101
|
Müller T, Mizumoto S, Suresh I, Komatsu Y, Vodopiutz J, Dundar M, Straub V, Lingenhel A, Melmer A, Lechner S, Zschocke J, Sugahara K, Janecke AR. Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers-Danlos syndrome. Hum Mol Genet 2013; 22:3761-72. [PMID: 23704329 DOI: 10.1093/hmg/ddt227] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sulfated polysaccharide dermatan sulfate (DS) forms proteoglycans with a number of distinct core proteins. Iduronic acid-containing domains in DS have a key role in mediating the functions of DS proteoglycans. Two tissue-specific DS epimerases, encoded by DSE and DSEL, and a GalNAc-4-O-sulfotransferase encoded by CHST14 are necessary for the formation of these domains. CHST14 mutations were previously identified for patients with the musculocontractural type of Ehlers-Danlos syndrome (MCEDS). We now identified a homozygous DSE missense mutation (c.803C>T, p.S268L) by the positional candidate approach in a male child with MCEDS, who was born to consanguineous parents. Heterologous expression of mutant full-length and soluble recombinant DSE proteins showed a loss of activity towards partially desulfated DS. Patient-derived fibroblasts also showed a significant reduction in epimerase activity. The amount of DS disaccharides was markedly decreased in the conditioned medium and the cell fraction from cultured fibroblasts of the patient when compared with a healthy control subject, whereas no apparent difference was observed in the chondroitin sulfate (CS) chains from the conditioned media. However, the total amount of CS disaccharides in the cell fraction from the patient was increased ∼1.5-fold, indicating an increased synthesis or a reduced conversion of CS chains in the cell fraction. Stable transfection of patient fibroblasts with a DSE expression vector increased the amount of secreted DS disaccharides. DSE deficiency represents a specific defect of DS biosynthesis. We demonstrate locus heterogeneity in MCEDS and provide evidence for the importance of DS in human development and extracellular matrix maintenance.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Pediatrics I, Division of Human Genetics, Innsbruck Medical University, Anichstrasse 35, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Auchus RJ. Introduction to the 2012 Keith L. Parker memorial lecturer: Walter L. Miller, MD. Mol Cell Endocrinol 2013; 371:2-4. [PMID: 23219868 DOI: 10.1016/j.mce.2012.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/19/2012] [Accepted: 11/19/2012] [Indexed: 11/17/2022]
Affiliation(s)
- Richard J Auchus
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Rm 5560A, MSRBII, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
103
|
Mizuno K, Boudko S, Engel J, Bächinger HP. Vascular Ehlers-Danlos syndrome mutations in type III collagen differently stall the triple helical folding. J Biol Chem 2013; 288:19166-76. [PMID: 23645670 DOI: 10.1074/jbc.m113.462002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vascular Ehlers-Danlos syndrome (EDS) type IV is the most severe form of EDS. In many cases the disease is caused by a point mutation of Gly in type III collagen. A slower folding of the collagen helix is a potential cause for over-modifications. However, little is known about the rate of folding of type III collagen in patients with EDS. To understand the molecular mechanism of the effect of mutations, a system was developed for bacterial production of homotrimeric model polypeptides. The C-terminal quarter, 252 residues, of the natural human type III collagen was attached to (GPP)7 with the type XIX collagen trimerization domain (NC2). The natural collagen domain forms a triple helical structure without 4-hydroxylation of proline at a low temperature. At 33 °C, the natural collagenous part is denatured, but the C-terminal (GPP)7-NC2 remains intact. Switching to a low temperature triggers the folding of the type III collagen domain in a zipper-like fashion that resembles the natural process. We used this system for the two known EDS mutations (Gly-to-Val) in the middle at Gly-910 and at the C terminus at Gly-1018. In addition, wild-type and Gly-to-Ala mutants were made. The mutations significantly slow down the overall rate of triple helix formation. The effect of the Gly-to-Val mutation is much more severe compared with Gly-to-Ala. This is the first report on the folding of collagen with EDS mutations, which demonstrates local delays in the triple helix propagation around the mutated residue.
Collapse
Affiliation(s)
- Kazunori Mizuno
- Shriners Hospitals for Children Portland Research Center, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
104
|
Wijten P, van Holten T, Woo LL, Bleijerveld OB, Roest M, Heck AJR, Scholten A. High precision platelet releasate definition by quantitative reversed protein profiling--brief report. Arterioscler Thromb Vasc Biol 2013; 33:1635-8. [PMID: 23640497 DOI: 10.1161/atvbaha.113.301147] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Platelet activation and subsequent protein release play an important role in healthy hemostasis and inflammatory responses, yet the identity and quantity of proteins in the platelet releasate are still debated. Here, we present a reversed releasate proteomics approach to determine unambiguously and quantitatively proteins released from activated platelets. APPROACH AND RESULTS Isolated platelets were mock and fully stimulated after which the released proteins in the supernatant were removed. Using high-end proteomics technology (2D chromatography, stable isotope labeling, electron transfer dissociation, and high collision dissociation fragmentation) allowed us to quantitatively discriminate the released proteins from uncontrolled lysis products. Monitoring the copy numbers of ≈ 4500 platelet proteins, we observed that after stimulation via thrombin and collagen, only 124 (<3%) proteins were significantly released (P<0.05). The released proteins span a concentration range of ≥ 5 orders, as confirmed by ELISA. The released proteins were highly enriched in secretion tags and contained all known factors at high concentrations (>100 ng/mL, eg, thrombospondin, von Willebrand factor, and platelet factor 4). Interestingly, in the lower concentration range of the releasate many novel factors were identified. CONCLUSIONS Our reversed releasate dataset forms the first unambiguous, in depth repository for molecular factors released by platelets.
Collapse
Affiliation(s)
- Patrick Wijten
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
105
|
Gbadegesin RA, Brophy PD, Adeyemo A, Hall G, Gupta IR, Hains D, Bartkowiak B, Rabinovich CE, Chandrasekharappa S, Homstad A, Westreich K, Wu G, Liu Y, Holanda D, Clarke J, Lavin P, Selim A, Miller S, Wiener JS, Ross SS, Foreman J, Rotimi C, Winn MP. TNXB mutations can cause vesicoureteral reflux. J Am Soc Nephrol 2013; 24:1313-22. [PMID: 23620400 DOI: 10.1681/asn.2012121148] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Primary vesicoureteral reflux (VUR) is the most common congenital anomaly of the kidney and the urinary tract, and it is a major risk factor for pyelonephritic scarring and CKD in children. Although twin studies support the heritability of VUR, specific genetic causes remain elusive. We performed a sequential genome-wide linkage study and whole-exome sequencing in a family with hereditary VUR. We obtained a significant multipoint parametric logarithm of odds score of 3.3 on chromosome 6p, and whole-exome sequencing identified a deleterious heterozygous mutation (T3257I) in the gene encoding tenascin XB (TNXB in 6p21.3). This mutation segregated with disease in the affected family as well as with a pathogenic G1331R change in another family. Fibroblast cell lines carrying the T3257I mutation exhibited a reduction in both cell motility and phosphorylated focal adhesion kinase expression, suggesting a defect in the focal adhesions that link the cell cytoplasm to the extracellular matrix. Immunohistochemical studies revealed that the human uroepithelial lining of the ureterovesical junction expresses TNXB, suggesting that TNXB may be important for generating tensile forces that close the ureterovesical junction during voiding. Taken together, these results suggest that mutations in TNXB can cause hereditary VUR.
Collapse
|
106
|
Kobayashi DT, Shi J, Stephen L, Ballard KL, Dewey R, Mapes J, Chung B, McCarthy K, Swoboda KJ, Crawford TO, Li R, Plasterer T, Joyce C, Chung WK, Kaufmann P, Darras BT, Finkel RS, Sproule DM, Martens WB, McDermott MP, De Vivo DC, Walker MG, Chen KS. SMA-MAP: a plasma protein panel for spinal muscular atrophy. PLoS One 2013; 8:e60113. [PMID: 23565191 PMCID: PMC3615018 DOI: 10.1371/journal.pone.0060113] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/21/2013] [Indexed: 12/12/2022] Open
Abstract
Objectives Spinal Muscular Atrophy (SMA) presents challenges in (i) monitoring disease activity and predicting progression, (ii) designing trials that allow rapid assessment of candidate therapies, and (iii) understanding molecular causes and consequences of the disease. Validated biomarkers of SMA motor and non-motor function would offer utility in addressing these challenges. Our objectives were (i) to discover additional markers from the Biomarkers for SMA (BforSMA) study using an immunoassay platform, and (ii) to validate the putative biomarkers in an independent cohort of SMA patients collected from a multi-site natural history study (NHS). Methods BforSMA study plasma samples (N = 129) were analyzed by immunoassay to identify new analytes correlating to SMA motor function. These immunoassays included the strongest candidate biomarkers identified previously by chromatography. We selected 35 biomarkers to validate in an independent cohort SMA type 1, 2, and 3 samples (N = 158) from an SMA NHS. The putative biomarkers were tested for association to multiple motor scales and to pulmonary function, neurophysiology, strength, and quality of life measures. We implemented a Tobit model to predict SMA motor function scores. Results 12 of the 35 putative SMA biomarkers were significantly associated (p<0.05) with motor function, with a 13th analyte being nearly significant. Several other analytes associated with non-motor SMA outcome measures. From these 35 biomarkers, 27 analytes were selected for inclusion in a commercial panel (SMA-MAP) for association with motor and other functional measures. Conclusions Discovery and validation using independent cohorts yielded a set of SMA biomarkers significantly associated with motor function and other measures of SMA disease activity. A commercial SMA-MAP biomarker panel was generated for further testing in other SMA collections and interventional trials. Future work includes evaluating the panel in other neuromuscular diseases, for pharmacodynamic responsiveness to experimental SMA therapies, and for predicting functional changes over time in SMA patients.
Collapse
Affiliation(s)
- Dione T Kobayashi
- Spinal Muscular Atrophy Foundation, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Lee HH. Variants of the CYP21A2 and CYP21A1P genes in congenital adrenal hyperplasia. Clin Chim Acta 2013; 418:37-44. [DOI: 10.1016/j.cca.2012.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/30/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
|
108
|
Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 2013; 229:298-309. [PMID: 22996908 DOI: 10.1002/path.4104] [Citation(s) in RCA: 559] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/09/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
Abstract
Myofibroblasts, and the extracellular matrix (ECM) in which they reside, are critical components of wound healing and fibrosis. The ECM, traditionally viewed as the structural elements within which cells reside, is actually a functional tissue whose components possess not only scaffolding characteristics, but also growth factor, mitogenic, and other bioactive properties. Although it has been suggested that tissue fibrosis simply reflects an 'exuberant' wound-healing response, examination of the ECM and the roles of myofibroblasts during fibrogenesis instead suggest that the organism may be attempting to recapitulate developmental programmes designed to regenerate functional tissue. Evidence of this is provided by the temporospatial re-emergence of embryonic ECM proteins by fibroblasts and myofibroblasts that induce cellular programmatic responses intended to produce a functional tissue. In the setting of wound healing (or physiological fibrosis), this occurs in a highly regulated and exquisitely choreographed fashion which results in cessation of haemorrhage, restoration of barrier integrity, and re-establishment of tissue function. However, pathological tissue fibrosis, which oftentimes causes organ dysfunction and significant morbidity or mortality, likely results from dysregulation of normal wound-healing processes or abnormalities of the process itself. This review will focus on the myofibroblast ECM and its role in both physiological and pathological fibrosis, and will discuss the potential for therapeutically targeting ECM proteins for treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Franco Klingberg
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5S 3E2, Canada
| | | | | |
Collapse
|
109
|
Shih B, Sultan MJ, Chaudhry IH, Tan KT, Johal KS, Marstan A, Tsai M, Baguneid M, Bayat A. Identification of biomarkers in sequential biopsies of patients with chronic wounds receiving simultaneous acute wounds: a genetic, histological, and noninvasive imaging study. Wound Repair Regen 2013; 20:757-69. [PMID: 22985042 DOI: 10.1111/j.1524-475x.2012.00832.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic wounds are common and lead to significant patient morbidity. A better understanding of their pathogenesis and relevant biomarkers are required. We compared acute and chronic wounds in the same individual using noninvasive imaging including spectrophotometric intracutaneous analysis (SIAscopy) and full-field laser perfusion imaging. Gene expression analysis was also performed on sequential biopsies. Whole genome gene expression microarray analysis (44k), quantitative polymerase chain reaction, and immunohistochemistry were carried out to determine gene expression levels in tissue biopsies. Fifteen Caucasian patients with chronic venous ulcers had biopsies of the wound edges and simultaneously had an acute wound created on their upper arm on days 0, 7, and 14. SIAscopy revealed increased levels of melanin (p < 0.001), reduced levels of collagen (p < 0.001), and hemoglobin (p = 0.022) in chronic wounds. Microarray and subsequent quantitative polymerase chain reaction analysis confirmed an overall differential expression in acute and chronic wounds for several genes. Significantly higher levels of inhibin, beta A (INHBA) expression were confirmed in the dermis of chronic wounds (p < 0.05). Additionally, INHBA and thrombospondin 1 messenger RNA levels significantly correlated with SIAscopy measurements (p < 0.05). This unique study has showed aberrant expression of INHBA in chronic wounds using a sequential biopsy model of chronic vs. acute wounds in the same individual.
Collapse
Affiliation(s)
- Barbara Shih
- Plastic and Reconstructive Surgery Research, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Geiger EV, Henrich D, Wutzler S, Schneidmüller D, Jakob H, Frank JM, Marzi I. The role of TNXB single-nucleotide polymorphisms in recurrent shoulder dislocation. J Orthop Res 2013; 31:295-9. [PMID: 22991340 DOI: 10.1002/jor.22231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/23/2012] [Indexed: 02/04/2023]
Abstract
Tenascin-X (TNX) is an extra-cellular matrix glycoprotein associated with collagen fibril deposition. Recent reports have linked truncated TNX mutations (TNXB) to generalized joint hypermobility and most importantly recurrent joint dislocation. In the present study, we investigated whether there is an association between joint dislocation recurrence rate and the frequency of TNXB single-nucleotide polymorphisms (SNPs). Seventy-eight patients treated for post-traumatic shoulder instability and 82 healthy controls were genotyped for selected TNXB SNP using TaqMan® Genotyping Assays. At a mean follow-up of 24 months recurrence rate and clinical outcomes were evaluated using the Constant and Murley, Rowe, and DASH scores. The association between genotypes and joint dislocation was tested using the dominant, recessive and additive models, and the model-free approach. Genotype distribution of the examined SNPs did not significantly deviate from the Hardy-Weinberg equilibrium (HWE) neither in patients nor in the controls. Moreover, there was no significant difference in genotype and allele distribution between patients and controls. Finally, no difference in genotype frequency was detected between patients who experienced a re-dislocation after the initial surgery and patients who did not sustain a re-dislocation. The SNPs investigated in this study have no clinically relevant influence on TNXB gene expression and/or TNX function. Therefore, these SNPs could not be used for predicting individual risk of recurrent shoulder dislocation.
Collapse
Affiliation(s)
- Emanuel V Geiger
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt/Main, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
111
|
Merke DP, Chen W, Morissette R, Xu Z, Van Ryzin C, Sachdev V, Hannoush H, Shanbhag SM, Acevedo AT, Nishitani M, Arai AE, McDonnell NB. Tenascin-X haploinsufficiency associated with Ehlers-Danlos syndrome in patients with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2013; 98:E379-87. [PMID: 23284009 PMCID: PMC3565116 DOI: 10.1210/jc.2012-3148] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT The gene for congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, CYP21A2, is flanked by the gene encoding tenascin-X (TNXB), a connective tissue extracellular matrix protein that has been linked to both autosomal dominant and autosomal recessive Ehlers-Danlos syndrome (EDS). A contiguous deletion of CYP21A2 and TNXB has been described. OBJECTIVE The objective of the study was to determine the frequency and clinical significance of TNXB haploinsufficiency in CAH patients. DESIGN, SETTING, AND PARTICIPANTS A total of 192 consecutive unrelated CAH patients being seen as part of an observational study at the National Institutes of Health Clinical Center (Bethesda, MD) were prospectively studied during 2006-2010. Patients were evaluated for clinical evidence of EDS, including cardiac evaluation. DNA was analyzed by PCR, multiplex ligation-dependent probe amplification, Southern blot, and TNXB sequencing. Tenascin-X expression was evaluated by Western blot analysis of fibroblasts and immunostaining of the skin. CAH patients with TNXB haploinsufficiency were compared with age-matched CAH patients with normal TNXB (controls). Phenotyping of 7 parents with TNXB haploinsufficiency was performed. MAIN OUTCOME MEASURES The frequency of TNXB haploinsufficiency among CAH patients and the frequency of EDS symptomatology among CAH patients with TNXB haploinsufficiency and controls. RESULTS TNXB haploinsufficiency, here termed CAH-X syndrome, was present in 7% of CAH patients. Twelve of 91 patients carrying a CYP21A2 deletion (13%) carried a contiguous deletion that extended into TNXB. One patient carried a TNXB premature stop codon. Twelve of 13 patients with CAH-X had EDS clinical features. Patients with CAH-X were more likely than age-matched controls to have joint hypermobility (P < .001), chronic joint pain (P = .003), multiple joint dislocations (P = .004), a structural cardiac valve abnormality by echocardiography (P = .02), and reduced tenascin-X expression by Western blot and immunostaining. A subset of parents had clinical findings. CONCLUSIONS Clinical evaluation for connective tissue dysplasia should be routinely performed in CAH patients, especially those harboring a CYP21A2 deletion.
Collapse
Affiliation(s)
- Deborah P Merke
- National Institutes of Health Clinical Center, Building 10, CRC, Room 1-2740, 10 Center Drive, MSC 1932, Bethesda, Maryland 20892-1932, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Castori M. Ehlers-danlos syndrome, hypermobility type: an underdiagnosed hereditary connective tissue disorder with mucocutaneous, articular, and systemic manifestations. ISRN DERMATOLOGY 2012; 2012:751768. [PMID: 23227356 PMCID: PMC3512326 DOI: 10.5402/2012/751768] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/14/2012] [Indexed: 12/20/2022]
Abstract
Ehlers-Danlos syndrome, hypermobility type, constituting a phenotypic continuum with or, perhaps, corresponding to the joint hypermobility syndrome (JHS/EDS-HT), is likely the most common, though the least recognized, heritable connective tissue disorder. Known for decades as a hereditary condition with predominant rheumatologic manifestations, it is now emerging as a multisystemic disorder with widespread manifestations. Nevertheless, the practitioners' awareness of this condition is generally poor and most patients await years or, perhaps, decades before reaching the correct diagnosis. Among the various sites of disease manifestations, skin and mucosae represent a neglected organ where the dermatologist can easily spot diagnostic clues, which consistently integrate joint hypermobility and other orthopedic/neurologic manifestations at physical examination. In this paper, actual knowledge on JHS/EDS-HT is summarized in various sections. Particular attention has been posed on overlooked manifestations, including cutaneous, mucosal, and oropharyngeal features, and early diagnosis techniques, as a major point of interest for the practicing dermatologist. Actual research progresses on JH/EDS-HT envisage an unexpected link between heritable dysfunctions of the connective tissue and a wide range of functional somatic syndromes, most of them commonly diagnosed in the office of various specialists, comprising dermatologists.
Collapse
Affiliation(s)
- Marco Castori
- Division of Medical Genetics, Department of Molecular Medicine, San Camillo-Forlanini Hospital, Sapienza University, Circonvallazione Gianicolense, 87, 00152 Rome, Italy
| |
Collapse
|
113
|
Gerrits KH, Voermans NC, de Haan A, van Engelen BG. Neuromuscular properties of the thigh muscles in patients with ehlers-danlos syndrome. Muscle Nerve 2012; 47:96-104. [DOI: 10.1002/mus.23482] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2012] [Indexed: 12/16/2022]
|
114
|
Heritable Collagen Disorders: The Paradigm of the Ehlers—Danlos Syndrome. J Invest Dermatol 2012; 132 Suppl 3:E6-E11. [DOI: 10.1038/skinbio.2012.3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
115
|
Chen W, Xu Z, Nishitani M, Van Ryzin C, McDonnell NB, Merke DP. Complement component 4 copy number variation and CYP21A2 genotype associations in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum Genet 2012; 131:1889-94. [PMID: 22886582 DOI: 10.1007/s00439-012-1217-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022]
Abstract
Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is an autosomal recessive disorder of cortisol biosynthesis caused by CYP21A2 mutations. An increase in gene copy number variation (CNV) exists at the CYP21A2 locus. CNV of C4, a neighboring gene that encodes complement component 4, is associated with autoimmune disease susceptibility. In this study, we performed comprehensive genetic analysis of the RP-C4-CYP21-TNX (RCCX) region in 127 unrelated 21-OHD patients (100 classic, 27 nonclassic). C4 copy number was determined by Southern blot. C4 CNV and serum C4 levels were evaluated in relation to CYP21A2 mutations and relevant phenotypes. We found that the most common CYP21A2 mutation associated with the nonclassic form of CAH, V281L, was associated with high C4 copy number (p = 7.13 × 10(-16)). Large CYP21A2 deletion, a common mutation associated with the classic form of CAH, was associated with low C4 copy number (p = 1.61 × 10(-14)). Monomodular RCCX with a short C4 gene, a risk factor for autoimmune disease, was significantly less frequent in CAH patients compared to population estimates (2.8 vs. 10.6 %; p = 1.08 × 10(-4)). In conclusion, CAH patients have increased C4 CNV, with mutation-specific associations that may be protective for autoimmune disease. The study of CYP21A2 in relation to neighboring genes provides insight into the genetics of CNV hotspots, an important determinant of human health.
Collapse
Affiliation(s)
- Wuyan Chen
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
116
|
Imura K, Sato I. Identification of the novel localization of tenascinX in the monkey choroid plexus and comparison with the mouse. Eur J Histochem 2012; 53:e27. [PMID: 22073359 PMCID: PMC3167336 DOI: 10.4081/ejh.2009.e27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2009] [Indexed: 01/16/2023] Open
Abstract
Tenascin-X (Tn-X) belongs to the tenascin family of glycoproteins and has been reported to be significantly associated with schizophrenia in a single nucleotide polymorphism analysis in humans. This finding indicates an important role of Tn-X in the central nervous system (CNS). However, details of Tn-X localization are not clear in the primate CNS. Using immunohistochemical techniques, we found novel localizations of Tn-X in the interstitial connective tissue and around blood vessels in the choroid plexus (CP) in macaque monkeys. To verify the reliability of Tn-X localization, we compared the Tn-X localization with the tenascin-C (Tn-C) localization in corresponding regions using neighbouring sections. Localization of Tn-C was not observed in CP. This result indicated consistently restricted localization of Tn-X in CP. Comparative investigations using mouse tissues showed equivalent results. Our observations provide possible insight into specific roles of Tn-X in CP for mammalian CNS function.
Collapse
Affiliation(s)
- K Imura
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Japan.
| | | |
Collapse
|
117
|
Mosher DF, Adams JC. Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol 2012; 31:155-61. [PMID: 22265890 DOI: 10.1016/j.matbio.2012.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 11/15/2022]
Abstract
The thrombospondins are a family of secreted, oligomeric glycoproteins that interact with cell surfaces, multiple components of the extracellular matrix, growth factors and proteases. These interactions underlie complex roles in cell interactions and tissue homeostasis in animals. Thrombospondins have been grouped functionally with SPARCs, tenascins and CCN proteins as adhesion-modulating or matricellular components of the extracellular milieu. Although all these multi-domain proteins share various commonalities of domains, the grouping is not based on structural homologies. Instead, the terms emphasise the general observations that these proteins do not form large-scale ECM structures, yet act at cell surfaces and function in coordination with the structural ECM and associated extracellular proteins. The designation of adhesion-modulation thus depends on observed tissue and cell culture ECM distributions and on experimentally identified functional properties. To date, the evolutionary relationships of these proteins have not been critically compared: yet, knowledge of their evolutionary histories is clearly relevant to any consideration of functional similarities. In this article, we survey briefly the structural and functional knowledge of these protein families, consider the evolution of each family, and outline a perspective on their functional roles.
Collapse
Affiliation(s)
- Deane F Mosher
- Department of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI 57706, USA
| | | |
Collapse
|
118
|
Ottenheijm CAC, Voermans NC, Hudson BD, Irving T, Stienen GJM, van Engelen BG, Granzier H. Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome. J Appl Physiol (1985) 2012; 112:1157-65. [PMID: 22223454 DOI: 10.1152/japplphysiol.01166.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence leads to Ehlers-Danlos Syndrome (EDS). TNX-deficient EDS patients present with joint hypermobility and muscle weakness attributable to increased compliance of the extracellular matrix. We hypothesized that in response to the increased compliance of the extracellular matrix in TNX-deficient EDS patients, intracellular adaptations take place in the elastic properties of the giant muscle protein titin. METHODS we performed extensive single muscle fiber mechanical studies to determine active and passive properties in TNX-deficient EDS patients. Gel-electrophoresis, Western blotting, and microarray studies were used to evaluate titin expression and phosphorylation. X-ray diffraction was used to measure myofilament lattice spacing. RESULTS passive tension of muscle fibers from TNX-deficient EDS patients was markedly increased. Myofilament extraction experiments indicated that the increased passive tension is attributable to changes in the properties of the sarcomeric protein titin. Transcript and protein data indicated no changes in titin isoform expression. Instead, differences in posttranslational modifications within titin's elastic region were found. In patients, active tension was not different at maximal activation level, but at submaximal activation level it was augmented attributable to increased calcium sensitivity. This increased calcium sensitivity might be attributable to stiffer titin molecules. CONCLUSION in response to the increased compliance of the extracellular matrix in muscle of TNX-deficient EDS patients, a marked intracellular stiffening occurs of the giant protein titin. The stiffening of titin partly compensates for the muscle weakness in these patients by augmenting submaximal active tension generation.
Collapse
Affiliation(s)
- Coen A C Ottenheijm
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam.
| | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
Tenascins regulate cell interaction with the surrounding pericellular matrix. Within bone, tenascins C and W influence osteoblast adhesion and differentiation, although little is known about the regulation of tenascin expression. In this study we examined the effect of osteogenic differentiation, bone morphogenetic protein (BMP) and Wnt growth factors, and mechanical loading on tenascin expression in osteogenic cells. Osteogenic differentiation increased tenascin C (TnC), and decreased tenascin W (TnW), expression. Both growth factors and mechanical loading increased both TnC and TnW expression, albeit via distinct signaling mechanisms. Both BMP-2 and Wnt5a induction of tenascin expression were mediated by MAP kinases. These data establish a role for BMP, Wnts, and mechanical loading in the regulation of tenascin expression in osteoblasts.
Collapse
Affiliation(s)
- Jessica M. Morgan
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616 USA
| | - Alice Wong
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616 USA
| | - Clare E. Yellowley
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616 USA
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616 USA
| |
Collapse
|
120
|
Wilson R, Norris EL, Brachvogel B, Angelucci C, Zivkovic S, Gordon L, Bernardo BC, Stermann J, Sekiguchi K, Gorman JJ, Bateman JF. Changes in the chondrocyte and extracellular matrix proteome during post-natal mouse cartilage development. Mol Cell Proteomics 2011; 11:M111.014159. [PMID: 21989018 DOI: 10.1074/mcp.m111.014159] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296-1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during cartilage development. Although the multifunctional chaperone BiP was not differentially expressed, enzymes and chaperones required specifically for collagen biosynthesis, such as the prolyl 3-hydroxylase 1, cartilage-associated protein, and peptidyl prolyl cis-trans isomerase B complex, were down-regulated during maturation. Conversely, the lumenal proteins calumenin, reticulocalbin-1, and reticulocalbin-2 were significantly increased, signifying a shift toward calcium binding functions. This first proteomic analysis of cartilage development in vivo reveals the breadth of protein expression changes during chondrocyte maturation and ECM remodeling in the mouse femoral head.
Collapse
Affiliation(s)
- Richard Wilson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria 3052, Australia; Central Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Emma L Norris
- Protein Discovery Center, Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
| | - Bent Brachvogel
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Medical Faculty, Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Constanza Angelucci
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria 3052, Australia
| | - Snezana Zivkovic
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria 3052, Australia
| | - Lavinia Gordon
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria 3052, Australia
| | - Bianca C Bernardo
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria 3052, Australia; Department of Pediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jacek Stermann
- Medical Faculty, Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Kiyotoshi Sekiguchi
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jeffrey J Gorman
- Protein Discovery Center, Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
| | - John F Bateman
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria 3052, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
121
|
Voermans NC, Verrijp K, Eshuis L, Balemans MCM, Egging D, Sterrenburg E, van Rooij IALM, van der Laak JAWM, Schalkwijk J, van der Maarel SM, Lammens M, van Engelen BG. Mild muscular features in tenascin-X knockout mice, a model of Ehlers-danlos syndrome. Connect Tissue Res 2011; 52:422-32. [PMID: 21405982 DOI: 10.3109/03008207.2010.551616] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Tenascin-X (TNX) is an extracellular matrix (ECM) glycoprotein, the absence of which in humans leads to a recessive form of Ehlers-Danlos syndrome (EDS), a group of inherited connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. A mouse model of TNX-deficient type EDS has been used to characterize the dermatological, orthopedic, and obstetrical features. The growing insight in the clinical overlap between myopathies and inherited connective tissue disorders asks for a study of the muscular characteristics of inherited connective tissue diseases. Therefore, this study aims to define the muscular phenotype of TNX knockout (KO) mice. MATERIALS AND METHODS We performed a comprehensive study on the muscular phenotype of these TNX KO mice, consisting of standardized clinical assessment, muscle histology, and gene expression profiling of muscle tissue. Furthermore, peripheral nerve composition was studied by histology and electron microscopy. RESULTS The main findings are the presence of mild muscle weakness, mild myopathic features on histology, and functional upregulation of genes encoding proteins involved in ECM degradation and synthesis. Additionally, sciatic nerve samples showed mildly reduced collagen fibril density of endoneurium. DISCUSSION The muscular phenotype of TNX KO mice consists of mild muscle weakness with histological signs of myopathy and of increased turnover of the ECM in muscle. Furthermore, mildly reduced diameter of myelinated fibers and reduction of collagen fibril density of endoneurium may correspond with polyneuropathy in TNX-deficient EDS patients. This comprehensive assessment can serve as a starting point for further investigations on neuromuscular function in TNX KO mice.
Collapse
Affiliation(s)
- N C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Nishio J, Iwasaki H, Nabeshima K, Naito M. Cytogenetics and molecular genetics of myxoid soft-tissue sarcomas. GENETICS RESEARCH INTERNATIONAL 2011; 2011:497148. [PMID: 22567356 PMCID: PMC3335514 DOI: 10.4061/2011/497148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/06/2011] [Indexed: 01/29/2023]
Abstract
Myxoid soft-tissue sarcomas represent a heterogeneous group of mesenchymal tumors characterized by a predominantly myxoid matrix, including myxoid liposarcoma (MLS), low-grade fibromyxoid sarcoma (LGFMS), extraskeletal myxoid chondrosarcoma (EMC), myxofibrosarcoma, myxoinflammatory fibroblastic sarcoma (MIFS), and myxoid dermatofibrosarcoma protuberans (DFSP). Cytogenetic and molecular genetic analyses have shown that many of these sarcomas are characterized by recurrent chromosomal translocations resulting in highly specific fusion genes (e.g., FUS-DDIT3 in MLS, FUS-CREB3L2 in LGFMS, EWSR1-NR4A3 in EMC, and COL1A1-PDGFB in myxoid DFSP). Moreover, recent molecular analysis has demonstrated a translocation t(1; 10)(p22; q24) resulting in transcriptional upregulation of FGF8 and NPM3 in MIFS. Most recently, the presence of TGFBR3 and MGEA5 rearrangements has been identified in a subset of MIFS. These genetic alterations can be utilized as an adjunct in diagnostically challenging cases. In contrast, most myxofibrosarcomas have complex karyotypes lacking specific genetic alterations. This paper focuses on the cytogenetic and molecular genetic findings of myxoid soft-tissue sarcomas as well as their clinicopathological characteristics.
Collapse
Affiliation(s)
- Jun Nishio
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | | | | | | |
Collapse
|
123
|
Mahler GJ, Butcher JT. Inflammatory regulation of valvular remodeling: the good(?), the bad, and the ugly. Int J Inflam 2011; 2011:721419. [PMID: 21792386 PMCID: PMC3139860 DOI: 10.4061/2011/721419] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 01/30/2023] Open
Abstract
Heart valve disease is unique in that it affects both the very young and very old, and does not discriminate by financial affluence, social stratus, or global location. Research over the past decade has transformed our understanding of heart valve cell biology, yet still more remains unclear regarding how these cells respond and adapt to their local microenvironment. Recent studies have identified inflammatory signaling at nearly every point in the life cycle of heart valves, yet its role at each stage is unclear. While the vast majority of evidence points to inflammation as mediating pathological valve remodeling and eventual destruction, some studies suggest inflammation may provide key signals guiding transient adaptive remodeling. Though the mechanisms are far from clear, inflammatory signaling may be a previously unrecognized ally in the quest for controlled rapid tissue remodeling, a key requirement for regenerative medicine approaches for heart valve disease. This paper summarizes the current state of knowledge regarding inflammatory mediation of heart valve remodeling and suggests key questions moving forward.
Collapse
Affiliation(s)
| | - Jonathan T. Butcher
- Department of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY 14853, USA
| |
Collapse
|
124
|
Chiquet-Ehrismann R, Tucker RP. Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004960. [PMID: 21441591 DOI: 10.1101/cshperspect.a004960] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tenascins are a family of extracellular matrix proteins that evolved in early chordates. There are four family members: tenascin-X, tenascin-R, tenascin-W, and tenascin-C. Tenascin-X associates with type I collagen, and its absence can cause Ehlers-Danlos Syndrome. In contrast, tenascin-R is concentrated in perineuronal nets. The expression of tenascin-C and tenascin-W is developmentally regulated, and both are expressed during disease (e.g., both are associated with cancer stroma and tumor blood vessels). In addition, tenascin-C is highly induced by infections and inflammation. Accordingly, the tenascin-C knockout mouse has a reduced inflammatory response. All tenascins have the potential to modify cell adhesion either directly or through interaction with fibronectin, and cell-tenascin interactions typically lead to increased cell motility. In the case of tenascin-C, there is a correlation between elevated expression and increased metastasis in several types of tumors.
Collapse
Affiliation(s)
- Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.
| | | |
Collapse
|
125
|
Butcher JT, Mahler GJ, Hockaday LA. Aortic valve disease and treatment: the need for naturally engineered solutions. Adv Drug Deliv Rev 2011; 63:242-68. [PMID: 21281685 DOI: 10.1016/j.addr.2011.01.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 01/21/2023]
Abstract
The aortic valve regulates unidirectional flow of oxygenated blood to the myocardium and arterial system. The natural anatomical geometry and microstructural complexity ensures biomechanically and hemodynamically efficient function. The compliant cusps are populated with unique cell phenotypes that continually remodel tissue for long-term durability within an extremely demanding mechanical environment. Alteration from normal valve homeostasis arises from genetic and microenvironmental (mechanical) sources, which lead to congenital and/or premature structural degeneration. Aortic valve stenosis pathobiology shares some features of atherosclerosis, but its final calcification endpoint is distinct. Despite its broad and significant clinical significance, very little is known about the mechanisms of normal valve mechanobiology and mechanisms of disease. This is reflected in the paucity of predictive diagnostic tools, early stage interventional strategies, and stagnation in regenerative medicine innovation. Tissue engineering has unique potential for aortic valve disease therapy, but overcoming current design pitfalls will require even more multidisciplinary effort. This review summarizes the latest advancements in aortic valve research and highlights important future directions.
Collapse
|
126
|
Lincoln J, Yutzey KE. Molecular and developmental mechanisms of congenital heart valve disease. ACTA ACUST UNITED AC 2011; 91:526-34. [PMID: 21538813 DOI: 10.1002/bdra.20799] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/31/2011] [Accepted: 02/04/2011] [Indexed: 01/26/2023]
Abstract
Congenital heart disease occurs in approximately 1% of all live births and includes structural abnormalities of the heart valves. However, this statistic underestimates congenital valve lesions, such as bicuspic aortic valve (BAV) and mitral valve prolapse (MVP), that typically become apparent later in life as progressive valve dysfunction and disease. At present, the standard treatment for valve disease is replacement, and approximately 95,000 surgical procedures are performed each year in the United States. The most common forms of congenital valve disease include abnormal valve cusp morphogenesis, as in the case of BAV, or defects in extracellular matrix (ECM) organization and homeostasis, as occurs in MVP. The etiology of these common valve diseases is largely unknown. However, the study of murine and avian model systems, along with human genetic linkage studies, have led to the identification of genes and regulatory processes that contribute to valve structural malformations and disease. This review focuses on the current understanding and therapeutic implications of molecular regulatory pathways that control valve development and contribute to valve disease.
Collapse
Affiliation(s)
- Joy Lincoln
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, 1400 Northwest 10th Avenue, Miami, FL, USA
| | | |
Collapse
|
127
|
Guttery DS, Shaw JA, Lloyd K, Pringle JH, Walker RA. Expression of tenascin-C and its isoforms in the breast. Cancer Metastasis Rev 2011; 29:595-606. [PMID: 20814719 DOI: 10.1007/s10555-010-9249-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tenascin-C (TNC) is an extracellular matrix glycoprotein which is frequently up-regulated in a variety of pathological conditions including chronic inflammation and cancer. TNC has been implicated in the modulation of cell migration, proliferation, invasion and angiogenesis. Multiple isoforms of TNC can be generated through the alternative splicing of nine exons located in the fibronectin type III region of the molecule. The profile of isoforms expressed differs between cancers and normal breast, with the fully truncated TNC isoform being predominant in normal and benign tissues and higher molecular weight isoforms induced predominantly in cancer. The addition of extra domains within the fibronectin type III repeat domain greatly affects TNC function with multiple exon combinations available for splicing. Exons 14 and 16 are considered to be tumour-associated and have been shown to affect breast cell line invasion and growth in vitro to a greater extent than the full-length TNC isoform. This mini review will provide a summary of the literature to date regarding the expression of TNC isoforms in the breast and also discuss more recent developments in the field regarding exon AD1.
Collapse
Affiliation(s)
- David S Guttery
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK.
| | | | | | | | | |
Collapse
|
128
|
Tan H, Junor L, Price RL, Norris RA, Potts JD, Goodwin RL. Expression and deposition of fibrous extracellular matrix proteins in cardiac valves during chick development. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:91-100. [PMID: 21205426 PMCID: PMC3991469 DOI: 10.1017/s1431927610094365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Extracellular matrix (ECM) plays essential signaling and structural roles required for the proper function of cardiac valves. Cardiac valves initially form as jelly-like cushions, which must adapt to withstand the increased circulation hemodynamics associated with fetal development and birth. This increased biomechanical stability of the developing valves is largely imparted by ECM proteins, which form a highly organized fibrous meshwork. Since heart valve defects contribute to most congenital heart diseases, understanding valve development will provide insight into the pathogenesis of various congenital valve anomalies. Thus, the goal of this study is to describe the spatiotemporal deposition of fibrous ECM proteins during cardiac valve development. Chick embryonic and fetal atrioventricular and semilunar valves were examined by light, confocal, and transmission electron microscopy (TEM). Our data demonstrate that fibrous ECM proteins are deposited when the leaflets are adopting an elongated and compacted phenotype. A general pattern of increased fibrotic ECM deposition was detected in valve tissues. Also, each ECM protein examined displayed a unique pattern of organization, suggesting that regulation of fibrous protein deposition is complex and likely involves both genetic and mechanical factors. In addition, the TEM study revealed the presence of membrane protrusions from valvular endocardium, indicating a potential mechanism for mechanical force transduction.
Collapse
Affiliation(s)
- Hong Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Lorain Junor
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Robert L. Price
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Russell A. Norris
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jay D. Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Richard L. Goodwin
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
129
|
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32:81-151. [PMID: 21051590 PMCID: PMC3365799 DOI: 10.1210/er.2010-0013] [Citation(s) in RCA: 1554] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/20/2010] [Indexed: 02/08/2023]
Abstract
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Collapse
Affiliation(s)
- Walter L Miller
- Distinguished Professor of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA.
| | | |
Collapse
|
130
|
Kawakami K, Matsumoto KI. Behavioral Alterations in Mice Lacking the Gene for Tenascin-X. Biol Pharm Bull 2011; 34:590-3. [DOI: 10.1248/bpb.34.590] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kohei Kawakami
- Department of Experimental Animals, Center for Integrated Research in Science, Shimane University
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Center for Integrated Research in Science, Shimane University
| |
Collapse
|
131
|
Marini JC. Heritable connective tissue disorders. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
132
|
Demidova-Rice TN, Geevarghese A, Herman IM. Bioactive peptides derived from vascular endothelial cell extracellular matrices promote microvascular morphogenesis and wound healing in vitro. Wound Repair Regen 2011; 19:59-70. [PMID: 21134032 PMCID: PMC3059781 DOI: 10.1111/j.1524-475x.2010.00642.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies in our laboratory indicate that collagenase from Clostridium histolyticum promotes endothelial cell and keratinocyte responses to injury in vitro and wound healing in vivo. We postulate that matrix degradation by Clostridial collagenase creates bioactive fragments that can stimulate cellular responses to injury and angiogenesis. To test this hypothesis, we performed limited digestion of defined capillary-endothelial-derived extracellular matrices using purified human or bacterial collagenases. Immunoprecipitation with antibodies recognizing collagens I, II, III, IV, and V, followed by mass spectrometry reveals the presence of unique fragments in bacterial, but not human-enzyme-digested matrix. Results show that there are several bioactive peptides liberated from Clostridial collagenase-treated matrices, which facilitate endothelial responses to injury, and accelerate microvascular remodeling in vitro. Fragments of collagen IV, fibrillin-1, tenascin X, and a novel peptide created by combining specific amino acids contained within fibrillin 1 and tenascin X each have profound proangiogenic properties. The peptides used at 10-100 nM increase rates of microvascular endothelial cell proliferation by up to 47% and in vitro angiogenesis by 200% when compared with serum-stimulated controls. Current studies are aimed at revealing the molecular mechanisms regulating peptide-induced wound healing while extending these in vitro observations using animal modeling.
Collapse
Affiliation(s)
- Tatiana N. Demidova-Rice
- Graduate Programs in Cell, Molecular and Developmental Biology, Cell and Molecular Physiology and The Center for Innovations in Wound Healing Research, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, MA 02111
- The Wellman Center For Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Anita Geevarghese
- Graduate Programs in Cell, Molecular and Developmental Biology, Cell and Molecular Physiology and The Center for Innovations in Wound Healing Research, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, MA 02111
| | - Ira M. Herman
- Graduate Programs in Cell, Molecular and Developmental Biology, Cell and Molecular Physiology and The Center for Innovations in Wound Healing Research, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, MA 02111
| |
Collapse
|
133
|
Voermans NC, Knoop H, van de Kamp N, Hamel BC, Bleijenberg G, van Engelen BG. Fatigue Is a Frequent and Clinically Relevant Problem in Ehlers-Danlos Syndrome. Semin Arthritis Rheum 2010; 40:267-74. [DOI: 10.1016/j.semarthrit.2009.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 08/16/2009] [Accepted: 08/24/2009] [Indexed: 12/01/2022]
|
134
|
O’Connell M, Burrows N, Van Vlijmen-Willems M, Clark S, Schalkwijk J. Tenascin-X deficiency and Ehlers-Danlos syndrome: a case report and review of the literature. Br J Dermatol 2010; 163:1340-5. [DOI: 10.1111/j.1365-2133.2010.09949.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
135
|
Zhuang S, Linhananta A, Li H. Phenotypic effects of Ehlers-Danlos syndrome-associated mutation on the FnIII domain of tenascin-X. Protein Sci 2010; 19:2231-9. [PMID: 20853426 DOI: 10.1002/pro.503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tenascin-X (TNX) is an extracellular matrix (ECM) protein and interacts with a wide variety of molecules in the ECM as well as on the membrane. Deficiency of TNX causes a recessive form of Ehlers-Danlos syndrome (EDS) characterized by hyperelastic and fragile skin, easy bruising, and hypermobile joints. Three point mutations in TNX gene were found to be associated with hypermobility type EDS and one of such mutations is the V1195M mutation at the 7th fibronectin Type III domain (TNXfn7). To help elucidate the underlying molecular mechanism connecting this mutation to EDS, here we combined homology modeling, chemical denaturation, single molecule atomic force microscopy, and molecular dynamics (MD) simulation techniques to investigate the phenotypic effects of V1195M on TNXfn7. We found that the V1195M mutation does not alter the three-dimensional structure of TNXfn7 and had only mild destabilization effects on the thermodynamic and mechanical stability of TNXfn7. However, MD simulations revealed that the mutation V1195M significantly alters the flexibility of the C'E loop of TNXfn7. As loops play important roles in protein-protein and protein-ligand interactions, we hypothesize that the decreased loop flexibility by V1195M mutation may affect the binding of TNX to ECM molecules and thus adversely affect collagen deposition and fibrillogenesis. Our results may provide new insights in understanding the molecular basis for the pathogenesis of V1195M-resulted EDS.
Collapse
Affiliation(s)
- Shulin Zhuang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
136
|
Carey WA, Taylor GD, Dean WB, Bristow JD. Tenascin-C deficiency attenuates TGF-ß-mediated fibrosis following murine lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 299:L785-93. [PMID: 20833777 DOI: 10.1152/ajplung.00385.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tenascin-C (TNC) is an extracellular matrix glycoprotein of unknown function that is highly expressed in adult lung parenchyma following acute lung injury (ALI). Here we report that mice lacking TNC are protected from interstitial fibrosis in the bleomycin model of ALI. Three weeks after exposure to bleomycin, TNC-null mice had accumulated 85% less lung collagen than wild-type mice. The lung interstitium of TNC-null mice also appeared to contain fewer myofibroblasts and fewer cells with intranuclear Smad-2/3 staining, suggesting impaired TGF-β activation or signaling. In vitro, TNC-null lung fibroblasts exposed to constitutively active TGF-β expressed less α-smooth muscle actin and deposited less collagen I into the matrix than wild-type cells. Impaired TGF-β responsiveness was correlated with dramatically reduced Smad-3 protein levels and diminished nuclear translocation of Smad-2 and Smad-3 in TGF-β-exposed TNC-null cells. Reduced Smad-3 in TNC-null cells reflects both decreased transcript abundance and enhanced ubiquitin-proteasome-mediated protein degradation. Together, these studies suggest that TNC is essential for maximal TGF-β action after ALI. The clearance of TNC that normally follows ALI may restrain TGF-β action during lung healing, whereas prolonged or exaggerated TNC expression may facilitate TGF-β action and fibrosis after ALI.
Collapse
Affiliation(s)
- William A Carey
- Cardiovascular Research Institute, University of California, San Francisco, USA.
| | | | | | | |
Collapse
|
137
|
Maller O, Martinson H, Schedin P. Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia 2010; 15:301-18. [PMID: 20811805 DOI: 10.1007/s10911-010-9189-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/16/2010] [Indexed: 12/25/2022] Open
Abstract
The mammary gland is an excellent model system to study the interplay between stroma and epithelial cells because of the gland's unique postnatal development and its distinct functional states. This review focuses on the contribution of the extracellular matrix (ECM) to stromal-epithelial interactions in the mammary gland. We describe how ECM physical properties, protein composition, and proteolytic state impact mammary gland architecture as well as provide instructive cues that influence the function of mammary epithelial cells during pubertal gland development and throughout adulthood. Further, based on recent proteomic analyses of mammary ECM, we describe known mammary ECM proteins and their potential functions, as well as describe several ECM proteins not previously recognized in this organ. ECM proteins are discussed in the context of the morphologically-distinct stromal subcompartments: the basal lamina, the intra- and interlobular stroma, and the fibrous connective tissue. Future studies aimed at in-depth qualitative and quantitative characterization of mammary ECM within these various subcompartments is required to better elucidate the function of ECM in normal as well as in pathological breast tissue.
Collapse
Affiliation(s)
- Ori Maller
- Department of Medicine, Division of Medical Oncology, University of Colorado-Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | | | | |
Collapse
|
138
|
Voermans NC, Knoop H, Bleijenberg G, van Engelen BG. Pain in ehlers-danlos syndrome is common, severe, and associated with functional impairment. J Pain Symptom Manage 2010; 40:370-8. [PMID: 20579833 DOI: 10.1016/j.jpainsymman.2009.12.026] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 11/27/2009] [Accepted: 01/19/2010] [Indexed: 11/30/2022]
Abstract
CONTEXT The Ehlers-Danlos Syndrome (EDS) is a clinically and genetically heterogeneous group of heritable connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Musculoskeletal pain is mentioned in the diagnostic criteria and described as early in onset, chronic, and debilitating. However, systematic research on pain in EDS is scarce. OBJECTIVES We investigated prevalence and impact of pain and associated features in a large group of EDS patients. METHODS We performed a study among members of the Dutch EDS patient organization (n=273) and included the McGill Pain Questionnaire to investigate various aspects of pain, the Sickness Impact Profile to study functional impairment, the Symptom Checklist subscale sleep to evaluate sleep disturbances, and the Checklist Individual Strength subscale fatigue to determine fatigue severity. RESULTS The results of this study show that 1) chronic pain in EDS is highly prevalent and associated with regular use of analgesics; 2) pain is more prevalent and more severe in the hypermobility type than in the classic type; 3) pain severity is correlated with hypermobility, dislocations, and previous surgery; 4) pain is correlated with low nocturnal sleep quality; and 5) pain contributes to functional impairment in daily life, independent of the level of fatigue. CONCLUSION From this large cohort of EDS patients, we conclude that pain is common and severe in EDS. Pain is related to hypermobility, dislocations, and previous surgery and associated with moderate to severe impairment in daily functioning. Therefore, treatment of pain should be a prominent aspect of symptomatic management of EDS.
Collapse
Affiliation(s)
- Nicol C Voermans
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
139
|
Barannik AP, Koltunova AA, Ozolinia LA, Lavrova NV, Shilov IA, Guzov II, Patrushev LI. [A new DNA diagnostic system for the detection of human CYP21 gene mutations associated with adrenal cortex hyperplasia]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:354-65. [PMID: 20644590 DOI: 10.1134/s1068162010030076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Congenital Adrenal Hyperplasia (CAH) is one of the most widespread severe autosomal recessive hereditary diseases. CAH is caused by the impaired biosynthesis of the key human hormones cortisol and aldosterone and is accompanied by the excess synthesis of androgens. Over 90% of CAH cases are caused by a deficiency of the steroid 21-hydrohylase (P450c21). The degree of damage in this enzyme is responsible for the severity of the clinical manifestation of CAH from potentially lethal to mild symptoms. Various mutations of the gene encoding this enzyme are the main source of the reduced activity of the 21-hydrolase. The location of the highly homological pseudogene CYP21P in close proximity to the functional gene impedes the DNA diagnostics of CAH. To detect the eight most frequent CYP21 gene mutations associated with CAH, we developed a new real-time PCR-based system of DNA diagnostics using new allele-specific primers and TaqMan probes for the analyzed mutations. The method was primarily tested on artificial DNA templates, where the analyzed mutations were introduced by site-directed mutagenesis. Then, it was tested on DNA samples from 43 patients with clinical and biochemical manifestations of CAH; seven patients were used as a control. Two mutant alleles were detected in two different individuals: the nonsense Q318X and the missense V281L mutations.
Collapse
|
140
|
Fujie S, Maita H, Ariga H, Matsumoto KI. Tenascin-X induces cell detachment through p38 mitogen-activated protein kinase activation. Biol Pharm Bull 2010; 32:1795-9. [PMID: 19801846 DOI: 10.1248/bpb.32.1795] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular matrix glycoprotein tenascin-X (TNX) is the largest member of the tenascin family. In this study, we investigated the adhesive properties of TNX and the signaling pathway to be induced to mouse fibroblast L cells on TNX substrate. Approximately 45% of evaluable cells used in the cell adhesion assay were attached to purified TNX but did not spread and were rounded on TNX. The remaining 55% of cells were detached from the TNX substrate and were floating in the conditioned medium. In rounded cells on TNX, phosphorylation of focal adhesion kinase (FAK) was diminished compared with that in cells on control phosphate buffered saline (PBS). To better understand the pathways that lead to the detachment of cells on the TNX substrate, we examined phosphorylation of p38 mitogen-activated protein (MAP) kinase. Phosphorylation of p38 MAP kinase was observed in the rounded cells on TNX in a dose-dependent manner, and the maximum effect was observed at 30 min on TNX. Inhibition of p38 MAP kinase alpha expression by RNA interference partially suppressed the TNX-induced cell detachment. These results suggest that the p38 MAP kinase is a major mediator of TNX-induced cell detachment.
Collapse
Affiliation(s)
- Shinpei Fujie
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo060-0812, Japan
| | | | | | | |
Collapse
|
141
|
Chen W, Kim MS, Shanbhag S, Arai A, VanRyzin C, McDonnell NB, Merke DP. The phenotypic spectrum of contiguous deletion of CYP21A2 and tenascin XB: quadricuspid aortic valve and other midline defects. Am J Med Genet A 2010; 149A:2803-8. [PMID: 19921645 DOI: 10.1002/ajmg.a.33092] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is an autosomal recessive disorder and is the most common cause of ambiguous genitalia in the newborn. The genes encoding 21-hydroxylase, CYP21A2, and tenascin-X (TNX), TNXB, are located within the HLA complex, in a region of high gene density termed the RCCX module. The module has multiple pseudogenes as well as tandem repeat sequences that promote misalignment during meiosis leading to complex gene rearrangements, deletions and gene conversion events. CYP21A2 mutations cause CAH, and TNX deficiency has been identified as a cause of hypermobility type Ehlers-Danlos syndrome (EDS). Here we report on a three-generation family with a heterozygous deletion encompassing CYP21A2 and TNXB that initially came to medical attention due to the diagnosis of CAH in the proposita. Southern blotting and PCR-based analysis of the RCCX module revealed a CYP21A2 deletion extending into TNXB in one allele and a CYP21A2 point mutation in the other allele. Family history is notable for joint hypermobility. Additional radiological and clinical investigations showed a quadricuspid aortic valve, single kidney, bicornuate uterus and a bifid uvula in the proposita, and mitral valve prolapse in her mother. These findings further delineate the phenotype of the CAH-TNX contiguous gene deletion syndrome and point to an intersection of connective tissue dysplasias with a common gene-mediated endocrine disorder.
Collapse
Affiliation(s)
- Wuyan Chen
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Margaron Y, Bostan L, Exposito JY, Malbouyres M, Trunfio-Sfarghiu AM, Berthier Y, Lethias C. Tenascin-X increases the stiffness of collagen gels without affecting fibrillogenesis. Biophys Chem 2010; 147:87-91. [PMID: 20089348 DOI: 10.1016/j.bpc.2009.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/23/2009] [Accepted: 12/27/2009] [Indexed: 11/27/2022]
Abstract
Tenascin-X is an extracellular matrix protein whose absence leads to an Ehlers-Danlos Syndrome in humans, mainly characterised by connective tissue defects including the disorganisation of fibrillar networks, a reduced collagen deposition, and modifications in the mechanical properties of dense tissues. Here we tested the effect of tenascin-X on in vitro collagen fibril formation. We observed that the main parameters of fibrillogenesis were unchanged, and that the diameter of fibrils was not significantly different when they were formed in the presence of tenascin-X. Interestingly, mechanical analysis of collagen gels showed an increased compressive resistance of the gels containing tenascin-X, indicating that this protein might be directly involved in determining the mechanical properties of collagen-rich tissues in vivo.
Collapse
Affiliation(s)
- Yoran Margaron
- Institut de Biologie et Chimie des Protéines, IFR 128 Biosciences Lyon-Gerland, CNRS UMR 5086, Université de Lyon, 7 passage du Vercors, F-69367 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
143
|
Concolino P, Mello E, Zuppi C, Capoluongo E. Molecular diagnosis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency: an update of new CYP21A2 mutations. Clin Chem Lab Med 2010; 48:1057-62. [DOI: 10.1515/cclm.2010.239] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
144
|
Choi JW, Sutor SL, Lindquist L, Evans GL, Madden BJ, Bergen HR, Hefferan TE, Yaszemski MJ, Bram RJ. Severe osteogenesis imperfecta in cyclophilin B-deficient mice. PLoS Genet 2009; 5:e1000750. [PMID: 19997487 PMCID: PMC2777385 DOI: 10.1371/journal.pgen.1000750] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 11/02/2009] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone. Osteogenesis Imperfecta (OI), also known as “brittle bone disease,” is an inherited condition with multiple defects in collagen-containing structures, including the bones, skin, and other connective tissues. Patients with OI suffer from short stature, scoliosis, thin skin, hearing loss, and, most notably, fragile bones that break with little or no trauma. Although many cases are due to dominantly inherited point mutations in the collagen genes, autosomal recessive forms have been described due to defects in the genes for Prolyl-3-Hydroxylase-1 (LEPRE1) and Cartilage-Associated Protein (CRTAP), proteins that modify newly synthesized procollagen. Some patients with OI do not have mutations in any of the known disease-related genes. Here, through the use of newly generated knockout mice, we identify the endoplasmic-reticulum resident prolyl-isomerase cyclophilin B (CypB) as a new autosomal recessive OI gene in mice. CypB, P3H1, and CRTAP were shown to have interrelated effects in maintaining their respective protein levels and ability to bind to collagen. These studies enhance our understanding about how collagen, the most abundant protein in the body, becomes properly assembled to form bones with adequate strength.
Collapse
Affiliation(s)
- Jae Won Choi
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Shari L. Sutor
- Department of Transplant Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Lonn Lindquist
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Glenda L. Evans
- Department of Orthopedics Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Benjamin J. Madden
- Mayo Proteomics Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - H. Robert Bergen
- Mayo Proteomics Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Theresa E. Hefferan
- Department of Orthopedics Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Michael J. Yaszemski
- Department of Orthopedics Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Richard J. Bram
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
145
|
Lee HH, Lee YJ, Chao MC. Comparing the Southern blot method and polymerase chain reaction product analysis for chimeric RCCX detection in CYP21A2 deficiency. Anal Biochem 2009; 399:293-8. [PMID: 19961824 DOI: 10.1016/j.ab.2009.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 12/01/2022]
Abstract
The 3.2-kb TaqI-produced fragment of the CYP21A1P pseudogene and the 3.7-kb TaqI-produced fragment of the functional CYP21A2 gene exist on chromosome 6p21.3. We used the polymerase chain reaction (PCR) product and Southern blot method with TaqI endonuclease digestion to identify a chimeric RCCX module in two unrelated patients with congenital adrenal hyperplasia (CAH). After TaqI cleavage, the PCR product analysis revealed that patient 1 with the chimeric CYP21A1P/CYP21A2 gene in one allele and IVS2-12A/C>G in combination with the 707-714del mutation in the other allele produced a configuration of 3.2- and 2.4-kb fragments. Patient 2, who carried IVS2-12A/C>G in combination with the 707-714del mutation in one allele and the chimeric TNXA/TNXB gene in the other allele, presented with 3.2- and 2.3-kb fragments. However, Southern blot analysis showed that patients 1 and 2 produced 3.2-, 2.4-, and 2.5-kb fragments. We conclude that the chimeric CYP21A1P/CYP21A2 gene, IVS2-12A/C>G in combination with the 707-714del mutation, and the chimeric TNXA/TNXB gene cannot be distinguished by the Southern blot method. Conversely, the chimeric TNXA/TNXB gene was identified in the PCR product analysis due to the appearance of the 2.37-kb fragment, which indicates the occurrence of the chimeric TNXA/TNXB formation extending to the boundary of TNXA in the RCCX region.
Collapse
Affiliation(s)
- Hsien-Hsiung Lee
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | | | | |
Collapse
|
146
|
Application of the DHPLC method for mutational detection of the CYP21A2 gene in congenital adrenal hyperplasia. Clin Chim Acta 2009; 410:48-53. [DOI: 10.1016/j.cca.2009.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 11/18/2022]
|
147
|
Dündar M, Müller T, Zhang Q, Pan J, Steinmann B, Vodopiutz J, Gruber R, Sonoda T, Krabichler B, Utermann G, Baenziger JU, Zhang L, Janecke AR. Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb-clubfoot syndrome. Am J Hum Genet 2009; 85:873-82. [PMID: 20004762 DOI: 10.1016/j.ajhg.2009.11.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 11/16/2022] Open
Abstract
Adducted thumb-clubfoot syndrome is an autosomal-recessive disorder characterized by typical facial appearance, wasted build, thin and translucent skin, congenital contractures of thumbs and feet, joint instability, facial clefting, and coagulopathy, as well as heart, kidney, or intestinal defects. We elucidated the molecular basis of the disease by using a SNP array-based genome-wide linkage approach that identified distinct homozygous nonsense and missense mutations in CHST14 in each of four consanguineous families with this disease. The CHST14 gene encodes N-acetylgalactosamine 4-O-sulfotransferase 1 (D4ST1), which catalyzes 4-O sulfation of N-acetylgalactosamine in the repeating iduronic acid-alpha1,3-N-acetylgalactosamine disaccharide sequence to form dermatan sulfate. Mass spectrometry of glycosaminoglycans from a patient's fibroblasts revealed absence of dermatan sulfate and excess of chondroitin sulfate, showing that 4-O sulfation by CHST14 is essential for dermatan sulfate formation in vivo. Our results indicate that adducted thumb-clubfoot syndrome is a disorder resulting from a defect specific to dermatan sulfate biosynthesis and emphasize roles for dermatan sulfate in human development and extracellular-matrix maintenance.
Collapse
Affiliation(s)
- Munis Dündar
- Department of Medical Genetics, Erciyes University, Talas, 38039 Kayseri, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Hu X, Zhang Y, Zhang A, Li Y, Zhu Z, Shao Z, Zeng R, Xu LX. Comparative Serum Proteome Analysis of Human Lymph Node Negative/Positive Invasive Ductal Carcinoma of the Breast and Benign Breast Disease Controls via Label-Free Semiquantitative Shotgun Technology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:291-300. [DOI: 10.1089/omi.2009.0016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaofang Hu
- Key Laboratory of Systems Biomedicine (Shanghai Jiao Tong University), Ministry of Education, People's Republic of China
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Shanghai Jiao Tong University), Ministry of Education, People's Republic of China
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, People's Republic of China
| | - Aili Zhang
- Key Laboratory of Systems Biomedicine (Shanghai Jiao Tong University), Ministry of Education, People's Republic of China
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, People's Republic of China
| | - Yingzi Li
- Key Laboratory of Systems Biomedicine (Shanghai Jiao Tong University), Ministry of Education, People's Republic of China
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, People's Republic of China
| | - Zhenmin Zhu
- Key Laboratory of Systems Biomedicine (Shanghai Jiao Tong University), Ministry of Education, People's Republic of China
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, People's Republic of China
| | - Zhimin Shao
- Department of Breast Surgery, Breast Cancer Institute, Cancer Hospital/Cancer Institute, Department of Oncology, Fudan University, People's Republic of China
| | - Rong Zeng
- Research Centre for Proteome Analysis, Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, People's Republic of China
| | - Lisa X. Xu
- Key Laboratory of Systems Biomedicine (Shanghai Jiao Tong University), Ministry of Education, People's Republic of China
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, People's Republic of China
- Med-X Research Institute, Shanghai Jiao Tong University, People's Republic of China
| |
Collapse
|
149
|
Ishitsuka T, Ikuta T, Ariga H, Matsumoto KI. Serum tenascin-X strongly binds to vascular endothelial growth factor. Biol Pharm Bull 2009; 32:1004-11. [PMID: 19483306 DOI: 10.1248/bpb.32.1004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interstitial extracellular matrix tenascin-X (iTNX) with about 450 kDa is prominently present in various tissues. Previously, we identified the serum form of TNX (sTNX) with 200 kDa in the mouse. In the present study, in order to investigate distinctive features and functions of sTNX, a plasmid encoding the recombinant mouse sTNX was constructed. As a control, we also constructed a plasmid encoding mouse 450-kDa iTNX and a plasmid encoding 250-kDa iTNX, which lacks the region of 200-kDa sTNX from 450-kDa iTNX. In cells stably expressing each recombinant TNX, a more than 7-fold larger amount of 200-kDa sTNX was released into conditioned medium than the amounts of 250-kDa iTNX and 450-kDa iTNX released into the medium. We previously reported that a splice isoform of iTNX (340-kDa iTNX) binds to vascular endothelial growth factor B (VEGF-B) as well as to VEGF-A. Therefore, the ability of VEGF-A and VEGF-B to bind to 200-kDa sTNX was examined by a co-immunoprecipitation assay in comparison with the binding abilities to 250-kDa iTNX and 450-kDa iTNX. It was found that sTNX strongly bound to VEGF-A and VEGF-B, compared with the binding abilities of other iTNX proteins. Based on the results of assays of incorporation of 5-ethynyl-2'-deoxyuridine (EdU), we found that purified recombinant 200-kDa sTNX both alone and in combination with VEGF-A or basic fibroblast growth factor (bFGF) can weakly promote DNA synthesis in proliferating vascular endothelial cells (UVfemale symbol2 cells). These results suggest that sTNX possesses weak activity for proliferation of endothelial cells.
Collapse
Affiliation(s)
- Taichi Ishitsuka
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
150
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy. Pharmacol Rev 2009. [DOI: 10.1124/pr.109.001289 doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|