101
|
Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 2006; 25:117-27. [PMID: 16860761 PMCID: PMC1626533 DOI: 10.1016/j.immuni.2006.04.010] [Citation(s) in RCA: 665] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 01/04/2006] [Accepted: 04/12/2006] [Indexed: 12/11/2022]
Abstract
T cell receptor (TCR) signaling is initiated and sustained in microclusters; however, it's not known whether signaling also occurs in the TCR-rich central supramolecular activation cluster (cSMAC). We showed that the cSMAC formed by fusion of microclusters contained more CD45 than microclusters and is a site enriched in lysobisphosphatidic acid, a lipid involved in sorting ubiquitinated membrane proteins for degradation. Calcium signaling via TCR was blocked within 2 min by anti-MHCp treatment and 1 min by latrunculin-A treatment. TCR-MHCp interactions in the cSMAC survived these perturbations for 10 min and hence were not sufficient to sustain signaling. TCR microclusters were also resistant to disruption by anti-MHCp and latrunculin-A treatments. We propose that TCR signaling is sustained by stabilized microclusters and is terminated in the cSMAC, a structure from which TCR are sorted for degradation. Our studies reveal a role for F-actin in TCR signaling beyond microcluster formation.
Collapse
Affiliation(s)
- Rajat Varma
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
102
|
Piercy J, Petrova S, Tchilian EZ, Beverley PCL. CD45 negatively regulates tumour necrosis factor and interleukin-6 production in dendritic cells. Immunology 2006; 118:250-6. [PMID: 16771860 PMCID: PMC1782285 DOI: 10.1111/j.1365-2567.2006.02363.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
CD45 is known to regulate signalling through many different surface receptors in diverse haemopoietic cell types. Here we report for the first time that CD45-/- bone marrow dendritic cells (BMDC) are more activated than CD45+/+ cells and that tumour necrosis factor (TNF) and interleukin-6 (IL-6) production by BMDC and splenic dendritic cells (sDC), is increased following stimulation via Toll-like receptor (TLR)3 and TLR9. Nuclear factor-kappaB activation, an important downstream consequence of TLR3 and TLR9 signalling, is also increased in CD45-/- BMDC. BMDC of CD45-/- mice also produce more TNF and IL-6 following stimulation with the cytokines TNF and interferon-alpha. These results show that TLR signalling is increased in CD45-/- dendritic cells and imply that CD45 is a negative regulator of TLR and cytokine receptor signalling in dendritic cells.
Collapse
Affiliation(s)
- Jenny Piercy
- The Edward Jenner Institute for Vaccine Research, Compton, Berkshire RG20 7NN, UK
| | | | | | | |
Collapse
|
103
|
Granum S, Sundvold-Gjerstad V, Dai KZ, Kolltveit KM, Hildebrand K, Huitfeldt HS, Lea T, Spurkland A. Structure function analysis of SH2D2A isoforms expressed in T cells reveals a crucial role for the proline rich region encoded by SH2D2A exon 7. BMC Immunol 2006; 7:15. [PMID: 16839418 PMCID: PMC1553471 DOI: 10.1186/1471-2172-7-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 07/13/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The activation induced T cell specific adapter protein (TSAd), encoded by SH2D2A, interacts with and modulates Lck activity. Several transcript variants of TSAd mRNA exist, but their biological significance remains unknown. Here we examined expression of SH2D2A transcripts in activated CD4+ T cells and used the SH2D2A variants as tools to identify functionally important regions of TSAd. RESULTS TSAd was found to interact with Lck in human CD4+ T cells ex vivo. Three interaction modes of TSAd with Lck were identified. TSAd aa239-256 conferred binding to the Lck-SH3 domain, whereas one or more of the four tyrosines within aa239-334 encoded by SH2D2A exon 7 was found to confer interaction with the Lck-SH2-domain. Finally the TSAd-SH2 domain was found to interact with Lck. The SH2D2A exon 7 encoding TSAd aa 239-334 was found to harbour information essential not only for TSAd interaction with Lck, but also for TSAd modulation of Lck activity and translocation of TSAd to the nucleus. All five SH2D2A transcripts were found to be expressed in CD3 stimulated CD4+ T cells. CONCLUSION These data show that TSAd and Lck may interact through several different domains and that Lck TSAd interaction occurs in CD4+ T cells ex vivo. Alternative splicing of exon 7 encoding aa239-334 results in loss of the majority of protein interaction motives of TSAd and yields truncated TSAd molecules with altered ability to modulate Lck activity. Whether TSAd is regulated through differential alternative splicing of the SH2D2A transcript remains to be determined.
Collapse
Affiliation(s)
- Stine Granum
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | - Vibeke Sundvold-Gjerstad
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | - Ke-Zheng Dai
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | | | - Kjersti Hildebrand
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | - Henrik S Huitfeldt
- Institute of Pathology, Rikshospitalet University Hospital, N-0027, Norway
| | - Tor Lea
- Institute of Immunology, Rikshospitalet University Hospital, N-0027, Norway
| | - Anne Spurkland
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| |
Collapse
|
104
|
Heyd F, ten Dam G, Möröy T. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing. Nat Immunol 2006; 7:859-67. [PMID: 16819553 DOI: 10.1038/ni1361] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 06/07/2006] [Indexed: 11/08/2022]
Abstract
By alternative splicing, different isoforms of the transmembrane tyrosine phosphatase CD45 are generated that either enhance or limit T cell receptor signaling. We report here that CD45 alternative splicing is regulated by cooperative action of the splice factor U2AF26 and the transcription factor Gfi1. U2AF26 promoted formation of the less-active CD45RO by facilitating exon exclusion. Gfi1 antagonized that process by directly interacting with U2AF26, identifying a previously unknown link between a transcription factor and alternative splicing. The presence of Gfi1 led to formation of the more-active CD45RB, whereas loss of Gfi1 favored CD45RO production. We propose that the relative abundance of U2AF26 and Gfi1 determines the ratio of CD45 isoforms, thereby regulating T cell activation.
Collapse
Affiliation(s)
- Florian Heyd
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Virchowstrasse 173, D-45122 Essen, Germany
| | | | | |
Collapse
|
105
|
Burroughs NJ, Lazic Z, van der Merwe PA. Ligand detection and discrimination by spatial relocalization: A kinase-phosphatase segregation model of TCR activation. Biophys J 2006; 91:1619-29. [PMID: 16751250 PMCID: PMC1544308 DOI: 10.1529/biophysj.105.080044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We develop a model of tyrosine phosphorylation and activation of the T-cell receptor (TCR) by localization to regions of close membrane-membrane proximity (close contact) that physically exclude tyrosine phosphatases such as CD45. Phosphatase exclusion generates regions of low phosphatase and high kinase activity and thus our model provides a framework to examine the kinetic segregation model of TCR activation. We incorporate a sequence of activation steps modeling the construction of the signalosome with a final sequestered, or high-stability, signaling state. The residence time of unbound TCRs in tyrosine kinase-rich domains is shown to be too short for accumulation of activation steps, whereas binding to an agonist lengthens the localization time and leads to generation of fully active TCRs. Agonist detection depends only on this localization, and therefore kinetic segregation represents a viable ligand detection mechanism, or signal transduction mechanism across membranes, distinct from receptor oligomerization and conformational change. We examine the degree of discrimination of agonists from a background of null (self) peptides, and from weak agonists achievable by this mechanism.
Collapse
Affiliation(s)
- Nigel J Burroughs
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.
| | | | | |
Collapse
|
106
|
Abstract
The molecular events and the protein components that are involved in signalling by the T cell receptor (TCR) for antigen have been extensively studied. Activation of signalling cascades following TCR stimulation depends on the phosphorylation of the receptor by the tyrosine kinase Lck, which localizes to the cytoplasmic face of the plasma membrane by virtue of its post-translational modification. However, the precise order of events during TCR phosphorylation at the plasma membrane, remains to be defined. A current theory that describes early signalling events incorporates the function of lipid rafts, microdomains at the plasma membrane with distinct lipid and protein composition. Lipid rafts have been implicated in diverse biological functions in mammalian cells. In T cells, molecules with a key role in TCR signalling, including Lck, localize to these domains. Importantly, mutant versions of these proteins which fail to localise to raft domains were unable to support signalling by the TCR. Biochemical studies using purified detergent-resistant membranes (DRM) and confocal microscopy have suggested that upon stimulation, the TCR and Lck-containing lipid rafts may come into proximity allowing phosphorylation of the receptor. Further, there are data suggesting that phosphorylation of the TCR could depend on a transient increase in Lck activity that takes place within lipid rafts to initiate signalling. Current results and a model of how lipid rafts may regulate TCR signalling are discussed.
Collapse
Affiliation(s)
- Panagiotis S Kabouridis
- Bone & Joint Research Unit, William Harvey Research Institute, Queen Mary's School of Medicine & Dentistry, University of London, UK.
| |
Collapse
|
107
|
Dawes R, Petrova S, Liu Z, Wraith D, Beverley PCL, Tchilian EZ. Combinations of CD45 isoforms are crucial for immune function and disease. THE JOURNAL OF IMMUNOLOGY 2006; 176:3417-25. [PMID: 16517710 PMCID: PMC2619577 DOI: 10.4049/jimmunol.176.6.3417] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of the CD45 Ag in hemopoietic cells is essential for normal development and function of lymphocytes, and both mice and humans lacking expression exhibit SCID. Human genetic variants of CD45, the exon 4 C77G and exon 6 A138G alleles, which alter the pattern of CD45 isoform expression, are associated with autoimmune and infectious diseases. We constructed transgenic mice expressing either an altered level or combination of CD45 isoforms. We show that the total level of CD45 expressed is crucial for normal TCR signaling, lymphocyte proliferation, and cytokine production. Most importantly, transgenic lines with a normal level, but altered combinations of CD45 isoforms, CD45(RABC/+) and CD45(RO/+) mice, which mimic variant CD45 expression in C77G and A138G humans, show more rapid onset and increased severity of experimental autoimmune encephalomyelitis. CD45(RO/+) cells produce more TNF-alpha and IFN-gamma. Thus, for the first time, we have shown experimentally that it is the combination of CD45 isoforms that affects immune function and disease.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Cytokines/biosynthesis
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/immunology
- Leukocyte Common Antigens/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Transgenic
- Myelin Proteins
- Myelin-Associated Glycoprotein/pharmacology
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/pharmacology
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Ritu Dawes
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
| | - Svetla Petrova
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
| | - Zhe Liu
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
| | - David Wraith
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Elma Z. Tchilian
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
- Address correspondence and reprint requests to Dr. Elma Z. Tchilian, The Edward Jenner Institute for Vaccine Research, Compton, Berkshire RG20 7NN, U.K. E-mail address:
| |
Collapse
|
108
|
Abstract
CD45 has been recognized as an important player in regulating signalling in lymphocytes. However, compared with tyrosine kinases, phosphatases are still poorly understood in terms of the details of their specificity and regulation. Here, the recent progress in understanding the biology of the first recognized receptor tyrosine phosphatase, CD45, is reviewed.
Collapse
Affiliation(s)
- Nick Holmes
- Division of Immunology, Department of Pathology, Cambridge University, UK.
| |
Collapse
|
109
|
Do HT, Baars W, Borns K, Windhagen A, Schwinzer R. The 77C->G mutation in the human CD45 (PTPRC) gene leads to increased intensity of TCR signaling in T cell lines from healthy individuals and patients with multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2006; 176:931-8. [PMID: 16393978 DOI: 10.4049/jimmunol.176.2.931] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 77C-->G mutation in exon A of the human CD45 gene occurs with low frequency in healthy individuals. An enhanced frequency of 77C-->G individuals has been reported in cohorts of patients suffering from multiple sclerosis, systemic sclerosis, autoimmune hepatitis, and HIV-1. To investigate the mechanisms by which the variant allele may contribute to disease susceptibility, we compared T cell reactivity in heterozygous carriers of the mutation (healthy individuals and multiple sclerosis patients) and wild-type controls. In vitro-generated T cell lines and freshly isolated CD4+CD45R0+ primed/memory T cells from 77C-->G individuals aberrantly expressed CD45RA isoforms and showed enhanced proliferation and IL-2 production when stimulated with anti-TCR/CD3 mAb or Ag. Mutant T cell lines contained a more active pool of p56lck tyrosine kinase and responded with increased phosphorylation of Zap70 and TCR-zeta and an enhanced Ca2+ flux to TCR/CD3 stimulation. These data suggest that 77C-->G may act as a risk factor for certain diseases by increasing the intensity of TCR signaling.
Collapse
Affiliation(s)
- Hue-Tran Do
- Transplantationslabor, Klinik für Viszeral-und Transplantationschirurgie, Hannover, Germany
| | | | | | | | | |
Collapse
|
110
|
Tchilian EZ, Beverley PCL. Altered CD45 expression and disease. Trends Immunol 2006; 27:146-53. [PMID: 16423560 DOI: 10.1016/j.it.2006.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/13/2005] [Accepted: 01/03/2006] [Indexed: 01/06/2023]
Abstract
CD45, the leucocyte common antigen, is a haemopoietic cell-specific tyrosine phosphatase. Many isoforms are generated by alternative splicing, but their function remains obscure. The extracellular domain of CD45 is highly polymorphic in all vertebrates. Importantly, human polymorphic variants that alter CD45 isoform expression are associated with autoimmune and infectious diseases, establishing CD45 as an important immunomodulator with a significant influence on disease burden. Here, we discuss the new opportunities provided by the human variants for investigating and understanding how CD45 regulates antigen receptor signalling, cytokine responses and apoptosis.
Collapse
Affiliation(s)
- Elma Z Tchilian
- The Edward Jenner Institute for Vaccine Research, Compton, Berkshire, UK RG 20 7NN.
| | | |
Collapse
|
111
|
Altan-Bonnet G, Germain RN. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol 2005; 3:e356. [PMID: 16231973 PMCID: PMC1262625 DOI: 10.1371/journal.pbio.0030356] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 08/22/2005] [Indexed: 11/19/2022] Open
Abstract
T-lymphocyte activation displays a remarkable combination of speed, sensitivity, and discrimination in response to peptide-major histocompatibility complex (pMHC) ligand engagement of clonally distributed antigen receptors (T cell receptors or TCRs). Even a few foreign pMHCs on the surface of an antigen-presenting cell trigger effective signaling within seconds, whereas 1 x 10(5)-1 x 10(6) self-pMHC ligands that may differ from the foreign stimulus by only a single amino acid fail to elicit this response. No existing model accounts for this nearly absolute distinction between closely related TCR ligands while also preserving the other canonical features of T-cell responses. Here we document the unexpected highly amplified and digital nature of extracellular signal-regulated kinase (ERK) activation in T cells. Based on this observation and evidence that competing positive- and negative-feedback loops contribute to TCR ligand discrimination, we constructed a new mathematical model of proximal TCR-dependent signaling. The model made clear that competition between a digital positive feedback based on ERK activity and an analog negative feedback involving SH2 domain-containing tyrosine phosphatase (SHP-1) was critical for defining a sharp ligand-discrimination threshold while preserving a rapid and sensitive response. Several nontrivial predictions of this model, including the notion that this threshold is highly sensitive to small changes in SHP-1 expression levels during cellular differentiation, were confirmed by experiment. These results combining computation and experiment reveal that ligand discrimination by T cells is controlled by the dynamics of competing feedback loops that regulate a high-gain digital amplifier, which is itself modulated during differentiation by alterations in the intracellular concentrations of key enzymes. The organization of the signaling network that we model here may be a prototypic solution to the problem of achieving ligand selectivity, low noise, and high sensitivity in biological responses.
Collapse
Affiliation(s)
- Grégoire Altan-Bonnet
- 1Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ronald N Germain
- 1Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
112
|
De Dios I, Ramudo L, Alonso JR, Recio JS, Garcia-Montero AC, Manso MA. CD45 expression on rat acinar cells: Involvement in pro-inflammatory cytokine production. FEBS Lett 2005; 579:6355-60. [PMID: 16263122 DOI: 10.1016/j.febslet.2005.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/06/2005] [Accepted: 10/12/2005] [Indexed: 11/20/2022]
Abstract
CD45 transduces activation signals in inflammatory cells. We investigate CD45 expression on pancreatic acinar cells and examine its role in the inflammatory response which these cells have also shown under certain circumstances. Similar CD45 mRNA levels were found in acinar cells and leukocytes (positive control). Flow cytometric and immunohistochemical analysis showed a heterogeneous CD45 distribution on acinar cells. Activation of acinar cells by incubation with pancreatitis-associated ascitic fluid as evidencied by TNF-alpha production resulted in a decreased CD45 expression, suggesting that CD45 acts as a negative regulator of cytokine production. As a validation of this finding in vivo, a decrease in the acinar CD45 expression in parallel with an increased ability to produce TNF-alpha was found in rats with acute pancreatitis. Our data show that CD45 is constitutively expressed in acinar cells and suggest that it plays an important role in negatively regulating cytokine production.
Collapse
Affiliation(s)
- Isabel De Dios
- Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | | | | | | | | | | |
Collapse
|
113
|
Abstract
T cells recognize small fragments of microorganisms (antigens) on the surface of other cells using T cell antigen receptors. The mechanism by which these receptors signal into T cells is controversial, but two recent studies provide important new clues.
Collapse
|
114
|
Choudhuri K, Wiseman D, Brown MH, Gould K, van der Merwe PA. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 2005; 436:578-82. [PMID: 16049493 DOI: 10.1038/nature03843] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 05/16/2005] [Indexed: 11/09/2022]
Abstract
The binding of a T-cell antigen receptor (TCR) to peptide antigen presented by major histocompatibility antigens (pMHC) on antigen-presenting cells (APCs) is a central event in adaptive immune responses. The mechanism by which TCR-pMHC ligation initiates signalling, a process termed TCR triggering, remains controversial. It has been proposed that TCR triggering is promoted by segregation at the T cell-APC interface of cell-surface molecules with small ectodomains (such as TCR-pMHC and accessory receptors) from molecules with large ectodomains (such as the receptor protein tyrosine phosphatases CD45 and CD148). Here we show that increasing the dimensions of the TCR-pMHC interaction by elongating the pMHC ectodomain greatly reduces TCR triggering without affecting TCR-pMHC ligation. A similar dependence on receptor-ligand complex dimensions was observed with artificial TCR-ligand systems that span the same dimensions as the TCR-pMHC complex. Interfaces between T cells and APCs expressing elongated pMHC showed an increased intermembrane separation distance and less depletion of CD45. These results show the importance of the small size of the TCR-pMHC complex and support a role for size-based segregation of cell-surface molecules in TCR triggering.
Collapse
Affiliation(s)
- Kaushik Choudhuri
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
115
|
Mustelin T, Vang T, Bottini N. Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 2005; 5:43-57. [PMID: 15630428 DOI: 10.1038/nri1530] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism for numerous important aspects of eukaryotic physiology and is catalysed by kinases and phosphatases. Together, cells of the immune system express at least half of the 107 protein tyrosine phosphatase (PTP) genes in the human genome, most of which encode multidomain proteins that contain protein- and phospholipid-interaction domains. Here, we discuss the diverse but specific, and important, roles that PTPs have in immune cells, focusing mainly on T and B cells, and we highlight recent evidence that even subtle alterations in PTPs can cause immune dysfunction and human disease.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Inflammation, Inflammatory and Infectious Disease Center, and Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
116
|
Zhang M, Moran M, Round J, Low TA, Patel VP, Tomassian T, Hernandez JD, Miceli MC. CD45 Signals outside of Lipid Rafts to Promote ERK Activation, Synaptic Raft Clustering, and IL-2 Production. THE JOURNAL OF IMMUNOLOGY 2005; 174:1479-90. [PMID: 15661907 DOI: 10.4049/jimmunol.174.3.1479] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD45 is dynamically repositioned within lipid rafts and the immune synapse during T cell activation, although the molecular consequences of CD45 repositioning remain unclear. In this study we examine the role of CD45 membrane compartmentalization in regulating murine T cell activation. We find that raft-localized CD45 antagonizes IL-2 production by opposing processive TCR signals, whereas raft-excluded CD45 promotes ERK-dependent polarized synaptic lipid raft clustering and IL-2 production. We propose that these dual CD45 activities ensure that only robust TCR signals proceed, whereas signals meeting threshold requirements are potentiated. Our findings highlight membrane compartmentalization as a key regulator of CD45 function and elucidate a novel signal transduction pathway by which raft-excluded CD45 positively regulates T cell activation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Line
- Cell Line, Tumor
- Down-Regulation/immunology
- Enzyme Activation/immunology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Hybridomas
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/biosynthesis
- Leukocyte Common Antigens/biosynthesis
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/physiology
- Lymphocyte Activation/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Microdomains/enzymology
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Son of Sevenless Proteins/genetics
- Son of Sevenless Proteins/metabolism
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tyrosine/antagonists & inhibitors
- Tyrosine/metabolism
- Up-Regulation/immunology
- src Homology Domains/genetics
Collapse
Affiliation(s)
- Min Zhang
- Department of Microbiology, University of California School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Horejsí V. Lipid rafts and their roles in T-cell activation. Microbes Infect 2005; 7:310-6. [PMID: 15715974 DOI: 10.1016/j.micinf.2004.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/01/2004] [Indexed: 10/25/2022]
Abstract
Lipid rafts are defined as detergent-resistant membrane microdomains of specific lipid and protein composition. They are involved in many aspects of cell biology, including T-cell activation and immunoreceptor signaling. This review discusses current controversies around lipid rafts and summarizes recent developments in the area.
Collapse
Affiliation(s)
- Václav Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
118
|
Abstract
Lateral compartmentalization of the plasma membrane into domains is a key feature of immune cell activation and subsequent immune effector functions. Here, we will review the high diversity of membrane domains, ranging from elementary lipid rafts, envisioned as dynamic and small domains (in the tens of nm), to relatively stable microm-scale membrane domains, which form the immunologic synapse of T lymphocytes. We will discuss the relationship between these different types of plasma membrane domains and how raft lipid- and protein-controlled interactions and cell biological processes cooperate to generate functional domains that mediate lymphocyte activity.
Collapse
Affiliation(s)
- Thomas Harder
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
119
|
Razzaq TM, Ozegbe P, Jury EC, Sembi P, Blackwell NM, Kabouridis PS. Regulation of T-cell receptor signalling by membrane microdomains. Immunology 2004; 113:413-26. [PMID: 15554919 PMCID: PMC1782593 DOI: 10.1111/j.1365-2567.2004.01998.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/09/2004] [Accepted: 09/15/2004] [Indexed: 01/04/2023] Open
Abstract
There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms.
Collapse
Affiliation(s)
- Tahir M Razzaq
- Bone and Joint Research Unit, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, Queen Mary's College, London
| | | | | | | | | | | |
Collapse
|
120
|
McNeill L, Cassady RL, Sarkardei S, Cooper JC, Morgan G, Alexander DR. CD45 isoforms in T cell signalling and development. Immunol Lett 2004; 92:125-34. [PMID: 15081536 DOI: 10.1016/j.imlet.2003.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 10/24/2003] [Indexed: 12/31/2022]
Abstract
The CD45 phosphotyrosine phosphatase is expressed on T cells as multiple isoforms due to alternative splicing. The panoply of isoforms expressed is tightly regulated during T cell development and on mature peripheral T cell subsets following activation. We describe the analysis of comparative CD45 isoform expression levels on thymic and T cell subsets from the C57BL/6 mouse. Only four isoforms were expressed at significant protein levels: CD45R0, CD45RB, CD45RBC and CD45RABC, although trace amounts of others may be present. The expression of CD45RBC was about nine-fold higher on CD8(+) than on CD4(+) peripheral T cells, whereas CD45R0 expression was higher on CD4(+) T cells. We provide a general overview of the current models that have been proposed to explain the molecular actions of the different CD45 isoforms. Achieving a thorough understanding of the biological reasons for the existence and tight regulation of CD45 isoform expression in immune cells remains one of the outstanding challenges in the CD45 research field.
Collapse
Affiliation(s)
- Louise McNeill
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | | | | | | | |
Collapse
|
121
|
Boxall S, Stanton T, Hirai K, Ward V, Yasui T, Tahara H, Tamori A, Nishiguchi S, Shiomi S, Ishiko O, Inaba M, Nishizawa Y, Dawes R, Bodmer W, Beverley PCL, Tchilian EZ. Disease associations and altered immune function in CD45 138G variant carriers. Hum Mol Genet 2004; 13:2377-84. [PMID: 15333587 DOI: 10.1093/hmg/ddh276] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The CD45 antigen is a haemopoietic cell specific tyrosine phosphatase essential for antigen receptor mediated signalling in lymphocytes. Expression of different patterns of alternatively spliced CD45 isoforms is associated with distinct functions. We recently identified a polymorphism in exon 6 (A138G) of the gene encoding CD45 (PTPRC) that results in altered CD45 splicing. The 138G allele is present at a high frequency among Japanese (23.7%), with 5.1% individuals homozygous for the G allele. In this study we show that the A138G polymorphism is the cause of altered CD45 isoform expression, promoting splicing towards low molecular weight CD45 isoforms. We further report that the frequency of A138G heterozygotes is significantly reduced in number in cohorts of patients with autoimmune Graves' disease or hepatitis B infection, whereas G138G homozygotes are absent from a cohort of Hashimoto's thyroiditis patients. We also show that 138G individuals exhibit altered cytokine production in vitro and an increased proportion of memory T cells. These data suggest that the 138G variant allele strongly influences these diseases by modulation of immune mechanisms and may have achieved its high frequency as a result of a natural selection probably related to pathogen resistance.
Collapse
Affiliation(s)
- Sally Boxall
- The Edward Jenner Institute for Vaccine Research, Compton, Berkshire RG20 7NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Kountikov E, Wilson M, Miller N, Clem W, Bengtén E. Organization and expression of thirteen alternatively spliced exons in catfish CD45 homologs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:1023-1035. [PMID: 15236932 DOI: 10.1016/j.dci.2004.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 04/08/2004] [Accepted: 04/20/2004] [Indexed: 05/24/2023]
Abstract
CD45, also known as LCA, is a transmembrane protein tyrosine phosphatase encoded by the PTPRC gene. In mammals, it plays an important role in T and B cell receptor and cytokine signaling by maintaining receptor associated kinases in an active state. A prominent CD45 feature is alternative splicing of exons encoding the N-terminus, resulting in the generation of several isoforms. The expression of isoforms is tightly regulated and dependent on the developmental/activation state of the lymphocyte. Nevertheless, the significance of these multiple isoforms in mammals is poorly understood. In this study, the channel catfish CD45 homolog was sequenced and found to be similar to CD45 of other species. However, unlike mammalian CD45, it appears that up to 13 exons are used in producing multiple alternatively spliced CD45 variants in catfish cells. These 13 alternatively spliced exons variably encode for O-linked glycosylation sites. Several of the exons are identical or very similar, suggesting gene duplication of a block of four exons. As demonstrated by RT-PCR, many of the alternatively spliced forms of catfish CD45 are differentially expressed in lymphoid cell lines with B cells expressing larger isoforms than do T cells. Furthermore, immunoprecipitation experiments utilizing anti-catfish CD45 mAbs substantiated that different size CD45 isoforms are expressed at the protein level on catfish T and B cells.
Collapse
Affiliation(s)
- Evgueni Kountikov
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
123
|
Cannons JL, Schwartzberg PL. Fine-tuning lymphocyte regulation: what’s new with tyrosine kinases and phosphatases? Curr Opin Immunol 2004; 16:296-303. [PMID: 15134778 DOI: 10.1016/j.coi.2004.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the basic mechanisms of lymphocyte signaling have been established, recent studies have provided new insights into how fine-tuning the regulation of tyrosine kinases and phosphatases contributes to the delicate balance required for appropriate lymphocyte activation. Recent studies include new work on the roles of the immune synapse in regulating T-cell receptor signaling, the discovery of new functions for the Src-family kinase Fyn and the Tec kinase Itk, particularly in regulation of the actin cytoskeleton, and new insights into positive and negative feedback mechanisms in antigen receptor signaling.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, 49/4A38, 49 Convent Drive, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
124
|
Abstract
Activation of the T-cell antigen receptor (TCR) is a key event in triggering the physiological responses of T lymphocytes to antigen. The earliest TCR-evoked signalling steps, such as tyrosine phosphorylations, ras activation and induction of Ca(2+) fluxes, are initiated in the T-cell plasma membrane. It has been implicated that cholesterol- and sphingolipid-rich membrane domains, termed lipid rafts, form platforms for the regulation and transduction of TCR signals at the plasma membrane; however, recent experiments have now differentiated distinct roles for lipid-raft-mediated and protein-mediated interactions in the formation of TCR signalling membrane domains.
Collapse
Affiliation(s)
- Thomas Harder
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
125
|
Jury EC, Kabouridis PS, Flores-Borja F, Mageed RA, Isenberg DA. Altered lipid raft–associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J Clin Invest 2004. [DOI: 10.1172/jci200420345] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
126
|
Jury EC, Kabouridis PS, Flores-Borja F, Mageed RA, Isenberg DA. Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J Clin Invest 2004; 113:1176-87. [PMID: 15085197 PMCID: PMC385405 DOI: 10.1172/jci20345] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 02/17/2004] [Indexed: 12/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by abnormalities in T lymphocyte receptor-mediated signal transduction pathways. Our previous studies have established that lymphocyte-specific protein tyrosine kinase (LCK) is reduced in T lymphocytes from patients with SLE and that this reduction is associated with disease activity and parallels an increase in LCK ubiquitination independent of T cell activation. This study investigated the expression of molecules that regulate LCK homeostasis, such as CD45, C-terminal Src kinase (CSK), and c-Cbl, in lipid raft domains from SLE T cells and investigated the localization of these proteins during T cell receptor (TCR) triggering. Our results indicate that the expression of raft-associated ganglioside, GM1, is increased in T cells from SLE patients and LCK may be differentially regulated due to an alteration in the association of CD45 with lipid raft domains. CD45 tyrosine phosphatase, which regulates LCK activity, was differentially expressed and its localization into lipid rafts was increased in T cells from patients with SLE. Furthermore, T cells allowed to "rest" in vitro showed a reversal of the changes in LCK, CD45, and GM1 expression. The results also revealed that alterations in the level of GM1 expression and lipid raft occupancy cannot be induced by serum factors from patients with SLE but indicated that cell-cell contact, activating aberrant proximal signaling pathways, may be important in influencing abnormalities in T cell signaling and, therefore, function in patients with SLE.
Collapse
Affiliation(s)
- Elizabeth C Jury
- Centre for Rheumatology, Royal Free and University College Medical School, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
127
|
Shrivastava P, Katagiri T, Ogimoto M, Mizuno K, Yakura H. Dynamic regulation of Src-family kinases by CD45 in B cells. Blood 2004; 103:1425-32. [PMID: 14563648 DOI: 10.1182/blood-2003-03-0716] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractCD45 is a key protein tyrosine phosphatase regulating Src-family protein tyrosine kinases (Src-PTKs) in lymphocytes; precisely how it exerts its effect remains controversial, however. We previously demonstrated that CD45 negatively regulates Lyn in the WEHI-231 B-cell line. Here we show that negative regulation by CD45 is physiologically significant in B cells and that some CD45 is constitutively associated with glycolipid-enriched microdomains (GEMs), where it inhibits Src-PTKs by dephosphorylating both the negative and the positive regulatory sites. Upon B-cell receptor (BCR) ligation, however, CD45 dissociates from GEMs within 30 seconds, inducing phosphorylation of 2 regulatory sites and activation of Src-PTKs, but subsequently reassociates with the GEMs within 15 minutes. Disruption of GEMs with methyl-β-cyclodextrin results in abrogation of BCR-induced apoptosis in WEHI-231 cells, suggesting GEMs are critical to signals leading to the fate determination. We propose that the primary function of CD45 is inhibition of Src-PTKs and that the level of Src-PTK activation and the B-cell fate are determined in part by dynamic behavior of CD45 with respect to GEMs.
Collapse
Affiliation(s)
- Punya Shrivastava
- Department of Immunology and Signal Transduction, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | |
Collapse
|
128
|
Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 2004; 3:939-51. [PMID: 14647476 DOI: 10.1038/nri1248] [Citation(s) in RCA: 504] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Oreste Acuto
- Molecular Immunology Unit, Department of Immunology, Institut Pasteur, 25 Rue du Dr Roux, Cedex 15, 75724 Paris, France.
| | | |
Collapse
|
129
|
Abstract
In the last few years it has become clear that in cells of the immune system, specialized microdomains present in the plasma membrane, called lipid rafts, have been found to play a central role in regulating signalling by immune receptors. Recent studies have looked at whether lipid rafts may be connected to the abnormalities in signalling seen in T lymphocytes isolated from patients with systemic lupus erythematosus (SLE). These early findings show that in SLE T cells, the expression and protein composition of lipid rafts is different when compared with normal T cells. These results also demonstrate changes in the function and localization of critical signalling molecules such as the LCK tyrosine kinase and the CD45 tyrosine phosphatase.
Collapse
Affiliation(s)
- E C Jury
- Centre for Rheumatology, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
130
|
Davis SJ, van der Merwe PA. TCR triggering: co-receptor-dependent or -independent? Trends Immunol 2003; 24:624-6; author reply 626-7. [PMID: 14644133 DOI: 10.1016/j.it.2003.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
131
|
Randriamampita C, Delon J, Trautmann A. Response to Davis and van der Merwe: No model fully explains how TCR signaling begins. Trends Immunol 2003. [DOI: 10.1016/j.it.2003.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
132
|
Lin J, Weiss A. The tyrosine phosphatase CD148 is excluded from the immunologic synapse and down-regulates prolonged T cell signaling. J Cell Biol 2003; 162:673-82. [PMID: 12913111 PMCID: PMC2173795 DOI: 10.1083/jcb.200303040] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CD148 is a receptor-like protein tyrosine phosphatase up-regulated on T cells after T cell receptor (TCR) stimulation. To examine the physiologic role of CD148 in TCR signaling, we used an inducible CD148-expressing Jurkat T cell clone. Expression of CD148 inhibits NFAT (nuclear factor of activated T cells) activation induced by soluble anti-TCR antibody, but not by antigen-presenting cells (APCs) loaded with staphylococcal enterotoxin superantigen (SAg) or immobilized anti-TCR antibody. Immunofluorescence microscopy revealed that the extracellular domain of CD148 mediates its exclusion from the immunologic synapse, sequestering it from potential substrates. Targeting of the CD148 phosphatase domain to the immunologic synapse potently inhibited NFAT activation by all means of triggering through the TCR. These data lead us to propose a model where CD148 function is regulated in part by exclusion from substrates in the immunologic synapse. Upon T cell-APC disengagement, CD148 can then access and dephosphorylate substrates to down-regulate prolongation of signaling.
Collapse
Affiliation(s)
- Joseph Lin
- Department of Medicine, Biomedical Sciences Graduate Program, University of California at San Francisco, 533 Parnassus Avenue, Box no. 0795, San Francisco, CA 94143-0795, USA
| | | |
Collapse
|
133
|
Abstract
Evidence has accumulated over the past few years to suggest that specialized plasma membrane regions enriched in cholesterol and glycolipids, called 'lipid rafts', are primarily involved in the initiation and propagation of the signal transduction cascade associated with lymphocyte activation. Considering the multitude of recent and often contradictory data, however, it appears that a critical reconsideration of the role of lipid rafts in lymphocyte activation is necessary and timely, particularly in light of a series of new experimental results that challenge the traditional view of the role of lipid rafts in lymphocyte activation.
Collapse
Affiliation(s)
- Paola Pizzo
- Department of Biomedical Sciences, University of Padova, via G Colombo 3, 35121 Padova, Italy
| | | |
Collapse
|
134
|
Acuto O, Mise-Omata S, Mangino G, Michel F. Molecular modifiers of T cell antigen receptor triggering threshold: the mechanism of CD28 costimulatory receptor. Immunol Rev 2003; 192:21-31. [PMID: 12670392 DOI: 10.1034/j.1600-065x.2003.00034.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CD28 was thought to represent a prototypic membrane receptor responsible for delivering the classically defined 'second signal' needed to avoid T cell paralysis when recognizing antigen presented by appropriate antigen presenting cells (APCs). Almost two decades after its molecular identification, the mechanism by which this 'second receptor' facilitates clonal expansion and differentiation upon antigen encounter is still not fully elucidated. There may be at least two reasons for this partially gray picture: the use of nonphysiological experimental conditions to study it and the fact that the action of CD28 may be partly masked by the presence of additional T cell surface receptors that also provide some costimulatory signals, although not equivalent to the one delivered through CD28. Thus, instead of aging, the study of CD28 is still a topical subject. What is appearing through work of recent years is that far from being purely qualitative, the CD28 signal provides a key quantitative contribution to potently boost the T cell antigen receptor (TCR) signal. In other words, CD28 is in part a signaling 'sosia' of the TCR. Also, it is clear now that CD28 operates via multiple molecular effects. Still, what we do not understand is the 'qualitative' part of this signal, perhaps due to lack of identification of unique signaling components and/or pathways activated by CD28 only. Here we review a series of recent findings pointing towards novel avenues to better understand the molecular basis of CD28 function.
Collapse
Affiliation(s)
- Oreste Acuto
- Molecular Immunology Unit, Department of Immunology, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|