101
|
Li S, Goncalves KA, Lyu B, Yuan L, Hu GF. Chemosensitization of prostate cancer stem cells in mice by angiogenin and plexin-B2 inhibitors. Commun Biol 2020; 3:26. [PMID: 31942000 PMCID: PMC6962460 DOI: 10.1038/s42003-020-0750-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are an obstacle in cancer therapy and are a major cause of drug resistance, cancer recurrence, and metastasis. Available treatments, targeting proliferating cancer cells, are not effective in eliminating quiescent CSCs. Identification of CSC regulators will help design therapeutic strategies to sensitize drug-resistant CSCs for chemo-eradication. Here, we show that angiogenin and plexin-B2 regulate the stemness of prostate CSCs, and that inhibitors of angiogenin/plexin-B2 sensitize prostate CSCs to chemotherapy. Prostate CSCs capable of self-renewal, differentiation, and tumor initiation with a single cell inoculation were identified and shown to be regulated by angiogenin/plexin-B2 that promotes quiescence and self-renewal through 5S ribosomal RNA processing and generation of the bioactive 3′-end fragments of 5S ribosomal RNA, which suppress protein translation and restrict cell cycling. Monoclonal antibodies of angiogenin and plexin-B2 decrease the stemness of prostate CSCs and sensitize them to chemotherapeutic agents in vitro and in vivo. Shuping Li et al. show that angiogenin and its receptor plexin-B2 regulate the stemness of prostate cancer stem cells. Monoclonal antibodies of angiogenin and plexin-B2 sensitize prostate cancer stem cells to chemotherapy, highlighting the targeting potential of this regulation.
Collapse
Affiliation(s)
- Shuping Li
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Kevin A Goncalves
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Baiqing Lyu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Liang Yuan
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Guo-Fu Hu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
102
|
Shide K. The role of driver mutations in myeloproliferative neoplasms: insights from mouse models. Int J Hematol 2019; 111:206-216. [PMID: 31865539 DOI: 10.1007/s12185-019-02803-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023]
Abstract
High frequency of JAK2V617F or CALR exon 9 mutations is a main molecular feature of myeloproliferative neoplasms (MPNs). Analysis of mouse models driven by these mutations suggests that they are a direct cause of MPNs and that the expression levels of the mutated genes define the disease phenotype. The function of MPN-initiating cells has also been elucidated by these mouse models. Such mouse models also play an important role in modeling disease to investigate the effects and action mechanisms of therapeutic drugs, such as JAK2 inhibitors and interferon α, against MPNs. The mutation landscape of hematological tumors has already been clarified by next-generation sequencing technology, and the importance of functional analysis of mutant genes in vivo should increase further in the future.
Collapse
Affiliation(s)
- Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
103
|
Distinct effects of ruxolitinib and interferon-alpha on murine JAK2V617F myeloproliferative neoplasm hematopoietic stem cell populations. Leukemia 2019; 34:1075-1089. [PMID: 31732720 DOI: 10.1038/s41375-019-0638-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/01/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022]
Abstract
JAK2V617F is the most common mutation in patients with BCR-ABL negative myeloproliferative neoplasms (MPNs). The eradication of JAK2V617F hematopoietic stem cells (HSCs) is critical for achieving molecular remissions and cure. We investigate the distinct effects of two therapies, ruxolitinib (JAK1/2 inhibitor) and interferon-alpha (IFN-α), on the disease-initiating HSC population. Whereas ruxolitinib inhibits Stat5 activation in erythroid progenitor populations, it fails to inhibit this same pathway in HSCs. In contrast, IFN-α has direct effects on HSCs. Furthermore, STAT1 phosphorylation and pathway activation is greater after IFN-α stimulation in Jak2V617F murine HSCs with increased induction of reactive oxygen species, DNA damage and reduction in quiescence after chronic IFN-α treatment. Interestingly, ruxolitinib does not block IFN-α induced reactive oxygen species and DNA damage in Jak2V617F murine HSCs in vivo. This work provides a mechanistic rationale informing how pegylated IFN-α reduces JAK2V617F allelic burden in the clinical setting and may inform future clinical efforts to combine ruxolitinib with pegylated IFN-α in patients with MPN.
Collapse
|
104
|
Peshkova IO, Aghayev T, Fatkhullina AR, Makhov P, Titerina EK, Eguchi S, Tan YF, Kossenkov AV, Khoreva MV, Gankovskaya LV, Sykes SM, Koltsova EK. IL-27 receptor-regulated stress myelopoiesis drives abdominal aortic aneurysm development. Nat Commun 2019; 10:5046. [PMID: 31695038 PMCID: PMC6834661 DOI: 10.1038/s41467-019-13017-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent life-threatening disease, where aortic wall degradation is mediated by accumulated immune cells. Although cytokines regulate inflammation within the aorta, their contribution to AAA via distant alterations, particularly in the control of hematopoietic stem cell (HSC) differentiation, remains poorly defined. Here we report a pathogenic role for the interleukin-27 receptor (IL-27R) in AAA, as genetic ablation of IL-27R protects mice from the disease development. Mitigation of AAA is associated with a blunted accumulation of myeloid cells in the aorta due to the attenuation of Angiotensin II (Ang II)-induced HSC expansion. IL-27R signaling is required to induce transcriptional programming to overcome HSC quiescence and increase differentiation and output of mature myeloid cells in response to stress stimuli to promote their accumulation in the diseased aorta. Overall, our studies illuminate how a prominent vascular disease can be distantly driven by a cytokine-dependent regulation of bone marrow precursors.
Collapse
Affiliation(s)
- Iuliia O Peshkova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Turan Aghayev
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Aliia R Fatkhullina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Petr Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Elizaveta K Titerina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Satoru Eguchi
- Lewis Katz School of Medicine, Temple University Cardiovascular Research Center, Philadelphia, Pennsylvania, 19140, USA
| | - Yin Fei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Andrew V Kossenkov
- Bioinformatics Facility, The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Marina V Khoreva
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | | | - Stephen M Sykes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Ekaterina K Koltsova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA.
| |
Collapse
|
105
|
Luo J, Liu H, Luan S, Li Z. Guidance of circular RNAs to proteins' behavior as binding partners. Cell Mol Life Sci 2019; 76:4233-4243. [PMID: 31270581 PMCID: PMC11105724 DOI: 10.1007/s00018-019-03216-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
Circular RNAs (circRNAs) are single-stranded and covalently closed back-splicing products of pre-mRNAs. They can be derived from exons, introns, or exons with intron retained between exons of transcripts, as well as antisense transcripts. CircRNAs have been reported to function as microRNA sponges, regulate gene transcription mediated by RNA polymerase II, and modulate the splicing or stability of mRNA. However, emerging studies demonstrate that they affect the behavior of proteins via direct interactions with them. Here, we summarize that by binding directly with proteins; circRNAs can facilitate their nuclear or cytoplasmic localizations, regulate their functions or stability, promote or inhibit the interactions between them, or influence the interactions between them and DNA. Furthermore, these circRNA-binding proteins contain transcription factors, RNA processing proteins, proteases, and some other RNA-binding proteins. As a consequence, circRNAs are involved in the regulation of multiple physiological or pathological processes, including tumorigenesis, atherosclerosis, wound repair, cardiac senescence, myocardial ischemia/reperfusion injury, and so forth. Nonetheless, it is worthwhile to further explore more types of proteins that interact with circRNAs, which would be helpful in revealing other unknown biological functions of circRNAs that guide the variation in behavior of cellular proteins.
Collapse
Affiliation(s)
- Junyun Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Hui Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Siyu Luan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhaoyong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
106
|
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019; 20:675-691. [PMID: 31395983 DOI: 10.1038/s41576-019-0158-7] [Citation(s) in RCA: 2815] [Impact Index Per Article: 563.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed, endogenous biomolecules in eukaryotes with tissue-specific and cell-specific expression patterns, whose biogenesis is regulated by specific cis-acting elements and trans-acting factors. Some circRNAs are abundant and evolutionarily conserved, and many circRNAs exert important biological functions by acting as microRNA or protein inhibitors ('sponges'), by regulating protein function or by being translated themselves. Furthermore, circRNAs have been implicated in diseases such as diabetes mellitus, neurological disorders, cardiovascular diseases and cancer. Although the circular nature of these transcripts makes their detection, quantification and functional characterization challenging, recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of state-of-the-art approaches for their identification, and novel approaches to functional characterization are emerging.
Collapse
Affiliation(s)
- Lasse S Kristensen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark.
| | - Maria S Andersen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Lotte V W Stagsted
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
| | - Karoline K Ebbesen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
107
|
Zhu KC, Guo HY, Zhang N, Guo L, Liu BS, Jiang SG, Zhang DC. Functional characterization of interferon regulatory factor 2 and its role in the transcription of interferon a3 in golden pompano Trachinotus ovatus (Linnaeus 1758). FISH & SHELLFISH IMMUNOLOGY 2019; 93:90-98. [PMID: 31326586 DOI: 10.1016/j.fsi.2019.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Similar to mammals, fish possess interferon (IFN) regulatory factor 2 (IRF2)-dependent type I IFN responses. Nevertheless, the detailed mechanism through which IRF2 regulates type I IFNa3 remains largely unknown. In the present study, we first identified two genes from golden pompano (Trachinotus ovatus), IRF2 (ToIRF2) and IFNa3 (ToIFNa3), in the IFN/IRF-based signalling pathway. The open reading frame (ORF) sequence of ToIRF2 encoded 335 amino acids possessing four typical characteristic domains, including a conserved DNA-binding domain (DBD), an interferon association domain 2 (IAD2), a transcriptional activation domain (TAD), and a transcriptional repression domain (TRD). Furthermore, transcripts of ToIRF2 were significantly upregulated after stimulation by polyinosinic: polycytidylic acid [poly (I:C)], lipopolysaccharide (LPS) and flagellin in immune-related tissues (blood, liver, and head-kidney). Moreover, to investigate whether ToIRF2 was a regulator of ToIFNa3, promoter analysis was performed. The results showed that the region from -896 bp to -200 bp is defined as the core promoter using progressive deletion mutations of IFNa3. Additionally, ToIRF2 overexpression led to a clear time-dependent enhancement of ToIFNa3 promoter expression in HEK293T cells. Mutation analyses indicated that the activity of the ToIFNa3 promoter significantly decreased after targeted mutation of M4/5 binding sites. Electrophoretic mobile shift assays (EMSAs) verified that IRF2 interacted with the binding site of the ToIFNa3 promoter region to regulate ToIFNa3 transcription. Last, the promoter activity of ToIFNa3-2 was more responsive to treatment with poly (I:C) than LPS and flagellin. Furthermore, overexpression of ToIRF2 in vitro obviously increased the expression of several IFN/IRF-based signalling pathway genes after poly (I:C) abduction. In conclusion, the present study provides the first evidence of the positive regulation of ToIFNa3 transcription by ToIRF2 and contributes to a better understanding of the transcriptional mechanisms of ToIRF2 in fish.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
108
|
Abstract
Hematopoietic stem cells (HSCs) are responsible for generating all blood cells throughout life. Apart from the role of HSCs in maintaining the homeostasis of blood cell production process, they must respond quickly to hematopoietic challenges, such as infection or blood loss. HSCs can be directly/indirectly activated and engage in blood formation for the acute needs in response to inflammation. Recent findings highlight the emerging role of inflammation signaling on HSC fate decision and shaping the hematopoietic system during aging. Here, we summarize recent studies identifying the changes in inflammation and their role in modulation of HSC function and discuss the interaction between inflammation and HSC biology in the contexts of aging and hematological malignancy.
Collapse
|
109
|
Zeng H, Tang J, Yue M, Cheng J, Fan Y, Li M, Zhang X, Li H, Duan H, Zhang M, Fan G, Zhu Q, Shao L. Polyinosinic-polycytidylic acid accelerates intestinal stem cell proliferation via modulating Myc expression. J Cell Physiol 2019; 235:3646-3656. [PMID: 31559639 DOI: 10.1002/jcp.29254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
It is well known that exposure of double-stranded RNA (dsRNA) to intestine immediately induces villus damage with severe diarrhea, which is mediated by toll-like receptor 3 signaling activation. However, the role of intestinal stem cells (ISCs) remains obscure during the pathology. In the present study, polyinosinic-polycytidylic acid (poly[I:C]), mimicking viral dsRNA, was used to establish intestinal damage model. Mice were acutely and chronically exposed to poly(I:C), and ISCs in jejunum were analyzed. The results showed that the height of villus was shorter 48 hr after acute poly(I:C) exposure compared with that of controls, while chronic poly(I:C) treatment increased both villus height and crypt depth in jejunum compared with control animals. The numbers of ISCs in jejunum were significantly increased after acute and chronic poly(I:C) exposure. Poly (I:C)-stimulated ISCs have stronger capacities to differentiate into intestine endocrine cells. Mechanistically, poly(I:C) treatment increased expression of Stat1 and Axin2 in the intestinal crypt, which was along with increased expression of Myc, Bcl2, and ISC proliferation. These findings suggest that dsRNA exposure could induce ISC proliferation to ameliorate dsRNA-induced intestinal injury.
Collapse
Affiliation(s)
- Huihong Zeng
- Department of Histology and Embryology, Medical School of Nanchang University, Nanchang, China
| | - Jiahui Tang
- Department of Histology and Embryology, Medical School of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Mengzhen Yue
- Department of Histology and Embryology, Medical School of Nanchang University, Nanchang, China
| | - Jiaoqi Cheng
- Department of Histology and Embryology, Medical School of Nanchang University, Nanchang, China
| | - Ying Fan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Manjun Li
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinxin Zhang
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Li
- Department of Histology and Embryology, Medical School of Nanchang University, Nanchang, China
| | - Hongyi Duan
- Department of Histology and Embryology, Medical School of Nanchang University, Nanchang, China
| | - Minqing Zhang
- Department of Histology and Embryology, Medical School of Nanchang University, Nanchang, China
| | - Guangqin Fan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Qingxian Zhu
- Department of Histology and Embryology, Medical School of Nanchang University, Nanchang, China
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
110
|
Abstract
Systemic lupus erythematosus (SLE) is a devastating and heterogeneous autoimmune disease that affects multiple organs, and for which the underlying causes are unknown. The majority of SLE patients produce autoantibodies, have increased levels of type-I inflammatory cytokines, and can develop glomerulonephritis. Recent studies indicate an unexpected but strong association between increased disease activity in SLE patients and the expression of the DNA-binding protein ARID3a (A + T rich interaction domain protein 3a) in a number of peripheral blood cell types. ARID3a expression was first associated with autoantibody production in B cells; however, more recent findings also indicate associations with expression of the inflammatory cytokine interferon alpha in SLE plasmacytoid dendritic cells and low-density neutrophils. In addition, ARID3a is expressed in hematopoietic stem cells and some adult kidney progenitor cells. SLE cells expressing enhanced ARID3a levels show differential gene expression patterns compared with homologous healthy control cells, identifying new pathways potentially regulated by ARID3a. The associations of ARID3a expression with increased disease severity in SLE, suggest that it, or its downstream targets, may provide new therapeutic targets for SLE.
Collapse
|
111
|
Cuartero S, Innes AJ, Merkenschlager M. Towards a Better Understanding of Cohesin Mutations in AML. Front Oncol 2019; 9:867. [PMID: 31552185 PMCID: PMC6746210 DOI: 10.3389/fonc.2019.00867] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Classical driver mutations in acute myeloid leukemia (AML) typically affect regulators of cell proliferation, differentiation, and survival. The selective advantage of increased proliferation, improved survival, and reduced differentiation on leukemia progression is immediately obvious. Recent large-scale sequencing efforts have uncovered numerous novel AML-associated mutations. Interestingly, a substantial fraction of the most frequently mutated genes encode general regulators of transcription and chromatin state. Understanding the selective advantage conferred by these mutations remains a major challenge. A striking example are mutations in genes of the cohesin complex, a major regulator of three-dimensional genome organization. Several landmark studies have shown that cohesin mutations perturb the balance between self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPC). Emerging data now begin to uncover the molecular mechanisms that underpin this phenotype. Among these mechanisms is a role for cohesin in the control of inflammatory responses in HSPCs and myeloid cells. Inflammatory signals limit HSPC self-renewal and drive HSPC differentiation. Consistent with this, cohesin mutations promote resistance to inflammatory signals, and may provide a selective advantage for AML progression. In this review, we discuss recent progress in understanding cohesin mutations in AML, and speculate whether vulnerabilities associated with these mutations could be exploited therapeutically.
Collapse
Affiliation(s)
- Sergi Cuartero
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Andrew J Innes
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Faculty of Medicine, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Matthias Merkenschlager
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
112
|
Khader SA, Divangahi M, Hanekom W, Hill PC, Maeurer M, Makar KW, Mayer-Barber KD, Mhlanga MM, Nemes E, Schlesinger LS, van Crevel R, Vankayalapati R(K, Xavier RJ, Netea MG. Targeting innate immunity for tuberculosis vaccination. J Clin Invest 2019; 129:3482-3491. [PMID: 31478909 PMCID: PMC6715374 DOI: 10.1172/jci128877] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vaccine development against tuberculosis (TB) is based on the induction of adaptive immune responses endowed with long-term memory against mycobacterial antigens. Memory B and T cells initiate a rapid and robust immune response upon encounter with Mycobacterium tuberculosis, thus achieving long-lasting protection against infection. Recent studies have shown, however, that innate immune cell populations such as myeloid cells and NK cells also undergo functional adaptation after infection or vaccination, a de facto innate immune memory that is also termed trained immunity. Experimental and epidemiological data have shown that induction of trained immunity contributes to the beneficial heterologous effects of vaccines such as bacille Calmette-Guérin (BCG), the licensed TB vaccine. Moreover, increasing evidence argues that trained immunity also contributes to the anti-TB effects of BCG vaccination. An interaction among immunological signals, metabolic rewiring, and epigenetic reprogramming underlies the molecular mechanisms mediating trained immunity in myeloid cells and their bone marrow progenitors. Future studies are warranted to explore the untapped potential of trained immunity to develop a future generation of TB vaccines that would combine innate and adaptive immune memory induction.
Collapse
Affiliation(s)
- Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, and Department of Pathology, McGill International TB Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Willem Hanekom
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Philip C. Hill
- Centre for International Health, Department of Preventive and Social Medicine, University of Otago Medical School, Dunedin, New Zealand
| | - Markus Maeurer
- Department of Oncology/Haematology, Krankenhaus Nordwest (KHNW), Frankfurt, Germany
- ImmunoSurgery Unit, Champalimaud Foundation, Lisbon, Portugal
| | - Karen W. Makar
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Musa M. Mhlanga
- Division of Chemical Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Faculty of Health Sciences, Department of Integrative Biomedical Sciences, and
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raman (Krishna) Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology and
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | | |
Collapse
|
113
|
Platanitis E, Demiroz D, Schneller A, Fischer K, Capelle C, Hartl M, Gossenreiter T, Müller M, Novatchkova M, Decker T. A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription. Nat Commun 2019; 10:2921. [PMID: 31266943 PMCID: PMC6606597 DOI: 10.1038/s41467-019-10970-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/11/2019] [Indexed: 01/12/2023] Open
Abstract
Cells maintain the balance between homeostasis and inflammation by adapting and integrating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA.
Collapse
Affiliation(s)
| | - Duygu Demiroz
- Max Perutz Labs (MPL), University of Vienna, Vienna, 1030, Austria
| | - Anja Schneller
- Max Perutz Labs (MPL), University of Vienna, Vienna, 1030, Austria
| | - Katrin Fischer
- Max Perutz Labs (MPL), University of Vienna, Vienna, 1030, Austria
| | | | - Markus Hartl
- Max Perutz Labs (MPL), University of Vienna, Vienna, 1030, Austria
| | | | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, 1030, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Thomas Decker
- Max Perutz Labs (MPL), University of Vienna, Vienna, 1030, Austria.
| |
Collapse
|
114
|
Chavakis T, Mitroulis I, Hajishengallis G. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat Immunol 2019; 20:802-811. [PMID: 31213716 DOI: 10.1038/s41590-019-0402-5] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Recent advances have highlighted the ability of hematopoietic stem and progenitor cells in the bone marrow to sense peripheral inflammation or infection and adapt through increased proliferation and skewing toward the myeloid lineage. Such adaptations can meet the increased demand for innate immune cells and can be beneficial in response to infection or myeloablation. However, the inflammation-induced adaptation of hematopoietic and myeloid progenitor cells toward enhanced myelopoiesis might also perpetuate inflammation in chronic inflammatory or cardio-metabolic diseases by generating a feed-forward loop between inflammation-adapted hematopoietic progenitor cells and the inflammatory disorder. Sustained adaptive responses of progenitor cells in the bone marrow can also contribute to trained immunity, a non-specific memory of earlier encounters that in turn facilitates the heightened response of these cells, as well as that of their progeny, to future challenges. Here we discuss the mechanisms that govern the adaptation of hematopoietic progenitor cells to inflammation and its sequelae in the pathogenesis of human disease.
Collapse
Affiliation(s)
- Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.
| | - Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, Partner Site Dresden, of the German Cancer Research Center, Heidelberg and of the Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, and of the Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Haematology and Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, PA, USA
| |
Collapse
|
115
|
McRae HM, Voss AK, Thomas T. Are transplantable stem cells required for adult hematopoiesis? Exp Hematol 2019; 75:1-10. [PMID: 31175894 DOI: 10.1016/j.exphem.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cells (HSCs) have been studied intensely for more than half a century. As a result, the properties of HSCs have become a paradigm of adult stem cell biology and function. The "classical" view of hematopoiesis suggests that the HSCs sit at the top of a hierarchy and that differentiation involves sequential production of multipotent and lineage committed progenitors with limited self-renewal capacity. This view of hematopoiesis is certainly valid after transplantation of HSCs, where, with appropriate support, a single HSC can regenerate the entire hematopoietic system of the recipient. However, it is not clear whether HSCs perform the same function during steady-state hematopoiesis. Indeed, studies have shown that the majority of classical HSCs are not required for ongoing steady-state adult hematopoiesis. Several reports suggest that steady-state hematopoiesis relies on highly proliferative cells with more lineage restricted characteristics, a finding that was not anticipated based on results from transplantation experiments. However, other studies indicate a more substantial HSC contribution. Nevertheless, the notion of HSCs as distinct from progenitors appears to be simplistic in view of ample evidence for heterogeneity within the stem cell compartment. In this review we discuss recent results and controversies surrounding HSCs.
Collapse
Affiliation(s)
- Helen M McRae
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
116
|
Abstract
Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ben X Wang
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
117
|
Li F, Liu X, Niu H, Lv W, Han X, Zhang Y, Zhu B. Persistent stimulation with Mycobacterium tuberculosis antigen impairs the proliferation and transcriptional program of hematopoietic cells in bone marrow. Mol Immunol 2019; 112:115-122. [PMID: 31082645 DOI: 10.1016/j.molimm.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) persistent infection might cause the dysfunction of hematopoiesis. To investigate whether M. tuberculosis persistent antigen stimulation impairs the proliferation and differentiation of hematopoietic stem and progenitor cells characterized as lineage- c-Kit+ (LK cells), C57BL/6 mice were primed with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) and boosted with a cocktail of M. tuberculosis antigens ESAT6, CFP10 and Mtb10.4-HspX (MH) along with adjuvant N, N'-dimethyl-N, N'-dioctadecylammonium bromide (DDA) plus polyinosinic-polycytidylic acid (Poly I:C) weekly for 12 or 22 weeks. The cytokine production by splenic T cells, proliferation of LK cells and transcriptional events during differentiation of bone marrow (BM) c-Kit+ cells were investigated. Meanwhile, the mice were treated with interleukin 2 (IL-2) and the therapeutic effects were analyzed. We found that antigen specific interferon-γ (IFN-γ) production by splenic CD4+ T cells increased following antigen stimulation for 12 weeks, but it declined after continuous stimulation for 22 weeks. The long-term exposure of mice to M. tuberculosis antigen compromised the proliferation of LK cells. Moreover, the expression of transcription factors in the c-Kit+ cells was adjusted, with up-regulation of IRF8 and Batf2 involved in myeloid differentiation and down-regulation of NOTCH1 and GATA2 participated in T-cell lineage commitment. The concentrations of IFN-γ in BM of the persistent antigen group were higher than that in sham control at the 12th week, while the concentrations of IL-2 in BM of the persistent antigen group were lower compared with the transient antigen stimulation control. Following IL-2 treatment, the concentrations of IL-2 in BM increased while IFN-γ got declined. IL-2 treatment could restore the expression levels of those transcription factors and the proliferating activity of LK cells impaired by persistent antigen stimulation. Our results indicate that M. tuberculosis antigen persistent stimulation decreases the proliferating activity of LK cells, promotes myelopoietic differentiation, and represses lymphopoietic differentiation as a consequence of elevated IFN-γ production. IL-2 supplementation contributes to maintaining the homeostasis of hemopoiesis.
Collapse
Affiliation(s)
- Fei Li
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, China.
| | - Xun Liu
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, China.
| | - Hongxia Niu
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, China.
| | - Wei Lv
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, China.
| | - Xue Han
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, China; Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, China.
| | - Yifan Zhang
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, China.
| | - Bingdong Zhu
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, China.
| |
Collapse
|
118
|
Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity 2019; 50:778-795. [PMID: 30995499 PMCID: PMC7174020 DOI: 10.1016/j.immuni.2019.03.012] [Citation(s) in RCA: 624] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Forty years after its naming, interleukin-1 (IL-1) is experiencing a renaissance brought on by the growing understanding of its context-dependent roles and advances in the clinic. Recent studies have identified important roles for members of the IL-1 family-IL-18, IL-33, IL-36, IL-37, and IL-38-in inflammation and immunity. Here, we review the complex functions of IL-1 family members in the orchestration of innate and adaptive immune responses and their diversity and plasticity. We discuss the varied roles of IL-1 family members in immune homeostasis and their contribution to pathologies, including autoimmunity and auto-inflammation, dysmetabolism, cardiovascular disorders, and cancer. The trans-disease therapeutic activity of anti-IL-1 strategies argues for immunity and inflammation as a metanarrative of modern medicine.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy; Humanitas University, via Rita Levi Montalcini, 20090 Pieve Emanuele Milan, Italy; William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martina Molgora
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano Milan, Italy; Humanitas University, via Rita Levi Montalcini, 20090 Pieve Emanuele Milan, Italy.
| |
Collapse
|
119
|
The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells. Blood 2019; 133:2495-2506. [PMID: 30917958 DOI: 10.1182/blood.2019000468] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
Recurrent inactivating mutations have been identified in the X-linked plant homeodomain finger protein 6 (PHF6) gene, encoding a chromatin-binding transcriptional regulator protein, in various hematological malignancies. However, the role of PHF6 in normal hematopoiesis and its tumor-suppressor function remain largely unknown. We herein generated mice carrying a floxed Phf6 allele and inactivated Phf6 in hematopoietic cells at various developmental stages. The Phf6 deletion in embryos augmented the capacity of hematopoietic stem cells (HSCs) to proliferate in cultures and reconstitute hematopoiesis in recipient mice. The Phf6 deletion in neonates and adults revealed that cycling HSCs readily acquired an advantage in competitive repopulation upon the Phf6 deletion, whereas dormant HSCs only did so after serial transplantations. Phf6-deficient HSCs maintained an enhanced repopulating capacity during serial transplantations; however, they did not induce any hematological malignancies. Mechanistically, Phf6 directly and indirectly activated downstream effectors in tumor necrosis factor α (TNFα) signaling. The Phf6 deletion repressed the expression of a set of genes associated with TNFα signaling, thereby conferring resistance against the TNFα-mediated growth inhibition on HSCs. Collectively, these results not only define Phf6 as a novel negative regulator of HSC self-renewal, implicating inactivating PHF6 mutations in the pathogenesis of hematological malignancies, but also indicate that a Phf6 deficiency alone is not sufficient to induce hematopoietic transformation.
Collapse
|
120
|
Hayashi Y, Sezaki M, Takizawa H. Development of the hematopoietic system: Role of inflammatory factors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e341. [PMID: 30916895 DOI: 10.1002/wdev.341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cells (HSCs) have two defining features, multipotency and self-renewal, both of which are tightly controlled by cell autonomous programs and environmental factors throughout the lifetime of an organism. During development, HSCs are born in the aorta-gonad-mesonephros region, and migrate to distinct hematopoietic organs such as the placenta, fetal liver and spleen, continuously self-renewing and expanding to reach a homeostatic number. HSCs ultimately seed the bone marrow around the time of birth and become dormant to sustain lifelong hematopoiesis. In this review, we will summarize the recent findings on the role of inflammatory factors regulating HSC development, that is, emergence, trafficking and differentiation. An understanding of HSC kinetics during developmental processes will provide useful knowledge on HSC behavior under physiological and pathophysiological conditions. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells.
Collapse
Affiliation(s)
- Yoshikazu Hayashi
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Maiko Sezaki
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
121
|
Langevin C, Boudinot P, Collet B. IFN Signaling in Inflammation and Viral Infections: New Insights from Fish Models. Viruses 2019; 11:v11030302. [PMID: 30917538 PMCID: PMC6466407 DOI: 10.3390/v11030302] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
The overarching structure of the type I interferon (IFN) system is conserved across vertebrates. However, the variable numbers of whole genome duplication events during fish evolution offer opportunities for the expansion, diversification, and new functionalization of the genes that are involved in antiviral immunity. In this review, we examine how fish models provide new insights about the implication of virus-driven inflammation in immunity and hematopoiesis. Mechanisms that have been discovered in fish, such as the strong adjuvant effect of type I IFN that is used with DNA vaccination, constitute good models to understand how virus-induced inflammatory mechanisms can interfere with adaptive responses. We also comment on new discoveries regarding the role of pathogen-induced inflammation in the development and guidance of hematopoietic stem cells in zebrafish. These findings raise issues about the potential interferences of viral infections with the establishment of the immune system. Finally, the recent development of genome editing provides new opportunities to dissect the roles of the key players involved in the antiviral response in fish, hence enhancing the power of comparative approaches.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Bertrand Collet
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| |
Collapse
|
122
|
Okubo Y, Tokumaru S, Yamamoto Y, Miyagawa SI, Sanjo H, Taki S. Generation of a common innate lymphoid cell progenitor requires interferon regulatory factor 2. Int Immunol 2019; 31:489-498. [DOI: 10.1093/intimm/dxz019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract
Innate lymphoid cells (ILCs), composed of heterogeneous populations of lymphoid cells, contribute critically to immune surveillance at mucosal surfaces. ILC subsets develop from common lymphoid progenitors through stepwise lineage specification. However, the composition and temporal regulation of the transcription factor network governing such a process remain incompletely understood. Here, we report that deletion of the transcription factor interferon regulatory factor 2 (IRF-2), known also for its importance in the maturation of conventional NK cells, resulted in an impaired generation of ILC1, ILC2 and ILC3 subsets with lymphoid tissue inducer (LTi)-like cells hardly affected. In IRF-2-deficient mice, PD-1hi ILC precursors (ILCPs) that generate these three ILCs but not LTi-like cells were present at normal frequency, while their sub-population expressing high amounts of PLZF, another marker for ILCPs, was severely reduced. Notably, these IRF-2-deficient ILCPs contained normal quantities of PLZF-encoding Zbtb16 messages, and PLZF expression in developing invariant NKT cells within the thymus was unaffected in these mutant mice. These results point to a unique, cell-type selective role for IRF-2 in ILC development, acting at a discrete step critical for the generation of functionally competent ILCPs.
Collapse
Affiliation(s)
- Yohei Okubo
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
- Department of Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| | - Shigeo Tokumaru
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
- Department of Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| | - Yuta Yamamoto
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
- Department of Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| | - Shin-ichi Miyagawa
- Department of Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| | - Shinsuke Taki
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Asahi, Matsumoto, Japan
| |
Collapse
|
123
|
Govindarajah V, Reynaud D. Tuning of the Hematopoietic Stem Cell Compartment in its Inflammatory Environment. CURRENT STEM CELL REPORTS 2019; 4:189-200. [PMID: 30705804 DOI: 10.1007/s40778-018-0131-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of review The hematopoietic stem cell (HSC) compartment is the cornerstone of a lifelong blood cell production but also contributes to the ability of the hematopoietic system to dynamically respond to environmental challenges. This review summarizes our knowledge about the interaction between HSCs and its inflammatory environment during life and questions how its disruption could affect the health of the hematopoietic system. Recent findings The latest research demonstrates the direct role of inflammatory signals in promoting the emergence of the HSCs during development and in setting their steady-state activity in adults. They indicate that inflammatory patho-physiological conditions or immunological history could shape the structure and biology of the HSC compartment, therefore altering its overall fitness. Summary Through instructive and/or selective mechanisms, the inflammatory environment seems to provide a key homeostatic signal for HSCs. Although the mechanistic basis of this complex interplay remains to be fully understood, its dysregulation has broad consequences on HSC physiology and the development of hematological diseases. As such, developing experimental models that fully recapitulate a normal basal inflammatory state could be essential to fully assess HSC biology in native conditions.
Collapse
Affiliation(s)
- Vinothini Govindarajah
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Damien Reynaud
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
124
|
Recasens A, Munoz L. Targeting Cancer Cell Dormancy. Trends Pharmacol Sci 2019; 40:128-141. [PMID: 30612715 DOI: 10.1016/j.tips.2018.12.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/22/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Cancer cell dormancy is a process whereby cells enter reversible cell cycle arrest, termed quiescence. Quiescence is essential for cancer cells to acquire additional mutations, to survive in a new environment and initiate metastasis, to become resistant to cancer therapy, and to evade immune destruction. Thus, dormant cancer cells are considered to be responsible for cancer progression. As we start to understand the mechanisms that enable quiescence, we can begin to develop pharmacological strategies to target dormant cancer cells. Herein, we summarize the major molecular mechanisms underlying the dormancy of disseminated tumor cells and drug-tolerant persister cells. We then analyze the current pharmacological strategies aimed (i) to keep cancer cells in the harmless dormant state, (ii) to reactivate dormant cells to increase their susceptibility to anti-proliferative drugs, and (iii) to eradicate dormant cancer cells.
Collapse
Affiliation(s)
- Ariadna Recasens
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Lenka Munoz
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
125
|
Nakagawa MM, Davis H, Rathinam CV. A20 deficiency in multipotent progenitors perturbs quiescence of hematopoietic stem cells. Stem Cell Res 2018; 33:199-205. [PMID: 30445411 PMCID: PMC6919550 DOI: 10.1016/j.scr.2018.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022] Open
Abstract
Inflammatory signals have been shown to play a critical role in controlling the maintenance and functions of hematopoietic stem cells (HSCs). While the significance of inflammation in hematopoiesis has begun to unfold, molecular mechanisms and players that govern this mode of HSC regulation remain largely unknown. The E3 ubiquitin ligase A20 has been considered as a central gatekeeper of inflammation. Here, we have specifically depleted A20 in multi-potent progenitors (MPPs) and studied its impact on hematopoiesis. Our data suggest that lack of A20 in Flt3+ progenitors causes modest alterations in hematopoietic differentiation. Analysis of hematopoietic stem and progenitor cell (HSPC) pool revealed alterations in HSPC subsets including, HSCs, MPP1, MPP2, MPP3 and MPP4. Interestingly, A20 deficiency in MPPs caused loss of HSC quiescence and compromised long-term hematopoietic reconstitution. Mechanistic studies identified that A20 deficiency caused elevated levels of Interferon-γ signaling and downregulation of p57 in HSCs. In essence, these studies identified A20 as a key regulator of HSC quiescence and cell fate decisions.
Collapse
Affiliation(s)
- Masahiro Marshall Nakagawa
- Department of Genetics and Development, Columbia University Medical Center, 701 W 168th street, New York, NY 10032, United States
| | - Harry Davis
- Institute of Human Virology, 725 W Lombard Street, University of Maryland, School of Medicine, Baltimore, MD 21201, United States
| | - Chozha Vendan Rathinam
- Department of Genetics and Development, Columbia University Medical Center, 701 W 168th street, New York, NY 10032, United States; Institute of Human Virology, 725 W Lombard Street, University of Maryland, School of Medicine, Baltimore, MD 21201, United States; Center for Stem Cell & Regenerative Medicine, 725 W Lombard Street, University of Maryland, School of Medicine, Baltimore, MD 21201, United States; Marlene & Stewart Greenebaum Comprehensive Cancer Center, 725 W Lombard Street, University of Maryland, School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
126
|
Ahamad N, Rath PC. Expression of interferon regulatory factors (IRF-1 and IRF-2) during radiation-induced damage and regeneration of bone marrow by transplantation in mouse. Mol Biol Rep 2018; 46:551-567. [PMID: 30488374 DOI: 10.1007/s11033-018-4508-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023]
Abstract
Interferon regulatory factors (IRF-1 and IRF-2) are transcription factors of IRF-family that regulate expression of genes for cytokines, chemokines and growth factors in mammalian cells. IRF-1 and IRF-2 play crucial roles in the differentiation of bone marrow cells for immune response. Bone marrow (BM) is the soft lymphoid organ that contains many types of stem cells and produces different types of cells of the blood and immune system. Genetic alterations and damage of the bone marrow cells can lead to different types of blood and immune system-related diseases including anemia and cancer. We have studied the expression of IRF-1 and IRF-2 during radiation-induced damage and regeneration of bone marrow cells after transplantation of freshly isolated bone marrow cells in the mouse. Cell cycle analysis, colony forming unit-fibroblast (CFU-F) assay and bone marrow histology showed that after radiation-induced damage, the bone marrow transplantation resulted in regeneration of the bone marrow up to 24-35% recovery. Real-time quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) for the mRNA expression showed that IRF-1 and IRF-2 were expressed at higher levels in the bone marrow cells of the irradiated (4.34× fold for IRF-1, and 3.87× fold for IRF-2) compared to control and transplanted (1.13× fold for IRF-1, and 1.12× fold IRF-2) mice and immuno-fluorescence analysis for the protein expression showed that IRF-1 and IRF-2 were expressed at higher levels in the bone marrow cells of the irradiated (2.12× fold for IRF-1 and 1.71× fold for IRF-2) compared to control and transplanted (1.73× fold for IRF-1 and 1.21× fold for IRF-2) mice. Thus, IRF-1 and IRF-2 are sensitive and responsive to radiation-induced damage in the bone marrow cells and may also be involved in the bone marrow regeneration process.
Collapse
Affiliation(s)
- Naseem Ahamad
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
127
|
Nakagawa MM, Chen H, Rathinam CV. Constitutive Activation of NF-κB Pathway in Hematopoietic Stem Cells Causes Loss of Quiescence and Deregulated Transcription Factor Networks. Front Cell Dev Biol 2018; 6:143. [PMID: 30425986 PMCID: PMC6218573 DOI: 10.3389/fcell.2018.00143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Identifying physiological roles of specific signaling pathways that regulate hematopoietic stem cell (HSC) functions may lead to new treatment strategies and therapeutic interventions for hematologic disorders. Here, we provide genetic evidence that constitutive activation of NF-κB in HSCs results in reduced pool size, repopulation capacities, and quiescence of HSCs. Global transcriptional profiling and bioinformatics studies identified loss of ‘stemness’ and ‘quiescence’ signatures in HSCs with deregulated NF-κB activation. In particular, gene set enrichment analysis identified upregulation of cyclin dependent kinase- Ccnd1 and down regulation of cyclin dependent kinase inhibitor p57kip2. Interestingly, constitutive activation of NF-κB is sufficient to alter the regulatory circuits of transcription factors (TFs) that are critical to HSC self-renewal and functions. Molecular studies identified Junb, as one of the direct targets of NF-κB in hematopoietic cells. In essence, these studies demonstrate that aberrant activation of NF-κB signals impairs HSC quiescence and functions and alters the ‘TF networks’ in HSCs.
Collapse
Affiliation(s)
| | - Huanwen Chen
- Institute of Human Virology, Baltimore, MD, United States
| | - Chozha Vendan Rathinam
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States.,Institute of Human Virology, Baltimore, MD, United States.,Center for Stem Cell & Regenerative Medicine, Baltimore, MD, United States.,Marlene & Stewart Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
128
|
Assadiasl S, Shahi A, Salehi S, Afzali S, Amirzargar A. Interferon regulatory factors: Where to stand in transplantation. Transpl Immunol 2018; 51:76-80. [PMID: 30336215 DOI: 10.1016/j.trim.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 01/23/2023]
Abstract
Interferon regulatory factors (IRFs) are implicated in regulating inflammatory responses to pathogens and alloantigens. Since transplantation is usually accompanied by ischemia reperfusion injury (IRI), acute and chronic rejections, as well as immunodeficiency due to immunosuppressive drugs, IRFs seem to play a considerable role in allograft outcome. For instance, IRF-1 has been shown to be involved in pathogenesis of IRI; however, IRF-2 exhibits an opposite function. Some IRF-3 and 5 SNPs are associated with better or worse graft survival rates. Of note, IRF-4 inhibition has resulted in improved transplant outcomes. Herein we review available studies about IRFs influence on various stages of transplantation.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
129
|
Necroinflammation emerges as a key regulator of hematopoiesis in health and disease. Cell Death Differ 2018; 26:53-67. [PMID: 30242210 DOI: 10.1038/s41418-018-0194-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023] Open
Abstract
The hematopoietic system represents an organ system with an exceptional capacity for the production of mature blood cells from a small and mostly quiescent pool of hematopoietic stem cells (HSCs). This extraordinary capacity includes self-renewal but also the propensity to rapidly respond to extrinsic needs, such as acute infections, severe inflammation, and wound healing. In recent years, it became clear that inflammatory signals such as cytokines, chemokine and danger signals from pathogens (PAMPs) or dying cells (DAMPs) impact on HSCs, shaping their proliferation status, lineage bias, and repopulating ability and subsequently increasing the output of mature effector cells. However, inflammatory danger signals negatively impact on the capacity of HSCs to self-renew and to maintain their stem cell capabilities. This is evidenced in conditions of chronic inflammation where bone marrow failure may originate from HSC exhaustion. Even in hematopoietic cancers, inflammatory signals shape the phenotype of the malignant clone as exemplified by necrosome-dependent inflammation elicited during malignant transformation in acute myeloid leukemia. Accordingly, understanding the contribution of inflammatory signals, and specifically necroinflammation, to HSC integrity, HSC long-term functionality, and malignant transformation has attracted substantial research and clinical interest. In this review, we highlight recent developments and open questions at the interplay between inflammation, regulated necrosis, and HSC biology in the context of blood cell development, acute and chronic inflammation, and hematopoietic cancer.
Collapse
|
130
|
Identification of immune-activated hematopoietic stem cells. Leukemia 2018; 32:2016-2020. [PMID: 30042413 PMCID: PMC6127088 DOI: 10.1038/s41375-018-0220-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022]
|
131
|
Komorowska K, Doyle A, Wahlestedt M, Subramaniam A, Debnath S, Chen J, Soneji S, Van Handel B, Mikkola HKA, Miharada K, Bryder D, Larsson J, Magnusson M. Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem Cells and Protects the Stem Cell Pool during Regeneration. Cell Rep 2018; 21:3514-3523. [PMID: 29262330 DOI: 10.1016/j.celrep.2017.11.084] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/19/2017] [Accepted: 11/22/2017] [Indexed: 01/06/2023] Open
Abstract
The transcription factor hepatic leukemia factor (HLF) is strongly expressed in hematopoietic stem cells (HSCs) and is thought to influence both HSC self-renewal and leukemogenesis. However, the physiological role of HLF in hematopoiesis and HSC function is unclear. Here, we report that mice lacking Hlf are viable with essentially normal hematopoietic parameters, including an intact HSC pool during steady-state hematopoiesis. In contrast, when challenged through transplantation, Hlf-deficient HSCs showed an impaired ability to reconstitute hematopoiesis and became gradually exhausted upon serial transplantation. Transcriptional profiling of Hlf-deficient HSCs revealed changes associated with enhanced cellular activation, and cell-cycle analysis demonstrated a significant reduction of quiescent HSCs. Accordingly, toxic insults targeting dividing cells completely eradicated the HSC pool in Hlf-deficient mice. In summary, our findings point to HLF as a critical regulator of HSC quiescence and as an essential factor for maintaining the HSC pool during regeneration.
Collapse
Affiliation(s)
- Karolina Komorowska
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Alexander Doyle
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Martin Wahlestedt
- Molecular Hematology, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Agatheeswaran Subramaniam
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Shubhranshu Debnath
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Jun Chen
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Shamit Soneji
- Molecular Hematology, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Ben Van Handel
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; CarthroniX, Inc., Tarzana, CA 91356, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kenichi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - David Bryder
- Molecular Hematology, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Mattias Magnusson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden.
| |
Collapse
|
132
|
Staal FJT. Cell intrinsic regulation of external hematopoietic stem cell stress. Stem Cell Investig 2018; 5:16. [PMID: 29984225 DOI: 10.21037/sci.2018.05.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
133
|
OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 2018; 559:120-124. [DOI: 10.1038/s41586-018-0256-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/15/2018] [Indexed: 01/23/2023]
|
134
|
Sumide K, Matsuoka Y, Kawamura H, Nakatsuka R, Fujioka T, Asano H, Takihara Y, Sonoda Y. A revised road map for the commitment of human cord blood CD34-negative hematopoietic stem cells. Nat Commun 2018; 9:2202. [PMID: 29875383 PMCID: PMC5989201 DOI: 10.1038/s41467-018-04441-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 04/29/2018] [Indexed: 12/29/2022] Open
Abstract
We previously identified CD34-negative (CD34-) severe combined immunodeficiency (SCID)-repopulating cells as primitive hematopoietic stem cells (HSCs) in human cord blood. In this study, we develop a prospective ultra-high-resolution purification method by applying two positive markers, CD133 and GPI-80. Using this method, we succeed in purifying single long-term repopulating CD34- HSCs with self-renewing capability residing at the apex of the human HSC hierarchy from cord blood, as evidenced by a single-cell-initiated serial transplantation analysis. The gene expression profiles of individual CD34+ and CD34- HSCs and a global gene expression analysis demonstrate the unique molecular signature of CD34- HSCs. We find that the purified CD34- HSCs show a potent megakaryocyte/erythrocyte differentiation potential in vitro and in vivo. Megakaryocyte/erythrocyte progenitors may thus be generated directly via a bypass route from the CD34- HSCs. Based on these data, we propose a revised road map for the commitment of human CD34- HSCs in cord blood.
Collapse
Affiliation(s)
- Keisuke Sumide
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroshi Kawamura
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
- Department of Orthopedic Surgery, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Ryusuke Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Tatsuya Fujioka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroaki Asano
- School of Nursing, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Kyoto, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Hiroshima, Japan
- Japanese Red Cross Osaka Blood Center, Osaka, 536-0025, Osaka, Japan
| | - Yoshiaki Sonoda
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan.
| |
Collapse
|
135
|
Chiba Y, Mizoguchi I, Hasegawa H, Ohashi M, Orii N, Nagai T, Sugahara M, Miyamoto Y, Xu M, Owaki T, Yoshimoto T. Regulation of myelopoiesis by proinflammatory cytokines in infectious diseases. Cell Mol Life Sci 2018; 75:1363-1376. [PMID: 29218601 PMCID: PMC11105622 DOI: 10.1007/s00018-017-2724-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
Abstract
Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.
Collapse
Grants
- a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
- the Private University Strategic Research Based Support Project from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
Collapse
Affiliation(s)
- Yukino Chiba
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Mio Ohashi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Naoko Orii
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Taro Nagai
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Miyaka Sugahara
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
- Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Yasunori Miyamoto
- Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Toshiyuki Owaki
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
136
|
Xia P, Wang S, Ye B, Du Y, Li C, Xiong Z, Qu Y, Fan Z. A Circular RNA Protects Dormant Hematopoietic Stem Cells from DNA Sensor cGAS-Mediated Exhaustion. Immunity 2018; 48:688-701.e7. [DOI: 10.1016/j.immuni.2018.03.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/31/2017] [Accepted: 03/08/2018] [Indexed: 01/29/2023]
|
137
|
Chapple RH, Hu T, Tseng YJ, Liu L, Kitano A, Luu V, Hoegenauer KA, Iwawaki T, Li Q, Nakada D. ERα promotes murine hematopoietic regeneration through the Ire1α-mediated unfolded protein response. eLife 2018; 7:31159. [PMID: 29451493 PMCID: PMC5829925 DOI: 10.7554/elife.31159] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023] Open
Abstract
Activation of the unfolded protein response (UPR) sustains protein homeostasis (proteostasis) and plays a fundamental role in tissue maintenance and longevity of organisms. Long-range control of UPR activation has been demonstrated in invertebrates, but such mechanisms in mammals remain elusive. Here, we show that the female sex hormone estrogen regulates the UPR in hematopoietic stem cells (HSCs). Estrogen treatment increases the capacity of HSCs to regenerate the hematopoietic system upon transplantation and accelerates regeneration after irradiation. We found that estrogen signals through estrogen receptor α (ERα) expressed in hematopoietic cells to activate the protective Ire1α-Xbp1 branch of the UPR. Further, ERα-mediated activation of the Ire1α-Xbp1 pathway confers HSCs with resistance against proteotoxic stress and promotes regeneration. Our findings reveal a systemic mechanism through which HSC function is augmented for hematopoietic regeneration.
Collapse
Affiliation(s)
- Richard H Chapple
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, United States
| | - Tianyuan Hu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, United States
| | - Yu-Jung Tseng
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, United States
| | - Lu Liu
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, United States
| | - Ayumi Kitano
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, United States
| | - Victor Luu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, United States
| | - Kevin A Hoegenauer
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, United States
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, United States
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, United States.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, United States
| |
Collapse
|
138
|
NR4A1 and NR4A3 restrict HSC proliferation via reciprocal regulation of C/EBPα and inflammatory signaling. Blood 2018; 131:1081-1093. [PMID: 29343483 DOI: 10.1182/blood-2017-07-795757] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the NR4A subfamily of nuclear receptors have complex, overlapping roles during hematopoietic cell development and also function as tumor suppressors of hematologic malignancies. We previously identified NR4A1 and NR4A3 (NR4A1/3) as functionally redundant suppressors of acute myeloid leukemia (AML) development. However, their role in hematopoietic stem cell (HSC) homeostasis remains to be disclosed. Using a conditional Nr4a1/Nr4a3 knockout mouse (CDKO), we show that codepletion of NR4A1/3 promotes acute changes in HSC homeostasis including loss of HSC quiescence, accumulation of oxidative stress, and DNA damage while maintaining stem cell regenerative and differentiation capacity. Molecular profiling of CDKO HSCs revealed widespread upregulation of genetic programs governing cell cycle and inflammation and an aberrant activation of the interferon and NF-κB signaling pathways in the absence of stimuli. Mechanistically, we demonstrate that NR4A1/3 restrict HSC proliferation in part through activation of a C/EBPα-driven antiproliferative network by directly binding to a hematopoietic-specific Cebpa enhancer and activating Cebpa transcription. In addition, NR4A1/3 occupy the regulatory regions of NF-κB-regulated inflammatory cytokines, antagonizing the activation of NF-κB signaling. Taken together, our results reveal a novel coordinate control of HSC quiescence by NR4A1/3 through direct activation of C/EBPα and suppression of activation of NF-κB-driven proliferative inflammatory responses.
Collapse
|
139
|
Zhao K, Zheng WW, Dong XM, Yin RH, Gao R, Li X, Liu JF, Zhan YQ, Yu M, Chen H, Ge CH, Ning HM, Yang XM, Li CY. EDAG promotes the expansion and survival of human CD34+ cells. PLoS One 2018; 13:e0190794. [PMID: 29324880 PMCID: PMC5764277 DOI: 10.1371/journal.pone.0190794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023] Open
Abstract
EDAG is multifunctional transcriptional regulator primarily expressed in the linloc-kit+Sca-1+ hematopoietic stem cells (HSC) and CD34+ progenitor cells. Previous studies indicate that EDAG is required for maintaining hematopoietic lineage commitment balance. Here using ex vivo culture and HSC transplantation models, we report that EDAG enhances the proliferative potential of human cord blood CD34+ cells, increases survival, prevents cell apoptosis and promotes their repopulating capacity. Moreover, EDAG overexpression induces rapid entry of CD34+ cells into the cell cycle. Gene expression profile analysis indicate that EDAG knockdown leads to down-regulation of various positive cell cycle regulators including cyclin A, B, D, and E. Together these data provides novel insights into EDAG in regulation of expansion and survival of human hematopoietic stem/progenitor cells.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei-Wei Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Ming Dong
- Tianjin University, School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering, Tianjin, China
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Rui Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiu Li
- An Hui Medical University, Hefei, China
| | - Jin-Fang Liu
- Guang Dong Pharmaceutical University, School of Pharmacy, Guangzhou, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chang-Hui Ge
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing, China
- * E-mail: (HMN); (XMY); (CYL)
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Tianjin University, School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering, Tianjin, China
- * E-mail: (HMN); (XMY); (CYL)
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Guang Dong Pharmaceutical University, School of Pharmacy, Guangzhou, China
- * E-mail: (HMN); (XMY); (CYL)
| |
Collapse
|
140
|
Histone demethylase LSD1 regulates hematopoietic stem cells homeostasis and protects from death by endotoxic shock. Proc Natl Acad Sci U S A 2017; 115:E244-E252. [PMID: 29263096 DOI: 10.1073/pnas.1718759114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) maintain a quiescent state during homeostasis, but with acute infection, they exit the quiescent state to increase the output of immune cells, the so-called "emergency hematopoiesis." However, HSCs' response to severe infection during septic shock and the pathological impact remain poorly elucidated. Here, we report that the histone demethylase KDM1A/LSD1, serving as a critical regulator of mammalian hematopoiesis, is a negative regulator of the response to inflammation in HSCs during endotoxic shock typically observed during acute bacterial or viral infection. Inflammation-induced LSD1 deficiency results in an acute expansion of a pathological population of hyperproliferative and hyperinflammatory myeloid progenitors, resulting in a septic shock phenotype and acute death. Unexpectedly, in vivo administration of bacterial lipopolysaccharide (LPS) to wild-type mice results in acute suppression of LSD1 in HSCs with a septic shock phenotype that resembles that observed following induced deletion of LSD1 The suppression of LSD1 in HSCs is caused, at least in large part, by a cohort of inflammation-induced microRNAs. Significantly, reconstitution of mice with bone marrow progenitor cells expressing inhibitors of these inflammation-induced microRNAs blocked the suppression of LSD1 in vivo following acute LPS administration and prevented mortality from endotoxic shock. Our results indicate that LSD1 activators or miRNA antagonists could serve as a therapeutic approach for life-threatening septic shock characterized by dysfunction of HSCs.
Collapse
|
141
|
Li G, Nunoya JI, Cheng L, Reszka-Blanco N, Tsao LC, Jeffrey J, Su L. Regulatory T Cells Contribute to HIV-1 Reservoir Persistence in CD4+ T Cells Through Cyclic Adenosine Monophosphate-Dependent Mechanisms in Humanized Mice In Vivo. J Infect Dis 2017; 216:1579-1591. [PMID: 29045701 PMCID: PMC5853220 DOI: 10.1093/infdis/jix547] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background Regulatory T cells (Tregs) suppress T-cell immune activation and human immunodeficiency virus type 1 (HIV-1) replication, but the role of Tregs in HIV-1 reservoir persistence is poorly defined. Methods Tregs were depleted by denileukin diftitox in humanized mice with chronic HIV-1 infection. Viral replication in lineage cells was determined by p24 expression. Levels of HIV-1 RNA and DNA in human cells, as well as replication-competent-virus-producing cells, were measured to quantified viral replication and reservoirs. Results Treg depletion resulted in a blip of HIV-1 replication in T cells but not in myeloid cells. The major activated reservoir cells were memory CD4+ T cells in vivo. Interestingly, the transient activation of viral replication led to HIV-1 reservoir reduction after viremia resuppression, as indicated by the quantity of HIV-1 DNA and replication-competent-virus-producing cells. Furthermore, we demonstrated that Tregs use cyclic adenosine monophosphate (cAMP)-dependent protein kinase A pathway to inhibit HIV-1 activation and replication in resting conventional T cells in vitro. Conclusion Tregs suppress HIV-1 replication in T cells and contribute to HIV-1 reservoir persistence. cAMP produced in Tregs is involved in their suppression of viral gene activation and expression. Treg depletion combined with combination antiretroviral therapy provides a novel strategy for HIV-1 cure.
Collapse
Affiliation(s)
- Guangming Li
- Lineberger Comprehensive Cancer Center, University of North Carolina–Chapel Hill
| | - Jun-ichi Nunoya
- Lineberger Comprehensive Cancer Center, University of North Carolina–Chapel Hill
| | - Liang Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina–Chapel Hill
| | | | - Li-Chung Tsao
- Lineberger Comprehensive Cancer Center, University of North Carolina–Chapel Hill
| | - Jerry Jeffrey
- GlaxoSmithKline, Research Triangle Park, North Carolina
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina–Chapel Hill
- Department of Microbiology and Immunology, University of North Carolina–Chapel Hill
| |
Collapse
|
142
|
Lasseaux C, Fourmaux MP, Chamaillard M, Poulin LF. Type I interferons drive inflammasome-independent emergency monocytopoiesis during endotoxemia. Sci Rep 2017; 7:16935. [PMID: 29209091 PMCID: PMC5717267 DOI: 10.1038/s41598-017-16869-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Emergency monocytopoiesis is an inflammation-driven hematological process that supplies the periphery with monocytes and subsequently with macrophages and monocyte-derived dendritic cells. Yet, the regulatory mechanisms by which early bone marrow myeloid progenitors commit to monocyte-derived phagocytes during endotoxemia remains elusive. Herein, we show that type I interferons signaling promotes the differentiation of monocyte-derived phagocytes at the level of their progenitors during a mouse model of endotoxemia. In this model, we characterized early changes in the numbers of conventional dendritic cells, monocyte-derived antigen-presenting cells and their respective precursors. While loss of caspase-1/11 failed to impair a shift toward monocytopoiesis, we observed sustained type-I-IFN-dependent monocyte progenitors differentiation in the bone marrow correlated to an accumulation of Mo-APCs in the spleen. Importantly, IFN-alpha and -beta were found to efficiently generate the development of monocyte-derived antigen-presenting cells while having no impact on the precursor activity of conventional dendritic cells. Consistently, the LPS-driven decrease of conventional dendritic cells and their direct precursor occurred independently of type-I-IFN signaling in vivo. Our characterization of early changes in mononuclear phagocytes and their dependency on type I IFN signaling during sepsis opens the way to the development of treatments for limiting the immunosuppressive state associated with sepsis.
Collapse
Affiliation(s)
- Corentin Lasseaux
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Marie-Pierre Fourmaux
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Mathias Chamaillard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Lionel Franz Poulin
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| |
Collapse
|
143
|
Matatall KA, Jeong M, Chen S, Sun D, Chen F, Mo Q, Kimmel M, King KY. Chronic Infection Depletes Hematopoietic Stem Cells through Stress-Induced Terminal Differentiation. Cell Rep 2017; 17:2584-2595. [PMID: 27926863 DOI: 10.1016/j.celrep.2016.11.031] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 10/02/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic infections affect a third of the world's population and can cause bone marrow suppression, a severe condition that increases mortality from infection. To uncover the basis for infection-associated bone marrow suppression, we conducted repeated infection of WT mice with Mycobacterium avium. After 4-6 months, mice became pancytopenic. Their hematopoietic stem and progenitor cells (HSPCs) were severely depleted and displayed interferon gamma (IFN-γ) signaling-dependent defects in self-renewal. There was no evidence of increased HSPC mobilization or apoptosis. However, consistent with known effects of IFN-γ, transcriptome analysis pointed toward increased myeloid differentiation of HSPCs and revealed the transcription factor Batf2 as a potential mediator of IFN-γ-induced HSPC differentiation. Gain- and loss-of-function studies uncovered a role for Batf2 in myeloid differentiation in both murine and human systems. We thus demonstrate that chronic infection can deplete HSPCs and identify BATF2 as a mediator of infection-induced HSPC terminal differentiation.
Collapse
Affiliation(s)
- Katie A Matatall
- Section of Pediatric Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mira Jeong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Siyi Chen
- Department of Statistics, Rice University, Houston, TX 77030, USA
| | - Deqiang Sun
- Institute of Biosciences & Technology, College of Medicine Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Fengju Chen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX 77030, USA; Systems Engineering Group, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Katherine Y King
- Section of Pediatric Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; BCM Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
144
|
Silginer M, Nagy S, Happold C, Schneider H, Weller M, Roth P. Autocrine activation of the IFN signaling pathway may promote immune escape in glioblastoma. Neuro Oncol 2017; 19:1338-1349. [PMID: 28475775 PMCID: PMC5596176 DOI: 10.1093/neuonc/nox051] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Interferons (IFNs) are cytokines typically induced upon viral infection but are constitutively expressed also in the absence of acute infection. The physiological role of autocrine and paracrine IFN signaling, however, remains poorly understood, and its function in glioblastoma has not been explored in depth. METHODS Using RNA interference-mediated gene silencing, we characterized constitutive type I IFN signaling and its role in human glioma cells. RESULTS We observed constitutive expression of phosphorylated signal transducer and activator of transcription 1 (pSTAT1) and myxovirus resistance protein A (MxA), a classical IFN-response marker, in the absence of exogenous IFN-β. In vivo, we found higher MxA expression in gliomas than in normal tissue, suggesting that IFN signaling is constitutively active in these tumors. To demonstrate the presence of an autocrine type I IFN signaling loop in glioma cells in vitro, we first confirmed the expression of the type I alpha/beta receptor (IFNAR)1/2, and its ligands, IFN-α and IFN-β. Small interfering RNA-mediated receptor gene silencing resulted in reduced expression of MxA at mRNA and protein levels, as did gene silencing of the ligands, corroborating the hypothesis of an autocrine signaling loop in which type I IFNs induce intracellular signaling through IFNAR1/2. On a functional level, following IFNAR1 or IFNAR2 gene silencing, we observed reduced programmed death ligand 1 (PD-L1) and major histocompatibility complex (MHC) class I and II expression as well as an enhanced susceptibility to natural killer immune cell lysis, suggesting that autocrine IFN signaling contributes to the immune evasion of glioma cells. CONCLUSIONS Our findings point to an important role of constitutive IFN signaling in glioma cells by modulating their interaction with the microenvironment.
Collapse
Affiliation(s)
- Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Switzerland (M.S., S.N., C.H., H.S., M.W., P.R.)
| | - Sara Nagy
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Switzerland (M.S., S.N., C.H., H.S., M.W., P.R.)
| | - Caroline Happold
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Switzerland (M.S., S.N., C.H., H.S., M.W., P.R.)
| | - Hannah Schneider
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Switzerland (M.S., S.N., C.H., H.S., M.W., P.R.)
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Switzerland (M.S., S.N., C.H., H.S., M.W., P.R.)
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Switzerland (M.S., S.N., C.H., H.S., M.W., P.R.)
| |
Collapse
|
145
|
Grb2 regulates the proliferation of hematopoietic stem and progenitors cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2449-2459. [PMID: 28964849 DOI: 10.1016/j.bbamcr.2017.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 01/13/2023]
Abstract
Although Hematopoietic Stem and Progenitor Cell (HSPC) proliferation, survival and expansion have been shown to be supported by the cooperative action of different cytokines, little is known about the intracellular signaling pathways that are activated by cytokines upon binding to their receptors. Our study showed that Growth factor receptor-bound protein 2 (Grb2) mRNAs are preferentially expressed in HSC compared to progenitors and differentiated cells of the myeloid and erythroid lineages. Conditional deletion of Grb2 induced a rapid decline of erythroid and myeloid progenitors and a progressive decline of HSC numbers in steady state conditions. We showed that when transplanted, Grb2 deleted bone marrow cells could not reconstitute irradiated recipients. Strinkingly, Grb2 deletion did not modify HSPC quiescence, but impaired LT-HSC and progenitors ability to respond a proliferative signal induced by 5FU in vivo and by various cytokines in vitro. We showed finally that Grb2 links IL3 signaling to the ERK/MAPK proliferative pathway and that both SH2 and SH3 domains of Grb2 are crucial for IL3 signaling in progenitor cells. Our findings position Grb2 as a key adaptor that integrates various cytokines response in cycling HSPC.
Collapse
|
146
|
Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood 2017; 130:1693-1698. [PMID: 28874349 DOI: 10.1182/blood-2017-06-780882] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for lifelong production of blood cells. At the same time, they must respond rapidly to acute needs such as infection or injury. Significant interest has emerged in how inflammation regulates HSC fate and how it affects the long-term functionality of HSCs and the blood system as a whole. Here we detail recent advances and unanswered questions at the intersection between inflammation and HSC biology in the contexts of development, aging, and hematological malignancy.
Collapse
|
147
|
Zhang F, Zhu J, Li J, Zhu F, Zhang P. IRF2-INPP4B axis participates in the development of acute myeloid leukemia by regulating cell growth and survival. Gene 2017; 627:9-14. [DOI: 10.1016/j.gene.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
|
148
|
Molony RD, Malawista A, Montgomery RR. Reduced dynamic range of antiviral innate immune responses in aging. Exp Gerontol 2017; 107:130-135. [PMID: 28822811 PMCID: PMC5815956 DOI: 10.1016/j.exger.2017.08.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 01/04/2023]
Abstract
The worldwide population aged ≥ 65 years is increasing and the average life span is expected to increase another 10 years by 2050. This extended lifespan is associated with a progressive decline in immune function and a paradoxical state of low-grade, chronic inflammation that may contribute to susceptibility to viral infection, and reduced responses to vaccination. Here we review the effects of aging on innate immune responses to viral pathogens including elements of recognition, signaling, and production of inflammatory mediators. We specifically focus on age-related changes in key pattern recognition receptor signaling pathways, converging on altered cytokine responses, including a notable impairment of antiviral interferon responses. We highlight an emergent change in innate immunity that arises during aging – the dampening of the dynamic range of responses to multiple sources of stimulation – which may underlie reduced efficiency of immune responses in aging. We review the effects of aging on innate antiviral immunity, including recognition, signaling, and cytokine responses. Lower Toll-like receptor expression leads to impaired signaling and responses upon activation of these sensors. Effects of aging on cytosolic nucleic acid sensing receptors and inflammasomes remains incompletely characterized. In aging the dynamic range of innate immunity is compressed, with increased basal activation of many signaling pathways. Interferon production is impaired with age, which may lead to the increased viral susceptibility of older persons.
Collapse
Affiliation(s)
- Ryan D Molony
- Departments of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Anna Malawista
- Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Ruth R Montgomery
- Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, United States; Human Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
149
|
Takizawa H, Fritsch K, Kovtonyuk LV, Saito Y, Yakkala C, Jacobs K, Ahuja AK, Lopes M, Hausmann A, Hardt WD, Gomariz Á, Nombela-Arrieta C, Manz MG. Pathogen-Induced TLR4-TRIF Innate Immune Signaling in Hematopoietic Stem Cells Promotes Proliferation but Reduces Competitive Fitness. Cell Stem Cell 2017; 21:225-240.e5. [DOI: 10.1016/j.stem.2017.06.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
|
150
|
Interferon regulatory factors: A key to tumour immunity. Int Immunopharmacol 2017; 49:1-5. [DOI: 10.1016/j.intimp.2017.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 05/09/2017] [Indexed: 11/20/2022]
|