101
|
Sudharsan R, Elliott MH, Dolgova N, Aguirre GD, Beltran WA. Photoreceptor Outer Segment Isolation from a Single Canine Retina for RPE Phagocytosis Assay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:593-601. [PMID: 29721992 DOI: 10.1007/978-3-319-75402-4_72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protocols for photoreceptor outer segment (POS) isolation that can be used in phagocytosis assays of retinal pigment epithelium (RPE) cells have routinely used a large number of cow or pig eyes. However, when working with large animal models (e.g., dog, cats, transgenic pigs) of inherited retinal degenerative diseases, access to retinal tissues may be limited. An optimized protocol is presented in this paper to isolate sufficient POS from a single canine retina for use in RPE phagocytosis assays.
Collapse
Affiliation(s)
- Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael H Elliott
- Department of Ophthalmology, University of Oklahoma Health Science Centre, Oklahoma City, OK, USA
| | - Natalia Dolgova
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
102
|
Scholl HPN, Strauss RW, Singh MS, Dalkara D, Roska B, Picaud S, Sahel JA. Emerging therapies for inherited retinal degeneration. Sci Transl Med 2017; 8:368rv6. [PMID: 27928030 DOI: 10.1126/scitranslmed.aaf2838] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022]
Abstract
Inherited retinal degenerative diseases, a genetically and phenotypically heterogeneous group of disorders, affect the function of photoreceptor cells and are among the leading causes of blindness. Recent advances in molecular genetics and cell biology are elucidating the pathophysiological mechanisms underlying these disorders and are helping to identify new therapeutic approaches, such as gene therapy, stem cell therapy, and optogenetics. Several of these approaches have entered the clinical phase of development. Artificial replacement of dying photoreceptor cells using retinal prostheses has received regulatory approval. Precise retinal imaging and testing of visual function are facilitating more efficient clinical trial design. In individual patients, disease stage will determine whether the therapeutic strategy should comprise photoreceptor cell rescue to delay or arrest vision loss or retinal replacement for vision restoration.
Collapse
Affiliation(s)
- Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland. .,Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rupert W Strauss
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA.,Moorfields Eye Hospital, London EC1V 2PD, U.K.,UCL Institute of Ophthalmology, University College London, London EC1V 9EL, U.K.,Department of Ophthalmology, Medical University Graz, Graz, Austria.,Department of Ophthalmology, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Deniz Dalkara
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France
| | - Botond Roska
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland.,Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Serge Picaud
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France
| | - José-Alain Sahel
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France.,Centre d'Investigation Clinique 1423, INSERM-Center Hospitalier National d'Ophtalmologie des Quinze-Vingts, 75012 Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
103
|
Shaberman B. A Retinal Research Nonprofit Paves the Way for Commercializing Gene Therapies. Hum Gene Ther 2017; 28:1118-1121. [PMID: 29227172 PMCID: PMC5738963 DOI: 10.1089/hum.2017.29058.bsh] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ben Shaberman
- Director, Science Communications at Foundation Fighting Blindness , Columbia, Maryland
| |
Collapse
|
104
|
Letelier J, Bovolenta P, Martínez-Morales JR. The pigmented epithelium, a bright partner against photoreceptor degeneration. J Neurogenet 2017; 31:203-215. [PMID: 29113536 DOI: 10.1080/01677063.2017.1395876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sight depends on the intimate association between photoreceptors and pigment epithelial cells. The evolutionary origin of this cellular tandem can be traced back to the emergence of bilateral animals, at least 450 million years ago, as they define the minimal unit of the ancestral prototypic eye. Phototransduction is a demanding process from the energetic and homeostatic points of view, and not surprisingly photoreceptive cells are particularly susceptible to damage and degeneration. Here, we will examine the different ancillary roles that the pigmented cells play in the physiology and homeostasis of photoreceptors, linking each one of these processes to the most common hereditary retinal diseases. We will discuss the challenges and opportunities of recent therapeutic advances based on cell and gene replacement. The transition from animal models to clinical trials will be addressed for each one of the different therapeutic strategies with a special focus on those depending on retinal-pigmented epithelial cells. Finally, we will discuss the potential impact of combining CRISPR technologies with gene and cell therapy approaches, which - in the frame of the personalized medicine revolution - may constitute a leap forward in the treatment of retinal dystrophies.
Collapse
Affiliation(s)
- Joaquín Letelier
- a Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA) , Seville , Spain
| | - Paola Bovolenta
- b Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM) and CIBERER, ISCIII , Madrid , Spain
| | | |
Collapse
|
105
|
|
106
|
Chelstowska S, Widjaja-Adhi MAK, Silvaroli JA, Golczak M. Impact of LCA-Associated E14L LRAT Mutation on Protein Stability and Retinoid Homeostasis. Biochemistry 2017; 56:4489-4499. [PMID: 28758396 PMCID: PMC5682948 DOI: 10.1021/acs.biochem.7b00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin A (all-trans-retinol) is metabolized to the visual chromophore (11-cis-retinal) in the eyes and to all-trans-retinoic acid, a hormone like compound, in most tissues. A key enzyme in retinoid metabolism is lecithin:retinol acyltransferase (LRAT), which catalyzes the esterification of vitamin A. The importance of LRAT is indicated by pathogenic missense and nonsense mutations, which cause devastating blinding diseases. Retinoid-based chromophore replacement therapy has been proposed as treatment for these types of blindness based on studies in LRAT null mice. Here, we analyzed the structural and biochemical basis for retinal pathology caused by mutations in the human LRAT gene. Most LRAT missense mutations associated with retinal degeneration are localized within the catalytic domain, whereas E14L substitution is localized in an N-terminal α-helix, which has been implicated in interaction with the phospholipid bilayer. To elucidate the biochemical consequences of this mutation, we determined LRAT(E14L)'s enzymatic properties, protein stability, and impact on ocular retinoid metabolism. Bicistronic expression of LRAT(E14L) and enhanced green fluorescence protein revealed instability and accelerated proteosomal degradation of this mutant isoform. Surprisingly, instability of LRAT(E14L) did not abrogate the production of the visual chromophore in a cell-based assay. Instead, expression of LRAT(E14L) led to a rapid increase in cellular levels of retinoic acid upon retinoid supplementation. Thus, our study unveils the potential role of retinoic acid in the pathology of a degenerative retinal disease with important implications for the use of retinoid-based therapeutics in affected patients.
Collapse
Affiliation(s)
- Sylwia Chelstowska
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw 04141, Poland
| | | | - Josie A. Silvaroli
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
107
|
Au ED, Fernandez-Godino R, Kaczynksi TJ, Sousa ME, Farkas MH. Characterization of lincRNA expression in the human retinal pigment epithelium and differentiated induced pluripotent stem cells. PLoS One 2017; 12:e0183939. [PMID: 28837677 PMCID: PMC5570510 DOI: 10.1371/journal.pone.0183939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022] Open
Abstract
Long intervening non-coding RNAs (lincRNAs) are increasingly being implicated as important factors in many aspects of cellular development, function, and disease, but remain poorly understood. In this study, we examine the human retinal pigment epithelium (RPE) lincRNA transcriptome using RNA-Seq data generated from human fetal RPE (fRPE), RPE derived from human induced pluripotent stem cells (iPS-RPE), and undifferentiated iPS (iPS). In addition, we determine the suitability of iPS-RPE, from a transcriptome standpoint, as a model for use in future studies of lincRNA structure and function. A comparison of gene and isoform expression across the whole transcriptome shows only minimal differences between all sample types, though fRPE and iPS-RPE show higher concordance than either shows with iPS. Notably, RPE signature genes show the highest degree of fRPE to iPS-RPE concordance, indicating that iPS-RPE cells provide a suitable model for use in future studies. An analysis of lincRNAs demonstrates high concordance between fRPE and iPS-RPE, but low concordance between either RPE and iPS. While most lincRNAs are expressed at low levels (RPKM < 10), there is a high degree of concordance among replicates within each sample type, suggesting the expression is consistent, even at levels subject to high variability. Finally, we identified and annotated 180 putative novel genes in the fRPE samples, a majority of which are also expressed in the iPS-RPE. Overall, this study represents the first characterization of lincRNA expression in the human RPE, and provides a model for studying the role lincRNAs play in RPE development, function, and disease.
Collapse
Affiliation(s)
- Elizabeth D. Au
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Tadeusz J. Kaczynksi
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, United States of America
| | - Maria E. Sousa
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, United States of America
| | - Michael H. Farkas
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
108
|
Gupta PR, Huckfeldt RM. Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng 2017; 14:051002. [DOI: 10.1088/1741-2552/aa7a27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
109
|
Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis. J Neurosci 2017; 36:5808-19. [PMID: 27225770 DOI: 10.1523/jneurosci.3857-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in RPE65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degradation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation specifically of misfolded R91W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA), a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medication, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations. SIGNIFICANCE STATEMENT LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or combination therapy to improve cone survival and function in patients with LCA caused by RPE65 mutations. Using a mouse model carrying the most frequent LCA-associated mutation (R91W), we found that the mutant RPE65 underwent ubiquitination-dependent proteasomal degradation due to misfolding. Treatment of the mice with a chemical chaperone partially corrected stability, enzymatic activity, and subcellular localization of R91W RPE65, which was also accompanied by improvement of cone survival and vision. These findings identify an in vivo molecular pathogenic mechanism for R91W mutation and provide a feasible pharmacological approach that can delay vision loss in patients with RPE65 mutations.
Collapse
|
110
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
111
|
Sheridan C, Boyer NP, Crouch RK, Koutalos Y. RPE65 and the Accumulation of Retinyl Esters in Mouse Retinal Pigment Epithelium. Photochem Photobiol 2017; 93:844-848. [PMID: 28500718 PMCID: PMC5673077 DOI: 10.1111/php.12738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/20/2016] [Indexed: 01/12/2023]
Abstract
The RPE65 protein of the retinal pigment epithelium (RPE) enables the conversion of retinyl esters to the visual pigment chromophore 11-cis retinal. Fresh 11-cis retinal is generated from retinyl esters following photoisomerization of the visual pigment chromophore to all-trans during light detection. Large amounts of esters accumulate in Rpe65-/- mice, indicating their continuous formation when 11-cis retinal generation is blocked. We hypothesized that absence of light, by limiting the conversion of esters to 11-cis retinal, would also result in the build-up of retinyl esters in the RPE of wild-type mice. We used HPLC to quantify ester levels in organic extracts of the RPE from wild-type and Rpe65-/- mice. Retinyl ester levels in Sv/129 wild-type mice that were dark adapted for various intervals over a 4-week period were similar to those in mice raised in cyclic light. In C57BL/6 mice however, which contain less Rpe65 protein, dark adaptation was accompanied by an increase in ester levels compared to cyclic light controls. Retinyl ester levels were much higher in Rpe65-/- mice compared to wild type and kept increasing with age. The results suggest that the RPE65 role in retinyl ester homeostasis extends beyond enabling the formation of 11-cis retinal.
Collapse
Affiliation(s)
- Colleen Sheridan
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| | - Nicholas P. Boyer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| | - Rosalie K. Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
112
|
Yang G, Liu Z, Xie S, Li C, Lv L, Zhang M, Zhao J. Genetic and phenotypic characteristics of four Chinese families with fundus albipunctatus. Sci Rep 2017; 7:46285. [PMID: 28393863 PMCID: PMC5385556 DOI: 10.1038/srep46285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Fundus albipunctatus (FA) is a rare autosomal recessive form of stationary night blindness characterized by the presence of white or white-yellow dots in the perimacular area and the periphery of the retina, with or without macular involvement. In this study, we examined four Chinese families with FA. Patients were given complete ophthalmic examinations, and blood samples were collected for DNA extraction. Three genes, RDH5, RLBP1 and RPE65, were screened by direct sequencing. Mutations in RDH5 were identified in three families and mutations in RPE65 were identified in one family. This is the second reported case of FA caused by mutations in RPE65.
Collapse
Affiliation(s)
- Guoxing Yang
- Department of Opthalmology, Hebei Provincial Eye Hospital, Hebei, China.,Hebei Provincial Key laboratory of ophthalmology, Hebei, China.,Department of Opthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Zhiqiang Liu
- Department of Opthalmology, Hebei Provincial Eye Hospital, Hebei, China
| | - Shipeng Xie
- Department of Opthalmology, Hebei Provincial Eye Hospital, Hebei, China
| | - Chengquan Li
- Department of Opthalmology, Hebei Provincial Eye Hospital, Hebei, China
| | - Lina Lv
- Department of Opthalmology, Hebei Provincial Eye Hospital, Hebei, China
| | - Minglian Zhang
- Department of Opthalmology, Hebei Provincial Eye Hospital, Hebei, China
| | - Jialiang Zhao
- Department of Opthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| |
Collapse
|
113
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
114
|
Giers BC, Klein D, Mendes-Madeira A, Isiegas C, Lorenz B, Haverkamp S, Stieger K. Outer Plexiform Layer Structures Are Not Altered Following AAV-Mediated Gene Transfer in Healthy Rat Retina. Front Neurol 2017; 8:59. [PMID: 28280483 PMCID: PMC5322291 DOI: 10.3389/fneur.2017.00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/09/2017] [Indexed: 01/18/2023] Open
Abstract
Ocular gene therapy approaches have been developed for a variety of different diseases. In particular, clinical gene therapy trials for RPE65 mutations, X-linked retinoschisis, and choroideremia have been conducted at different centers in recent years, showing that adeno-associated virus (AAV)-mediated gene therapy is safe, but limitations exist as to the therapeutic benefit and long-term duration of the treatment. The technique of vector delivery to retinal cells relies on subretinal injection of the vector solution, causing a transient retinal detachment. Although retinal detachments are known to cause remodeling of retinal neuronal structures as well as significant cell loss, the possible effects of this short-term therapeutic retinal detachment on retinal structure and circuitry have not yet been studied in detail. In this study, retinal morphology and apoptotic status were examined in healthy rat retinas following AAV-mediated gene transfer via subretinal injection with AAV2/5.CMV.d2GFP or sham injection with fluorescein. Outer plexiform layer (OPL) morphology was assessed by immunohistochemical labeling, laser scanning confocal microscopy, and electron microscopy. The number of synaptic contacts in the OPL was quantified after labeling with structural markers. To assess the apoptotic status, inflammatory and pro-apoptotic markers were tested and TUNEL assay for the detection of apoptotic nuclei was performed. Pre- and postsynaptic structures in the OPL, such as synaptic ribbons or horizontal and bipolar cell processes, did not differ in size or shape in injected versus non-injected areas and control retinas. Absolute numbers of synaptic ribbons were not altered. No signs of relevant gliosis were detected. TUNEL labeling of retinal cells did not vary between injected and non-injected areas, and apoptosis-inducing factor was not delocalized to the nucleus in transduced areas. The neuronal circuits in the OPL of healthy rat retinas undergoing AAV-mediated gene transfer were not altered by the temporary retinal detachment caused by subretinal injection, the presence of viral particles, or the expression of green fluorescent protein as a transgene. This observation likely requires further investigations in the dog model for RPE65 deficiency in order to determine the impact of RPE65 transgene expression on diseased retinas in animals and men.
Collapse
Affiliation(s)
- Bert C Giers
- Department of Ophthalmology, Justus-Liebig-University Giessen , Giessen , Germany
| | - Daniela Klein
- Department of Ophthalmology, Justus-Liebig-University Giessen , Giessen , Germany
| | | | | | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig-University Giessen , Giessen , Germany
| | - Silke Haverkamp
- Max-Planck-Institute for Brain Research, Frankfurt, Germany; Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Frankfurt, Germany
| | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University Giessen , Giessen , Germany
| |
Collapse
|
115
|
The Role of the Human Visual Cortex in Assessment of the Long-Term Durability of Retinal Gene Therapy in Follow-on RPE65 Clinical Trial Patients. Ophthalmology 2017; 124:873-883. [PMID: 28237426 DOI: 10.1016/j.ophtha.2017.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Gene therapy (GT) has offered immense hope to individuals who are visually impaired because of RPE65 mutations. Although GT has shown great success in clinical trials enrolling these individuals, evidence for stability and durability of this treatment over time is still unknown. Herein we explored the value of functional magnetic resonance imaging (fMRI) as an objective measure to assess independently the longevity of retinal GT. DESIGN Individuals with RPE65 mutations who underwent GT in their worse-seeing eye in a phase 1 clinical trial received a second subretinal injection in their contralateral eye in a follow-on clinical trial. Functional magnetic resonance imaging (MRI) was performed longitudinally to assess brain responses of patients with RPE65 mutations after stimulation of their most recently treated eye before and 1 to 3 years after GT. PARTICIPANTS Seven participants with RPE65 mutations who were part of the follow-on clinical trial gave informed consent to participate in a longitudinal neuroimaging fMRI study. METHODS All participants underwent fMRI using a 3-Tesla MRI system and a 32-channel head coil. Participants' cortical activations were assessed using a block design paradigm of contrast reversing checkerboard stimuli delivered using an MRI-compatible video system. MAIN OUTCOME MEASURES The primary parameters being measured in this study were the qualitative and quantitative fMRI cortical activations produced by our population in response to the visual task. RESULTS Functional MRI results showed minimal or no cortical responses before GT. Significant increase in cortical activation lasting at least 3 years after GT was observed for all participants. Repeated measures analysis showed significant associations between cortical activations and clinical measures such as full-field light sensitivity threshold for white, red, and blue colors; visual field; and pupillary light reflex. CONCLUSIONS Participants with RPE65 mutations showed intact visual pathways, which became responsive and strengthened after treatment. Functional MRI results independently revealed the efficacy and durability of a 1-time subretinal injection. The fMRI results paralleled those recently reported during the long-term clinical evaluations of the same patients. Results from this study demonstrated that fMRI may play an important role in providing complementary information to patients' ophthalmic clinical evaluation and has usefulness as an outcome measure for future retinal intervention studies.
Collapse
|
116
|
Springelkamp H, Iglesias AI, Mishra A, Höhn R, Wojciechowski R, Khawaja AP, Nag A, Wang YX, Wang JJ, Cuellar-Partida G, Gibson J, Bailey JNC, Vithana EN, Gharahkhani P, Boutin T, Ramdas WD, Zeller T, Luben RN, Yonova-Doing E, Viswanathan AC, Yazar S, Cree AJ, Haines JL, Koh JY, Souzeau E, Wilson JF, Amin N, Müller C, Venturini C, Kearns LS, Kang JH, Tham YC, Zhou T, van Leeuwen EM, Nickels S, Sanfilippo P, Liao J, van der Linde H, Zhao W, van Koolwijk LM, Zheng L, Rivadeneira F, Baskaran M, van der Lee SJ, Perera S, de Jong PT, Oostra BA, Uitterlinden AG, Fan Q, Hofman A, Tai ES, Vingerling JR, Sim X, Wolfs RC, Teo YY, Lemij HG, Khor CC, Willemsen R, Lackner KJ, Aung T, Jansonius NM, Montgomery G, Wild PS, Young TL, Burdon KP, Hysi PG, Pasquale LR, Wong TY, Klaver CC, Hewitt AW, Jonas JB, Mitchell P, Lotery AJ, Foster PJ, Vitart V, Pfeiffer N, Craig JE, Mackey DA, Hammond CJ, Wiggs JL, Cheng CY, van Duijn CM, MacGregor S. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet 2017; 26:438-453. [PMID: 28073927 PMCID: PMC5968632 DOI: 10.1093/hmg/ddw399] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/19/2016] [Accepted: 09/28/2016] [Indexed: 01/04/2023] Open
Abstract
Primary open-angle glaucoma (POAG), the most common optic neuropathy, is a heritable disease. Siblings of POAG cases have a ten-fold increased risk of developing the disease. Intraocular pressure (IOP) and optic nerve head characteristics are used clinically to predict POAG risk. We conducted a genome-wide association meta-analysis of IOP and optic disc parameters and validated our findings in multiple sets of POAG cases and controls. Using imputation to the 1000 genomes (1000G) reference set, we identified 9 new genomic regions associated with vertical cup-disc ratio (VCDR) and 1 new region associated with IOP. Additionally, we found 5 novel loci for optic nerve cup area and 6 for disc area. Previously it was assumed that genetic variation influenced POAG either through IOP or via changes to the optic nerve head; here we present evidence that some genomic regions affect both IOP and the disc parameters. We characterized the effect of the novel loci through pathway analysis and found that pathways involved are not entirely distinct as assumed so far. Further, we identified a novel association between CDKN1A and POAG. Using a zebrafish model we show that six6b (associated with POAG and optic nerve head variation) alters the expression of cdkn1a. In summary, we have identified several novel genes influencing the major clinical risk predictors of POAG and showed that genetic variation in CDKN1A is important in POAG risk.
Collapse
Affiliation(s)
- Henriët Springelkamp
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Adriana I. Iglesias
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Aniket Mishra
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia
- Department of Complex Trait Genetics, VU University, Center for Neurogenomics and Cognitive Research, Amsterdam, the Netherlands
| | - René Höhn
- Department of Ophthalmology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Robert Wojciechowski
- Computational and Statistical Genomics Branch, National Human Genome Research Institute (NIH), Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Abhishek Nag
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Science Key Lab, Beijing, China
| | - Jie Jin Wang
- Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Gabriel Cuellar-Partida
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia
| | - Jane Gibson
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Jessica N. Cooke Bailey
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eranga N. Vithana
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia
| | - Thibaud Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Wishal D. Ramdas
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg/Germany
| | - Robert N. Luben
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Ananth C. Viswanathan
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Angela J. Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jia Yu Koh
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | | | - James F. Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, The Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Scotland, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Christian Müller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg/Germany
| | - Cristina Venturini
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Lisa S. Kearns
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Jae Hee Kang
- Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | | | - Stefan Nickels
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Paul Sanfilippo
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Jiemin Liao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Herma van der Linde
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Wanting Zhao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | | | - Li Zheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
| | | | - Sven J. van der Lee
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Shamira Perera
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Paulus T.V.M. de Jong
- Department of Ophthalmology, Academic Medical Center, Amsterdam, the Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
- The Netherlands Institute of Neuroscience KNAW, Amsterdam, the Netherlands
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
| | - Qiao Fan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
| | - E-Shyong Tai
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
- Department of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Roger C.W. Wolfs
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Hans G. Lemij
- Glaucoma Service, The Rotterdam Eye Hospital, Rotterdam, the Netherlands
| | - Chiea Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nomdo M. Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Grant Montgomery
- Department of Molecular Epidemiology, Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
| | - Philipp S. Wild
- Preventive Cardiology and Preventive Medicine/Center for Cardiology, University Medical Center Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site RhineMain, Mainz, Germany
| | - Terri L. Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathryn P. Burdon
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Louis R. Pasquale
- Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA and
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Caroline C.W. Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Alex W. Hewitt
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Jost B. Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | | | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA and
| | | | | | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia
| |
Collapse
|
117
|
Shin Y, Moiseyev G, Chakraborty D, Ma JX. A Dominant Mutation in Rpe65, D477G, Delays Dark Adaptation and Disturbs the Visual Cycle in the Mutant Knock-In Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:517-527. [PMID: 28041994 DOI: 10.1016/j.ajpath.2016.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 01/09/2023]
Abstract
RPE65 is an indispensable component of the retinoid visual cycle in vertebrates, through which the visual chromophore 11-cis-retinal (11-cis-RAL) is generated to maintain normal vision. Various blinding conditions in humans, such as Leber congenital amaurosis and retinitis pigmentosa (RP), are attributed to either homozygous or compound heterozygous mutations in RPE65. Herein, we investigated D477G missense mutation, an unprecedented dominant-acting mutation of RPE65 identified in patients with autosomal dominant RP. We generated a D477G knock-in (KI) mouse and characterized its phenotypes. Although RPE65 protein levels were decreased in heterozygous KI mice, their scotopic, maximal, and photopic electroretinography responses were comparable to those of wild-type (WT) mice in stationary condition. As shown by high-performance liquid chromatography analysis, levels of 11-cis-RAL in fully dark-adapted heterozygous KI mice were similar to that in WT mice. However, kinetics of 11-cis-RAL regeneration after light exposure were significantly slower in heterozygous KI mice compared with WT and RPE65 heterozygous knockout mice. Furthermore, heterozygous KI mice exhibited lower A-wave recovery compared with WT mice after photobleaching, suggesting a delayed dark adaptation. Taken together, these observations suggest that D477G acts as a dominant-negative mutant of RPE65 that delays chromophore regeneration. The KI mice provide a useful model for further understanding of the pathogenesis of RP associated with this RPE65 mutant and for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dibyendu Chakraborty
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
118
|
Ramkumar HL, Gudiseva HV, Kishaba KT, Suk JJ, Verma R, Tadimeti K, Thorson JA, Ayyagari R. A Report on Molecular Diagnostic Testing for Inherited Retinal Dystrophies by Targeted Genetic Analyses. Genet Test Mol Biomarkers 2016; 21:66-73. [PMID: 28005406 DOI: 10.1089/gtmb.2016.0251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM To test the utility of targeted sequencing as a method of clinical molecular testing in patients diagnosed with inherited retinal degeneration (IRD). METHODS After genetic counseling, peripheral blood was drawn from 188 probands and 36 carriers of IRD. Single gene testing was performed on each patient in a Clinical Laboratory Improvement Amendment (CLIA) certified laboratory. DNA was isolated, and all exons in the gene of interest were analyzed along with 20 base pairs of flanking intronic sequence. Genetic testing was most often performed on ABCA4, CTRP5, ELOV4, BEST1, CRB1, and PRPH2. Pathogenicity of novel sequence changes was predicted by PolyPhen2 and sorting intolerant from tolerant (SIFT). RESULTS Of the 225 genetic tests performed, 150 were for recessive IRD, and 75 were for dominant IRD. A positive molecular diagnosis was made in 70 (59%) of probands with recessive IRD and 19 (26%) probands with dominant IRD. Analysis confirmed 12 (34%) of individuals as carriers of familial mutations associated with IRD. Thirty-two novel variants were identified; among these, 17 sequence changes in four genes were predicted to be possibly or probably damaging including: ABCA4 (14), BEST1 (2), PRPH2 (1), and TIMP3 (1). CONCLUSIONS Targeted analysis of clinically suspected genes in 225 subjects resulted in a positive molecular diagnosis in 26% of patients with dominant IRD and 59% of patients with recessive IRD. Novel damaging mutations were identified in four genes. Single gene screening is not an ideal method for diagnostic testing given the phenotypic and genetic heterogeneity among IRD cases. High-throughput sequencing of all genes associated with retinal degeneration may be more efficient for molecular diagnosis.
Collapse
Affiliation(s)
- Hema L Ramkumar
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - Harini V Gudiseva
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - Kameron T Kishaba
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - John J Suk
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - Rohan Verma
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - Keerti Tadimeti
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - John A Thorson
- 2 Department of Pathology, University of California , San Diego, La Jolla, California
| | - Radha Ayyagari
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| |
Collapse
|
119
|
Trichonas G, Traboulsi EI, Ehlers JP. Correlation of ultra-widefield fundus autofluorescence patterns with the underlying genotype in retinal dystrophies and retinitis pigmentosa. Ophthalmic Genet 2016; 38:320-324. [PMID: 27880076 DOI: 10.1080/13816810.2016.1227450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Ultra-widefield fundus autofluorescence (UW-FAF) allows the characterization of the peripheral retinal features of vitreoretinal diseases. The purpose of this study was to examine possible genotypic/phenotypic correlations of UW-FAF patterns in patients with a variety of retinal dystrophies and retinitis pigmentosa (RP). METHODS An IRB-approved retrospective consecutive case series study was performed of genetically characterized retinal dystrophy or RP patients who underwent UW-FAF imaging. UW-FAF was performed with the Optos 200Tx system. Clinical variables, genotypic analysis, and phenotypic characteristics were reviewed. RESULTS Seventeen patients were identified who had identified mutations in retinal dystrophy or RP genes and who also had undergone UW-FAF. Three patients had X-linked RP with RPGR mutations. Six patients had autosomal dominant RP (four with RHO mutations and one with a PRPF31 mutation, and one with RDS/PRPH2 mutation). Four patients had autosomal recessive RP (four with USH2A mutations). Three patients had Leber Congenital Amaurosis (LCA) with mutations including CRB1, CEP290, and RPGRIP1. Macular hyperautofluorescence was noted in all patients. A ring of hyperautofluorescence was clear in patients with RHO and USH2A mutations, and patients with USH2A mutations demonstrated a second ring of hyperautofluorescence. In the periphery, patients with RHO or RPGR mutations exhibited hyperautofluorescence with patchy areas of hypoautofluorescence. Patients with USH2A mutations had a distinctive pattern of diffuse and homogeneous peripheral hypoautofluorescence. CONCLUSION UW-FAF may provide important information to facilitate diagnosis and further research is needed to better characterize this technology as an imaging biomarker for genotype association in retinal dystrophies and RP.
Collapse
Affiliation(s)
| | | | - Justis P Ehlers
- a Cole Eye Institute, Cleveland Clinic , Cleveland , Ohio , USA.,b Ophthalmic Imaging Center, Cole Eye Institute, Cleveland Clinic , Cleveland , Ohio , USA
| |
Collapse
|
120
|
Habibi I, Chebil A, Falfoul Y, Allaman-Pillet N, Kort F, Schorderet DF, El Matri L. Identifying mutations in Tunisian families with retinal dystrophy. Sci Rep 2016; 6:37455. [PMID: 27874104 PMCID: PMC5118704 DOI: 10.1038/srep37455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population.
Collapse
Affiliation(s)
- Imen Habibi
- Institute for Research in Ophthalmology (IRO), Sion, Switzerland.,Research Laboratory of Oculogenetic (LR14SP01), Department B of Ophthalmology, Hedi Rais Institute of Ophthalmology, Tunis, Tunisia.,Research Laboratory of renal Transplantation and Immunopathology (LR03SP01), University Tunis El Manar, Immunology Laboratory, Tunis, Tunisia.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ahmed Chebil
- Research Laboratory of Oculogenetic (LR14SP01), Department B of Ophthalmology, Hedi Rais Institute of Ophthalmology, Tunis, Tunisia.,Faculty of medicine, University Tunis El Manar, Tunisia
| | - Yosra Falfoul
- Research Laboratory of Oculogenetic (LR14SP01), Department B of Ophthalmology, Hedi Rais Institute of Ophthalmology, Tunis, Tunisia.,Faculty of medicine, University Tunis El Manar, Tunisia
| | | | - Fedra Kort
- Research Laboratory of Oculogenetic (LR14SP01), Department B of Ophthalmology, Hedi Rais Institute of Ophthalmology, Tunis, Tunisia.,Faculty of medicine, University Tunis El Manar, Tunisia
| | - Daniel F Schorderet
- Institute for Research in Ophthalmology (IRO), Sion, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Jules-Gonin Eye Hospital, Faculty of biology and medicine, University of Lausanne, Switzerland
| | - Leila El Matri
- Research Laboratory of Oculogenetic (LR14SP01), Department B of Ophthalmology, Hedi Rais Institute of Ophthalmology, Tunis, Tunisia.,Faculty of medicine, University Tunis El Manar, Tunisia
| |
Collapse
|
121
|
Sui X, Zhang J, Golczak M, Palczewski K, Kiser PD. Key Residues for Catalytic Function and Metal Coordination in a Carotenoid Cleavage Dioxygenase. J Biol Chem 2016; 291:19401-12. [PMID: 27453555 PMCID: PMC5016679 DOI: 10.1074/jbc.m116.744912] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/15/2016] [Indexed: 12/31/2022] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) are non-heme iron-containing enzymes found in all domains of life that generate biologically important apocarotenoids. Prior studies have revealed a critical role for a conserved 4-His motif in forming the CCD iron center. By contrast, the roles of other active site residues in catalytic function, including maintenance of the stringent regio- and stereo-selective cleavage activity, typically exhibited by these enzymes have not been thoroughly investigated. Here, we examined the functional and structural importance of active site residues in an apocarotenoid-cleaving oxygenase (ACO) from Synechocystis Most active site substitutions variably lowered maximal catalytic activity without markedly affecting the Km value for the all-trans-8'-apocarotenol substrate. Native C15-C15' cleavage activity was retained in all ACO variants examined suggesting that multiple active site residues contribute to the enzyme's regioselectivity. Crystallographic analysis of a nearly inactive W149A-substituted ACO revealed marked disruption of the active site structure, including loss of iron coordination by His-238 apparently from an altered conformation of the conserved second sphere Glu-150 residue. Gln- and Asp-150-substituted versions of ACO further confirmed the structural/functional requirement for a Glu side chain at this position, which is homologous to Glu-148 in RPE65, a site in which substitution to Asp has been associated with loss of enzymatic function in Leber congenital amaurosis. The novel links shown here between ACO active site structure and catalytic activity could be broadly applicable to other CCD members and provide insights into the molecular pathogenesis of vision loss associated with an RPE65 point mutation.
Collapse
Affiliation(s)
- Xuewu Sui
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University and
| | - Jianye Zhang
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University and
| | - Marcin Golczak
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University and
| | - Krzysztof Palczewski
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University and
| | - Philip D Kiser
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University and Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| |
Collapse
|
122
|
Prolonged Inner Retinal Photoreception Depends on the Visual Retinoid Cycle. J Neurosci 2016; 36:4209-17. [PMID: 27076420 DOI: 10.1523/jneurosci.2629-14.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/08/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In addition to rods and cones, mammals have inner retinal photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGCs), which use the photopigment melanopsin and mediate nonimage-forming visual responses, such as pupil reflexes and circadian entrainment. After photic activation, photopigments must be reverted to their dark state to be light-sensitive again. For rods and to some extent cones, photopigment regeneration depends on the retinoid cycle in the adjacent retinal pigment epithelium (RPE). By contrast, ipRGCs are far from the RPE, and previous work suggests that melanopsin is capable of light-dependent self-regeneration. Here, we used in vitro ipRGC recording and in vivo pupillometry to show that the RPE is required for normal melanopsin-based responses to prolonged light, especially at high stimulus intensities. Melanopsin-based photoresponses of rat ipRGCs were remarkably sustained when a functional RPE was attached to the retina, but became far more transient if the RPE was removed, or if the retinoid cycle was inhibited, or when Müller glia were poisoned. Similarly, retinoid cycle inhibition markedly reduced the steady-state amplitude of melanopsin-driven pupil reflexes in both mice and rats. However, melanopsin photoresponses in RPE-separated rat retinas became more sustained in the presence of an 11-cis-retinal analog. In conclusion, during prolonged illumination, melanopsin regeneration depends partly on 11-cis-retinal from the RPE, possibly imported via Müller cells. Implications for RPE-related eye diseases and the acne drug isotretinoin (a retinoid cycle inhibitor) are discussed. SIGNIFICANCE STATEMENT Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin and drive subconscious physiological responses to light, e.g., pupillary constriction and neuroendocrine regulation. In darkness, each photopigment molecule in ipRGCs, as well as rod/cone photoreceptors, contains 11-cis-retinal (a vitamin A derivative) and light isomerizes it to all-trans-retinal, which activates the photopigment. To make this photopigment excitable again,all-trans-retinal must be reisomerized to 11-cis-retinal. For rods and to some extent cones, this reisomerization occurs in the adjacent retinal pigment epithelium (RPE), but because ipRGCs are far from the RPE, they are thought to regenerate excitable melanopsin exclusively through RPE-independent means. Here, we present electrophysiological and behavioral evidence that ipRGCs depend on the RPE to continuously regenerate melanopsin during intense prolonged photostimulation.
Collapse
|
123
|
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Oxford University Hospitals & Moorfields Eye Hospital NHS Foundation Trusts and NIHR Biomedical Research Centres, Oxford OX3 9DU, UK.
| |
Collapse
|
124
|
Abstract
Recent progress in molecular understanding of the retinoid cycle in mammalian retina stems from painstaking biochemical reconstitution studies supported by natural or engineered animal models with known genetic lesions and studies of humans with specific genetic blinding diseases. Structural and membrane biology have been used to detect critical retinal enzymes and proteins and their substrates and ligands, placing them in a cellular context. These studies have been supplemented by analytical chemistry methods that have identified small molecules by their spectral characteristics, often in conjunction with the evaluation of models of animal retinal disease. It is from this background that rational therapeutic interventions to correct genetic defects or environmental insults are identified. Thus, most presently accepted modulators of the retinoid cycle already have demonstrated promising results in animal models of retinal degeneration. These encouraging signs indicate that some human blinding diseases can be alleviated by pharmacological interventions.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 ; Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
125
|
Sundaramurthy S, Swaminathan M, Sen P, Arokiasamy T, Deshpande S, John N, Gadkari RA, Mannan AU, Soumittra N. Homozygosity mapping guided next generation sequencing to identify the causative genetic variation in inherited retinal degenerative diseases. J Hum Genet 2016; 61:951-958. [DOI: 10.1038/jhg.2016.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 11/09/2022]
|
126
|
Sears AE, Palczewski K. Lecithin:Retinol Acyltransferase: A Key Enzyme Involved in the Retinoid (visual) Cycle. Biochemistry 2016; 55:3082-91. [PMID: 27183166 DOI: 10.1021/acs.biochem.6b00319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lecithin:retinol acyltransferase (LRAT) catalyzes the acyl transfer from the sn-1 position of phosphatidylcholine (PC) to all-trans-retinol, creating fatty acid retinyl esters (palmitoyl, stearoyl, and some unsaturated derivatives). In the eye, these retinyl esters are substrates for the 65 kDa retinoid isomerase (RPE65). LRAT is well characterized biochemically, and recent structural data from closely related family members of the NlpC/P60 superfamily and a chimeric protein have established its catalytic mechanism. Mutations in the LRAT gene are responsible for approximately 1% of reported cases of Leber congenital amaurosis (LCA). Lack of functional LRAT, expressed in the retinal pigmented epithelium (RPE), results in loss of the visual chromophore and photoreceptor degeneration. LCA is a rare hereditary retinal dystrophy with an early onset associated with mutations in one of 21 known genes. Protocols have been devised to identify therapeutics that compensate for mutations in RPE65, also associated with LCA. The same protocols can be adapted to combat dystrophies associated with LRAT. Improvement in the visual function of clinical recipients of therapy with recombinant adeno-associated virus (rAAV) vectors incorporating the RPE65 gene provides a proof of concept for LRAT, which functions in the same cell type and metabolic pathway as RPE65. In parallel, a clinical trial that employs oral 9-cis-retinyl acetate to replace the missing chromophore in RPE65 and LRAT causative disease has proven to be effective and free of adverse effects. This article summarizes the biochemistry of LRAT and examines chromophore replacement as a treatment for LCA caused by LRAT mutations.
Collapse
Affiliation(s)
- Avery E Sears
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
127
|
Downs LM, Webster AR, Moore AT, Michaelides M, Ali RR, Hardcastle AJ, Mellersh CS. Investigation of SLA4A3 as a candidate gene for human retinal disease. J Negat Results Biomed 2016; 15:11. [PMID: 27211793 PMCID: PMC4876561 DOI: 10.1186/s12952-016-0054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/14/2016] [Indexed: 11/10/2022] Open
Abstract
SLC4A3 has been shown to cause retinal degeneration in a genetically engineered knockout mouse, and in a naturally occurring form of canine progressive retinal atrophy considered to be the equivalent of retinitis pigmentosa in humans (RP). This study was undertaken to investigate if SLC4A3 coding variants were implicated in human retinal degeneration. SLC4A3 exons were amplified and sequenced in 200 patients with autosomal recessive retinal degeneration who had no known molecular diagnosis for their condition, which included 197 unrelated individuals with suspected RP and three individuals with other forms of retinal disease. Three rare variants were identified that were predicted to be potentially pathogenic, however each variant was heterozygous in a single patient and therefore not considered disease-causing in isolation. Of these three variants, SNP-3 was the rarest, with an allele frequency of 7.06 x 10(-5) (>46,000 exomes from the ExAC database). In conclusion, no compound heterozygous or homozygous potentially pathogenic variants were identified that would account for recessive RP or retinal degeneration in this cohort, however the possibility remains that the rare variants identified could be acting with as yet undiscovered mutations in introns or regulatory regions. SLC4A3 remains an excellent candidate gene for human retinal degeneration, and with the advent of whole exome and whole genome sequencing of cohorts of molecularly unsolved patients with syndromic and non-syndromic forms of retinal degeneration, SLC4A3 may yet be implicated in human disease.
Collapse
Affiliation(s)
- Louise M Downs
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, UK. .,Present Address: Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, City Road, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, City Road, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, City Road, London, UK
| | | | | | | |
Collapse
|
128
|
Trichonas G, Traboulsi EI, Ehlers JP. Ultra-widefield fundus autofluorescence patterns in retinitis pigmentosa and other retinal dystrophies. Ophthalmic Genet 2016; 38:98-100. [PMID: 27049178 DOI: 10.3109/13816810.2015.1137328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Justis P Ehlers
- a Cole Eye Institute, Cleveland Clinic , Cleveland , Ohio , USA.,b Ophthalmic Imaging Center, Cole Eye Institute, Cleveland Clinic , Cleveland , Ohio , USA
| |
Collapse
|
129
|
Jones BW, Pfeiffer RL, Ferrell WD, Watt CB, Marmor M, Marc RE. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res 2016; 150:149-65. [PMID: 27020758 DOI: 10.1016/j.exer.2016.03.018] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/23/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies.
Collapse
Affiliation(s)
- B W Jones
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA.
| | - R L Pfeiffer
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| | - W D Ferrell
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| | - C B Watt
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| | - M Marmor
- Dept. Ophthalmology, Stanford University, USA
| | - R E Marc
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| |
Collapse
|
130
|
Yu-Wai-Man P. Genetic manipulation for inherited neurodegenerative diseases: myth or reality? Br J Ophthalmol 2016; 100:1322-31. [PMID: 27002113 PMCID: PMC5050284 DOI: 10.1136/bjophthalmol-2015-308329] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation.
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
131
|
Hull S, Holder GE, Robson AG, Mukherjee R, Michaelides M, Webster AR, Moore AT. Preserved visual function in retinal dystrophy due to hypomorphic RPE65 mutations. Br J Ophthalmol 2016; 100:1499-1505. [PMID: 26906952 DOI: 10.1136/bjophthalmol-2015-308019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/12/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS To present detailed phenotypic and molecular findings in four patients from four families with atypical, mild, recessive RPE65-related retinal dystrophy and discuss potential implications for gene replacement therapy. METHODS Four patients from four families with early onset retinal dystrophy underwent clinical examination, retinal imaging and electrophysiological testing. Bidirectional Sanger sequencing of all exons and intron-exon boundaries of RPE65 was performed. RESULTS All patients presented with nyctalopia in early childhood but demonstrated a mild phenotype with good visual acuity until at least 19 years of age. All had generalised retinal dysfunction on electroretinography. Central macular thickness on optical coherence tomography was preserved in those patients with good visual acuity. One patient had extensive white dots throughout the retina reminiscent of fundus albipunctatus with electrophysiological evidence of partial recovery of rod function after prolonged dark adaptation. Sanger sequencing identified RPE65 mutations in all patients including three missense variants likely to represent hypomorphic alleles. CONCLUSIONS Hypomorphic mutations of RPE65 are associated with mild disease in childhood with preservation of good visual acuity into adulthood; they may in rare cases be associated with a flecked retina appearance similar to fundus albipunctatus. The presence of normal visual acuity in patients with hypomorphic mutations in RPE65 suggests that efficiency of transduction may not be the limiting factor in improving visual acuity in trials of gene replacement therapy. Rather, it suggests that for optimal recovery of visual acuity gene replacement therapy may need to be given much earlier in childhood.
Collapse
Affiliation(s)
- Sarah Hull
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Graham E Holder
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Anthony G Robson
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Rajarshi Mukherjee
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,Department of Ophthalmology, University of California, San Francisco Medical Centre, California, USA
| |
Collapse
|
132
|
Mitra RN, Zheng M, Han Z. Nanoparticle-motivated gene delivery for ophthalmic application. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:160-74. [PMID: 26109528 PMCID: PMC4688250 DOI: 10.1002/wnan.1356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/24/2022]
Abstract
Ophthalmic gene therapy is an intellectual and intentional manipulation of desired gene expression into the specific cells of an eye for the treatment of ophthalmic (ocular) genetic dystrophies and pathological conditions. Exogenous nucleic acids such as DNA, small interfering RNA, micro RNA, and so on, are used for the purpose of managing expression of the desired therapeutic proteins in ocular tissues. The delivery of unprotected nucleic acids into the cells is limited because of exogenous and endogenous degradation modalities. Nanotechnology, a promising and sophisticated cutting edge tool, works as a protective shelter for these therapeutic nucleic acids. They can be safely delivered to the required cells in order to modulate anticipated protein expression. To this end, nanotechnology is seen as a potential and promising strategy in the field of ocular gene delivery. This review focused on current nanotechnology modalities and other promising nonviral strategies being used to deliver therapeutic genes in order to treat various devastating ocular diseases.
Collapse
Affiliation(s)
| | - Min Zheng
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
- Carolina Institute for NanoMedicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
133
|
Stiles M, Moiseyev GP, Budda ML, Linens A, Brush RS, Qi H, White GL, Wolf RF, Ma JX, Floyd R, Anderson RE, Mandal NA. PBN (Phenyl-N-Tert-Butylnitrone)-Derivatives Are Effective in Slowing the Visual Cycle and Rhodopsin Regeneration and in Protecting the Retina from Light-Induced Damage. PLoS One 2015; 10:e0145305. [PMID: 26694648 PMCID: PMC4687940 DOI: 10.1371/journal.pone.0145305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 12/02/2015] [Indexed: 11/18/2022] Open
Abstract
A2E and related toxic molecules are part of lipofuscin found in the retinal pigment epithelial (RPE) cells in eyes affected by Stargardt's disease, age-related macular degeneration (AMD), and other retinal degenerations. A novel therapeutic approach for treating such degenerations involves slowing down the visual cycle, which could reduce the amount of A2E in the RPE. This can be accomplished by inhibiting RPE65, which produces 11-cis-retinol from all-trans-retinyl esters. We recently showed that phenyl-N-tert-butylnitrone (PBN) inhibits RPE65 enzyme activity in RPE cells. In this study we show that like PBN, certain PBN-derivatives (PBNDs) such as 4-F-PBN, 4-CF3-PBN, 3,4-di-F-PBN, and 4-CH3-PBN can inhibit RPE65 and synthesis of 11-cis-retinol in in vitro assays using bovine RPE microsomes. We further demonstrate that systemic (intraperitoneal, IP) administration of these PBNDs protect the rat retina from light damage. Electroretinography (ERG) and histological analysis showed that rats treated with PBNDs retained ~90% of their photoreceptor cells compared to a complete loss of function and 90% loss of photoreceptors in the central retina in rats treated with vehicle/control injections. Topically applied PBN and PBNDs also significantly slowed the rate of the visual cycle in mouse and baboon eyes. One hour dark adaptation resulted in 75-80% recovery of bleachable rhodopsin in control/vehicle treated mice. Eye drops of 5% 4-CH3-PBN were most effective, inhibiting the regeneration of bleachable rhodopsin significantly (60% compared to vehicle control). In addition, a 10% concentration of PBN and 5% concentration of 4-CH3-PBN in baboon eyes inhibited the visual cycle by 60% and by 30%, respectively. We have identified a group of PBN related nitrones that can reach the target tissue (RPE) by systemic and topical application and slow the rate of rhodopsin regeneration and therefore the visual cycle in mouse and baboon eyes. PBNDs can also protect the rat retina from light damage. There is potential in developing these compounds as preventative therapeutics for the treatment of human retinal degenerations in which the accumulation of lipofuscin may be pathogenic.
Collapse
Affiliation(s)
- Megan Stiles
- Department of Ophthalmology, OUHSC, Oklahoma City, Oklahoma, United States of America
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Gennadiy P. Moiseyev
- Department of Physiology, OUHSC, Oklahoma City, Oklahoma, United States of America
| | - Madeline L. Budda
- Department of Cell Biology, OUHSC, Oklahoma City, Oklahoma, United States of America
| | - Annette Linens
- Department of Ophthalmology, OUHSC, Oklahoma City, Oklahoma, United States of America
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Richard S. Brush
- Department of Ophthalmology, OUHSC, Oklahoma City, Oklahoma, United States of America
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Hui Qi
- Department of Ophthalmology, OUHSC, Oklahoma City, Oklahoma, United States of America
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Gary L. White
- Department of Pathology, OUHSC, Oklahoma City, Oklahoma, United States of America
| | - Roman F. Wolf
- Department of Pathology, OUHSC, Oklahoma City, Oklahoma, United States of America
| | - Jian-xing Ma
- Department of Physiology, OUHSC, Oklahoma City, Oklahoma, United States of America
- Department of Endocrinology and Diabetes, OUHSC, Oklahoma City, Oklahoma, United States of America
| | - Robert Floyd
- Experimental Therapeutics, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Robert E. Anderson
- Department of Ophthalmology, OUHSC, Oklahoma City, Oklahoma, United States of America
- Department of Pathology, OUHSC, Oklahoma City, Oklahoma, United States of America
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Nawajes A. Mandal
- Department of Ophthalmology, OUHSC, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, OUHSC, Oklahoma City, Oklahoma, United States of America
- Department of Endocrinology and Diabetes, OUHSC, Oklahoma City, Oklahoma, United States of America
- Oklahoma Center for Neuroscience, OUHSC, Oklahoma City, Oklahoma, United States of America
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
134
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
135
|
Scholl HPN, Moore AT, Koenekoop RK, Wen Y, Fishman GA, van den Born LI, Bittner A, Bowles K, Fletcher EC, Collison FT, Dagnelie G, Degli Eposti S, Michaelides M, Saperstein DA, Schuchard RA, Barnes C, Zein W, Zobor D, Birch DG, Mendola JD, Zrenner E. Safety and Proof-of-Concept Study of Oral QLT091001 in Retinitis Pigmentosa Due to Inherited Deficiencies of Retinal Pigment Epithelial 65 Protein (RPE65) or Lecithin:Retinol Acyltransferase (LRAT). PLoS One 2015; 10:e0143846. [PMID: 26656277 PMCID: PMC4687523 DOI: 10.1371/journal.pone.0143846] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022] Open
Abstract
Restoring vision in inherited retinal degenerations remains an unmet medical need. In mice exhibiting a genetically engineered block of the visual cycle, vision was recently successfully restored by oral administration of 9-cis-retinyl acetate (QLT091001). Safety and visual outcomes of a once-daily oral dose of 40 mg/m2/day QLT091001 for 7 consecutive days was investigated in an international, multi-center, open-label, proof-of-concept study in 18 patients with RPE65- or LRAT-related retinitis pigmentosa. Eight of 18 patients (44%) showed a ≥20% increase and 4 of 18 (22%) showed a ≥40% increase in functional retinal area determined from Goldmann visual fields; 12 (67%) and 5 (28%) of 18 patients showed a ≥5 and ≥10 ETDRS letter score increase of visual acuity, respectively, in one or both eyes at two or more visits within 2 months of treatment. In two patients who underwent fMRI, a significant positive response was measured to stimuli of medium contrast, moving, pattern targets in both left and right hemispheres of the occipital cortex. There were no serious adverse events. Treatment-related adverse events were transient and the most common included headache, photophobia, nausea, vomiting, and minor biochemical abnormalities. Measuring the outer segment length of the photoreceptor layer with high-definition optical coherence tomography was highly predictive of treatment responses with responders having a significantly larger baseline outer segment thickness (11.7 ± 4.8 μm, mean ± 95% CI) than non-responders (3.5 ± 1.2 μm). This structure-function relationship suggests that treatment with QLT091001 is more likely to be efficacious if there is sufficient photoreceptor integrity.
Collapse
Affiliation(s)
- Hendrik P. N. Scholl
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| | - Anthony T. Moore
- Moorfields Eye Hospital and Institute of Ophthalmology, University College London, London, United Kingdom
- Dept. of Ophthalmology, University of California San Francisco, San Francisco, CA, United States of America
| | | | - Yuquan Wen
- Retina Foundation of the Southwest, Dallas, TX, United States of America
- Baylor Visual Function Center, Baylor University Medical Center, Dallas, TX, United States of America
| | - Gerald A. Fishman
- Chicago Lighthouse, Pangere Center for Inherited Retinal Diseases, Chicago, IL, United States of America
| | | | - Ava Bittner
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States of America
- Nova Southeastern University, College of Optometry, Fort Lauderdale, FL, United States of America
| | - Kristen Bowles
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States of America
- College of Optometry, University of Houston, Houston, TX, United States of America
| | - Emily C. Fletcher
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States of America
- Gloucester Royal NHS Foundation Trust, Gloucester Royal Hospitals, Gloucester, United Kingdom
| | - Frederick T. Collison
- Chicago Lighthouse, Pangere Center for Inherited Retinal Diseases, Chicago, IL, United States of America
| | - Gislin Dagnelie
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States of America
| | - Simona Degli Eposti
- Moorfields Eye Hospital and Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital and Institute of Ophthalmology, University College London, London, United Kingdom
| | - David A. Saperstein
- Vitreoretinal Associates of Washington, Seattle, WA, United States of America
- QLT Inc., Vancouver, Canada
| | - Ronald A. Schuchard
- QLT Inc., Vancouver, Canada
- Stanford Univ School of Medicine, Palo Alto, CA, United States of America
| | - Claire Barnes
- QLT Inc., Vancouver, Canada
- VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Wadih Zein
- Division of Epidemiology and Clinical Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Ditta Zobor
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - David G. Birch
- Retina Foundation of the Southwest, Dallas, TX, United States of America
- Ophthalmology, UT Southwestern, Dallas, TX, United States of America
| | | | - Eberhart Zrenner
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
136
|
Wen Y, Birch DG. Outer Segment Thickness Predicts Visual Field Response to QLT091001 in Patients with RPE65 or LRAT Mutations. Transl Vis Sci Technol 2015; 4:8. [PMID: 26448901 DOI: 10.1167/tvst.4.5.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether the degree of change in Goldmann visual fields (GVFs) following oral administration of QLT091001 was related to baseline measures of retinal structure. METHODS Oral QLT091001 was administered once daily for 7 days in all study patients. Comprehensive ophthalmic testing, including spectral-domain optical coherence tomography (SD-OCT), was conducted in 14 patients with Leber congenital amaurosis (LCA) and 18 patients with retinitis pigmentosa (RP) at seven international sites. Average thickness of the outer segment (OS) layer was calculated over central 20°. Both eyes of each subject were evaluated separately. RESULTS Nineteen of 28 eyes (68%) with LCA and 13 of 36 eyes (36%) with RP responded to QLT091001. Among these responders, the average baseline thickness of the OS layer (central 20°) was 13.5 μm in the LCA cohort and 11.7 μm in the RP cohort. Nonresponders had average baseline OS thickness of less than 4.6 μm in both cohorts. The OS thickness in the central 20° was significantly shorter in nonresponders than responders in the LCA cohort (P = 0.01, t-test) and in the RP cohort (P = 0.02, Wilcoxon rank sum test). The OS thickness in the central 20° did not change significantly from baseline during the first 2 months (P = 0.09, t-test, paired). CONCLUSIONS The present findings suggest that there is a close parallel between the thickness of the photoreceptor layer and the potential for functional improvement in these patients. TRANSLATIONAL RELEVANCE SD-OCT thickness in the central retina may be useful for predicting the visual field response in the peripheral retina to QLT091001. (https://clinicaltrials.gov/ct2/show/NCT01014052 number, NCT01014052).
Collapse
Affiliation(s)
- Yuquan Wen
- Retina Foundation of the Southwest, Dallas, TX, USA
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, TX, USA ; Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
137
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
138
|
Maranhao B, Biswas P, Gottsch ADH, Navani M, Naeem MA, Suk J, Chu J, Khan SN, Poleman R, Akram J, Riazuddin S, Lee P, Riazuddin SA, Hejtmancik JF, Ayyagari R. Investigating the Molecular Basis of Retinal Degeneration in a Familial Cohort of Pakistani Decent by Exome Sequencing. PLoS One 2015; 10:e0136561. [PMID: 26352687 PMCID: PMC4564165 DOI: 10.1371/journal.pone.0136561] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To define the molecular basis of retinal degeneration in consanguineous Pakistani pedigrees with early onset retinal degeneration. METHODS A cohort of 277 individuals representing 26 pedigrees from the Punjab province of Pakistan was analyzed. Exomes were captured with commercial kits and sequenced on an Illumina HiSeq 2500. Candidate variants were identified using standard tools and analyzed using exomeSuite to detect all potentially pathogenic changes in genes implicated in retinal degeneration. Segregation analysis was performed by dideoxy sequencing and novel variants were additionally investigated for their presence in ethnicity-matched controls. RESULTS We identified a total of nine causal mutations, including six novel variants in RPE65, LCA5, USH2A, CNGB1, FAM161A, CERKL and GUCY2D as the underlying cause of inherited retinal degenerations in 13 of 26 pedigrees. In addition to the causal variants, a total of 200 variants each observed in five or more unrelated pedigrees investigated in this study that were absent from the dbSNP, HapMap, 1000 Genomes, NHLBI ESP6500, and ExAC databases were identified, suggesting that they are common in, and unique to the Pakistani population. CONCLUSIONS We identified causal mutations associated with retinal degeneration in nearly half of the pedigrees investigated in this study through next generation whole exome sequencing. All novel variants detected in this study through exome sequencing have been cataloged providing a reference database of variants common in, and unique to the Pakistani population.
Collapse
Affiliation(s)
- Bruno Maranhao
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Pooja Biswas
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Alexander D. H. Gottsch
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Mili Navani
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - John Suk
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Justin Chu
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Sheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rachel Poleman
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Pauline Lee
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - J. Fielding Hejtmancik
- OGVF branch, National Eye Institute, NIH, Bethesda, MD, United States of America
- * E-mail: (RA); (JFH)
| | - Radha Ayyagari
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
- * E-mail: (RA); (JFH)
| |
Collapse
|
139
|
iTRAQ-Based Proteomic Analysis of Visual Cycle-Associated Proteins in RPE of rd12 Mice before and after RPE65 Gene Delivery. J Ophthalmol 2015; 2015:918473. [PMID: 26124962 PMCID: PMC4466473 DOI: 10.1155/2015/918473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/06/2015] [Indexed: 11/24/2022] Open
Abstract
Purpose. To investigate the iTRAQ-based proteomic changes of visual cycle-associated proteins in RPE of rd12 mice before and after RPE65 gene delivery. Mehtods. The right eyes of rd12 mice underwent RPE65 gene delivery by subretinal injection at P14, leaving the left eyes as control. C57BL/6J mice were served as a wide-type control group. ERGs were recorded at P42, and RPE-choroid-sclera complex was collected to evaluate the proteomic changes in visual cycle-associated proteins by iTRAQ-based analysis. Western blot was used to confirm the changes in the differentially expressed proteins of interest. Results. ERG parameters improved dramatically at P42 after RPE65 delivery. The proteomics analysis identified a total 536 proteins with a global false discovery rate of 0.21%, out of which 7 were visual cycle-associated proteins. RALBP-1, RBP-1, and IRBP were reduced in the untreated rd12 eyes and the former two were improved after gene therapy, confirmed by Western blot analysis. Conclusions. RPE65 gene delivery restored retinal function at P42 and modified the expression of other functional proteins implicated in the visual cycle. The level of RALBP-1 was still below the normal level after gene therapy in rd12 mice, which may explain the delayed dark adaption in LCA patients undergoing similar therapy.
Collapse
|
140
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 517] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
141
|
Li Y, Yu S, Duncan T, Li Y, Liu P, Gene E, Cortes-Pena Y, Qian H, Dong L, Redmond TM. Mouse model of human RPE65 P25L hypomorph resembles wild type under normal light rearing but is fully resistant to acute light damage. Hum Mol Genet 2015; 24:4417-28. [PMID: 25972377 DOI: 10.1093/hmg/ddv178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 01/21/2023] Open
Abstract
Human RPE65 mutations cause a spectrum of blinding retinal dystrophies from severe early-onset disease to milder manifestations. The RPE65 P25L missense mutation, though having <10% of wild-type (WT) activity, causes relatively mild retinal degeneration. To better understand these mild forms of RPE65-related retinal degeneration, and their effect on cone photoreceptor survival, we generated an Rpe65/P25L knock-in (KI/KI) mouse model. We found that, when subject to the low-light regime (∼100 lux) of regular mouse housing, homozygous Rpe65/P25L KI/KI mice are morphologically and functionally very similar to WT siblings. While mutant protein expression is decreased by over 80%, KI/KI mice retinae retain comparable 11-cis-retinal levels with WT. Consistently, the scotopic and photopic electroretinographic (ERG) responses to single-flash stimuli also show no difference between KI/KI and WT mice. However, the recovery of a-wave response following moderate visual pigment bleach is delayed in KI/KI mice. Importantly, KI/KI mice show significantly increased resistance to high-intensity (20 000 lux for 30 min) light-induced retinal damage (LIRD) as compared with WT, indicating impaired rhodopsin regeneration in KI/KI. Taken together, the Rpe65/P25L mutant produces sufficient chromophore under normal conditions to keep opsins replete and thus manifests a minimal phenotype. Only when exposed to intensive light is this hypomorphic mutation manifested physiologically, as its reduced expression and catalytic activity protects against the successive cycles of opsin regeneration underlying LIRD. These data also help define minimal requirements of chromophore for photoreceptor survival in vivo and may be useful in assessing a beneficial therapeutic dose for RPE65 gene therapy in humans.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Retinal Cell and Molecular Biology
| | - Shirley Yu
- Laboratory of Retinal Cell and Molecular Biology
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology
| | | | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute/NIH, Bethesda, MD, USA
| | - Erelda Gene
- Laboratory of Retinal Cell and Molecular Biology
| | | | | | - Lijin Dong
- Genetic Engineering Core, National Eye Institute/NIH, Bethesda, MD, USA
| | | |
Collapse
|
142
|
Bennett J. My career path for developing gene therapy for blinding diseases: the importance of mentors, collaborators, and opportunities. Hum Gene Ther 2015; 25:663-70. [PMID: 25136912 DOI: 10.1089/hum.2014.2529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Jean Bennett
- Department of Ophthalmology and Center for Advanced Retinal and Ophthalmic Therapeutics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA 19104
| |
Collapse
|
143
|
Li S, Hu J, Jin RJ, Aiyar A, Jacobson SG, Bok D, Jin M. Temperature-sensitive retinoid isomerase activity of RPE65 mutants associated with Leber Congenital Amaurosis. J Biochem 2015; 158:115-25. [PMID: 25752820 DOI: 10.1093/jb/mvv028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
RPE65 is a membrane-associated retinoid isomerase involved in the visual cycle responsible for sustaining vision. Many mutations in the human RPE65 gene are associated with distinct forms of retinal degenerative diseases. The pathogenic mechanisms for most of these mutations remain poorly understood. Here, we show that three Leber congenital amaurosis -associated RPE65 mutants (R91W, Y249C and R515W) undergo rapid proteasomal degradation mediated by the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13) in cultured human retinal pigment epithelium (RPE) cells. These mutant proteins formed cytosolic inclusion bodies or high molecular weight complexes via disulfide bonds. The mutations are mapped on non-active sites but severely reduced isomerase activity of RPE65. At 30°C, however, the enzymatic function and membrane-association of the mutant RPE65s are significantly rescued possibly due to proper folding. In addition, PSMD13 displayed a drastically decreased effect on degradation of the mutant proteins in the cells grown at 30°C. These results suggest that PSMD13 plays a critical role in regulating pathogenicity of the mutations and the molecular basis for the PSMD13-mediated rapid degradation and loss of function of the mutants is misfolding of RPE65.
Collapse
Affiliation(s)
- Songhua Li
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Jane Hu
- Jules Stein Eye Institute and Department of Neurobiology, University of California, Los Angeles, CA 90095 USA
| | - Robin J Jin
- State University of New York at Buffalo, Buffalo, NY 14214 USA
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA; and
| | - Samuel G Jacobson
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dean Bok
- Jules Stein Eye Institute and Department of Neurobiology, University of California, Los Angeles, CA 90095 USA
| | - Minghao Jin
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA;
| |
Collapse
|
144
|
Xu H, Gu S, Riquelme MA, Burra S, Callaway D, Cheng H, Guda T, Schmitz J, Fajardo RJ, Werner SL, Zhao H, Shang P, Johnson ML, Bonewald LF, Jiang JX. Connexin 43 channels are essential for normal bone structure and osteocyte viability. J Bone Miner Res 2015; 30:436-48. [PMID: 25270829 PMCID: PMC4333056 DOI: 10.1002/jbmr.2374] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/28/2014] [Accepted: 10/01/2014] [Indexed: 11/10/2022]
Abstract
Connexin (Cx) 43 serves important roles in bone function and development. Targeted deletion of Cx43 in osteoblasts or osteocytes leads to increased osteocyte apoptosis, osteoclast recruitment, and reduced biomechanical properties. Cx43 forms both gap junction channels and hemichannels, which mediate the communication between adjacent cells or between cell and extracellular environments, respectively. Two transgenic mouse models driven by a DMP1 promoter with the overexpression of dominant negative Cx43 mutants were generated to dissect the functional contribution of Cx43 gap junction channels and hemichannels in osteocytes. The R76W mutant blocks the gap junction channel, but not the hemichannel function, and the Δ130-136 mutant inhibits activity of both types of channels. Δ130-136 mice showed a significant increase in bone mineral density compared to wild-type (WT) and R76W mice. Micro-computed tomography (µCT) analyses revealed a significant increase in total tissue and bone area in midshaft cortical bone of Δ130-136 mice. The bone marrow cavity was expanded, whereas the cortical thickness was increased and associated with increased bone formation along the periosteal area. However, there is no significant alteration in the structure of trabecular bone. Histologic sections of the midshaft showed increased apoptotic osteocytes in Δ130-136, but not in WT and R76W, mice which correlated with altered biomechanical and estimated bone material properties. Osteoclasts were increased along the endocortical surface in both transgenic mice with a greater effect in Δ130-136 mice that likely contributed to the increased marrow cavity. Interestingly, the overall expression of serum bone formation and resorption markers were higher in R76W mice. These findings suggest that osteocytic Cx43 channels play distinctive roles in the bone; hemichannels play a dominant role in regulating osteocyte survival, endocortical bone resorption, and periosteal apposition, and gap junction communication is involved in the process of bone remodeling.
Collapse
Affiliation(s)
- Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xian, China
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas
| | - Sumin Gu
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas
| | - Manuel A. Riquelme
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas
| | - Sirisha Burra
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas
| | - Danielle Callaway
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas
| | - Hongyun Cheng
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas
| | - Teja Guda
- Department of Biomedical Engineering, University of Texas at San Antonio, Texas
| | - James Schmitz
- Department of Orthopedics, University of Texas Health Science Center at San Antonio, Texas
| | - Roberto J. Fajardo
- Department of Orthopedics, University of Texas Health Science Center at San Antonio, Texas
| | - Sherry L. Werner
- Department of Pathology, University of Texas Health Science Center at San Antonio, Texas
| | - Hong Zhao
- Department of Oral Biology, School of Dentistry, University of Missouri, Kansas City, MO
| | - Peng Shang
- School of Life Sciences, Northwestern Polytechnical University, Xian, China
| | - Mark L. Johnson
- Department of Oral Biology, School of Dentistry, University of Missouri, Kansas City, MO
| | - Lynda F. Bonewald
- Department of Oral Biology, School of Dentistry, University of Missouri, Kansas City, MO
| | - Jean X. Jiang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas
| |
Collapse
|
145
|
Dai X, Zhang H, He Y, Qi Y, Chang B, Pang JJ. The frequency-response electroretinogram distinguishes cone and abnormal rod function in rd12 mice. PLoS One 2015; 10:e0117570. [PMID: 25706871 PMCID: PMC4338143 DOI: 10.1371/journal.pone.0117570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/28/2014] [Indexed: 11/19/2022] Open
Abstract
Early studies on Rpe65 knockout mice reported that remaining visual function was attributable to cone function. However, this finding has been challenged more and more as time has passed. Electroretinograms (ERGs) showed that rd12 mice, a spontaneous animal model of RPE65 Leber’s congenital amaurosis, had sizeable photopic responses. Unfortunately, the recorded ERG waveform was difficult to interpret because of a remarkably delayed peak-time, which resembles a rod response more than a cone response. Here, we compare flicker ERGs in animals with normal rod and cone function (C57BL/6J mice), pure rod function (cpfl5 mice), and pure cone function (Rho-/- mice) under different adaptation levels and stimulus intensities. These responses were then compared with those obtained from rd12 mice. Our results showed that normal rods respond to low frequency flicker (5 and 15 Hz) and that normal cones respond to both low and high frequency flicker (5–35 Hz). As was seen in cpfl5 mice, rd12 mice had recordable responses to low frequency flicker (5 and 15Hz), but not to high frequency flicker (25 and 35 Hz). We hypothesize that abnormal rods may be the source of residual vision in rd12 mice, which is proved correct here with double mutant rd12mice. In this study, we show, for the first time, that frequency-response ERGs can effectively distinguish cone- and rod-driven responses in the rd12 mouse. It is another simple and valid method for evaluating the respective contributions of retinal rods and cones.
Collapse
Affiliation(s)
- Xufeng Dai
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Hua Zhang
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Ying He
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yan Qi
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ji-jing Pang
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
146
|
Takamiya M, Weger BD, Schindler S, Beil T, Yang L, Armant O, Ferg M, Schlunck G, Reinhard T, Dickmeis T, Rastegar S, Strähle U. Molecular description of eye defects in the zebrafish Pax6b mutant, sunrise, reveals a Pax6b-dependent genetic network in the developing anterior chamber. PLoS One 2015; 10:e0117645. [PMID: 25692557 PMCID: PMC4334901 DOI: 10.1371/journal.pone.0117645] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022] Open
Abstract
The cornea is a central component of the camera eye of vertebrates and even slight corneal disturbances severely affect vision. The transcription factor PAX6 is required for normal eye development, namely the proper separation of the lens from the developing cornea and the formation of the iris and anterior chamber. Human PAX6 mutations are associated with severe ocular disorders such as aniridia, Peters anomaly and chronic limbal stem cell insufficiency. To develop the zebrafish as a model for corneal disease, we first performed transcriptome and in situ expression analysis to identify marker genes to characterise the cornea in normal and pathological conditions. We show that, at 7 days post fertilisation (dpf), the zebrafish cornea expresses the majority of marker genes (67/84 tested genes) found also expressed in the cornea of juvenile and adult stages. We also characterised homozygous pax6b mutants. Mutant embryos have a thick cornea, iris hypoplasia, a shallow anterior chamber and a small lens. Ultrastructure analysis revealed a disrupted corneal endothelium. pax6b mutants show loss of corneal epithelial gene expression including regulatory genes (sox3, tfap2a, foxc1a and pitx2). In contrast, several genes (pitx2, ctnnb2, dcn and fabp7a) were ectopically expressed in the malformed corneal endothelium. Lack of pax6b function leads to severe disturbance of the corneal gene regulatory programme.
Collapse
Affiliation(s)
- Masanari Takamiya
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Benjamin D. Weger
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Simone Schindler
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Tanja Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Lixin Yang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Günther Schlunck
- Eye Center, Freiburg University Medical Center, Killianstr. 5, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Freiburg University Medical Center, Killianstr. 5, 79106 Freiburg, Germany
| | - Thomas Dickmeis
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
147
|
Pierce EA, Bennett J. The Status of RPE65 Gene Therapy Trials: Safety and Efficacy. Cold Spring Harb Perspect Med 2015; 5:a017285. [PMID: 25635059 DOI: 10.1101/cshperspect.a017285] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several groups have reported the results of clinical trials of gene augmentation therapy for Leber congenital amaurosis (LCA) because of mutations in the RPE65 gene. These studies have used subretinal injection of adeno-associated virus (AAV) vectors to deliver the human RPE65 cDNA to the retinal pigment epithelial (RPE) cells of the treated eyes. In all of the studies reported to date, this approach has been shown to be both safe and effective. The successful clinical trials of gene augmentation therapy for retinal degeneration caused by mutations in the RPE65 gene sets the stage for broad application of gene therapy to treat retinal degenerative disorders.
Collapse
Affiliation(s)
- Eric A Pierce
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts 02114
| | - Jean Bennett
- Department of Ophthalmology, Center for Advanced Retinal and Ophthalmic Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
148
|
Garcia-Cazorla À, Mochel F, Lamari F, Saudubray JM. The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview. J Inherit Metab Dis 2015; 38:19-40. [PMID: 25413954 DOI: 10.1007/s10545-014-9776-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
Over one hundred diseases related to inherited defects of complex lipids synthesis and remodeling are now reported. Most of them were described within the last 5 years. New descriptions and phenotypes are expanding rapidly. While the associated clinical phenotype is currently difficult to outline, with only a few patients identified, it appears that all organs and systems may be affected. The main clinical presentations can be divided into (1) Diseases affecting the central and peripheral nervous system. Complex lipid synthesis disorders produce prominent motor manifestations due to upper and/or lower motoneuron degeneration. Motor signs are often complex, associated with other neurological and extra-neurological signs. Three neurological phenotypes, spastic paraparesis, neurodegeneration with brain iron accumulation and peripheral neuropathies, deserve special attention. Many apparently well clinically defined syndromes are not distinct entities, but rather clusters on a continuous spectrum, like for the PNPLA6-associated diseases, extending from Boucher-Neuhauser syndrome via Gordon Holmes syndrome to spastic ataxia and pure hereditary spastic paraplegia; (2) Muscular/cardiac presentations; (3) Skin symptoms mostly represented by syndromic (neurocutaneous) and non syndromic ichthyosis; (4) Retinal dystrophies with syndromic and non syndromic retinitis pigmentosa, Leber congenital amaurosis, cone rod dystrophy, Stargardt disease; (5) Congenital bone dysplasia and segmental overgrowth disorders with congenital lipomatosis; (6) Liver presentations characterized mainly by transient neonatal cholestatic jaundice and non alcoholic liver steatosis with hypertriglyceridemia; and (7) Renal and immune presentations. Lipidomics and molecular functional studies could help to elucidate the mechanism(s) of dominant versus recessive inheritance observed for the same gene in a growing number of these disorders.
Collapse
Affiliation(s)
- Àngels Garcia-Cazorla
- Department of Neurology, Neurometabolic Unit, Hospital Sant Joan de Déu and CIBERER, ISCIII, Barcelona, Spain,
| | | | | | | |
Collapse
|
149
|
Wright CB, Redmond TM, Nickerson JM. A History of the Classical Visual Cycle. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:433-48. [DOI: 10.1016/bs.pmbts.2015.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
150
|
Katagiri S, Hayashi T, Kondo M, Tsukitome H, Yoshitake K, Akahori M, Ikeo K, Tsuneoka H, Iwata T. RPE65 Mutations in Two Japanese Families with Leber Congenital Amaurosis. Ophthalmic Genet 2014; 37:161-9. [DOI: 10.3109/13816810.2014.991931] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Satoshi Katagiri
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan,
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan,
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan,
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan,
- Department of Ophthalmology, Aichi Children’s Health and Medical Center, Obu, Japan, and
| | - Hideyuki Tsukitome
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan,
| | - Kazutoshi Yoshitake
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | - Masakazu Akahori
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan,
| | - Kazuho Ikeo
- Laboratory of DNA Data Analysis, National Institute of Genetics, Shizuoka, Japan
| | - Hiroshi Tsuneoka
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan,
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan,
| |
Collapse
|