dilation (54 mm). Genotyping revealed heterozygosity for a novel missense mutation, p.V79I, in MYL3. The mutation was not found in 300 controls, and the patient had no mutations in 10 sarcomere genes. Cascade screening revealed a further nine heterozygote mutation carriers, three of whom had ECG and/or echocardiographic abnormalities but did not fulfil diagnostic criteria for HCM. The penetrance, if we consider this borderline HCM the phenotype of the p.V79I mutation, was 40%, but the mean age of the nonpenetrant mutation carriers is 15, while the mean age of the penetrant mutation carriers is 47. The mutation affects a conserved valine replacing it with a larger isoleucine residue in the region of contact between the light chain and the myosin lever arm. In conclusion, MYL3 mutations can present with low expressivity and late onset.
Collapse
|
112
|
Campuzano O, Alcalde M, Berne P, Castro V, Guzzo G, Iglesias A, Alonso-Pulpon L, Garcia-Pavia P, Brugada J, Brugada R. Genetic testing of candidate genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur J Med Genet 2012; 55:225-234. [PMID: 22421524 DOI: 10.1016/j.ejmg.2012.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/15/2012] [Indexed: 01/02/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a rare cardiac genetic disease characterized by the presence of structural alterations in the right ventricle which may cause ventricular arrhythmias and may induce sudden cardiac death. ARVC/D has been associated with mutations in genes encoding myocyte adhesion proteins. However, only 30%-50% of patients have mutations in these genes. Genetic testing is useful in obtaining a diagnosis, particularly in individuals who do not completely fulfill clinical criteria, thereby also enabling the undertaking of preventive strategies in family members. The main goal of this study was to identify mutations in candidate genes associated with intercalate disks that could be potentially involved in ARVC/D pathogenesis. We analyze a cohort of 14 Spanish unrelated patients clinically diagnosed with ARVC/D without any genetic alteration in all previously known responsible genes. Thus, a genetic screening has been performed in 7 additional potential candidate genes (ACTC1 -actin alpha cardiac muscle 1-, CDHN -cadherin 2 type 1 or N-cadherin-, CTNNA1 -catenin alpha 1-, Cx43 or GJA1 -gap junction protein alpha 1-, MVCL -Metavinculin-, MYL2 -myosin light chain 2- and MYL3 -myosin light chain 3-) by direct sequencing analysis. Our genetic analysis did not identify any disease-causing mutation. Thirty single nucleotides polymorphisms were found, six of them novel. In conclusion, our ARVC/D Spanish cohort has not shown any mutations in the analyzed candidate genes despite their involvement in formation and maintenance of the intercalated disk.
Collapse
Affiliation(s)
- O Campuzano
- Cardiovascular Genetics Center, University of Girona-IdIBGi, C/ Pic de Peguera 11, 17003 Girona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Muthu P, Kazmierczak K, Jones M, Szczesna-Cordary D. The effect of myosin RLC phosphorylation in normal and cardiomyopathic mouse hearts. J Cell Mol Med 2012; 16:911-9. [PMID: 21696541 PMCID: PMC3193868 DOI: 10.1111/j.1582-4934.2011.01371.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/17/2011] [Indexed: 01/26/2023] Open
Abstract
Phosphorylation of the myosin regulatory light chain (RLC) by Ca(2+)-calmodulin-activated myosin light chain kinase (MLCK) is known to be essential for the inotropic function of the heart. In this study, we have examined the effects of MLCK-phosphorylation of transgenic (Tg) mouse cardiac muscle preparations expressing the D166V (aspartic acid to valine)-RLC mutation, identified to cause familial hypertrophic cardiomyopathy with malignant outcomes. Our previous work with Tg-D166V mice demonstrated a large increase in the Ca(2+) sensitivity of contraction, reduced maximal ATPase and force and a decreased level of endogenous RLC phosphorylation. Based on studies demonstrating the beneficial and/or protective effects of cardiac myosin phosphorylation for heart function, we hypothesized that an ex vivo phosphorylation of Tg-D166V cardiac muscle may rescue the detrimental contractile phenotypes observed earlier at the level of single myosin molecules and in Tg-D166V papillary muscle fibres. We showed that MLCK-induced phosphorylation of Tg-D166V cardiac myofibrils and muscle fibres was able to increase the reduced myofibrillar ATPase and reverse an abnormally increased Ca(2+) sensitivity of force to the level observed for Tg-wild-type (WT) muscle. However, in contrast to Tg-WT, which displayed a phosphorylation-induced increase in steady-state force, the maximal tension in Tg-D166V papillary muscle fibres decreased upon phosphorylation. With the exception of force generation data, our results support the notion that RLC phosphorylation works as a rescue mechanism alleviating detrimental functional effects of a disease causing mutation. Further studies are necessary to elucidate the mechanism of this unexpected phosphorylation-induced decrease in maximal tension in Tg-D166V-skinned muscle fibres.
Collapse
Affiliation(s)
- Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiami, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiami, FL, USA
| | - Michelle Jones
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiami, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiami, FL, USA
| |
Collapse
|
114
|
Sheikh F, Ouyang K, Campbell SG, Lyon RC, Chuang J, Fitzsimons D, Tangney J, Hidalgo CG, Chung CS, Cheng H, Dalton ND, Gu Y, Kasahara H, Ghassemian M, Omens JH, Peterson KL, Granzier HL, Moss RL, McCulloch AD, Chen J. Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease. J Clin Invest 2012; 122:1209-21. [PMID: 22426213 DOI: 10.1172/jci61134] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/18/2012] [Indexed: 11/17/2022] Open
Abstract
Actin-myosin interactions provide the driving force underlying each heartbeat. The current view is that actin-bound regulatory proteins play a dominant role in the activation of calcium-dependent cardiac muscle contraction. In contrast, the relevance and nature of regulation by myosin regulatory proteins (for example, myosin light chain-2 [MLC2]) in cardiac muscle remain poorly understood. By integrating gene-targeted mouse and computational models, we have identified an indispensable role for ventricular Mlc2 (Mlc2v) phosphorylation in regulating cardiac muscle contraction. Cardiac myosin cycling kinetics, which directly control actin-myosin interactions, were directly affected, but surprisingly, Mlc2v phosphorylation also fed back to cooperatively influence calcium-dependent activation of the thin filament. Loss of these mechanisms produced early defects in the rate of cardiac muscle twitch relaxation and ventricular torsion. Strikingly, these defects preceded the left ventricular dysfunction of heart disease and failure in a mouse model with nonphosphorylatable Mlc2v. Thus, there is a direct and early role for Mlc2 phosphorylation in regulating actin-myosin interactions in striated muscle contraction, and dephosphorylation of Mlc2 or loss of these mechanisms can play a critical role in heart failure.
Collapse
Affiliation(s)
- Farah Sheikh
- Department of Medicine, UCSD, La Jolla, California 92093-0613C, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Kazmierczak K, Muthu P, Huang W, Jones M, Wang Y, Szczesna-Cordary D. Myosin regulatory light chain mutation found in hypertrophic cardiomyopathy patients increases isometric force production in transgenic mice. Biochem J 2012; 442:95-103. [PMID: 22091967 PMCID: PMC6589164 DOI: 10.1042/bj20111145] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FHC (familial hypertrophic cardiomyopathy) is a heritable form of cardiac hypertrophy caused by mutations in genes encoding sarcomeric proteins. The present study focuses on the A13T mutation in the human ventricular myosin RLC (regulatory light chain) that is associated with a rare FHC variant defined by mid-ventricular obstruction and septal hypertrophy. We generated heart-specific Tg (transgenic) mice with ~10% of human A13T-RLC mutant replacing the endogenous mouse cardiac RLC. Histopathological examinations of longitudinal heart sections from Tg-A13T mice showed enlarged interventricular septa and profound fibrotic lesions compared with Tg-WT (wild-type), expressing the human ventricular RLC, or non-Tg mice. Functional studies revealed an abnormal A13T mutation-induced increase in isometric force production, no change in the force-pCa relationship and a decreased Vmax of the acto-myosin ATPase. In addition, a fluorescence-based assay showed a 3-fold lower binding affinity of the recombinant A13T mutant for the RLC-depleted porcine myosin compared with WT-RLC. These results suggest that the A13T mutation triggers a hypertrophic response through changes in cardiac sarcomere organization and myosin cross-bridge function leading to abnormal remodelling of the heart. The significant functional changes observed, despite a low level of A13T mutant incorporation into myofilaments, suggest a 'poison-peptide' mechanism of disease.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Michelle Jones
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Yingcai Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| |
Collapse
|
116
|
Das T, Yoo YS, Rhim H, Song EJ. Potential role of Hsp25 in calcium-modulated cardiomyocytes. Proteomics 2012; 12:411-20. [DOI: 10.1002/pmic.201100151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 10/26/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022]
|
117
|
|
118
|
Wen JJ, Garg NJ. Proteome expression and carbonylation changes during Trypanosoma cruzi infection and Chagas disease in rats. Mol Cell Proteomics 2011; 11:M111.010918. [PMID: 22199233 DOI: 10.1074/mcp.m111.010918] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Inflammation and oxidative stress, elicited by Trypanosoma cruzi infection, are important pathologic events during progressive Chagasic cardiomyopathy. In this study, we infected Sprague-Dawley rats with T. cruzi, and treated with phenyl-α-tert-butylnitrone (PBN-antioxidant) and/or benznidazole (BZ-anti-parasite). We employed two-dimensional gel electrophoresis/mass spectrometry to investigate (a) the plasma proteomic changes associated with infection and disease development, and (b) the beneficial effects of PBN and BZ in controlling the disease-associated plasma profile. Matrix-assisted laser desorption ionization/time of flight (MALDI-TOF) tandem MS (MS/MS) analysis of differentially expressed (total 146) and oxidized (total 48) protein spots yielded 92 unique proteins. Our data showed that treatment with PBN and BZ restored the differential expression of 65% and 30% of the disease-associated proteins to normal level, respectively, and PBN prevented development of oxidative adducts on plasma proteins. Western blotting to detect dinitrophenyl-derivatized carbonyl-proteins revealed plasma proteins were maximally oxidized during acute infection. Functional and disease/disorder analyses allocated a majority of the differentially expressed and oxidized proteins into inflammation/immunity and lipid metabolism categories and to molecular pathways associated with heart disease (e.g. cardiac infarction, contractile dysfunction, hypertrophy, and hypertension) in chagasic rats, and to curative pathways (e.g. ROS scavenging capacity, immune regulation) in infected rats treated with PBN and/or BZ. We validated the two-dimensional gel electrophoresis results by Western blotting, and demonstrated that the disease-associated increased expression of gelsolin and vimentin and release of cardiac MYL2 in the plasma of chagasic rats was returned to control level by PBN/BZ treatment. Increased plasma levels of gelsolin, MYL2 and vimentin were directly correlated with the severity of cardiac disease in human chagasic patients. Together, these results demonstrate the plasma oxidative and inflammatory response profile, and plasma detection of cardiac proteins parallels the pathologic events contributing to Chagas disease development, and is of potential utility in diagnosing disease severity and designing suitable therapy for management of human chagasic patients.
Collapse
Affiliation(s)
- Jian-Jun Wen
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | |
Collapse
|
119
|
Lossie J, Ushakov DS, Ferenczi MA, Werner S, Keller S, Haase H, Morano I. Mutations of ventricular essential myosin light chain disturb myosin binding and sarcomeric sorting. Cardiovasc Res 2011; 93:390-6. [PMID: 22131351 DOI: 10.1093/cvr/cvr320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS We tested the hypothesis that mutations in the human ventricular essential myosin light chain (hVLC-1) that are associated with hypertrophic cardiomyopathy (HCM) affect protein structure, binding to the IQ1 motif of cardiac myosin heavy chain (MYH) and sarcomeric sorting in neonatal cardiomyocytes. METHODS AND RESULTS We employed circular dichroism and surface plasmon resonance spectroscopy to investigate structural properties and protein-protein interactions of a recombinant head-rod fragment of rat cardiac β-MYH (amino acids 664-915) with alanine-mutated IQ2 domain (rβ-MYH(664-915)IQ2(ala4)) and normal or five mutated (M149V, E143K, A57G, E56G, R154H) hVLC-1 forms. Double epitope-tagging competition was used to monitor the intracellular localization of exogenously introduced normal and E56G-mutated (hVLC-1(E56G)) hVLC-1 constructs in neonatal rat cardiomyocytes. Fluorescence lifetime imaging microscopy was applied to map the microenvironment of normal and E56G-mutated hVLC-1 in permeabilized muscle fibres. Affinity of M149V, E143K, A57G, and R154H mutated hVLC-1/rβ-MYH(664-915)IQ2(ala4) complexes was significantly lower compared with the normal hVLC-1/rβ-MYH(664-915)IQ2(ala4) complex interaction. In particular, the E56G mutation induced an ∼30-fold lower MYH affinity. Sorting specificity of E56G-mutated hVLC-1 was negligible compared with normal hVLC-1. Fluorescence lifetime of fibres replaced with hVLC-1(E56G) increased significantly compared with hVLC-1-replaced fibres. CONCLUSION Disturbed myosin binding of mutated hVLC-1 may provide a pathomechanism for the development of HCM.
Collapse
Affiliation(s)
- Janine Lossie
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | | | | | | | | | | | | |
Collapse
|
120
|
Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion 2011; 12:294-304. [PMID: 22119795 DOI: 10.1016/j.mito.2011.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 12/26/2022]
Abstract
Subunit 7a of mouse cytochrome c oxidase (Cox) displays a contractile muscle-specific isoform, Cox7a1, that is the major cardiac form. To gain insight into the role of this isoform, we have produced a new knockout mouse line that lacks Cox7a1. We show that homozygous and heterozygous Cox7a1 knockout mice, although viable, have reduced Cox activity and develop a dilated cardiomyopathy at 6 weeks of age. Surprisingly, the cardiomyopathy improves and stabilizes by 6 months of age. Cox7a1 knockout mice incorporate more of the "liver-type" isoform Cox7a2 into the cardiac Cox holoenzyme and, also surprisingly, have higher tissue ATP levels.
Collapse
|
121
|
|
122
|
Mettikolla P, Calander N, Luchowski R, Gryczynski I, Gryczynski Z, Zhao J, Szczesna-Cordary D, Borejdo J. Cross-bridge kinetics in myofibrils containing familial hypertrophic cardiomyopathy R58Q mutation in the regulatory light chain of myosin. J Theor Biol 2011; 284:71-81. [PMID: 21723297 PMCID: PMC3152379 DOI: 10.1016/j.jtbi.2011.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 12/16/2022]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is a heritable form of cardiac hypertrophy caused by single-point mutations in genes encoding sarcomeric proteins including ventricular myosin regulatory light chain (RLC). FHC often leads to malignant outcomes and sudden cardiac death. The FHC mutations are believed to alter the kinetics of the interaction between actin and myosin resulting in inefficient energy utilization and compromised function of the heart. We studied the effect of the FHC-linked R58Q-RLC mutation on the kinetics of transgenic (Tg)-R58Q cardiac myofibrils. Kinetics was determined from the rate of change of orientation of actin monomers during muscle contraction. Actin monomers change orientation because myosin cross-bridges deliver periodic force impulses to it. An individual impulse (but not time average of impulses) carries the information about the kinetics of actomyosin interaction. To observe individual impulses it was necessary to scale down the experiments to the level of a few molecules. A small population (∼4 molecules) was selected by using (deliberately) inefficient fluorescence labeling and observing fluorescent molecules by a confocal microscope. We show that the kinetic rates are significantly smaller in the contracting cardiac myofibrils from Tg-R58Q mice then in control Tg-wild type (WT). We also demonstrate a lower force per cross-section of muscle fiber in Tg-R58Q versus Tg-WT mice. We conclude that the R58Q mutation-induced decrease in cross-bridge kinetics underlines the mechanism by which Tg-R58Q fibers develop low force and thus compromise the ability of the mutated heart to efficiently pump blood.
Collapse
Affiliation(s)
- P. Mettikolla
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - N. Calander
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
- Dept of Physics, Macquarie University, Balaclava Rd, NSW 2109, Australia
| | - R. Luchowski
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - I. Gryczynski
- Dept of Cell Biology & Genetics and Center for Commercialization of FluorescenceTechnologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - Z. Gryczynski
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| | - J. Zhao
- Dept of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10Ave., Miami, FL 33136
| | - D. Szczesna-Cordary
- Dept of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10Ave., Miami, FL 33136
| | - J. Borejdo
- Dept of Molecular Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107
| |
Collapse
|
123
|
Muthu P, Wang L, Yuan CC, Kazmierczak K, Huang W, Hernandez OM, Kawai M, Irving TC, Szczesna-Cordary D. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction. FASEB J 2011; 25:4394-405. [PMID: 21885653 DOI: 10.1096/fj.11-191973] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-Δ43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing (≈ 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I(1,1)/I(1,0), indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-Δ43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-Δ43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.
Collapse
Affiliation(s)
- Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Kuzmicic J, Del Campo A, López-Crisosto C, Morales PE, Pennanen C, Bravo-Sagua R, Hechenleitner J, Zepeda R, Castro PF, Verdejo HE, Parra V, Chiong M, Lavandero S. [Mitochondrial dynamics: a potential new therapeutic target for heart failure]. Rev Esp Cardiol 2011; 64:916-23. [PMID: 21820793 DOI: 10.1016/j.recesp.2011.05.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/31/2011] [Indexed: 12/19/2022]
Abstract
Mitochondria are dynamic organelles able to vary their morphology between elongated interconnected mitochondrial networks and fragmented disconnected arrays, through events of mitochondrial fusion and fission, respectively. These events allow the transmission of signaling messengers and exchange of metabolites within the cell. They have also been implicated in a variety of biological processes including embryonic development, metabolism, apoptosis, and autophagy. Although the majority of these studies have been confined to noncardiac cells, emerging evidence suggests that changes in mitochondrial morphology could participate in cardiac development, the response to ischemia-reperfusion injury, heart failure, and diabetes mellitus. In this article, we review how the mitochondrial dynamics are altered in different cardiac pathologies, with special emphasis on heart failure, and how this knowledge may provide new therapeutic targets for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Jovan Kuzmicic
- Centro Estudios Moleculares de la Célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Kim L, Devereux RB, Basson CT. Impact of genetic insights into mendelian disease on cardiovascular clinical practice. Circulation 2011; 123:544-50. [PMID: 21300962 DOI: 10.1161/circulationaha.109.914804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luke Kim
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York Presbyterian Hospital–Cornell Medical Center, New York, NY, USA
| | | | | |
Collapse
|
126
|
Singla A, Lipshultz SE, Fisher S. Mid-ventricular Obstructive Hypertrophic Cardiomyopathy during Pregnancy Complicated by Preeclampsia and Acute Myocardial Infarction: A Case Report. CONGENIT HEART DIS 2011; 6:257-61. [DOI: 10.1111/j.1747-0803.2010.00453.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
127
|
Seidman CE, Seidman JG. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circ Res 2011; 108:743-50. [PMID: 21415408 PMCID: PMC3072749 DOI: 10.1161/circresaha.110.223834] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/10/2011] [Indexed: 12/24/2022]
Abstract
This review provides an historical and personal perspective on the discovery of genetic causes for hypertrophic cardiomyopathy (HCM). Extraordinary insights by physicians who initially detailed remarkable and varied manifestations of the disorder, collaboration among multidisciplinary teams with skills in clinical diagnostics and molecular genetics, and hard work by scores of trainees solved the etiologic riddle of HCM and unexpectedly demonstrated mutations in sarcomere protein genes as the cause of disease. In addition to celebrating 20 years of genetic research in HCM, this article serves as an introductory overview to a thematic review series that will present contemporary advances in the field of hypertrophic heart disease. Through the continued application of advances in genetic methodologies, combined with biochemical and biophysical analyses of the consequences of human mutations, fundamental knowledge about HCM and sarcomere biology has emerged. Expanding research to elucidate the mechanisms by which subtle genetic variation in contractile proteins remodel the human heart remains an exciting opportunity, one with considerable promise to provide new strategies to limit or even prevent HCM pathogenesis.
Collapse
Affiliation(s)
- Christine E Seidman
- Cardiovascular Division, Department of Genetics, Brigham & Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
128
|
Harris SP, Lyons RG, Bezold KL. In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament. Circ Res 2011; 108:751-64. [PMID: 21415409 PMCID: PMC3076008 DOI: 10.1161/circresaha.110.231670] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/24/2010] [Indexed: 01/29/2023]
Abstract
In the 20 years since the discovery of the first mutation linked to familial hypertrophic cardiomyopathy (HCM), an astonishing number of mutations affecting numerous sarcomeric proteins have been described. Among the most prevalent of these are mutations that affect thick filament binding proteins, including the myosin essential and regulatory light chains and cardiac myosin binding protein (cMyBP)-C. However, despite the frequency with which myosin binding proteins, especially cMyBP-C, have been linked to inherited cardiomyopathies, the functional consequences of mutations in these proteins and the mechanisms by which they cause disease are still only partly understood. The purpose of this review is to summarize the known disease-causing mutations that affect the major thick filament binding proteins and to relate these mutations to protein function. Conclusions emphasize the impact that discovery of HCM-causing mutations has had on fueling insights into the basic biology of thick filament proteins and reinforce the idea that myosin binding proteins are dynamic regulators of the activation state of the thick filament that contribute to the speed and force of myosin-driven muscle contraction. Additional work is still needed to determine the mechanisms by which individual mutations induce hypertrophic phenotypes.
Collapse
Affiliation(s)
- Samantha P Harris
- Department of Neurobiology, Physiology, and Behavior College of Biological Sciences, University of California, One Shields Ave, Davis, CA 95616, USA.
| | | | | |
Collapse
|
129
|
Desai MY, Ommen SR, McKenna WJ, Lever HM, Elliott PM. Imaging Phenotype Versus Genotype in Hypertrophic Cardiomyopathy. Circ Cardiovasc Imaging 2011; 4:156-68. [DOI: 10.1161/circimaging.110.957936] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Milind Y. Desai
- From the Heart and Vascular Institute (M.Y.D.), Cleveland Clinic, and Cleveland Clinic Foundation (H.M.L.), Cleveland, OH; Department of Cardiovascular Medicine (S.R.O.), Mayo Clinic, Rochester, MN; and Department of Cardiovascular Medicine (W.J.M., P.M.E.), The Heart Hospital, University College, London, England
| | - Steve R. Ommen
- From the Heart and Vascular Institute (M.Y.D.), Cleveland Clinic, and Cleveland Clinic Foundation (H.M.L.), Cleveland, OH; Department of Cardiovascular Medicine (S.R.O.), Mayo Clinic, Rochester, MN; and Department of Cardiovascular Medicine (W.J.M., P.M.E.), The Heart Hospital, University College, London, England
| | - William J. McKenna
- From the Heart and Vascular Institute (M.Y.D.), Cleveland Clinic, and Cleveland Clinic Foundation (H.M.L.), Cleveland, OH; Department of Cardiovascular Medicine (S.R.O.), Mayo Clinic, Rochester, MN; and Department of Cardiovascular Medicine (W.J.M., P.M.E.), The Heart Hospital, University College, London, England
| | - Harry M. Lever
- From the Heart and Vascular Institute (M.Y.D.), Cleveland Clinic, and Cleveland Clinic Foundation (H.M.L.), Cleveland, OH; Department of Cardiovascular Medicine (S.R.O.), Mayo Clinic, Rochester, MN; and Department of Cardiovascular Medicine (W.J.M., P.M.E.), The Heart Hospital, University College, London, England
| | - Perry M. Elliott
- From the Heart and Vascular Institute (M.Y.D.), Cleveland Clinic, and Cleveland Clinic Foundation (H.M.L.), Cleveland, OH; Department of Cardiovascular Medicine (S.R.O.), Mayo Clinic, Rochester, MN; and Department of Cardiovascular Medicine (W.J.M., P.M.E.), The Heart Hospital, University College, London, England
| |
Collapse
|
130
|
Chan J, Mably JD. Dissection of cardiovascular development and disease pathways in zebrafish. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:111-53. [PMID: 21377626 DOI: 10.1016/b978-0-12-384878-9.00004-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The use of animal models in medicine has contributed significantly to the development of drug treatments and surgical procedures for the last century, in particular for cardiovascular disease. In order to model human disease in an animal, an appreciation of the strengths and limitations of the system are required to interpret results and design the logical sequence of steps toward clinical translation. As the world's population ages, cardiovascular disease will become even more prominent and further progress will be essential to stave off what seems destined to become a massive public health issue. Future treatments will require the imaginative application of current models as well as the generation of new ones. In this review, we discuss the resources available for modeling cardiovascular disease in zebrafish and the varied attributes of this system. We then discuss current zebrafish disease models and their potential that has yet to be exploited.
Collapse
Affiliation(s)
- Joanne Chan
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
131
|
Identification of atrophy-related proteins produced in response to cast immobilization in rat gastrocnemius muscle. Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0048-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
132
|
Ding P, Huang J, Battiprolu PK, Hill JA, Kamm KE, Stull JT. Cardiac myosin light chain kinase is necessary for myosin regulatory light chain phosphorylation and cardiac performance in vivo. J Biol Chem 2010; 285:40819-29. [PMID: 20943660 PMCID: PMC3003383 DOI: 10.1074/jbc.m110.160499] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/11/2010] [Indexed: 12/22/2022] Open
Abstract
In contrast to studies on skeletal and smooth muscles, the identity of kinases in the heart that are important physiologically for direct phosphorylation of myosin regulatory light chain (RLC) is not known. A Ca(2+)/calmodulin-activated myosin light chain kinase is expressed only in cardiac muscle (cMLCK), similar to the tissue-specific expression of skeletal muscle MLCK and in contrast to the ubiquitous expression of smooth muscle MLCK. We have ablated cMLCK expression in male mice to provide insights into its role in RLC phosphorylation in normally contracting myocardium. The extent of RLC phosphorylation was dependent on the extent of cMLCK expression in both ventricular and atrial muscles. Attenuation of RLC phosphorylation led to ventricular myocyte hypertrophy with histological evidence of necrosis and fibrosis. Echocardiography showed increases in left ventricular mass as well as end-diastolic and end-systolic dimensions. Cardiac performance measured as fractional shortening decreased proportionally with decreased cMLCK expression culminating in heart failure in the setting of no RLC phosphorylation. Hearts from female mice showed similar responses with loss of cMLCK associated with diminished RLC phosphorylation and cardiac hypertrophy. Isoproterenol infusion elicited hypertrophic cardiac responses in wild type mice. In mice lacking cMLCK, the hypertrophic hearts showed no additional increases in size with the isoproterenol treatment, suggesting a lack of RLC phosphorylation blunted the stress response. Thus, cMLCK appears to be the predominant protein kinase that maintains basal RLC phosphorylation that is required for normal physiological cardiac performance in vivo.
Collapse
Affiliation(s)
| | | | | | - Joseph A. Hill
- Internal Medicine (Cardiology), and
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | |
Collapse
|
133
|
|
134
|
Polugari Prem Kumar Manohar Rao, Munshi A, Mullapudi R, Potham Sampath Kumar, Sharath A, Gundala Anil Krishna, Sadhnani M. The M235T polymorphism of the angiotensinogen gene in South Indian patients of hypertrophic cardiomyopathy. J Renin Angiotensin Aldosterone Syst 2010; 12:238-42. [PMID: 21163864 DOI: 10.1177/1470320310387955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a complex disorder and genetically transmitted cardiac disease with a diverse clinical course. The objective of the present study was to examine the association of the T704C polymorphism of exon 2 of the angiotensinogen (AGT) gene with HCM in a South Indian population from Andhra Pradesh. Subjects and methods. One-hundred and fifty HCM (90 sporadic hypertrophic cardiomyopathy [SHCM] and 60 familial hypertrophic cardiomyopathy [FHCM]) patients and 165 age- and sex-matched normal healthy controls without known hypertension and left ventricular hypertrophy were included in the study. DNA was isolated from peripheral leukocytes and the region of interest in the AGT gene bearing a missense mutation methionine to threonine substitution at codon 235 (M235T) of exon 2, was amplified by polymerase chain reaction (PCR). The PCR products were subjected to restriction digestion with the enzyme SfaNI. RESULTS Significant differences were detected in genotypic distribution (p = 0.04) as well as the allelic frequency (p = 0.003) between the SHCM patients and controls. The polymorphism did not show any association with FHCM. CONCLUSION Our results suggest that the T allele of the AGT gene is significantly associated with SHCM in a South Indian population from Andhra Pradesh. However, we did not find significant association of this polymorphism with FHCM.
Collapse
|
135
|
Landstrom AP, Ackerman MJ. Mutation type is not clinically useful in predicting prognosis in hypertrophic cardiomyopathy. Circulation 2010; 122:2441-9; discussion 2450. [PMID: 21135372 PMCID: PMC6309993 DOI: 10.1161/circulationaha.110.954446] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), or clinically unexplained hypertrophy of the heart, is a common genetic cardiovascular disorder marked by genetic and phenotypic heterogeneity. As the genetic mutations underlying the pathogenesis of this disease have been identified, investigators have attempted to link mutations to clearly defined alterations in survival in hopes of identifying prognostically relevant biomarkers of disease. While initial studies labeling particular MYH7 -encoded beta myosin heavy chain and TNNT2 -encoded cardiac troponin T mutations as “malignant” or “benign” raised hopes for mutation-specific risk stratification in HCM, a series of subsequent investigations identified mutations in families with contradictory disease phenotypes. Furthermore, subsequent proband-based cohort studies indicated that the clinical prognostic relevance of individual mutations labeled as “malignant” or “benign” in large referral centers is negligible. Herein, we seek to summarize the controversy and dispute the notion that mutation-specific risk stratification in HCM is possible at the present time. We provide evidence for clinicians and basic scientists alike to move beyond simple mutation descriptors to a more nuanced understanding of HCM mutations that fully captures the multi-factorial nature of HCM disease expression.
Collapse
Affiliation(s)
- Andrew P Landstrom
- Department of Medicine, Division of Cardiovascular Diseases, and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
136
|
Hoskins AC, Jacques A, Bardswell SC, McKenna WJ, Tsang V, dos Remedios CG, Ehler E, Adams K, Jalilzadeh S, Avkiran M, Watkins H, Redwood C, Marston SB, Kentish JC. Normal passive viscoelasticity but abnormal myofibrillar force generation in human hypertrophic cardiomyopathy. J Mol Cell Cardiol 2010; 49:737-45. [PMID: 20615414 PMCID: PMC2954357 DOI: 10.1016/j.yjmcc.2010.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/02/2010] [Accepted: 06/20/2010] [Indexed: 01/13/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, increased ventricular stiffness and impaired diastolic filling. We investigated to what extent myocardial functional defects can be explained by alterations in the passive and active properties of human cardiac myofibrils. Skinned ventricular myocytes were prepared from patients with obstructive HCM (two patients with MYBPC3 mutations, one with a MYH7 mutation, and three with no mutation in either gene) and from four donors. Passive stiffness, viscous properties, and titin isoform expression were similar in HCM myocytes and donor myocytes. Maximal Ca(2+)-activated force was much lower in HCM myocytes (14 ± 1 kN/m(2)) than in donor myocytes (23 ± 3 kN/m(2); P<0.01), though cross-bridge kinetics (k(tr)) during maximal Ca(2)(+) activation were 10% faster in HCM myocytes. Myofibrillar Ca(2)(+) sensitivity in HCM myocytes (pCa(50)=6.40 ± 0.05) was higher than for donor myocytes (pCa(50)=6.09 ± 0.02; P<0.001) and was associated with reduced phosphorylation of troponin-I (ser-23/24) and MyBP-C (ser-282) in HCM myocytes. These characteristics were common to all six HCM patients and may therefore represent a secondary consequence of the known and unknown underlying genetic variants. Some HCM patients did however exhibit an altered relationship between force and cross-bridge kinetics at submaximal Ca(2+) concentrations, which may reflect the primary mutation. We conclude that the passive viscoelastic properties of the myocytes are unlikely to account for the increased stiffness of the HCM ventricle. However, the low maximum Ca(2+)-activated force and high Ca(2+) sensitivity of the myofilaments are likely to contribute substantially to any systolic and diastolic dysfunction, respectively, in hearts of HCM patients.
Collapse
Affiliation(s)
- Anita C. Hoskins
- Cardiovascular Division, King's College London British Heart Foundation Centre, London, UK
| | - Adam Jacques
- Cardiovascular Science, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sonya C. Bardswell
- Cardiovascular Division, King's College London British Heart Foundation Centre, London, UK
| | - William J. McKenna
- Institute of Cardiovascular Science, University College London, London UK
| | - Victor Tsang
- Institute of Cardiovascular Science, University College London, London UK
| | | | - Elisabeth Ehler
- Cardiovascular Division, King's College London British Heart Foundation Centre, London, UK
| | - Kim Adams
- Department of Cardiovascular Medicine, University of Oxford, Oxford UK
| | | | - Metin Avkiran
- Cardiovascular Division, King's College London British Heart Foundation Centre, London, UK
| | - Hugh Watkins
- Department of Cardiovascular Medicine, University of Oxford, Oxford UK
| | - Charles Redwood
- Department of Cardiovascular Medicine, University of Oxford, Oxford UK
| | - Steven B. Marston
- Cardiovascular Science, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jonathan C. Kentish
- Cardiovascular Division, King's College London British Heart Foundation Centre, London, UK
| |
Collapse
|
137
|
Choi JO, Yu CW, Chun Nah J, Rang Park J, Lee BS, Jeong Choi Y, Cho BR, Lee SC, Woo Park S, Kimura A, Euy Park J. Long-term outcome of 4 Korean families with hypertrophic cardiomyopathy caused by 4 different mutations. Clin Cardiol 2010; 33:430-8. [PMID: 20641121 DOI: 10.1002/clc.20795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND We sought to describe the long-term outcome of individuals in 4 Korean families with hypertrophic cardiomyopathy (HCM) with known mutations. HYPOTHESIS Long-term clinical features of familial HCM might be characterized according to the mutation causing HCM. METHODS We performed long-term (mean, 13.1 y) clinical evaluations on 46 subjects from 4 Korean families with different mutations. RESULTS Myosin light chain 3 gene (MYL3) mutation was associated with late-onset HCM with relatively poor prognosis; 1 sudden cardiac death and 2 cases of heart failure with atrial fibrillation occurred among 12 subjects with this mutation. Myosin binding protein C gene (MYBPC3) mutation was associated with 2 cases of sudden cardiac death and 3 cases of heart failure among 7 affected members. Cardiac troponin I type 3 gene (TNNI3) mutation was associated with 5 deaths related to atrial fibrillation and stroke among 12 mutation-positive members. Myosin heavy chain 7 gene (MYH7) mutation was associated with 11 deaths in 15 affected members. CONCLUSIONS The clinical course was quite different for different HCM mutations. Even within the same family, individuals carrying the same mutation differed in disease expression and prognosis.
Collapse
MESH Headings
- Adult
- Asian People/genetics
- Atrial Fibrillation/ethnology
- Atrial Fibrillation/genetics
- Cardiac Myosins/genetics
- Cardiomyopathy, Hypertrophic, Familial/diagnosis
- Cardiomyopathy, Hypertrophic, Familial/ethnology
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/mortality
- Carrier Proteins/genetics
- Death, Sudden, Cardiac/ethnology
- Death, Sudden, Cardiac/etiology
- Disease Progression
- Electrocardiography
- Female
- Genetic Predisposition to Disease
- Heart Failure/ethnology
- Heart Failure/genetics
- Humans
- Korea
- Magnetic Resonance Imaging
- Male
- Middle Aged
- Mutation
- Myosin Heavy Chains/genetics
- Myosin Light Chains/genetics
- Pedigree
- Phenotype
- Stroke/ethnology
- Stroke/genetics
- Time Factors
- Troponin I/genetics
Collapse
Affiliation(s)
- Jin-Oh Choi
- Division of Cardiology, Department of Medicine, Cardiac and Vascular Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Development of electrocardiogram intervals during growth of FVB/N neonate mice. BMC PHYSIOLOGY 2010; 10:16. [PMID: 20735846 PMCID: PMC2936334 DOI: 10.1186/1472-6793-10-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/24/2010] [Indexed: 12/13/2022]
Abstract
Background Electrocardiography remains the best diagnostic tool and therapeutic biomarker for a spectrum of pediatric diseases involving cardiac or autonomic nervous system defects. As genetic links to these disorders are established and transgenic mouse models produced in efforts to understand and treat them, there is a surprising lack of information on electrocardiograms (ECGs) and ECG abnormalities in neonate mice. This is likely due to the trauma and anaesthesia required of many legacy approaches to ECG recording in mice, exacerbated by the fragility of many mutant neonates. Here, we use a non-invasive system to characterize development of the heart rate and electrocardiogram throughout the growth of conscious neonate FVB/N mice. Results We examine ECG waveforms as early as two days after birth. At this point males and females demonstrate comparable heart rates that are 50% lower than adult mice. Neonatal mice exhibit very low heart rate variability. Within 12 days of birth PR, QRS and QTc interval durations are near adult values while heart rate continues to increase until weaning. Upon weaning FVB/N females quickly develop slower heart rates than males, though PR intervals are comparable between sexes until a later age. This suggests separate developmental events may contribute to these gender differences in electrocardiography. Conclusions We provide insight with a new level of detail to the natural course of heart rate establishment in neonate mice. ECG can now be conveniently and repeatedly used in neonatal mice. This should serve to be of broad utility, facilitating further investigations into development of a diverse group of diseases and therapeutics in preclinical mouse studies.
Collapse
|
139
|
Borejdo J, Szczesna-Cordary D, Muthu P, Calander N. Familial hypertrophic cardiomyopathy can be characterized by a specific pattern of orientation fluctuations of actin molecules . Biochemistry 2010; 49:5269-77. [PMID: 20509708 PMCID: PMC2892420 DOI: 10.1021/bi1006749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A single-point mutation in the gene encoding the ventricular myosin regulatory light chain (RLC) is sufficient to cause familial hypertrophic cardiomyopathy (FHC). Most likely, the underlying cause of this disease is an inefficient energy utilization by the mutated cardiac muscle. We set out to devise a simple method to characterize two FHC phenotypes caused by the R58Q and D166V mutations in RLC. The method is based on the ability to observe a few molecules of actin in working ex vivo heart myofibril. Actin is labeled with extremely diluted fluorescent dye, and a small volume within the I-band ( approximately 10(-16) L), containing on average three actin molecules, is observed by confocal microscopy. During muscle contraction, myosin cross-bridges deliver cyclic impulses to actin. As a result, actin molecules undergo periodic fluctuations of orientation. We measured these fluctuations by recording the parallel and perpendicular components of fluorescent light emitted by an actin-bound fluorophore. The histograms of fluctuations of fluorescent actin molecules in wild-type (WT) hearts in rigor were represented by perfect Gaussian curves. In contrast, histograms of contracting heart muscle were peaked and asymmetric, suggesting that contraction occurred in at least two steps. Furthermore, the differences between histograms of contracting FHC R58Q and D166V hearts versus corresponding contracting WT hearts were statistically significant. On the basis of our results, we suggest a simple new method of distinguishing between healthy and FHC R58Q and D166V hearts by analyzing the probability distribution of polarized fluorescence intensity fluctuations of sparsely labeled actin molecules.
Collapse
Affiliation(s)
- J Borejdo
- Department of Molecular Biology and Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, USA.
| | | | | | | |
Collapse
|
140
|
|
141
|
Abstract
Sudden cardiac death caused by malignant ventricular arrhythmias is the most important cause of death in the industrialized world. Most of these lethal arrhythmias occur in the setting of ischemic heart disease. A significant number of sudden deaths, especially in young individuals, are caused by inherited ventricular arrhythmic disorders, however. Genetically induced ventricular arrhythmias can be divided in two subgroups: the primary electrical disorders or channelopathies, and the secondary arrhythmogenic cardiomyopathies. This article focuses on the genetic background of these electrical disorders and the current knowledge of genotype-phenotype interactions.
Collapse
|
142
|
Schober K, Todd A. Echocardiographic assessment of left ventricular geometry and the mitral valve apparatus in cats with hypertrophic cardiomyopathy. J Vet Cardiol 2010; 12:1-16. [PMID: 20185379 DOI: 10.1016/j.jvc.2009.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 09/01/2009] [Accepted: 09/13/2009] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This retrospective study addressed the general hypothesis that abnormalities of the mitral valve apparatus are common in cats with idiopathic hypertrophic cardiomyopathy (HCM) and contribute to dynamic obstruction of the left ventricular outflow tract (LVOT). ANIMALS, MATERIALS AND METHODS 106 cats (28 controls and 78 with HCM) had transthoracic two-dimensional and Doppler echocardiography performed with quantification of 33 variables. Three groups of cats (control [Group-1], HCM without obstruction [Group-2], and HCM with obstruction [Group-3]) were identified and compared by analysis of variance, chi(2) analysis, and correlation analysis. RESULTS Cats in Group-3 had more LV and papillary muscle hypertrophy, increased length of the anterior mitral valve leaflet, and a higher prevalence of false tendons in the LVOT compared to cats in Group-2 (P < or = 0.05). The length of the anterior mitral valve leaflet was correlated to the severity of dynamic obstruction (P < or = 0.05) and the magnitude of LV hypertrophy (P < or = 0.001). Systolic anterior motion of chordae tendineae (CAM) was observed in 16% of control cats and >50% of cats with HCM (P < or = 0.05). CONCLUSIONS Abnormalities of the mitral valve are common in cats with HCM suggesting a possible role in the pathogenesis of dynamic outflow tract obstruction.
Collapse
Affiliation(s)
- Karsten Schober
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L Tharp Street, Columbus, OH 43210, USA.
| | | |
Collapse
|
143
|
Roddy KA, Nowlan NC, Prendergast PJ, Murphy P. 3D representation of the developing chick knee joint: a novel approach integrating multiple components. J Anat 2010; 214:374-87. [PMID: 19245504 DOI: 10.1111/j.1469-7580.2008.01040.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The knee joint has a highly complex 3-dimensional (3D) morphology that is sculpted at the interface of the forming long bones as they are generated in the embryo. Although it is clear that regulatory genes guide joint formation, the mechanisms that are responsible for morphogenesis of the knee are poorly understood. Certainly the process involves integration across several tissues and physical/mechanical influences from neighbouring tissues are important. We describe the acquisition of shape in the chick knee joint in detail and show that by HH34 the joint already displays shape characteristics of the adult structure. Through imaging developing cartilage, tendons, ligaments and muscle across developmental stages from HH28-34 we have built 3D representations of the forming structure including the various components important in knee formation. We describe the timing of muscle and tendon development in parallel with the refinement of cartilage shape, showing when and where (tendon attachment points) muscle forces are applied to the cartilage elements. Shape begins to emerge as the tendons are forming (HH30-32) but is fully refined (HH34) in the presence of tendons. The resulting integrated 3D representations of the developing knee across time will serve as the foundation for computational analysis of the mechanical environment, and experimental approaches to investigating morphogenetic mechanisms.
Collapse
Affiliation(s)
- Karen A Roddy
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
144
|
Colson BA, Locher MR, Bekyarova T, Patel JR, Fitzsimons DP, Irving TC, Moss RL. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development. J Physiol 2010; 588:981-93. [PMID: 20123786 DOI: 10.1113/jphysiol.2009.183897] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca(2+) sensitivity of force (pCa(50)), PKA treatment has been shown to decrease pCa(50), presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca(2+)-independent force and maximum Ca(2+)-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I(1,1)/I(1,0)) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d(1,0)) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I(1,1)/I(1,0) and, as hypothesized, treatment with MLCK also increased I(1,1)/I(1,0), which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by 2 nm (3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca(2+) sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.
Collapse
Affiliation(s)
- Brett A Colson
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA.
| | | | | | | | | | | | | |
Collapse
|
145
|
Mettikolla P, Calander N, Luchowski R, Gryczynski I, Gryczynski Z, Borejdo J. Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:017011. [PMID: 20210485 PMCID: PMC2847936 DOI: 10.1117/1.3324871] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 05/28/2023]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is a serious heart disease that often leads to a sudden cardiac death of young athletes. It is believed that the alteration of the kinetics of interaction between actin and myosin causes FHC by making the heart to pump blood inefficiently. We set out to check this hypothesis ex vivo. During contraction of heart muscle, a myosin cross-bridge imparts periodic force impulses to actin. The impulses are analyzed by fluorescence correlation spectroscopy (FCS) of fluorescently labeled actin. To minimize observation volume and background fluorescence, we carry out FCS measurements in surface plasmon coupled emission mode in a reverse Kretschmann configuration. Fluorescence is a result of near-field coupling of fluorophores excited in the vicinity of the metal-coated surface of a coverslip with the surface plasmons propagating in the metal. Surface plasmons decouple on opposite sides of the metal film and emit in a directional manner as far-field p-polarized radiation. We show that the rate of changes of orientation is significantly faster in contracting cardiac myofibrils of transgenic mice than wild type. These results are consistent with the fact that mutated heart muscle myosin translates actin faster in in vitro motility assays.
Collapse
Affiliation(s)
- Prasad Mettikolla
- University of North Texas Health Science Center, Department of Molecular Biology and Immunology, Fort Worth, Texas 76107, USA
| | | | | | | | | | | |
Collapse
|
146
|
Examination of FGFRL1 as a candidate gene for diaphragmatic defects at chromosome 4p16.3 shows that Fgfrl1 null mice have reduced expression of Tpm3, sarcomere genes and Lrtm1 in the diaphragm. Hum Genet 2009; 127:325-36. [PMID: 20024584 DOI: 10.1007/s00439-009-0777-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Fgfrl1 (also known as Fgfr5; OMIM 605830) homozygous null mice have thin, amuscular diaphragms and die at birth because of diaphragm hypoplasia. FGFRL1 is located at 4p16.3, and this chromosome region can be deleted in patients with congenital diaphragmatic hernia (CDH). We examined FGFRL1 as a candidate gene for the diaphragmatic defects associated with 4p16.3 deletions and re-sequenced this gene in 54 patients with CDH. We confirmed six known coding single nucleotide polymorphisms (SNPs): c.209G > A (p.Pro20Pro), c.977G > A (p.Pro276Pro), c.1040T > C (p.Asp297Asp), c.1234C > A (p.Pro362Gln), c.1420G > T (p.Arg424Leu), and c.1540C > T (p.Pro464Leu), but we did not identify any gene mutations. We genotyped additional CDH patients for four of these six SNPs, including the three non-synonymous SNPs, to make a total of 200 chromosomes, and found that the allele frequency for the four SNPs, did not differ significantly between patients and normal controls (p > or = 0.05). We then used Affymetrix Genechip Mouse Gene 1.0 ST arrays and found eight genes with significantly reduced expression levels in the diaphragms of Fgfrl1 homozygous null mice when compared with wildtype mice-Tpm3, Fgfrl1 (p = 0.004), Myl2, Lrtm1, Myh4, Myl3, Myh7 and Hephl1. Lrtm1 is closely related to Slit3, a protein associated with herniation of the central tendon of the diaphragm in mice. The Slit proteins are known to regulate axon branching and cell migration, and inhibition of Slit3 reduces cell motility and decreases the expression of Rac and Cdc42, two genes that are essential for myoblast fusion. Further studies to determine if Lrtm1 has a similar function to Slit3 and if reduced Fgfrl1 expression can cause diaphragm hypoplasia through a mechanism involving decreased myoblast motility and/or myoblast fusion, seem indicated.
Collapse
|
147
|
Ferrantini C, Belus A, Piroddi N, Scellini B, Tesi C, Poggesi C. Mechanical and energetic consequences of HCM-causing mutations. J Cardiovasc Transl Res 2009; 2:441-51. [PMID: 20560002 DOI: 10.1007/s12265-009-9131-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) was the first inherited heart disease to be characterized at the molecular genetic level with the demonstration that it is caused by mutations in genes that encode different components of the cardiac sarcomere. Early functional in vitro studies have concluded that HCM mutations cause a loss of sarcomere mechanical function. Hypertrophy would then follow as a compensatory mechanism to raise the work and power output of the affected heart. More recent in vitro and mouse model studies have suggested that HCM mutations enhance contractile function and myofilament Ca(2+) sensitivity and impair cardiac myocyte energetics. It has been hypothesized that these changes may result in cardiac myocyte energy depletion due to inefficient ATP utilization and also in altered myoplasmic Ca(2+) handling. The problems encountered in reaching a definitive answer on the effects of HCM mutations are discussed. Though direct analysis of the altered functional characteristics of HCM human cardiac sarcomeres has so far lagged behind the in vitro and mouse studies, recent work with mechanically isolated skinned myocytes and myofibrils from affected human hearts seem to support the energy depletion hypothesis. If further validated in the human heart, this hypothesis would identify tractable therapeutic targets that suggest that HCM, perhaps more than any other cardiomyopathy, will be amenable to disease-modifying therapy.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/physiopathology
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/metabolism
- Cardiomyopathy, Hypertrophic, Familial/physiopathology
- Disease Models, Animal
- Energy Metabolism/genetics
- Genetic Predisposition to Disease
- Humans
- Mutation
- Myocardial Contraction/genetics
- Phenotype
- Sarcomeres/metabolism
Collapse
Affiliation(s)
- Cecilia Ferrantini
- Department of Physiology and Center of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Florence, Italy
| | | | | | | | | | | |
Collapse
|
148
|
Muthu P, Mettikolla P, Calander N, Luchowski R, Gryczynski I, Gryczynski Z, Szczesna-Cordary D, Borejdo J. Single molecule kinetics in the familial hypertrophic cardiomyopathy D166V mutant mouse heart. J Mol Cell Cardiol 2009; 48:989-98. [PMID: 19914255 DOI: 10.1016/j.yjmcc.2009.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/21/2009] [Accepted: 11/06/2009] [Indexed: 11/26/2022]
Abstract
One of the sarcomeric mutations associated with a malignant phenotype of familial hypertrophic cardiomyopathy (FHC) is the D166V point mutation in the ventricular myosin regulatory light chain (RLC) encoded by the MYL2 gene. In this report we show that the rates of myosin cross-bridge attachment and dissociation are significantly different in isometrically contracting cardiac myofibrils from right ventricles of transgenic (Tg)-D166V and Tg-WT mice. We have derived the myosin cross-bridge kinetic rates by tracking the orientation of a fluorescently labeled single actin molecule. Orientation (measured by polarized fluorescence) oscillated between two states, corresponding to the actin-bound and actin-free states of the myosin cross-bridge. The rate of cross-bridge attachment during isometric contraction decreased from 3 s(-1) in myofibrils from Tg-WT to 1.4 s(-1) in myofibrils from Tg-D166V. The rate of detachment decreased from 1.3 s(-1) (Tg-WT) to 1.2 s(-1) (Tg-D166V). We also showed that the level of RLC phosphorylation was largely decreased in Tg-D166V myofibrils compared to Tg-WT. Our findings suggest that alterations in the myosin cross-bridge kinetics brought about by the D166V mutation in RLC might be responsible for the compromised function of the mutated hearts and lead to their inability to efficiently pump blood.
Collapse
Affiliation(s)
- Priya Muthu
- Department of Molecular Biology and Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 2009; 48:882-92. [PMID: 19914256 DOI: 10.1016/j.yjmcc.2009.10.031] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/19/2009] [Accepted: 10/30/2009] [Indexed: 12/25/2022]
Abstract
Troponin (Tn) is a critical regulator of muscle contraction in cardiac muscle. Mutations in Tn subunits are associated with hypertrophic, dilated and restrictive cardiomyopathies. Improved diagnosis of cardiomyopathies as well as intensive investigation of new mouse cardiomyopathy models has significantly enhanced this field of research. Recent investigations have showed that the physiological effects of Tn mutations associated with hypertrophic, dilated and restrictive cardiomyopathies are different. Impaired relaxation is a universal finding of most transgenic models of HCM, predicted directly from the significant changes in Ca(2+) sensitivity of force production. Mutations associated with HCM and RCM show increased Ca(2+) sensitivity of force production while mutations associated with DCM demonstrate decreased Ca(2+) sensitivity of force production. This review spotlights recent advances in our understanding on the role of Tn mutations on ATPase activity, maximal force development and heart function as well as the correlation between the locations of these Tn mutations within the thin filament and myofilament function.
Collapse
Affiliation(s)
- Ruth H Willott
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
150
|
Griffiths PJ, Isackson H, Pelc R, Redwood CS, Funari SS, Watkins H, Ashley CC. Synchronous in situ ATPase activity, mechanics, and Ca2+ sensitivity of human and porcine myocardium. Biophys J 2009; 97:2503-12. [PMID: 19883593 PMCID: PMC2770627 DOI: 10.1016/j.bpj.2009.07.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/15/2009] [Accepted: 07/23/2009] [Indexed: 11/16/2022] Open
Abstract
Flash-frozen myocardium samples provide a valuable means of correlating clinical cardiomyopathies with abnormalities in sarcomeric contractile and biochemical parameters. We examined flash-frozen left-ventricle human cardiomyocyte bundles from healthy donors to determine control parameters for isometric tension (P(o)) development and Ca(2+) sensitivity, while simultaneously measuring actomyosin ATPase activity in situ by a fluorimetric technique. P(o) was 17 kN m(-2) and pCa(50%) was 5.99 (28 degrees C, I = 130 mM). ATPase activity increased linearly with tension to 132 muM s(-1). To determine the influence of flash-freezing, we compared the same parameters in both glycerinated and flash-frozen porcine left-ventricle trabeculae. P(o) in glycerinated porcine myocardium was 25 kN m(-2), and maximum ATPase activity was 183 microM s(-1). In flash-frozen porcine myocardium, P(o) was 16 kN m(-2) and maximum ATPase activity was 207 microM s(-1). pCa(50%) was 5.77 in the glycerinated and 5.83 in the flash-frozen sample. Both passive and active stiffness of flash-frozen porcine myocardium were lower than for glycerinated tissue and similar to the human samples. Although lower stiffness and isometric tension development may indicate flash-freezing impairment of axial force transmission, we cannot exclude variability between samples as the cause. ATPase activity and pCa(50%) were unaffected by flash-freezing. The lower ATPase activity measured in human tissue suggests a slower actomyosin turnover by the contractile proteins.
Collapse
Affiliation(s)
- P J Griffiths
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|