101
|
Scilabra SD, Troeberg L, Yamamoto K, Emonard H, Thøgersen I, Enghild JJ, Strickland DK, Nagase H. Differential regulation of extracellular tissue inhibitor of metalloproteinases-3 levels by cell membrane-bound and shed low density lipoprotein receptor-related protein 1. J Biol Chem 2013; 288:332-42. [PMID: 23166318 PMCID: PMC3537031 DOI: 10.1074/jbc.m112.393322] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/10/2012] [Indexed: 11/06/2022] Open
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP-3) plays a key role in regulating extracellular matrix turnover by inhibiting matrix metalloproteinases (MMPs), adamalysins (ADAMs), and adamalysins with thrombospondin motifs (ADAMTSs). We demonstrate that levels of this physiologically important inhibitor can be regulated post-translationally by endocytosis. TIMP-3 was endocytosed and degraded by a number of cell types including chondrocytes, fibroblasts, and monocytes, and we found that the endocytic receptor low density lipoprotein receptor-related protein-1 (LRP-1) plays a major role in TIMP-3 internalization. However, the cellular uptake of TIMP-3 significantly slowed down after 10 h due to shedding of LRP-1 from the cell surface and formation of soluble LRP-1 (sLRP-1)-TIMP-3 complexes. Addition of TIMP-3 to HTB94 human chondrosarcoma cells increased the release of sLRP-1 fragments of 500, 215, 160, and 110 kDa into the medium in a concentration-dependent manner, and all of these fragments were able to bind to TIMP-3. TIMP-3 bound to sLRP-1, which was resistant to endocytosis, retained its inhibitory activity against metalloproteinases. Extracellular levels of sLRP-1 can thus increase the half-life of TIMP-3 in the extracellular space, controlling the bioavailability of TIMP-3 to inhibit metalloproteinases.
Collapse
Affiliation(s)
- Simone D. Scilabra
- From the Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
- the Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom
| | - Linda Troeberg
- From the Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
- the Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom
| | - Kazuhiro Yamamoto
- the Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom
| | - Hervé Emonard
- the University of Reims Champagne-Ardenne, FRE 3481 CNRS, 51100 Reims, France
| | - Ida Thøgersen
- the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark, and
| | - Jan J. Enghild
- the Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark, and
| | | | - Hideaki Nagase
- From the Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
- the Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom
| |
Collapse
|
102
|
Overexpression of TNF-α-converting enzyme in fibroblasts augments dermal fibrosis after inflammation. J Transl Med 2013; 93:72-80. [PMID: 23147225 DOI: 10.1038/labinvest.2012.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
TNF-α-converting enzyme (TACE) can cleave transmembrane proteins, such as TNF-α, TNF receptors, and epidermal growth factor receptor (EGFR) ligands, to release the extracellular domains from the cell surface. Recent studies have suggested that overexpression of TACE may be associated with the pathogenesis of inflammation and fibrosis. To determine the roles of TACE in inflammation and fibrosis, TACE transgenic (TACE-Tg) mice, which overexpressed TACE systemically, were generated. As the transgene-derived TACE was expressed as an inactive form, no spontaneous phenotype developed in TACE-Tg mice. However, the transgene-derived TACE could be converted to an active form by furin in vitro and by phorbol myristate acetate (PMA) in vivo. Subcutaneous injection of PMA into mice induced inflammatory cell infiltration 1 day later and subsequent dermal fibrosis 7 days later. Interestingly, the degree of dermal fibrosis at day 7 was significantly higher in TACE-Tg mice than in wild-type mice. Correspondingly, PMA increased the expression of type I collagen in the primary culture of dermal fibroblasts derived from TACE-Tg mice. Furthermore, phosphorylated EGFR was increased in the fibroblasts by the PMA treatment. The collective findings suggest that TACE overexpression and activation in fibroblasts could shed off putative EGFR ligands. Subsequently, the soluble EGFR ligands could bind and activate EGFR on fibroblasts, and then increase the type I collagen expression resulting in induction of dermal fibrosis. These results also suggest that TACE and EGFR on fibroblasts may be novel therapeutic targets of dermal fibrosis, which is induced after diverse inflammatory disorders of the skin.
Collapse
|
103
|
Kawasaki S, Motoshima H, Hanatani S, Takaki Y, Igata M, Tsutsumi A, Matsumura T, Kondo T, Senokuchi T, Ishii N, Kinoshita H, Fukuda K, Kawashima J, Shimoda S, Nishikawa T, Araki E. Regulation of TNFα converting enzyme activity in visceral adipose tissue of obese mice. Biochem Biophys Res Commun 2012; 430:1189-94. [PMID: 23274494 DOI: 10.1016/j.bbrc.2012.12.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 01/11/2023]
Abstract
Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine and one of the major mediators of obesity-induced insulin resistance. TNFα is generated through TNFα converting enzyme (TACE)-mediated cleavage of the transmembrane precursor pro-TNFα. Inhibition of TACE resulted in the improvement in glucose and insulin levels in diabetic animals, suggesting a crucial role of TACE activity in glucose metabolism. However, the regulation of TACE activity in insulin-sensitive tissues has not been fully determined. This study aimed to investigate the impact of TACE in insulin-sensitive tissues in the early stage of the development of obesity. C57BL6 mice were fed standard chow (B6-SC) or high-fat/high-sucrose diet (B6-HF/HS). KK-Ay mice were fed SC ad libitum (Ay-AL) or fed reduced amounts of SC (caloric restriction (CR); Ay-CR). As control for Ay-AL, KK mice fed SC ad libitum (KK-AL) were used. TACE activity in visceral adipose tissue (VAT), but not in liver or skeletal muscle, was significantly elevated in B6-HF/HS and Ay-AL compared with B6-SC and KK-AL, respectively. Phosphorylation of JNK and p38MAPK, but not ERK, in VATs from B6-HF/HS and Ay-AL was also significantly elevated. Ay-CR showed significantly lower TACE, JNK and p38MAPK activities in VAT and serum TNFα level compared with those of Ay-AL. In contrast, intraperitoneal injection of TNFα activated TACE, JNK and p38MAPK activities in VAT in KK mice. In conclusion, during the development of obesity, TACE activity is elevated only in VAT, and CR effectively reduced TACE activity and TACE-mediated pro-TNFα shedding in VAT.
Collapse
Affiliation(s)
- Shuji Kawasaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Grivennikov SI. Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 2012; 35:229-44. [PMID: 23161445 DOI: 10.1007/s00281-012-0352-6] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/27/2012] [Indexed: 12/12/2022]
Abstract
Connection between inflammation and cancer is a rapidly developing field. Epidemiological data suggests that inflammation along with distinct arms of host immune system plays a very important role in the development and progression of many different cancers. Inflammatory bowel disease (IBD) is an important risk factor for the development of colon cancer, namely, colitis-associated cancer (CAC). The molecular mechanisms by which inflammation promotes cancer development are still being uncovered and may differ between CAC and other forms of colorectal cancer. Recent work has shed light on the role of distinct immune cells, cytokines, and other immune mediators in virtually all of the steps of colonic tumorigenesis, including tumor initiation and promotion as well as progression and metastasis. The close proximity of colonic tumors to the myriad of intestinal microbes, as well as instrumental role of microbiota in IBD, introduces microbes as new players capable of triggering inflammation and possibly promoting tumorigenesis. Various mechanisms of CAC tumorigenesis as well as new possible hints for the future approaches for prevention and therapy are discussed in this review.
Collapse
Affiliation(s)
- Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA.
| |
Collapse
|
105
|
Corlu A, Loyer P. Regulation of the g1/s transition in hepatocytes: involvement of the cyclin-dependent kinase cdk1 in the DNA replication. Int J Hepatol 2012; 2012:689324. [PMID: 23091735 PMCID: PMC3471441 DOI: 10.1155/2012/689324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022] Open
Abstract
A singular feature of adult differentiated hepatocytes is their capacity to proliferate allowing liver regeneration. This review emphasizes the literature published over the last 20 years that established the most important pathways regulating the hepatocyte cell cycle. Our article also aimed at illustrating that many discoveries in this field benefited from the combined use of in vivo models of liver regeneration and in vitro models of primary cultures of human and rodent hepatocytes. Using these models, our laboratory has contributed to decipher the different steps of the progression into the G1 phase and the commitment to S phase of proliferating hepatocytes. We identified the mitogen dependent restriction point located at the two-thirds of the G1 phase and the concomitant expression and activation of both Cdk1 and Cdk2 at the G1/S transition. Furthermore, we demonstrated that these two Cdks contribute to the DNA replication. Finally, we provided strong evidences that Cdk1 expression and activation is correlated to extracellular matrix degradation upon stimulation by the pro-inflammatory cytokine TNFα leading to the identification of a new signaling pathway regulating Cdk1 expression at the G1/S transition. It also further confirms the well-orchestrated regulation of liver regeneration via multiple extracellular signals and pathways.
Collapse
Affiliation(s)
- Anne Corlu
- Inserm UMR S 991, Foie Métabolismes et Cancer, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes Cedex, France
| | - Pascal Loyer
- Inserm UMR S 991, Foie Métabolismes et Cancer, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes Cedex, France
| |
Collapse
|
106
|
Wu DW, Tsai LH, Chen PM, Lee MC, Wang L, Chen CY, Cheng YW, Lee H. Loss of TIMP-3 promotes tumor invasion via elevated IL-6 production and predicts poor survival and relapse in HPV-infected non-small cell lung cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1796-806. [PMID: 22982189 DOI: 10.1016/j.ajpath.2012.07.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/19/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Human papillomavirus (HPV) 16/18 E6 oncoprotein is expressed in lung tumors and is associated with p53 inactivation. The tissue inhibitor of metalloproteinase 3 (TIMP-3) is essential for limiting inflammation; therefore, we expected that TIMP-3 loss might induce chronic inflammation, thereby promoting tumor malignancy as well as poor survival and relapse in patients with HPV-infected non-small cell lung cancer. In this study, the loss of TIMP-3 by loss of heterozygosity and/or promoter hypermethylation was more frequent in HPV16/18 E6-positive tumors than in E6-negative tumors. To explore the possible underlying mechanism, E6-negative TL4 and CL1-0 cells were transfected with an E6 cDNA plasmid. A marked decrease in TIMP-3 expression was caused by promoter hypermethylation via increased DNA (cytosine-5-)-methyltransferase 1 (DNMT1) expression. Mechanistic studies indicated that TIMP-3 loss promoted interleukin-6 (IL-6) production, which led to cell invasion and anchorage-independent growth on soft agar plates. Kaplan-Meier and Cox regression models showed that patients with low-TIMP-3/high-IL-6 tumors had shorter overall survival and relapse-free survival periods when compared with patients with high-TIMP-3/low-IL-6 tumors. In summary, loss of TIMP-3 may increase IL-6 production via the tumor necrosis factor α/nuclear factor κB axis, thereby promoting tumor malignancy and subsequent relapse and poor survival in patients with HPV-infected non-small cell lung cancer.
Collapse
Affiliation(s)
- De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Xu P, Liu J, Sakaki-Yumoto M, Derynck R. TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci Signal 2012; 5:ra34. [PMID: 22550340 DOI: 10.1126/scisignal.2002689] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ectodomain shedding mediated by tumor necrosis factor-α (TNF-α)-converting enzyme [TACE; also known as ADAM17 (a disintegrin and metalloproteinase 17)] provides an important switch in regulating cell proliferation, inflammation, and cancer progression. TACE-mediated ectodomain cleavage is activated by signaling of the mitogen-activated protein kinases (MAPKs) p38 and ERK (extracellular signal-regulated kinase). Here, we found that under basal conditions, TACE was predominantly present as dimers at the cell surface, which required its cytoplasmic domain and enabled efficient association with tissue inhibitor of metalloproteinase-3 (TIMP3) and silencing of TACE activity. Upon activation of the ERK or p38 MAPK pathway, the balance shifted from TACE dimers to monomers, and this shift was associated with increased cell surface presentation of TACE and decreased TIMP3 association, which relieved the inhibition of TACE by TIMP3 and increased TACE-mediated proteolysis of transforming growth factor-α. Thus, cell signaling altered the dimer-monomer equilibrium and inhibitor association to promote activation of TACE-mediated ectodomain shedding, a regulatory mechanism that may extend to other ADAM proteases.
Collapse
Affiliation(s)
- Pinglong Xu
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
108
|
Chronic and intermittent hypoxia differentially regulate left ventricular inflammatory and extracellular matrix responses. Hypertens Res 2012; 35:811-8. [PMID: 22495609 PMCID: PMC3419973 DOI: 10.1038/hr.2012.32] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We evaluated the left ventricle (LV) response to hypoxia by comparing male Sprague Dawley rats exposed for 7 days to normoxia (control; n=18), chronic sustained hypoxia (CSH; n=12) and chronic intermittent hypoxia (CIH; n=12). Out of the 168 inflammatory, extracellular matrix and adhesion molecule genes evaluated, Ltb, Cdh4, Col5a1, Ecm1, MMP-11 and TIMP-2 increased in the LV (range: 87–138%), whereas Tnfrsf1a decreased 27%, indicating an increase in inflammatory status with CSH (all P<0.05). CIH decreased Ltb, Spp1 and Ccl5 levels, indicating reduced inflammatory status. While Laminin β2 gene levels increased 123%, MMP-9 and fibronectin gene levels both decreased 74% in CIH (all P<0.05). Right ventricle/body weight ratios increased in CSH (1.1±0.1 g g−1) compared with control (0.7±0.1 g g−1) and CIH (0.8±0.1 g g−1; both P<0.05). Lung to body weight increased in CSH, while LV/body weight ratios were similar among all three groups. With CIH, myocyte cross sectional areas increased 25% and perivascular fibrosis increased 100% (both P<0.05). Gene changes were independent of global changes and were validated by protein levels. MMP-9 protein levels decreased 94% and fibronectin protein levels decreased 42% in CIH (both P<0.05). Consistent with a decreased inflammatory status, HIF-2α and eNOS protein levels were 36% and 44% decreased, respectively, in CIH (both P<0.05). In conclusion, our results indicate that following 7 days of hypoxia, inflammation increases in response to CSH and decreases in response to CIH. This report is the first to demonstrate specific and differential changes seen in the LV during chronic sustained and CIH.
Collapse
|
109
|
Chen M, Peyrin-Biroulet L, George A, Coste F, Bressenot A, Bossenmeyer-Pourie C, Alberto JM, Xia B, Namour B, Guéant JL. Methyl deficient diet aggravates experimental colitis in rats. J Cell Mol Med 2012; 15:2486-97. [PMID: 21199330 PMCID: PMC3822959 DOI: 10.1111/j.1582-4934.2010.01252.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBD) result from complex interactions between environmental and genetic factors. Low blood levels of vitamin B12 and folate and genetic variants of related target enzymes are associated with IBD risk, in population studies. To investigate the underlying mechanisms, we evaluated the effects of a methyl-deficient diet (MDD, folate, vitamin B12 and choline) in an experimental model of colitis induced by dextran sodium sulphate (DSS), in rat pups from dams subjected to the MDD during gestation and lactation. Four groups were considered (n= 12–16 per group): C DSS− (control/DSS−), D DSS− (deficient/DSS−), C DSS+ (control/DSS+) and D DSS+ (deficient/DSS+). Changes in apoptosis, oxidant stress and pro-inflammatory pathways were studied within colonic mucosa. In rat pups, the MDD produced a decreased plasma concentration of vitamin B12 and folate and an increased homocysteine (7.8 ± 0.9 versus 22.6 ± 1.2 μmol/l, P < 0.001). The DSS-induced colitis was dramatically more severe in the D DSS+ group compared with each other group, with no change in superoxide dismutase and glutathione peroxidase activity, but decreased expression of caspase-3 and Bax, and increased Bcl-2 levels. The mRNA levels of tumour necrosis factor (TNF)-α and protein levels of p38, cytosolic phospolipase A2 and cyclooxygenase 2 were significantly increased in the D DSS+ pups and were accompanied by a decrease in the protein level of tissue inhibitor of metalloproteinases (TIMP)3, a negative regulator of TNF-α. MDD may cause an overexpression of pro-inflammatory pathways, indicating an aggravating effect of folate and/or vitamin B12 deficiency in experimental IBD. These findings suggest paying attention to vitamin B12 and folate deficits, frequently reported in IBD patients.
Collapse
Affiliation(s)
- Min Chen
- Inserm U954, Medical faculty and CHU of Nancy, Nancy-Université, Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Murthy A, Shao YW, Narala SR, Molyneux SD, Zúñiga-Pflücker JC, Khokha R. Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. Immunity 2012; 36:105-19. [PMID: 22284418 DOI: 10.1016/j.immuni.2012.01.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/21/2011] [Accepted: 01/06/2012] [Indexed: 12/20/2022]
Abstract
Epithelial cells of mucosal tissues provide a barrier against environmental stress, and keratinocytes are key decision makers for immune cell function in the skin. Currently, epithelial signaling networks that instruct barrier immunity remain uncharacterized. Here we have shown that keratinocyte-specific deletion of a disintegrin and metalloproteinase 17 (Adam17) triggers T helper 2 and/or T helper 17 (Th2 and/or Th17) cell-driven atopic dermatitis and myeloproliferative disease. In vivo and in vitro deficiency of ADAM17 dampened Notch signaling, increasing production of the Th2 cell-polarizing cytokine TSLP and myeloid growth factor G-CSF. Ligand-independent Notch activation was identified as a regulator of AP-1 transcriptional activity, with Notch antagonizing c-Fos recruitment to the promoters of Tslp and Csf3 (G-CSF). Further, skin inflammation was rescued and myeloproliferation ameliorated by delivery of active Notch to Adam17(-)(/-) epidermis. Our findings uncover an essential role of ADAM17 in the adult epidermis, demonstrating a gatekeeper function of the ADAM17-Notch-c-Fos triad in barrier immunity.
Collapse
|
111
|
Murthy A, Shao YW, Defamie V, Wedeles C, Smookler D, Khokha R. Stromal TIMP3 regulates liver lymphocyte populations and provides protection against Th1 T cell-driven autoimmune hepatitis. THE JOURNAL OF IMMUNOLOGY 2012; 188:2876-83. [PMID: 22323541 DOI: 10.4049/jimmunol.1102199] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lymphocyte infiltration into epithelial tissues and proinflammatory cytokine release are key steps in autoimmune disease. Although cell-autonomous roles of lymphocytes are well studied in autoimmunity, much less is understood about the stromal factors that dictate immune cell function. Tissue inhibitor of metalloproteinases 3 (TIMP3) controls systemic cytokine bioavailability and signaling by inhibiting the ectodomain shedding of cytokines and their receptors. The role of TIMP3 in cytokine biology is emerging; however, its contribution to cellular immunology remains unknown. In this study, we show that TIMP3 produced by the hepatic stroma regulates the basal lymphocyte populations in the liver and prevents autoimmune hepatitis. TIMP3 deficiency in mice led to spontaneous accumulation and activation of hepatic CD4(+), CD8(+), and NKT cells. Treatment with Con A in a model of polyclonal T lymphocyte activation resulted in a greatly enhanced Th1 cytokine response and acute liver failure, which mechanistically depended on TNF signaling. Bone marrow chimeras demonstrated that TIMP3 derived from the stromal rather than hematopoietic compartment provided protection against autoimmunity. Finally, we identified hepatocytes as the major source of Timp3 in a resting liver, whereas significant Timp3 gene transcription was induced by hepatic stellate cells in the inflamed liver. These results uncover metalloproteinase inhibitors as critical stromal factors in regulating cellular immunity during autoimmune hepatitis.
Collapse
Affiliation(s)
- Aditya Murthy
- Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | |
Collapse
|
112
|
A Review and Update on the Molecular Basis of Pathogenesis of Sorsby Fundus Dystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:261-7. [DOI: 10.1007/978-1-4614-0631-0_34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
113
|
Casagrande V, Menghini R, Menini S, Marino A, Marchetti V, Cavalera M, Fabrizi M, Hribal ML, Pugliese G, Gentileschi P, Schillaci O, Porzio O, Lauro D, Sbraccia P, Lauro R, Federici M. Overexpression of Tissue Inhibitor of Metalloproteinase 3 in Macrophages Reduces Atherosclerosis in Low-Density Lipoprotein Receptor Knockout Mice. Arterioscler Thromb Vasc Biol 2012; 32:74-81. [DOI: 10.1161/atvbaha.111.238402] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Viviana Casagrande
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Rossella Menghini
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Stefano Menini
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Arianna Marino
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Valentina Marchetti
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Michele Cavalera
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Marta Fabrizi
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Marta L. Hribal
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Giuseppe Pugliese
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Paolo Gentileschi
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Orazio Schillaci
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Ottavia Porzio
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Davide Lauro
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Paolo Sbraccia
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Renato Lauro
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| | - Massimo Federici
- From the Departments of Internal Medicine (V.C., R.M., A.M., V.M., M.C., M. Fabrizi, O.P., D.L., P.S., R.L., M. Federici), Surgery (P.G.), Diagnostic Imaging (O.S.), University of Rome “Tor Vergata,” Rome, Italy; Department of Clinical and Molecular Medicine, “Sapienza” University, Rome, Italy (S.M., G.P.); University of Magna Graecia, Catanzaro, Italy (M.L.H.)
| |
Collapse
|
114
|
The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 2011; 91:472-85. [PMID: 22138087 DOI: 10.1016/j.ejcb.2011.09.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 09/08/2011] [Indexed: 01/14/2023] Open
Abstract
Within the vasculature the disintegrins and metalloproteinases (ADAMs) 8, 9, 10, 12, 15, 17, 19, 28 and 33 are expressed on endothelial cells, smooth muscle cells and on leukocytes. As surface-expressed proteases they mediate cleavage of vascular surface molecules at an extracellular site close to the membrane. This process is termed shedding and leads to the release of a soluble substrate ectodomain thereby critically modulating the biological function of the substrate. In the vasculature several surface molecules undergo ADAM-mediated shedding including tumour necrosis factor (TNF) α, interleukin (IL) 6 receptor α, L-selectin, vascular endothelial (VE)-cadherin, the transmembrane CX3C-chemokine ligand (CX3CL) 1, Notch, transforming growth factor (TGF) and heparin-binding epidermal growth factor (HB-EGF). These substrates play distinct roles in vascular biology by promoting inflammation, permeability changes, leukocyte recruitment, resolution of inflammation, regeneration and/or neovascularisation. Especially ADAM17 and ADAM10 are capable of cleaving many substrates with diverse function within the vasculature, whereas other ADAMs have a more restricted substrate range. Therefore, targeting ADAM17 or ADAM10 by pharmacologic inhibition or gene knockout not only attenuates the inflammatory response in animal models but also affects tissue regeneration and neovascularisation. Recent discoveries indicate that other ADAMs (e.g. ADAM8 and 9) also play important roles in vascular biology but appear to have more selective effects on vascular responses (e.g. on neovascularisation only). Although, targeting of ADAM17 and ADAM10 in inflammatory diseases is still a promising approach, temporal and spatial as well as substrate-specific inhibition approaches are required to minimise undesired side effects on vascular cells.
Collapse
|
115
|
TIMP3 regulates mammary epithelial apoptosis with immune cell recruitment through differential TNF dependence. PLoS One 2011; 6:e26718. [PMID: 22053204 PMCID: PMC3203873 DOI: 10.1371/journal.pone.0026718] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/03/2011] [Indexed: 01/14/2023] Open
Abstract
Post-lactation mammary involution is a homeostatic process requiring epithelial apoptosis and clearance. Given that the deficiency of the extracellular metalloproteinase inhibitor TIMP3 impacts epithelial apoptosis and heightens inflammatory response, we investigated whether TIMP3 regulates these distinct processes during the phases of mammary gland involution in the mouse. Here we show that TIMP3 deficiency leads to TNF dysregulation, earlier caspase activation and onset of mitochondrial apoptosis. This accelerated first phase of involution includes faster loss of initiating signals (STAT3 activation; TGFβ3) concurrent with immediate luminal deconstruction through E-cadherin fragmentation. Epithelial apoptosis is followed by accelerated adipogenesis and a greater macrophage and T-cell infiltration in Timp3(-/-) involuting glands. Crossing in Tnf deficiency abrogates caspase 3 activation, but heightens macrophage and T-cell influx into Timp3(-/-) glands. The data indicate that TIMP3 differentially impacts apoptosis and inflammatory cell influx, based on involvement of TNF, during the process of mammary involution. An understanding of the molecular factors and wound healing microenvironment of the postpartum mammary gland may have implications for understanding pregnancy-associated breast cancer risk.
Collapse
|
116
|
de Meijer VE, Le HD, Meisel JA, Sharma AK, Popov Y, Puder M. Tumor necrosis factor α-converting enzyme inhibition reverses hepatic steatosis and improves insulin sensitivity markers and surgical outcome in mice. PLoS One 2011; 6:e25587. [PMID: 21980496 PMCID: PMC3181348 DOI: 10.1371/journal.pone.0025587] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 09/08/2011] [Indexed: 12/29/2022] Open
Abstract
Background Hepatic steatosis is an established risk factor for complications following major hepatic resection. Pharmacological options to reverse steatosis prior to surgery, however, are lacking. We hypothesized that treatment with the pharmacologic tumor necrosis factor-α converting enzyme (TACE)-inhibitor Marimastat would reverse established steatosis, leading to improved outcome following hepatectomy. Methodology/Principal Findings C57BL/6 male mice were fed a high fat diet for 9 weeks to establish obesity, hepatic steatosis and insulin resistance, and were administered either Marimastat or vehicle for an additional 2 or 4 weeks. Leptin deficient, hyperinsulinemic ob/ob mice were treated with Marimastat for 4 weeks. Hepatic steatosis was quantified by magnetic resonance spectroscopy and confirmed by histology. After two weeks, Marimastat-treated animals significantly improved surrogate markers for insulin sensitivity and liver histology, and experienced a 66% decrease in steatosis (P = 0.010). These findings were confirmed in ob/ob mice. Transcripts related to fatty acid synthesis were significantly downregulated in Marimastat-treated animals. Following pre-treatment with Marimastat or vehicle for two weeks, high fat fed C57BL/6 mice were subjected to two-thirds hepatectomy. Post-operative liver injury as quantified by serum aspartate aminotransferase levels and alanine aminotransferase levels was significantly decreased by 57% (P = 0.020) and 44% (P = 0.032) respectively, compared to controls. Conclusion/Significance Treatment with the TACE-inhibitor Marimastat improved surrogate markers for insulin sensitivity and reversed steatosis in mouse models of diet-induced obesity and leptin deficiency, thereby attenuating post-operative injury following hepatectomy. This may suggest a potential therapeutic role in patients with fatty liver disease; especially those who need to undergo hepatic resection.
Collapse
Affiliation(s)
- Vincent E de Meijer
- Department of Surgery and The Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
117
|
Maubach G, Lim MCC, Chen J, Yang H, Zhuo L. miRNA studies in in vitro and in vivo activated hepatic stellate cells. World J Gastroenterol 2011. [PMID: 21734783 DOI: 10.3748/wjg.v17.i22.] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
AIM To understand which and how different miRNAs are implicated in the process of hepatic stellate cell (HSC) activation. METHODS We used microarrays to examine the differential expression of miRNAs during in vitro activation of primary HSCs (pHSCs). The transcriptome changes upon stable transfection of rno-miR-146a into an HSC cell line were studied using cDNA microarrays. Selected differentially regulated miRNAs were investigated by quantitative real-time polymerase chain reaction during in vivo HSC activation. The effect of miRNA mimics and inhibitor on the in vitro activation of pHSCs was also evaluated. RESULTS We found that 16 miRNAs were upregulated and 26 were downregulated significantly in 10-d in vitro activated pHSCs in comparison to quiescent pHSCs. Overexpression of rno-miR-146a was characterized by marked upregulation of tissue inhibitor of metalloproteinase-3, which is implicated in the regulation of tumor necrosis factor-α activity. Differences in the regulation of selected miRNAs were observed comparing in vitro and in vivo HSC activation. Treatment with miR-26a and 29a mimics, and miR-214 inhibitor during in vitro activation of pHSCs induced significant downregulation of collagen type I transcription. CONCLUSION Our results emphasize the different regulation of miRNAs in in vitro and in vivo activated pHSCs. We also showed that miR-26a, 29a and 214 are involved in the regulation of collagen type I mRNA.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| | | | | | | | | |
Collapse
|
118
|
Maubach G, Lim MCC, Chen J, Yang H, Zhuo L. miRNA studies in in vitro and in vivo activated hepatic stellate cells. World J Gastroenterol 2011; 17:2748-73. [PMID: 21734783 PMCID: PMC3122263 DOI: 10.3748/wjg.v17.i22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 09/14/2010] [Accepted: 09/21/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To understand which and how different miRNAs are implicated in the process of hepatic stellate cell (HSC) activation. METHODS We used microarrays to examine the differential expression of miRNAs during in vitro activation of primary HSCs (pHSCs). The transcriptome changes upon stable transfection of rno-miR-146a into an HSC cell line were studied using cDNA microarrays. Selected differentially regulated miRNAs were investigated by quantitative real-time polymerase chain reaction during in vivo HSC activation. The effect of miRNA mimics and inhibitor on the in vitro activation of pHSCs was also evaluated. RESULTS We found that 16 miRNAs were upregulated and 26 were downregulated significantly in 10-d in vitro activated pHSCs in comparison to quiescent pHSCs. Overexpression of rno-miR-146a was characterized by marked upregulation of tissue inhibitor of metalloproteinase-3, which is implicated in the regulation of tumor necrosis factor-α activity. Differences in the regulation of selected miRNAs were observed comparing in vitro and in vivo HSC activation. Treatment with miR-26a and 29a mimics, and miR-214 inhibitor during in vitro activation of pHSCs induced significant downregulation of collagen type I transcription. CONCLUSION Our results emphasize the different regulation of miRNAs in in vitro and in vivo activated pHSCs. We also showed that miR-26a, 29a and 214 are involved in the regulation of collagen type I mRNA.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| | | | | | | | | |
Collapse
|
119
|
Ebrahem Q, Qi JH, Sugimoto M, Ali M, Sears JE, Cutler A, Khokha R, Vasanji A, Anand-Apte B. Increased neovascularization in mice lacking tissue inhibitor of metalloproteinases-3. Invest Ophthalmol Vis Sci 2011; 52:6117-23. [PMID: 21282576 DOI: 10.1167/iovs.10-5899] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a matrix-bound inhibitor of matrix metalloproteinases (MMPs). The authors have previously determined a novel function of TIMP-3 to inhibit vascular endothelial growth factor (VEGF)-mediated angiogenesis. Here, the authors examined the in vivo angiogenic phenotype of ocular vessels in mice deficient in TIMP-3. METHODS VEGF-mediated corneal neovascularization and laser-induced choroidal neovascularization (CNV) were examined in TIMP-3-null mice. The effects of the absence of TIMP-3 on the phosphorylation status of the VEGF-receptor-2 (VEGFR-2) and the downstream signaling pathways were evaluated biochemically. In addition, the activation state of MMPs in the retina of TIMP-3-deficient mice was examined by in situ zymography. RESULTS The results of these studies determine an accentuation of pathologic VEGF-mediated angiogenesis in the cornea and laser-induced CNV in mice lacking TIMP-3. In the absence of the MMP inhibitor, pathophysiological changes were observed in the choroidal vasculature concomitantly with an increase in gelatinolytic activity. These results suggest that an imbalance of extracellular matrix homeostasis, together with a loss of an angiogenesis inhibitor, can prime vascular beds to be more responsive to an angiogenic stimulus. CONCLUSIONS In light of the recent studies suggesting that genetic variants near TIMP-3 influence susceptibility to age-related macular degeneration, these results imply that TIMP-3 may regulate the development of the choroidal vasculature and is a likely contributor to increased susceptibility to choroidal neovascularization.
Collapse
Affiliation(s)
- Quteba Ebrahem
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Cohen JI, Chen X, Nagy LE. Redox signaling and the innate immune system in alcoholic liver disease. Antioxid Redox Signal 2011; 15:523-34. [PMID: 21126203 PMCID: PMC3118704 DOI: 10.1089/ars.2010.3746] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of alcoholic liver disease (ALD) is a complex process involving both parenchymal and nonparenchymal cells resident in the liver. Although the mechanisms for ALD are not completely understood, it is clear that increased oxidative stress, and activation of the innate immune system are essential elements in the pathophysiology of ALD. Oxidative stress from ethanol exposure results from increased generation of reactive oxygen species and decreased hepatocellular antioxidant activity, including changes in the thioredoxin/peroxiredoxin family of proteins. Both cellular and circulating components of the innate immune system are activated by exposure to ethanol. For example, ethanol exposure enhances toll-like receptor-4 (TLR-4)-dependent cytokine expression by Kupffer cells, likely due, at least in part, to dysregulation of redox signaling. Similarly, complement activation in response to ethanol leads to increased production of the anaphylatoxins, C3a and C5a, and activation C3a receptor and C5a receptor. Complement activation thus contributes to increased inflammatory cytokine production and can influence redox signaling. Here we will review recent progress in understanding the interactions between oxidative stress and innate immunity in ALD. These data illustrate that ethanol-induced oxidative stress and activation of the innate immune system interact dynamically during ethanol exposure, exacerbating ethanol-induced liver injury.
Collapse
Affiliation(s)
- Jessica I Cohen
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
121
|
Biochemical insights into the role of matrix metalloproteinases in regeneration: challenges and recent developments. Future Med Chem 2011; 1:1095-1111. [PMID: 20161478 DOI: 10.4155/fmc.09.83] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a group of proteases that belong to the metazincin family. These proteins consist of similar structures featuring a signaling peptide, a propeptide domain, a catalytic domain where the notable zinc ion binding site is found and a hinge region that binds to the C-terminal hemoplexin domain. MMPs can be produced by numerous cell types through secretion or localization to the cell membrane. While certain chemical compounds have been known to generally inhibit MMPs, naturally occurring proteins known as tissue inhibitors of metalloproteinases (TIMPs) effectively interact with MMPs to modify their biological roles. MMPs are very important enzymes that actively participate in remodeling the extracellular matrix by degrading certain constituents, along with promoting cell proliferation, migration, differentiation, apoptosis and angiogenesis. In normal adult tissue, they are almost undetectable; however, when perturbed through injury, disease or pregnancy, they have elevated expression. The goal of this review is to identify new experimental findings that have provided further insight into the role of MMPs in skeletal muscle, nerve and dermal tissue, as well as in the liver, heart and kidneys. Increased expression of MMPs can improve the regeneration potential of wounds; however, an imbalance between MMP and TIMP expression can prove to be destructive for afflicted tissues.
Collapse
|
122
|
Singh P, Goode T, Dean A, Awad SS, Darlington GJ. Elevated interferon gamma signaling contributes to impaired regeneration in the aged liver. J Gerontol A Biol Sci Med Sci 2011; 66:944-56. [PMID: 21719609 DOI: 10.1093/gerona/glr094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our previous study on immune-related changes in the aged liver described immune cell infiltration and elevation of inflammation with age. Levels of interferon (IFN)-γ, a known cell cycle inhibitor, were elevated in the aging liver. Here, we determine the role played by IFN-γ in the delayed regenerative response observed in the aged livers. We observed elevated IFN signaling in both aged hepatocytes and regenerating livers post-partial hepatectomy. In vivo deletion of the major IFN-γ producers-the macrophages and the natural killer cells, leads to a reduction in the IFN-γ levels accompanied with the restoration of the DNA synthesis kinetics in the aged livers. Eighteen-month-old IFN-γ-/- mice livers, upon resection, exhibited an earlier entry into the cell cycle compared with age-matched controls. Thus, our study strongly suggests that an age-related elevation in inflammatory conditions in the liver often dubbed as "inflammaging" has a detrimental effect on the regenerative response.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Dermatology, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
123
|
Khokha R, Werb Z. Mammary gland reprogramming: metalloproteinases couple form with function. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004333. [PMID: 21106646 DOI: 10.1101/cshperspect.a004333] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adult mammary structure provides for the rapid growth, development, and immunological protection of the live-born young of mammals through its production of milk. The dynamic remodeling of the branched epithelial structure of the mammary gland in response to physiological stimuli that allow its programmed branching morphogenesis at puberty, cyclical turnover during the reproductive cycle, differentiation into a secretory organ at parturition, postlactational involution, and ultimately, regression with age is critical for these processes. Extracellular metalloproteinases are essential for the remodeling programs that operate in the tissue microenvironment at the interface of the epithelium and the stroma, coupling form with function. Deregulated proteolytic activity drives the transition of a physiological mammary microenvironment into a tumor microenvironment, facilitating malignant transformation.
Collapse
Affiliation(s)
- Rama Khokha
- Ontario Cancer Institute/University Health Network, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
124
|
Miller MA, Barkal L, Jeng K, Herrlich A, Griffith LG, Lauffenburger DA. Proteolytic Activity Matrix Analysis (PrAMA) for simultaneous determination of multiple protease activities. Integr Biol (Camb) 2011; 3:422-38. [PMID: 21180771 PMCID: PMC3173501 DOI: 10.1039/c0ib00083c] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs) are two related protease families that play key roles in matrix remodeling and growth factor ligand shedding. Directly ascertaining the proteolytic activities of particular MMPs and ADAMs in physiological environments in a non-invasive, real-time, multiplex manner remains a challenge. This work describes Proteolytic Activity Matrix Analysis (PrAMA), an integrated experimental measurement and mathematical analysis framework for simultaneously determining the activities of particular enzymes in complex mixtures of MMPs and ADAMs. The PrAMA method interprets dynamic signals from panels of moderately specific FRET-based polypeptide protease substrates to deduce a profile of specific MMP and ADAM proteolytic activities. Deconvolution of signals from complex mixtures of proteases is accomplished using prior data on individual MMP/ADAM cleavage signatures for the substrate panel measured with purified enzymes. We first validate PrAMA inference using a compendium of roughly 4000 measurements involving known mixtures of purified enzymes and substrates, and then demonstrate application to the live-cell response of wildtype, ADAM10-/-, and ADAM17-/- fibroblasts to phorbol ester and ionomycin stimulation. Results indicate PrAMA can distinguish closely related enzymes from each other with high accuracy, even in the presence of unknown background proteolytic activity. PrAMA offers a valuable tool for applications ranging from live-cell in vitro assays to high-throughput inhibitor screening with complex enzyme mixtures. Moreover, our approach may extend to other families of proteases, such as caspases and cathepsins, that also can lack highly-specific substrates.
Collapse
Affiliation(s)
- Miles A. Miller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Layla Barkal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Karen Jeng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Andreas Herrlich
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02139
| | - Linda G. Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139
| |
Collapse
|
125
|
TIMP3 regulates migration, invasion and in vivo tumorigenicity of thyroid tumor cells. Oncogene 2011; 30:3011-23. [PMID: 21339735 DOI: 10.1038/onc.2011.18] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Papillary thyroid carcinoma (PTC) arises from the thyroid follicular epithelium and represents the most frequent thyroid malignancy. PTC is associated with gene rearrangements generating RET/PTC and TRK oncogenes, and to the BRAFV600E activating point mutation. A role of tumor-suppressor genes in the pathogenesis of PTC has not been assessed yet. The tissue inhibitor of metalloproteinase-3 (TIMP3) gene, encoding a metalloproteinases inhibitor and capable of inhibiting growth, angiogenesis, invasion and metastasis of several cancers, was found to be silenced by promoter methylation in a consistent fraction of PTCs, in association with tumor aggressiveness and BRAFV600E mutation, thus suggesting an oncosuppressor role. To explore this possibility, in this study we performed gene expression and functional studies. Analysis of gene expression data produced in our laboratory as well as meta-analysis of publicly available data sets confirmed the downregulation of TIMP3 gene expression in PTC with respect to normal thyroid. The functional consequences of TIMP3 downregulation were investigated in the PTC-derived NIM1 cell line, in which the expression of TIMP3 is silenced. Restoration of TIMP3 expression by exposure to soluble TIMP3 protein or by complementary DNA transfection had no effect on the growth rate of NIM1 cells. Instead, it affected the adhesive, migratory and invasive capabilities of NIM1 cells by modulating several proteins involved in these processes. A striking effect was observed in vivo, as TIMP3 reduced the tumorigenicity of NIM1 cells by repressing angiogenesis and macrophage infiltration. Our data indicate that the loss of TIMP3 expression exerts a functional role in the pathogenesis of PTC.
Collapse
|
126
|
Abstract
The unique ability of the liver to regenerate itself has fascinated biologists for years and has made it the prototype for mammalian organ regeneration. Harnessing this process has great potential benefit in the treatment of liver failure and has been the focus of intense research over the past 50 years. Not only will detailed understanding of cell proliferation in response to injury be applicable to other dysfunction of organs, it may also shed light on how cancer develops in a cirrhotic liver, in which there is intense pressure on cells to regenerate. Advances in molecular techniques over the past few decades have led to the identification of many regulatory intermediates, and pushed us onto the verge of an explosive era in regenerative medicine. To date, more than 10 clinical trials have been reported in which augmented regeneration using progenitor cell therapy has been attempted in human patients. This review traces the path that has been taken over the last few decades in the study of liver regeneration, highlights new concepts in the field, and discusses the challenges that still stand between us and clinical therapy.
Collapse
Affiliation(s)
| | - Yock Young Dan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Nelson Fausto
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
127
|
Eum HA, Billiar TR. TNF/TNF receptor 1-mediated apoptosis in hepatocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:617-24. [PMID: 21153368 DOI: 10.1007/978-1-4419-6612-4_65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hyun-Ae Eum
- Department of Surgery, F-1200 PUH, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15217, USA
| | | |
Collapse
|
128
|
Böhm F, Köhler UA, Speicher T, Werner S. Regulation of liver regeneration by growth factors and cytokines. EMBO Mol Med 2010; 2:294-305. [PMID: 20652897 PMCID: PMC3377328 DOI: 10.1002/emmm.201000085] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The capability of the liver to fully regenerate after injury is a unique phenomenon essential for the maintenance of its important functions in the control of metabolism and xenobiotic detoxification. The regeneration process is histologically well described, but the genes that orchestrate liver regeneration have been only partially characterized. Of particular interest are cytokines and growth factors, which control different phases of liver regeneration. Historically, their potential functions in this process were addressed by analyzing their expression in the regenerating liver of rodents. Some of the predicted roles were confirmed using functional studies, including systemic delivery of recombinant growth factors, neutralizing antibodies or siRNAs prior to liver injury or during liver regeneration. In particular, the availability of genetically modified mice and their use in liver regeneration studies has unraveled novel and often unexpected functions of growth factors, cytokines and their downstream signalling targets in liver regeneration. This review summarizes the results obtained by functional studies that have addressed the roles and mechanisms of action of growth factors and cytokines in liver regeneration after acute injury to this organ.
Collapse
Affiliation(s)
- Friederike Böhm
- Department of Biology, Institute of Cell Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
129
|
Shimizu T, Kubota T, Nakasone N, Abe D, Morozumi T, Yoshie H. Microarray and quantitative RT-PCR analyses in calcium-channel blockers induced gingival overgrowth tissues of periodontitis patients. Arch Oral Biol 2010; 56:277-84. [PMID: 21035109 DOI: 10.1016/j.archoralbio.2010.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/20/2010] [Accepted: 10/01/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The purpose of the present study was to analyse transcriptomes and mRNA expression levels for specific genes in calcium-channel blocker-induced gingival overgrowth (GO) tissues. DESIGN Eight gingival tissues samples (from both GO negative and positive sites) were harvested from four GO patients for microarray analyses. Twelve candidate genes were selected for further quantitative real time reverse transcription-polymerase chain reaction (qRT-PCR) analyses. Ten GO tissues from periodontitis patients and ten control gingival tissues from healthy subjects were compared by qRT-PCR. Mann-Whitney U-test was used for statistical evaluation. RESULTS In GO positive tissues, 163-1631 up-regulated and 100-695 down-regulated genes were identified with more than two-fold changes compared with GO negative tissues amongst patients by microarray experiments. No commonly expressed genes amongst the eight sets of microarray data were found. The clustering analysis confirmed that the entire transcriptome patterns showed similarities in individuals, but differences amongst the four patients. The qRT-PCR and statistical analyses for the candidate genes, though, revealed differential gene expressions between GO-positive and negative tissues. We found that matrix metalloproteinase (MMP)-1 and MMP-12 as well as cathepsin-L were significantly up-regulated whilst keratin-10 and transforming growth factor-β1 were significantly down-regulated in GO tissues of periodontitis patients compared with the control gingival tissues of healthy subjects. CONCLUSION The microarray analyses revealed that GO pathogenesis was complex and individually varied, though GO-affected gingival tissues were controlled at least by genes related to collagen metabolisms including regulated MMPs, cathepsin-L, growth factors, and keratins to maintain tissue homeostasis in vivo.
Collapse
Affiliation(s)
- Taro Shimizu
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
130
|
Le Gall SM, Maretzky T, Issuree PDA, Niu XD, Reiss K, Saftig P, Khokha R, Lundell D, Blobel CP. ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J Cell Sci 2010; 123:3913-22. [PMID: 20980382 DOI: 10.1242/jcs.069997] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein ectodomain shedding is crucial for cell-cell interactions because it controls the bioavailability of soluble tumor necrosis factor-α (TNFα) and ligands of the epidermal growth factor (EGF) receptor, and the release of many other membrane proteins. Various stimuli can rapidly trigger ectodomain shedding, yet much remains to be learned about the identity of the enzymes that respond to these stimuli and the mechanisms underlying their activation. Here, we demonstrate that the membrane-anchored metalloproteinase ADAM17, but not ADAM10, is the sheddase that rapidly responds to the physiological signaling pathways stimulated by thrombin, EGF, lysophosphatidic acid and TNFα. Stimulation of ADAM17 is swift and quickly reversible, and does not depend on removal of its inhibitory pro-domain by pro-protein convertases, or on dissociation of an endogenous inhibitor, TIMP3. Moreover, activation of ADAM17 by physiological stimuli requires its transmembrane domain, but not its cytoplasmic domain, arguing against inside-out signaling via cytoplasmic phosphorylation as the underlying mechanism. Finally, experiments with the tight binding hydroxamate inhibitor DPC333, used here to probe the accessibility of the active site of ADAM17, demonstrate that this inhibitor can quickly bind to ADAM17 in stimulated, but not quiescent cells. These findings support the concept that activation of ADAM17 involves a rapid and reversible exposure of its catalytic site.
Collapse
Affiliation(s)
- Sylvain M Le Gall
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Koskivirta I, Kassiri Z, Rahkonen O, Kiviranta R, Oudit GY, McKee TD, Kytö V, Saraste A, Jokinen E, Liu PP, Vuorio E, Khokha R. Mice with tissue inhibitor of metalloproteinases 4 (Timp4) deletion succumb to induced myocardial infarction but not to cardiac pressure overload. J Biol Chem 2010; 285:24487-93. [PMID: 20516072 PMCID: PMC2915685 DOI: 10.1074/jbc.m110.136820] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/24/2010] [Indexed: 11/06/2022] Open
Abstract
Tissue inhibitor of metalloproteinases 4 (TIMP4) is expressed highly in heart and found dysregulated in human cardiovascular diseases. It controls extracellular matrix remodeling by inhibiting matrix metalloproteinases (MMPs) and is implicated in processes including cell proliferation, apoptosis, and angiogenesis. Timp4-deficient mice (Timp4(-/-)) were generated to assess TIMP4 function in normal development and in models of heart disease. We deleted exons 1-3 of the Timp4 gene by homologous recombination. Timp4(-/-) mice are born healthy, develop normally, and produce litters of normal size and gender distribution. These mice show no compensation by overexpression of Timp1, Timp2, or Timp3 in the heart. Following cardiac pressure overload by aortic banding, Timp4(-/-) mice have comparable survival rate, cardiac histology, and cardiac function to controls. In this case, Timp4 deficiency is compensated by increased cardiac Timp2 expression. Strikingly, the induction of myocardial infarction (MI) leads to significantly increased mortality in Timp4(-/-) mice primarily due to left ventricular rupture. The post-MI mortality of Timp4(-/-) mice is reduced by administration of a synthetic MMP inhibitor. Furthermore, combining the genetic deletion of Mmp2 also rescues the higher post-MI mortality of Timp4(-/-) mice. Finally, Timp4(-/-) mice suffer reduced cardiac function at 20 months of age. Timp4 is not essential for murine development, although its loss moderately compromises cardiac function with aging. Timp4(-/-) mice are more susceptible to MI but not to pressure overload, and TIMP4 functions in its capacity as a metalloproteinase inhibitor after myocardial infarction.
Collapse
Affiliation(s)
- Ilpo Koskivirta
- From the Department of Medical Biochemistry and Genetics, University of Turku, FI-20520 Turku, Finland
- the Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
- the Department of Medicine, Turku University Hospital, FI-20521 Turku, Finland
| | - Zamaneh Kassiri
- the Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| | - Otto Rahkonen
- From the Department of Medical Biochemistry and Genetics, University of Turku, FI-20520 Turku, Finland
- the Department of Pediatrics, University of Helsinki, Helsinki, FI-00029 HUS, Finland
| | - Riku Kiviranta
- From the Department of Medical Biochemistry and Genetics, University of Turku, FI-20520 Turku, Finland
| | - Gavin Y. Oudit
- the Division of Cardiology, University of Toronto, Toronto, Ontario M5G 2N2, Canada, and
| | - Trevor D. McKee
- the Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| | - Ville Kytö
- the Department of Medicine, Turku University Hospital, FI-20521 Turku, Finland
| | - Antti Saraste
- the Department of Medicine, Turku University Hospital, FI-20521 Turku, Finland
| | - Eero Jokinen
- the Department of Pediatrics, University of Helsinki, Helsinki, FI-00029 HUS, Finland
| | - Peter P. Liu
- the Division of Cardiology, University of Toronto, Toronto, Ontario M5G 2N2, Canada, and
| | - Eero Vuorio
- From the Department of Medical Biochemistry and Genetics, University of Turku, FI-20520 Turku, Finland
| | - Rama Khokha
- the Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
132
|
Kandalam V, Basu R, Abraham T, Wang X, Awad A, Wang W, Lopaschuk GD, Maeda N, Oudit GY, Kassiri Z. Early activation of matrix metalloproteinases underlies the exacerbated systolic and diastolic dysfunction in mice lacking TIMP3 following myocardial infarction. Am J Physiol Heart Circ Physiol 2010; 299:H1012-23. [PMID: 20675565 DOI: 10.1152/ajpheart.00246.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extracellular matrix (ECM) remodeling is a critical aspect of cardiac remodeling following myocardial infarction. Tissue inhibitors of metalloproteinases (TIMPs) are physiological inhibitors of matrix metalloproteinases (MMPs) that degrade the ECM proteins. TIMP3 is highly expressed in the heart, and is markedly downregulated in patients with ischemic cardiomyopathy. We therefore examined the time- and region-dependent role of TIMP3 in the cardiac response to myocardial infarction (MI). TIMP3(-/-) and wild-type (WT) mice were subjected to MI by ligation of the left anterior descending artery. TIMP3(-/-)-MI mice exhibited a significantly compromised rate of survival compared with WT-MI mice, primarily due to increased left ventricular (LV) rupture, greater infarct expansion, exacerbated LV dilation, and greater systolic and diastolic dysfunction. Second harmonic generation imaging of unfixed and unstained hearts revealed greater collagen disarray and reduced density in the TIMP3(-/-) infarct myocardium compared with the WT group. Gelatinolytic and collagenolytic activities increased in TIMP3(-/-) compared with WT hearts at 1 day post-MI but not at 3 days or 1 wk post-MI. Neutrophil infiltration and inflammatory MMPs were significantly increased in the infarct and peri-infarct regions of TIMP3(-/-)-MI hearts. Treatment of TIMP3(-/-) mice with a broad-spectrum MMP inhibitor (PD-166793) for 2 days before and 2 days after MI markedly improved post-MI infarct expansion, LV rupture incident, LV dilation, and systolic dysfunction in these mice up to 1 wk post-MI. Our data demonstrate that the initial rise in proteolytic activities early post-MI is a triggering factor for subsequent LV adverse remodeling, LV rupture, and dilated cardiomyopathy. Hence, timing of treatments to improve cardiac response to MI may be critical in producing favorable outcome.
Collapse
Affiliation(s)
- Vijay Kandalam
- Department of Physiology, University of Alberta, Edmonton, Alberta
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Murthy A, Defamie V, Smookler DS, Di Grappa MA, Horiuchi K, Federici M, Sibilia M, Blobel CP, Khokha R. Ectodomain shedding of EGFR ligands and TNFR1 dictates hepatocyte apoptosis during fulminant hepatitis in mice. J Clin Invest 2010; 120:2731-44. [PMID: 20628198 DOI: 10.1172/jci42686] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 05/19/2010] [Indexed: 12/12/2022] Open
Abstract
The cell death receptor Fas plays a role in the establishment of fulminant hepatitis, a major cause of drug-induced liver failure. Fas activation elicits extrinsic apoptotic and hepatoprotective signals; however, the mechanisms by which these signals are integrated during disease are unknown. Tissue inhibitor of metalloproteinases 3 (TIMP3) controls the critical sheddase a disintegrin and metalloproteinase 17 (ADAM17) and may dictate stress signaling. Using mice and cells lacking TIMP3, ADAM17, and ADAM17-regulated cell surface molecules, we have found that ADAM17-mediated ectodomain shedding of TNF receptors and EGF family ligands controls activation of multiple signaling cascades in Fas-induced hepatitis. We demonstrated that TNF signaling promoted hepatotoxicity, while excessive TNF receptor 1 (TNFR1) shedding in Timp3-/- mice was protective. Compound Timp3-/-Tnf-/- and Timp3-/-Tnfr1-/- knockout conferred complete resistance to Fas-induced toxicity. Loss of Timp3 enhanced metalloproteinase-dependent EGFR signaling due to increased release of the EGFR ligands TGF-alpha, amphiregulin, and HB-EGF, while depletion of shed amphiregulin resensitized Timp3-/- hepatocytes to apoptosis. Finally, adenoviral delivery of Adam17 prevented acetaminophen-induced liver failure in a clinically relevant model of Fas-dependent fulminant hepatitis. These findings demonstrate that TIMP3 and ADAM17 cooperatively dictate cytokine signaling during death receptor activation and indicate that regulated metalloproteinase activity integrates survival and death signals during acute hepatotoxic stress.
Collapse
|
134
|
de Meijer VE, Sverdlov DY, Popov Y, Le HD, Meisel JA, Nosé V, Schuppan D, Puder M. Broad-spectrum matrix metalloproteinase inhibition curbs inflammation and liver injury but aggravates experimental liver fibrosis in mice. PLoS One 2010; 5:e11256. [PMID: 20593020 PMCID: PMC2892485 DOI: 10.1371/journal.pone.0011256] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 06/02/2010] [Indexed: 01/06/2023] Open
Abstract
Background Liver fibrosis is characterized by excessive synthesis of extracellular matrix proteins, which prevails over their enzymatic degradation, primarily by matrix metalloproteinases (MMPs). The effect of pharmacological MMP inhibition on fibrogenesis, however, is largely unexplored. Inflammation is considered a prerequisite and important co-contributor to fibrosis and is, in part, mediated by tumor necrosis factor (TNF)-α-converting enzyme (TACE). We hypothesized that treatment with a broad-spectrum MMP and TACE-inhibitor (Marimastat) would ameliorate injury and inflammation, leading to decreased fibrogenesis during repeated hepatotoxin-induced liver injury. Methodology/Principal Findings Liver fibrosis was induced in mice by repeated carbon tetrachloride (CCl4) administration, during which the mice received either Marimastat or vehicle twice daily. A single dose of CCl4 was administered to investigate acute liver injury in mice pretreated with Marimastat, mice deficient in Mmp9, or mice deficient in both TNF-α receptors. Liver injury was quantified by alanine aminotransferase (ALT) levels and confirmed by histology. Hepatic collagen was determined as hydroxyproline, and expression of fibrogenesis and fibrolysis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. Marimastat-treated animals demonstrated significantly attenuated liver injury and inflammation but a 25% increase in collagen deposition. Transcripts related to fibrogenesis were significantly less upregulated compared to vehicle-treated animals, while MMP expression and activity analysis revealed efficient pharmacologic MMP-inhibition and decreased fibrolysis following Marimastat treatment. Marimastat pre-treatment significantly attenuated liver injury following acute CCl4-administration, whereas Mmp9 deficient animals demonstrated no protection. Mice deficient in both TNF-α receptors exhibited an 80% reduction of serum ALT, confirming the hepatoprotective effects of Marimastat via the TNF-signaling pathway. Conclusions/Significance Inhibition of MMP and TACE activity with Marimastat during chronic CCl4 administration counterbalanced any beneficial anti-inflammatory effect, resulting in a positive balance of collagen deposition. Since effective inhibition of MMPs accelerates fibrosis progression, MMP inhibitors should be used with caution in patients with chronic liver diseases.
Collapse
Affiliation(s)
- Vincent E. de Meijer
- Department of Surgery and Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Surgery, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Deanna Y. Sverdlov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yury Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hau D. Le
- Department of Surgery and Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan A. Meisel
- Department of Surgery and Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vânia Nosé
- Department of Anatomic Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Detlef Schuppan
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark Puder
- Department of Surgery and Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
135
|
Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010; 138:2101-2114.e5. [PMID: 20420949 DOI: 10.1053/j.gastro.2010.01.058] [Citation(s) in RCA: 1440] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/19/2010] [Accepted: 01/25/2010] [Indexed: 02/06/2023]
Abstract
The connection between inflammation and tumorigenesis is well-established and in the last decade has received a great deal of supporting evidence from genetic, pharmacological, and epidemiological data. Inflammatory bowel disease is an important risk factor for the development of colon cancer. Inflammation is also likely to be involved with other forms of sporadic as well as heritable colon cancer. The molecular mechanisms by which inflammation promotes cancer development are still being uncovered and could differ between colitis-associated and other forms of colorectal cancer. Recent work has elucidated the role of distinct immune cells, cytokines, and other immune mediators in virtually all steps of colon tumorigenesis, including initiation, promotion, progression, and metastasis. These mechanisms, as well as new approaches to prevention and therapy, are discussed in this review.
Collapse
Affiliation(s)
- Janos Terzić
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
136
|
Wang H, Park O, Lafdil F, Shen K, Horiguchi N, Yin S, Fu XY, Kunos G, Gao B. Interplay of hepatic and myeloid signal transducer and activator of transcription 3 in facilitating liver regeneration via tempering innate immunity. Hepatology 2010; 51:1354-62. [PMID: 20041412 PMCID: PMC2850952 DOI: 10.1002/hep.23430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Liver regeneration triggered by two-thirds partial hepatectomy is accompanied by elevated hepatic levels of endotoxin, which contributes to the regenerative process, but liver inflammation and apoptosis remain paradoxically limited. Here, we show that signal transducer and activator of transcription 3 (STAT3), an important anti-inflammatory signal, is activated in myeloid cells after partial hepatectomy and its conditional deletion results in an enhanced inflammatory response. Surprisingly, this is accompanied by an improved rather than impaired regenerative response with increased hepatic STAT3 activation, which may contribute to the enhanced liver regeneration. Indeed, conditional deletion of STAT3 in both hepatocytes and myeloid cells results in elevated activation of STAT1 and apoptosis of hepatocytes, and a dramatic reduction in survival after partial hepatectomy, whereas additional global deletion of STAT1 protects against these effects. CONCLUSION An interplay of myeloid and hepatic STAT3 signaling is essential to prevent liver failure during liver regeneration through tempering a strong innate inflammatory response mediated by STAT1 signaling.
Collapse
Affiliation(s)
- Hua Wang
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ogyi Park
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fouad Lafdil
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kezhen Shen
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norio Horiguchi
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shi Yin
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin-Yuan Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George Kunos
- Section on Neuroendocrinology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bin Gao
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
137
|
Jin H, Yu Y, Zhang T, Zhou X, Zhou J, Jia L, Wu Y, Zhou BP, Feng Y. Snail is critical for tumor growth and metastasis of ovarian carcinoma. Int J Cancer 2010; 126:2102-11. [PMID: 19795442 DOI: 10.1002/ijc.24901] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Snail, a key inducer of epithelial-mesenchymal transition (EMT), plays an important role in cancer metastasis. To better understand the role of Snail in the metastasis of ovarian carcinoma, expression of Snail was knocked down by antisense-Snail in the highly metastatic ovarian cancer cell line HO8910PM. Gene array analysis revealed that blocking Snail expression suppressed the activity of matrix metalloproteinases (MMPs) and upregulated TIMP3, an MMP inhibitor. These findings suggest that Snail interacts with MMP during tumor invasion and metastasis. In addition, we examined the role of Snail in an ovarian cancer orthotopic model by using the antisense-Snail HO8910PM cell line. We found that the size of primary ovarian cancer tumor and the number of metastatic lesions were significantly reduced when Snail was knocked down. Confirming our initial findings, the activity of MMP2 was greatly inhibited in tumors from antisense-Snail cells. Furthermore, immunohistochemical analysis on ovarian cancer progression tissue array demonstrated that the expression of Snail was significantly higher in metastatic lesions, and Snail expression correlated with the stage of ovarian cancer. Interestingly, in early-stage tumors, Snail was localized in both the cytoplasm and nucleus. In late stage and metastatic lesions, the level of Snail was elevated, and Snail was localized to the nucleus. The expression level and nuclear localization of Snail were also inversely correlated with E-cadherin expression. Overall, our study indicates that Snail plays a critical role in tumor growth and metastasis of ovarian carcinoma through regulation of MMP activity.
Collapse
Affiliation(s)
- Hongyan Jin
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, Ghoshal K. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 2010; 29:1787-97. [PMID: 20023698 PMCID: PMC2845743 DOI: 10.1038/onc.2009.468] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/01/2009] [Accepted: 10/27/2009] [Indexed: 12/21/2022]
Abstract
To identify microRNAs (miRNAs) that may have a causal role in hepatocarcinogenesis, we used an animal model in which C57BL/6 mice fed choline-deficient and amino acid defined (CDAA) diet develop preneoplastic lesions at 65 weeks and hepatocellular carcinomas after 84 weeks. miRNA expression profiling showed significant upregulation of miR-181b and miR-181d in the livers of mice as early as 32 weeks that persisted at preneoplastic stage. The expression of tissue inhibitor of metalloprotease 3 (TIMP3), a tumor suppressor and a validated miR-181 target, was markedly suppressed in the livers of mice fed CDAA diet. Upregulation of hepatic transforming growth factor (TGF)beta and its downstream mediators Smad 2, 3 and 4 and increase in phospho-Smad2 in the liver nuclear extract correlated with elevated miR-181b/d in mice fed CDAA diet. The levels of the precursor and mature miR-181b were augmented on exposure of hepatic cells to TGFbeta and were significantly reduced by small interference RNA-mediated depletion of Smad4, showing the involvement of TGFbeta signaling pathway in miR-181b expression. Ectopic expression and depletion of miR-181b showed that miR-181b enhanced matrix metallopeptidases (MMP)2 and MMP9 activity and promoted growth, clonogenic survival, migration and invasion of hepatocellular carcinoma (HCC) cells that could be reversed by modulating TIMP3 level. Further, depletion of miR-181b inhibited tumor growth of HCC cells in nude mice. miR-181b also enhanced resistance of HCC cells to the anticancer drug doxorubicin. On the basis of these results, we conclude that upregulation of miR-181b at early stages of feeding CDAA diet promotes hepatocarcinogenesis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Shu-Hao Hsu
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Huban Kutay
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Samson T. Jacob
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Kalpana Ghoshal
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
139
|
Weskamp G, Mendelson K, Swendeman S, Le Gall S, Ma Y, Lyman S, Hinoki A, Eguchi S, Guaiquil V, Horiuchi K, Blobel CP. Pathological neovascularization is reduced by inactivation of ADAM17 in endothelial cells but not in pericytes. Circ Res 2010; 106:932-40. [PMID: 20110534 DOI: 10.1161/circresaha.109.207415] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Pathological neovascularization is a critical component of diseases such as proliferative retinopathies, cancer and rheumatoid arthritis, yet much remains to be learned about the underlying causes. Previous studies showed that vascular endothelial growth factor (VEGF)-A activates the membrane-anchored metalloproteinase ADAM17 (a disintegrin and metalloproteinase 17) in endothelial cells, thereby stimulating crosstalk between VEGF receptor 2 and extracellular signal-regulated kinase. These findings raised interesting questions about the role of ADAM17 in angiogenesis and neovascularization in vivo. OBJECTIVE The objective of this study was to inactivate ADAM17 in endothelial cells or in pericytes to determine how this affects developmental angiogenesis, pathological retinal neovascularization and heterotopic tumor growth. METHODS AND RESULTS We generated animals in which floxed ADAM17 was removed by Tie2-Cre in endothelial cells, or by smooth muscle (sm) Cre in smooth muscle cells and pericytes. There were no evident developmental defects in either conditional knockout strain, but pathological retinal neovascularization and growth of heterotopically injected tumor cells was reduced in Adam17flox/flox/Tie2-Cre mice, although not in Adam17flox/flox/sm-Cre mice. Moreover, lack of ADAM17 in endothelial cells decreased ex vivo chord formation, and this could be largely restored by addition of the ADAM17 substrate HB-EGF (heparin-binding epidermal growth factor-like growth factor). Finally we found that ADAM17 is important for the VEGF receptor 2 stimulated processing of several receptors with known functions in endothelial cell biology. CONCLUSIONS These results provide the first evidence for a role for ADAM17 in pathological neovascularization in vivo. Because ADAM17 does not appear to be required for normal developmental angiogenesis or vascular homeostasis, it could emerge as a good target for treatment of pathological neovascularization.
Collapse
Affiliation(s)
- Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Caspary Research Building, Room 426, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:55-71. [PMID: 20080133 DOI: 10.1016/j.bbamcr.2010.01.003] [Citation(s) in RCA: 919] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 12/14/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are widely distributed in the animal kingdom and the human genome contains four paralogous genes encoding TIMPs 1 to 4. TIMPs were originally characterized as inhibitors of matrix metalloproteinases (MMPs), but their range of activities has now been found to be broader as it includes the inhibition of several of the disintegrin-metalloproteinases, ADAMs and ADAMTSs. TIMPs are therefore key regulators of the metalloproteinases that degrade the extracellular matrix and shed cell surface molecules. Structural studies of TIMP-MMP complexes have elucidated the inhibition mechanism of TIMPs and the multiple sites through which they interact with target enzymes, allowing the generation of TIMP variants that selectively inhibit different groups of metalloproteinases. Engineering such variants is complicated by the fact that TIMPs can undergo changes in molecular dynamics induced by their interactions with proteases. TIMPs also have biological activities that are independent of metalloproteinases; these include effects on cell growth and differentiation, cell migration, anti-angiogenesis, anti- and pro-apoptosis, and synaptic plasticity. Receptors responsible for some of these activities have been identified and their signaling pathways have been investigated. A series of studies using mice with specific TIMP gene deletions has illuminated the importance of these molecules in biology and pathology.
Collapse
Affiliation(s)
- Keith Brew
- Department of Basic Science, College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | |
Collapse
|
141
|
Fiorentino L, Vivanti A, Cavalera M, Marzano V, Ronci M, Fabrizi M, Menini S, Pugliese G, Menghini R, Khokha R, Lauro R, Urbani A, Federici M. Increased tumor necrosis factor alpha-converting enzyme activity induces insulin resistance and hepatosteatosis in mice. Hepatology 2010; 51:103-10. [PMID: 19877183 DOI: 10.1002/hep.23250] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Tumor necrosis factor alpha-converting enzyme (TACE, also known as ADAM17) was recently involved in the pathogenesis of insulin resistance. We observed that TACE activity was significantly higher in livers of mice fed a high-fat diet (HFD) for 1 month, and this activity was increased in liver > white adipose tissue > muscle after 5 months compared with chow control. In mouse hepatocytes, C(2)C(12) myocytes, and 3T3F442A adipocytes, TACE activity was triggered by palmitic acid, lipolysaccharide, high glucose, and high insulin. TACE overexpression significantly impaired insulin-dependent phosphorylation of AKT, GSK3, and FoxO1 in mouse hepatocytes. To test the role of TACE activation in vivo, we used tissue inhibitor of metalloproteinase 3 (Timp3) null mice, because Timp3 is the specific inhibitor of TACE and Timp3(-/-) mice have higher TACE activity compared with wild-type (WT) mice. Timp3(-/-) mice fed a HFD for 5 months are glucose-intolerant and insulin-resistant; they showed macrovesicular steatosis and ballooning degeneration compared with WT mice, which presented only microvesicular steatosis. Shotgun proteomics analysis revealed that Timp3(-/-) liver showed a significant differential expression of 38 proteins, including lower levels of adenosine kinase, methionine adenosysltransferase I/III, and glycine N-methyltransferase and higher levels of liver fatty acid-binding protein 1. These changes in protein levels were also observed in hepatocytes infected with adenovirus encoding TACE. All these proteins play a role in fatty acid uptake, triglyceride synthesis, and methionine metabolism, providing a molecular explanation for the increased hepatosteatosis observed in Timp3(-/-) compared with WT mice. CONCLUSION We have identified novel mechanisms, governed by the TACE-Timp3 interaction, involved in the determination of insulin resistance and liver steatosis during overfeeding in mice.
Collapse
Affiliation(s)
- Loredana Fiorentino
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
As their name implies, matrix metalloproteinases (MMPs) are thought to be responsible for the turnover of connective tissue proteins, a function that is indeed performed by some family members. However, matrix degradation is possibly not the predominant function of these enzymes. Several studies have demonstrated that MMPs also act on a variety of non-matrix extracellular proteins, such as cytokines, chemokines, receptors, junctional proteins, and antimicrobial peptides, to mediate a wide range of biological processes, such as repair, immunity, and angiogenesis. Our understanding of the many, diverse and, at times, unexpected functions of MMPs largely arose from the use of gene-targeted mice. In this chapter, we discuss the phenotypes of some MMP-deficient and TIMP-null mice and strategies and pitfalls in targeted mutagenesis.
Collapse
Affiliation(s)
- Sean E Gill
- Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | |
Collapse
|
143
|
Stephen JK, Chen KM, Shah V, Schweitzer VG, Gardner G, Benninger MS, Worsham MJ. Consistent DNA hypermethylation patterns in laryngeal papillomas. ACTA ACUST UNITED AC 2010; 1:69-77. [PMID: 21603083 DOI: 10.5005/jp-journals-10001-1013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION: This study examined the contribution of promoter hypermethylation to the pathogenesis of respiratory papillomatosis (RP), including recurrences (RRP) and progression to squamous cell carcinoma (SSC). MATERIALS AND METHODS: A retrospective cohort of 25 laryngeal papilloma cases included 21 RRP, two of which progressed to SCC. Aberrant methylation status was determined using the multi-gene (22 tumor suppressor genes) methylation-specific multiplex ligation-dependent probe amplification assay and confirmed using methylation specific PCR. RESULTS: Twenty genes had altered DNA methylation in 22 of 25 cases. Aberrant methylation of CDKN2B and TIMP3 was most frequent. Promoter hypermethylation of BRCA2, APC, CDKN2A and CDKN2B was detected in 2 RRP cases with subsequent progression to SCC. Of the 25 cases, 22 were positive for HPV-6, 2 for HPV-11 and 1 for HPV-16 and 33. CONCLUSIONS: Consistent aberrant methylation of multiple tumor suppressor genes contributes to the pathogenesis of laryngeal papillomas. Persistent aberrant DNA methylation events in 2 RRP cases that progressed to cancer indicate an epigenetic monoclonal progression continuum to SCC.
Collapse
Affiliation(s)
- Josena K Stephen
- Department of Otolaryngology-Head and Neck Surgery and Research Division, Henry Ford Hospital, Detroit, MI 48202
| | | | | | | | | | | | | |
Collapse
|
144
|
Gill SE, Huizar I, Bench EM, Sussman SW, Wang Y, Khokha R, Parks WC. Tissue inhibitor of metalloproteinases 3 regulates resolution of inflammation following acute lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:64-73. [PMID: 20008147 DOI: 10.2353/ajpath.2010.090158] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tissue inhibitor of metalloproteinases 3 (TIMP3) inhibits not only matrix metalloproteinases but also a disintegrin and metalloproteinase domain family members and thus contributes to controlling diverse processes mediated by proteolysis. We used Timp3(-/-) mice to assess the role of this inhibitor in acute lung injury. After bleomycin-induced injury, inflammation, as indicated by the influx of neutrophils in bronchoalveolar lavage (BAL), peaked at 7 days post-injury in the wild-type mice and began to wane thereafter; however, in Timp3(-/-) mice, inflammation persisted up to 28 days. Furthermore, although the level of chemokines in BAL and lung homogenate was similar in both genotypes, BAL from Timp3(-/-) mice 7, 14, and 28 days post-injury had increased neutrophil chemotactic activity compared with wild-type BAL. At day 14, a higher percentage of apoptotic neutrophils were present in wild-type mice compared with Timp3(-/-) mice, further suggesting that TIMP3 constrains continued neutrophil influx. In addition, total matrix metalloproteinase activity was increased in lungs from Timp3(-/-) mice, and treatment of mice with a synthetic inhibitor of metalloproteinases rescued the enhanced neutrophilia phenotype. These data demonstrate that TIMP3 regulates neutrophil influx in the lung following injury through its ability to inhibit metalloproteinase activity and indicates that TIMP3 functions to promote the resolution of inflammation in the lung.
Collapse
Affiliation(s)
- Sean E Gill
- Center for Lung Biology, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
145
|
Swindell WR. Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse. BMC Genomics 2009; 10:585. [PMID: 19968875 PMCID: PMC2795771 DOI: 10.1186/1471-2164-10-585] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 12/07/2009] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Caloric restriction (CR) counters deleterious effects of aging and, for most mouse genotypes, increases mean and maximum lifespan. Previous analyses of microarray data have identified gene expression responses to CR that are shared among multiple mouse tissues, including the activation of anti-oxidant, tumor suppressor and anti-inflammatory pathways. These analyses have provided useful research directions, but have been restricted to a limited number of tissues, and have focused on individual genes, rather than whole-genome transcriptional networks. Furthermore, CR is thought to oppose age-associated gene expression patterns, but detailed statistical investigations of this hypothesis have not been carried out. RESULTS Systemic effects of CR and aging were identified by examining transcriptional responses to CR in 17 mouse tissue types, as well as responses to aging in 22 tissues. CR broadly induced the expression of genes known to inhibit oxidative stress (e.g., Mt1, Mt2), inflammation (e.g., Nfkbia, Timp3) and tumorigenesis (e.g., Txnip, Zbtb16). Additionally, a network-based investigation revealed that CR regulates a large co-expression module containing genes associated with the metabolism and splicing of mRNA (e.g., Cpsf6, Sfpq, Sfrs18). The effects of aging were, to a considerable degree, similar among groups of co-expressed genes. Age-related gene expression patterns characteristic of most mouse tissues were identified, including up regulation of granulin (Grn) and secreted phosphoprotein 1 (Spp1). The transcriptional association between CR and aging varied at different levels of analysis. With respect to gene subsets associated with certain biological processes (e.g., immunity and inflammation), CR opposed age-associated expression patterns. However, among all genes, global transcriptional effects of CR were only weakly related to those of aging. CONCLUSION The study of aging, and of interventions thought to combat aging, has much to gain from data-driven and unbiased genomic investigations. Expression patterns identified in this analysis characterize a generalized response of mammalian cells to CR and/or aging. These patterns may be of importance in determining effects of CR on overall lifespan, or as factors that underlie age-related disease. The association between CR and aging warrants further study, but most evidence indicates that CR does not induce a genome-wide "reversal" of age-associated gene expression patterns.
Collapse
Affiliation(s)
- William R Swindell
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
146
|
Guinea-Viniegra J, Zenz R, Scheuch H, Hnisz D, Holcmann M, Bakiri L, Schonthaler HB, Sibilia M, Wagner EF. TNFalpha shedding and epidermal inflammation are controlled by Jun proteins. Genes Dev 2009; 23:2663-74. [PMID: 19933155 DOI: 10.1101/gad.543109] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inducible epidermal deletion of JunB and c-Jun in adult mice causes a psoriasis-like inflammatory skin disease. Increased levels of the proinflammatory cytokine TNFalpha play a major role in this phenotype. Here we define the underlying molecular mechanism using genetic mouse models. We show that Jun proteins control TNFalpha shedding in the epidermis by direct transcriptional activation of tissue inhibitor of metalloproteinase-3 (TIMP-3), an inhibitor of the TNFalpha-converting enzyme (TACE). TIMP-3 is down-regulated and TACE activity is specifically increased, leading to massive, cell-autonomous TNFalpha shedding upon loss of both JunB and c-Jun. Consequently, a prominent TNFalpha-dependent cytokine cascade is initiated in the epidermis, inducing severe skin inflammation and perinatal death of newborns from exhaustion of energy reservoirs such as glycogen and lipids. Importantly, this metabolic "cachectic" phenotype can be genetically rescued in a TNFR1-deficient background or by epidermis-specific re-expression of TIMP-3. These findings reveal that Jun proteins are essential physiological regulators of TNFalpha shedding by controlling the TIMP-3/TACE pathway. This novel mechanism describing how Jun proteins control skin inflammation offers potential targets for the treatment of skin pathologies associated with increased TNFalpha levels.
Collapse
Affiliation(s)
- Juan Guinea-Viniegra
- Cancer Cell Biology Programme, Centro Nacional de Investigaciones, Oncológicas (CNIO), E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Ge L, Baskic D, Basse P, Vujanovic L, Unlu S, Yoneyama T, Vujanovic A, Han J, Bankovic D, Szczepanski MJ, Hunt JL, Herberman RB, Gollin SM, Ferris RL, Whiteside TL, Myers EN, Vujanovic NL. Sheddase activity of tumor necrosis factor-alpha converting enzyme is increased and prognostically valuable in head and neck cancer. Cancer Epidemiol Biomarkers Prev 2009; 18:2913-22. [PMID: 19843672 DOI: 10.1158/1055-9965.epi-08-0898] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tumor necrosis factor alpha converting enzyme (TACE) is a sheddase overexpressed in cancers that generates cancer cell growth and survival factors, and is implicated in carcinogenesis and tumor growth. This indicates that TACE could be a potentially important cancer biomarker. Unexpectedly, TACE expression in cancer tissues does not correlate with cancer stage or invasiveness. Although TACE sheddase activity is a more direct and potentially better indicator of TACE biology and might be a better cancer biomarker than TACE expression, it has not been studied in cancer tissues. In the present study, we developed a reliable specific assay for quantification of TACE sheddase activity, investigated TACE activity and TACE protein expression in head and neck cancer (HNC) tissues, and examined the correlation of the results with HNC clinical stages and likelihood to recur. We found that HNC cell lines and tissues contained remarkably higher quantities of TACE activity and TACE protein than normal keratinocytes or oral mucosa. siRNA silencing of TACE resulted in the inhibition of release of the tumorogenic factors amphiregulin and transforming growth factor alpha, and tumor protective factors tumor necrosis factor receptors from HNC cells. Importantly, TACE activity, but not TACE protein expression, was significantly higher in large, T3/T4, primary tumors relative to small, T1/T2, primary tumors, and especially in primary tumors likely to recur relative to those unlikely to recur. These data show that increased TACE activity in cancer is biologically and clinically relevant, and indicate that TACE activity could be a significant biomarker of cancer prognosis.
Collapse
Affiliation(s)
- Lisheng Ge
- Departments of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Monroy A, Kamath S, Chavez AO, Centonze VE, Veerasamy M, Barrentine A, Wewer JJ, Coletta DK, Jenkinson C, Jhingan RM, Smokler D, Reyna S, Musi N, Khokka R, Federici M, Tripathy D, DeFronzo RA, Folli F. Impaired regulation of the TNF-alpha converting enzyme/tissue inhibitor of metalloproteinase 3 proteolytic system in skeletal muscle of obese type 2 diabetic patients: a new mechanism of insulin resistance in humans. Diabetologia 2009; 52:2169-81. [PMID: 19633828 PMCID: PMC2845986 DOI: 10.1007/s00125-009-1451-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 06/11/2009] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS TNF-alpha levels are increased in obesity and type 2 diabetes. The regulation of TNF-alpha converting enzyme (TACE) and its inhibitor, tissue inhibitor of metalloproteinase 3 (TIMP3), in human type 2 diabetes is unknown. METHODS We examined TACE/TIMP3 regulation: (1) in lean and obese normal glucose tolerant (NGT) individuals and in type 2 diabetes patients; (2) following 6 h of lipid/saline infusion in NGT individuals; and (3) in cultured human myotubes from lean NGT individuals incubated with palmitate. Insulin sensitivity was assessed by a euglycaemic clamp and TACE/TIMP3 was evaluated by confocal microscopy, RT-PCR, western blotting and an in vitro activity assay. Circulating TNF-alpha, TNF-alpha-receptor 1 (TNFR1), TNF-alpha-receptor 2 (TNFR2), IL-6 receptor (IL-6R), vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM) levels were evaluated. RESULTS TIMP3 levels were reduced and TACE enzymatic activity was increased in type 2 diabetes skeletal muscle. TACE expression, and TACE, TNF-alpha, TNFR1 and IL-6R levels were increased in type 2 diabetes, and positively correlated with insulin resistance. A 6 h lipid infusion into NGT individuals decreased insulin-stimulated glucose metabolism by 25% with increased TACE, decreased expression of the gene encoding TIMP3 and increased IL-6R release. Palmitate induced a dramatic reduction of TIMP3 and increased the TACE/TIMP3 ratio in cultured myotubes. CONCLUSIONS/INTERPRETATION TACE activity was increased in skeletal muscle of obese type 2 diabetes patients and in lipid-induced insulin resistance. We propose that dysregulation of membrane proteolysis by TACE/TIMP3 of TNF-alpha and IL-6R is an important factor for the development of skeletal muscle insulin resistance in obese type 2 diabetes patients by a novel autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- A Monroy
- Department of Medicine, University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
ADAM17 co-purifies with TIMP-3 and modulates endothelial invasion responses in three-dimensional collagen matrices. Matrix Biol 2009; 28:470-9. [PMID: 19666115 DOI: 10.1016/j.matbio.2009.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/26/2009] [Accepted: 07/29/2009] [Indexed: 12/16/2022]
Abstract
In this study, we investigated potential mechanisms through which the known anti-angiogenic factor, tissue inhibitor of metalloproteinase-3 (TIMP-3) blocks angiogenesis. As a strategy to identify TIMP-3 binding proteins, we used tandem affinity purification, employing recombinant adenoviruses constructed to deliver TIMP-3 fused to C-terminal S and His tags (TIMP-3-S-His) or TIMP-1-S-His control to endothelial cells prior to extraction. Western blotting of final eluates revealed robust binding of A Disintegrin and Metalloproteinase (ADAM) 17 and a slight association of ADAM15 to TIMP-3, but not TIMP-1 control. To confirm a functional requirement for ADAM15 and 17 in mediating angiogenic events, a model of endothelial cell invasion was utilized. Silencing of ADAM17, but not ADAM15, expression using small interfering RNA (siRNA) interfered with invasion, resulting in decreased density of invading cells and decreased invasion distance. Stable EC lines expressing short hairpin RNA directed to ADAM17 were similarly inhibited. To confirm these results, dominant negative mutants (DeltaMPs) of ADAM10, ADAM15 or ADAM17 were delivered using recombinant lentiviruses. Expression of ADAM17 DeltaMP, but not ADAM10 or ADAM15 DeltaMP, decreased invasion density and distance. Further, time-lapse analyses revealed ADAM17 DeltaMP cells exhibited far greater numbers of protruding sprouts compared to control, suggesting an inability of extended processes to retract properly. Immunofluorescence analyses revealed ADAM17 localized to bifurcations in invading sprouts. These data jointly indicate a role for ADAM17 in modulating endothelial sprouting events during angiogenesis.
Collapse
|
150
|
Li F, Curry TE. Regulation and function of tissue inhibitor of metalloproteinase (TIMP) 1 and TIMP3 in periovulatory rat granulosa cells. Endocrinology 2009; 150:3903-12. [PMID: 19389837 PMCID: PMC2717866 DOI: 10.1210/en.2008-1141] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the ovary, the matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinase (TIMPs) have been postulated to regulate extracellular matrix remodeling associated with ovulation. In the present study, we investigated the regulatory mechanisms controlling expression of Timp1 and Timp3 mRNA in periovulatory granulosa cells. Granulosa cells were isolated from immature pregnant mare serum gonadotropin-primed (10 IU) rat ovaries and treated with human chorionic gonadotropin (hCG; 1 IU/ml). At 4 h after hCG treatment, Timp1 expression was highest and then decreased gradually over the remaining 24 h of culture. In contrast, hCG induced a biphasic increase of Timp3 expression at 2 and 16 h. The hCG stimulated expression of Timp1 and Timp3 mRNA was blocked by inhibitors of the protein kinase A (H89), protein kinase C (GF109203), and MAPK (SB2035850) pathways. To further explore Timp1 and Timp3 regulation, cells were cultured with the progesterone receptor antagonist RU486, which blocked the hCG induction of Timp3 expression, whereas the epidermal growth factor receptor tyrosine kinase inhibitor AG1478 blocked the hCG stimulation of both Timp1 and Timp3 expression. The prostaglandin-endoperoxide synthase 2 inhibitor NS-398 had no effect. The potential function of TIMP3 was investigated with Timp3-specific small interfering RNA treatment. Timp3 small interfering RNA resulted in a 20% decrease in hCG-induced progesterone levels and microarray analysis revealed an increase in cytochrome P450 Cyp 17, ubiquitin conjugating enzyme E2T, and heat shock protein 70. IGF binding protein 5, stearyl-CoA desaturase, and annexin A1 were decreased. The differential regulation between Timp1 and Timp3 may correlate with their unique roles in the processes of ovulation and luteinization. For TIMP3, this may include regulating fatty acid synthesis, steroidogenesis, and protein turnover.
Collapse
Affiliation(s)
- Feixue Li
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | |
Collapse
|