101
|
Effect of memantine on expression of Bace1-as and Bace1 genes in STZ-induced Alzheimeric rats. Mol Biol Rep 2020; 47:5737-5745. [PMID: 32648077 DOI: 10.1007/s11033-020-05629-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023]
Abstract
Recent studies have showed that the long non-coding RNAs (lncRNAs) expression is dysregulated in different neurodegenerative disorders like Alzheimer's disease (AD). In the present study, the effects of memantine on the level of Bace1-as and Bace1 genes' expression in streptozotocin (STZ)-induced Alzheimer's and memantine treated rats were investigated. The male Wistar rats were randomly divided into four groups: 1-Normal control, 2-Sham-operated control, 3- Alzheimer'scontrol rats (ICV-STZ), 4-Experimental group rats treated by memantine in a dose of 30 mg/kg/day for 28 days in ICV-STZ rats. The expression of Bace1-as and Bace1 genes was measured by quantitative-PCR in the brain and blood tissues. ELISA was used to analyze Bace1 and Aβ proteins. Expression of Bace1-as was significantly increased in the brain and blood tissues of the experimental group (p = 0.032 and p = 0.034, respectively). The expression of Bace1 gene showed no significant changes in the brain. Furthermore, the ELISA analysis revealed that Bace1 protein was significantly increased in the plasma of the Alzheimer's control group (p = 0.000) and in the brain tissue of the experimental group (p = 0.000). Additionally, Aβ levels had no significant changes between all groups studied. The Bace1 protein may be used as a prognostic biomarker in plasma, or before using memantine as a treatment. Furthermore, Bace1-as gene expression may play a role in monitoring the progression of AD.
Collapse
|
102
|
Wang T, Zhang J, Xu Y. Epigenetic Basis of Lead-Induced Neurological Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134878. [PMID: 32645824 PMCID: PMC7370007 DOI: 10.3390/ijerph17134878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Environmental lead (Pb) exposure is closely associated with pathogenesis of a range of neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), attention deficit/hyperactivity disorder (ADHD), etc. Epigenetic machinery modulates neural development and activities, while faulty epigenetic regulation contributes to the diverse forms of CNS (central nervous system) abnormalities and diseases. As a potent epigenetic modifier, lead is thought to cause neurological disorders through modulating epigenetic mechanisms. Specifically, increasing evidence linked aberrant DNA methylations, histone modifications as well as ncRNAs (non-coding RNAs) with AD cases, among which circRNA (circular RNA) stands out as a new and promising field for association studies. In 23-year-old primates with developmental lead treatment, Zawia group discovered a variety of epigenetic changes relating to AD pathogenesis. This is a direct evidence implicating epigenetic basis in lead-induced AD animals with an entire lifespan. Additionally, some epigenetic molecules associated with AD etiology were also known to respond to chronic lead exposure in comparable disease models, indicating potentially interlaced mechanisms with respect to the studied neurotoxic and pathological events. Of note, epigenetic molecules acted via globally or selectively influencing the expression of disease-related genes. Compared to AD, the association of lead exposure with other neurological disorders were primarily supported by epidemiological survey, with fewer reports connecting epigenetic regulators with lead-induced pathogenesis. Some pharmaceuticals, such as HDAC (histone deacetylase) inhibitors and DNA methylation inhibitors, were developed to deal with CNS disease by targeting epigenetic components. Still, understandings are insufficient regarding the cause–consequence relations of epigenetic factors and neurological illness. Therefore, clear evidence should be provided in future investigations to address detailed roles of novel epigenetic factors in lead-induced neurological disorders, and efforts of developing specific epigenetic therapeutics should be appraised.
Collapse
Affiliation(s)
| | | | - Yi Xu
- Correspondence: ; Tel.: +86-183-2613-5046
| |
Collapse
|
103
|
Genistein and Galantamine Combinations Decrease β-Amyloid Peptide (1-42)-Induced Genotoxicity and Cell Death in SH-SY5Y Cell Line: an In Vitro and In Silico Approach for Mimic of Alzheimer's Disease. Neurotox Res 2020; 38:691-706. [PMID: 32613603 DOI: 10.1007/s12640-020-00243-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is the primary dementia-causing disease worldwide, involving a multifactorial combination of environmental, genetic, and epigenetic factors, with essential participation of age and sex. Biochemically, AD is characterized by the presence of abnormal deposition of beta amyloid peptide (Aβ(1-42)), which in the brain is strongly correlated with oxidative stress, inflammation, DNA damage, and cholinergic impairment. The multiple mechanisms involved in its etiology create significant difficulty in producing an effective treatment. Neuroprotective properties of genistein and galantamine have been widely demonstrated through different mechanisms; however, it is unknown a possible synergistic neuroprotective effect against Aβ(1-42). In order to understand how genistein and galantamine combinations regulate the mechanisms of neuroprotection, we conducted a set of bioassays in vitro to evaluate cell viability, clonogenic survival, cell death, and anti-genotoxicity. Through molecular docking and therapeutic viability assays, we analyzed the inhibitory activity exerted by genistein on three major protein targets (AChE, BChE, and NMDA) involved in AD. The results showed that genistein and galantamine afforded significant protection at higher concentrations; however, combinations of sub-effective concentrations of both compounds provided marked neuroprotection when they were combined. In silico approaches showed that genistein has higher scores than the positive controls and low toxicity levels; nevertheless, the therapeutic viability indicated that unlike galantamine, genistein cannot undergo the action by P glycoprotein (PGP) and probably may be unable to cross the blood-brain barrier. In conclusion, our results show that genistein and galantamine exert neuroprotective by decreasing genotoxicity and cell death. In silico analysis, suggest that genistein modulates positively the expression of AChE, BChE, and NMDA. In this context, a combination of two or more drugs could inspire an attractive therapeutic strategy.
Collapse
|
104
|
Fahimi Truski F, Ghotbeddin Z, Tabandeh MR, Pourmahdi Borujeni M. Crocin Treatment after Maternal Hypoxia Attenuates Spatial Memory Impairment and Expression of BACE1 and HIF-1α in Rat Offspring Brain. Basic Clin Neurosci 2020; 11:499-506. [PMID: 33613888 PMCID: PMC7878043 DOI: 10.32598/bcn.11.4.1787.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/10/2019] [Accepted: 04/11/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Hypoxia via expression of Hypoxia-Inducible Factor-1 (HIF-1) is an important and effective factor in the onset and progression of memory disorders, such as Alzheimer Disease (AD). The activity of β-secretase (BACE1) is increased in hypoxia conditions. BACE1 triggers a cascade of pathological events resulting in AD. Crocin acts as a memoryimproving agent but its molecular mechanism is not well-known. Therefore, in this study, the effect of crocin on spatial memory, HIF-1α, and BACE1 gene expression was investigated in rat offspring under maternal hypoxia. Methods Female pregnant rats on the 20th day of pregnancy were divided into 4 groups, including sham, crocin-treated, hypoxia, and hypoxia group treated with crocin. In the hypoxia groups, pregnant rats were exposed to 7% oxygen and 93% nitrogen intensity for 3 h. In the crocin-treated group, crocin (30 mg/kg) was injected at P14-28 (i.p). At the end, Morris water maze was used to assess spatial memory and real-time polymerase chain reaction was performed to measure the expression of BACE1 and HIF-1α genes in the brain of offspring. Results Maternal hypoxia impaired memory compared with the sham group. However, crocin treatment improved cognitive behavior. HIF-1α and BACE1 expressions were upregulated in the brain of offspring in the hypoxia group. Crocin treatment could attenuate the expression of both genes. Conclusion According to our results, down-regulation of HIF-1α and BACE1 gene expressions in the brain of rat offspring after crocin treatment can be suggested as a molecular mechanism for crocin to improve spatial memory.
Collapse
Affiliation(s)
- Fahimeh Fahimi Truski
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohreh Ghotbeddin
- Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahdi Pourmahdi Borujeni
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
105
|
Bi D, Wen L, Wu Z, Shen Y. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease. Alzheimers Dement 2020; 16:1312-1329. [PMID: 32543726 DOI: 10.1002/alz.12088] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To propose a new hypothesis that GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). BACKGROUND Synaptic dysfunction and E/I imbalance emerge decades before the appearance of cognitive decline in AD patients, which contribute to neurodegeneration. Initially, E/I imbalance was thought to occur first, due to dysfunction of the glutamatergic and cholinergic systems. However, new evidence has demonstrated that the GABAergic system, the counterpart of E/I balance and the major inhibitory neurotransmitter system in the central nervous system, is altered enormously and that this contributes to E/I imbalance and further AD pathogenesis. NEW HYPOTHESIS Alterations to the GABAergic system, induced by multiple AD pathogenic or risk factors, contribute to E/I imbalance and AD pathogenesis. MAJOR CHALLENGES FOR THE HYPOTHESIS This GABAergic hypothesis accounts for many critical questions and common challenges confronting a new hypothesis of AD pathogenesis. More specifically, it explains why amyloid beta (Aβ), β-secretase (BACE1), apolipoprotein E4 gene (APOE ε4), hyperactive glia cells, contributes to AD pathogenesis and why age and sex are the risk factors of AD. GABAergic dysfunction promotes the spread of Aβ pathology throughout the AD brain and associated cognitive impairments, and the induction of dysfunction induced by these varied risk factors shares this common neurobiology leading to E/I imbalance. In turn, some of these factors exacerbate GABAergic dysfunction and E/I imbalance. Moreover, the GABAergic system modulates various brain functions and thus, the GABAergic hypothesis accounts for nonamnestic manifestations. Furthermore, corrections of E/I balance through manipulation of GABAergic functions have shown positive outcomes in preclinical and clinical studies, suggesting the potential of the GABAergic system as a therapeutic target in AD. LINKAGE TO OTHER MAJOR THEORIES Dysfunction of the GABAergic system is induced by multiple critical signaling pathways, which include the existing major theories of AD pathogenesis, such as the Aβ and neuroinflammation hypotheses. In a new perspective, this GABAergic hypothesis accounts for the E/I imbalance and related excitotoxicity, which contribute to cognitive decline and AD pathogenesis. Therefore, the GABAergic system could be a key target to restore, at least partially, the E/I balance and cognitive function in AD patients.
Collapse
Affiliation(s)
- Danlei Bi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lang Wen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zujun Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
106
|
Bera S, Camblor‐Perujo S, Calleja Barca E, Negrete‐Hurtado A, Racho J, De Bruyckere E, Wittich C, Ellrich N, Martins S, Adjaye J, Kononenko NL. AP-2 reduces amyloidogenesis by promoting BACE1 trafficking and degradation in neurons. EMBO Rep 2020; 21:e47954. [PMID: 32323475 PMCID: PMC7271323 DOI: 10.15252/embr.201947954] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cleavage of amyloid precursor protein (APP) by BACE-1 (β-site APP cleaving enzyme 1) is the rate-limiting step in amyloid-β (Aβ) production and a neuropathological hallmark of Alzheimer's disease (AD). Despite decades of research, mechanisms of amyloidogenic APP processing remain highly controversial. Here, we show that in neurons, APP processing and Aβ production are controlled by the protein complex-2 (AP-2), an endocytic adaptor known to be required for APP endocytosis. Now, we find that AP-2 prevents amyloidogenesis by additionally functioning downstream of BACE1 endocytosis, regulating BACE1 endosomal trafficking and its delivery to lysosomes. AP-2 is decreased in iPSC-derived neurons from patients with late-onset AD, while conditional AP-2 knockout (KO) mice exhibit increased Aβ production, resulting from accumulation of BACE1 within late endosomes and autophagosomes. Deletion of BACE1 decreases amyloidogenesis and mitigates synapse loss in neurons lacking AP-2. Taken together, these data suggest a mechanism for BACE1 intracellular trafficking and degradation via an endocytosis-independent function of AP-2 and reveal a novel role for endocytic proteins in AD.
Collapse
Affiliation(s)
- Sujoy Bera
- CECAD Research CenterUniversity of CologneCologneGermany
- Present address:
Centre for Neuroscience and Regenerative MedicineFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | | | | | | | - Julia Racho
- CECAD Research CenterUniversity of CologneCologneGermany
| | | | | | - Nina Ellrich
- CECAD Research CenterUniversity of CologneCologneGermany
| | - Soraia Martins
- Institute for Stem Cell Research and Regenerative MedicineMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative MedicineMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | | |
Collapse
|
107
|
Dos Santos Guilherme M, Todorov H, Osterhof C, Möllerke A, Cub K, Hankeln T, Gerber S, Endres K. Impact of Acute and Chronic Amyloid-β Peptide Exposure on Gut Microbial Commensals in the Mouse. Front Microbiol 2020; 11:1008. [PMID: 32508799 PMCID: PMC7251927 DOI: 10.3389/fmicb.2020.01008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Besides its cognitive phenotype, AD leads to crucial changes in gut microbiome composition in model mice and in patients, but the reported data are still highly inconsistent. Therefore, we investigated chronic effects of AD-characteristic neurotoxic amyloid-β (Aβ) peptides as provided by transgenic overexpression (5xFAD mouse model) and acute effects due to oral application of Aβ on gut microbes. Astonishingly, one-time feeding of wild type mice with Aβ42 provoked immediate changes in gut microbiome composition (β diversity) as compared to controls. Such obvious changes were not observed when comparing 5xFAD mice with wild type littermates. However, acute as well as chronic exposure to Aβ significantly affected the abundance of numerous individual operational taxonomic units. This provides first evidence that acute in vivo exposure to Aβ results in a shift in the enteric microbiome. Furthermore, we suggest that chronic exposure to Aβ might trigger an adaptive response of gut microbiota which could thereby result in dysbiosis in model mice but also in human patients.
Collapse
Affiliation(s)
- Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hristo Todorov
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz, Johannes Gutenberg University Mainz, Mainz, Germany.,Institute for Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Fresenius Kabi Deutschland GmbH, Oberursel, Germany, Oberursel, Germany
| | - Carina Osterhof
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anton Möllerke
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristina Cub
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz, Johannes Gutenberg University Mainz, Mainz, Germany.,Institute for Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
108
|
Bagyinszky E, Giau VV, An SA. Transcriptomics in Alzheimer's Disease: Aspects and Challenges. Int J Mol Sci 2020; 21:E3517. [PMID: 32429229 PMCID: PMC7278930 DOI: 10.3390/ijms21103517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Although the heritability of AD is high, the knowledge of the disease-associated genes, their expression, and their disease-related pathways remain limited. Hence, finding the association between gene dysfunctions and pathological mechanisms, such as neuronal transports, APP processing, calcium homeostasis, and impairment in mitochondria, should be crucial. Emerging studies have revealed that changes in gene expression and gene regulation may have a strong impact on neurodegeneration. The mRNA-transcription factor interactions, non-coding RNAs, alternative splicing, or copy number variants could also play a role in disease onset. These facts suggest that understanding the impact of transcriptomes in AD may improve the disease diagnosis and also the therapies. In this review, we highlight recent transcriptome investigations in multifactorial AD, with emphasis on the insights emerging at their interface.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - Vo Van Giau
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - SeongSoo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
109
|
Syeda T, Foguth RM, Llewellyn E, Cannon JR. PhIP exposure in rodents produces neuropathology potentially relevant to Alzheimer's disease. Toxicology 2020; 437:152436. [PMID: 32169473 PMCID: PMC7218929 DOI: 10.1016/j.tox.2020.152436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a public health crisis due to debilitating cognitive symptoms and lack of curative treatments, in the context of increasing prevalence. Thus, it is critical to identify modifiable risk factors. High levels of meat consumption may increase AD risk. Many toxins are formed during meat cooking such as heterocyclic aromatic amines (HAAs). Our prior studies have shown that HAAs produce dopaminergic neurotoxicity. Given the mechanistic and pathological overlap between AD and dopaminergic disorders we investigated whether exposure to 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a prevalent dietary HAA formed during high-temperature meat cooking, may produce AD-relevant neurotoxicity. Here, C57BL/6 mice were treated with 100 or 200 mg/kg PhIP for 8 h or 75 mg/kg for 4 weeks and 16 weeks. PhIP exposure for 8 h produced oxidative damage, and AD-relevant alterations in hippocampal synaptic proteins, Amyloid-beta precursor protein (APP), and β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). PhIP exposure for 4 weeks resulted in an increase in BACE1. PhIP exposure for 16 weeks resulted in increased hippocampal oxidative damage, APP, BACE1, Aβ aggregation, and tau phosphorylation. Quantification of intracellular nitrotyrosine revealed oxidative damage in cholinergic neurons after 8 h, 4 weeks and 16 weeks of PhIP exposure. Our study demonstrates that increase in oxidative damage, APP and BACE1 might be a possible mechanism by which PhIP promotes Aβ aggregation. Given many patients with AD or PD exhibit neuropathological overlap, our study suggests that HAA exposure should be further studied for roles in mediating pathogenic overlap.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Rachel M Foguth
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Emily Llewellyn
- Summer Research Opportunities Program, Purdue, University, West Lafayette, IN, 47907, United States; Department of Biology, Utah Valley University, Orem, Utah, 84058, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
110
|
Miyamoto M, Kuzuya A, Noda Y, Ueda S, Asada-Utsugi M, Ito S, Fukusumi Y, Kawachi H, Takahashi R, Kinoshita A. Synaptic Vesicle Protein 2B Negatively Regulates the Amyloidogenic Processing of AβPP as a Novel Interaction Partner of BACE1. J Alzheimers Dis 2020; 75:173-185. [DOI: 10.3233/jad-200071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Masakazu Miyamoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kuzuya
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuha Noda
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sakiho Ueda
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Megumi Asada-Utsugi
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayae Kinoshita
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
111
|
Arora H, Ramesh M, Rajasekhar K, Govindaraju T. Molecular Tools to Detect Alloforms of Aβ and Tau: Implications for Multiplexing and Multimodal Diagnosis of Alzheimer’s Disease. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190356] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Harshit Arora
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
- VNIR Biotechnologies Pvt. Ltd., Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
112
|
Porter KN, Sarkar SN, Dakhlallah DA, Vannoy ME, Quintana DD, Simpkins JW. Medroxyprogesterone Acetate Impairs Amyloid Beta Degradation in a Matrix Metalloproteinase-9 Dependent Manner. Front Aging Neurosci 2020; 12:92. [PMID: 32317959 PMCID: PMC7155169 DOI: 10.3389/fnagi.2020.00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/18/2020] [Indexed: 12/25/2022] Open
Abstract
Despite the extensive use of hormonal methods as either contraception or menopausal hormone therapy (HT), there is very little known about the potential effects of these compounds on the cellular processes of the brain. Medroxyprogesterone Acetate (MPA) is a progestogen used globally in the hormonal contraceptive, Depo Provera, by women in their reproductive prime and is a major compound found in HT formulations used by menopausal women. MPA promotes changes in the circulating levels of matrix metalloproteinases (MMPs), such as MMP-9, in the endometrium, yet limited literature studying the effects of MPA on neurons and astroglia cells has been conducted. Additionally, the dysregulation of MMPs has been implicated in the pathology of Alzheimer's disease (AD), where inhibiting the secretion of MMP-9 from astroglia reduces the proteolytic degradation of amyloid-beta. Thus, we hypothesize that exposure to MPA disrupts proteolytic degradation of amyloid-beta through the downregulation of MMP-9 expression and subsequent secretion. To assess the effect of progestins on MMP-9 and amyloid-beta, in vitro, C6 rat glial cells were exposed to MPA for 48 h and then the enzymatic, secretory, and amyloid-beta degrading capacity of MMP-9 was assessed from the conditioned culture medium. We found that MPA treatment inhibited transcription of MMP-9, which resulted in a subsequent decrease in the production and secretion of MMP-9 protein, in part through the glucocorticoid receptor. Additionally, we investigated the consequences of amyloid beta-degrading activity and found that MPA treatment decreased proteolytic degradation of amyloid-beta. Our results suggest MPA suppresses amyloid-beta degradation in an MMP-9-dependent manner, in vitro, and potentially compromises the clearance of amyloid-beta in vivo.
Collapse
Affiliation(s)
- Keyana N. Porter
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University School of Pharmacy, Morgantown, WV, United States
| | - Saumyendra N. Sarkar
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Duaa A. Dakhlallah
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Mya E. Vannoy
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Dominic D. Quintana
- Department of Neuroscience, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - James W. Simpkins
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, United States
- Department of Neuroscience, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
113
|
Rozpędek-Kamińska W, Siwecka N, Wawrzynkiewicz A, Wojtczak R, Pytel D, Diehl JA, Majsterek I. The PERK-Dependent Molecular Mechanisms as a Novel Therapeutic Target for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E2108. [PMID: 32204380 PMCID: PMC7139310 DOI: 10.3390/ijms21062108] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Higher prevalence of neurodegenerative diseases is strictly connected with progressive aging of the world population. Interestingly, a broad range of age-related, neurodegenerative diseases is characterized by a common pathological mechanism-accumulation of misfolded and unfolded proteins within the cells. Under certain circumstances, such protein aggregates may evoke endoplasmic reticulum (ER) stress conditions and subsequent activation of the unfolded protein response (UPR) signaling pathways via the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent manner. Under mild to moderate ER stress, UPR has a pro-adaptive role. However, severe or long-termed ER stress conditions directly evoke shift of the UPR toward its pro-apoptotic branch, which is considered to be a possible cause of neurodegeneration. To this day, there is no effective cure for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), or prion disease. Currently available treatment approaches for these diseases are only symptomatic and cannot affect the disease progression. Treatment strategies, currently under detailed research, include inhibition of the PERK-dependent UPR signaling branches. The newest data have reported that the use of small-molecule inhibitors of the PERK-mediated signaling branches may contribute to the development of a novel, ground-breaking therapeutic approach for neurodegeneration. In this review, we critically describe all the aspects associated with such targeted therapy against neurodegenerative proteopathies.
Collapse
Affiliation(s)
- Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Adam Wawrzynkiewicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Radosław Wojtczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Dariusz Pytel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; (D.P.); (J.A.D.)
| | - J. Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; (D.P.); (J.A.D.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| |
Collapse
|
114
|
|
115
|
Nuñez-Borque E, González-Naranjo P, Bartolomé F, Alquézar C, Reinares-Sebastián A, Pérez C, Ceballos ML, Páez JA, Campillo NE, Martín-Requero Á. Targeting Cannabinoid Receptor Activation and BACE-1 Activity Counteracts TgAPP Mice Memory Impairment and Alzheimer's Disease Lymphoblast Alterations. Mol Neurobiol 2020; 57:1938-1951. [PMID: 31898159 DOI: 10.1007/s12035-019-01813-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD), the leading cause of dementia in the elderly, is a neurodegenerative disorder marked by progressive impairment of cognitive ability. Patients with AD display neuropathological lesions including senile plaques, neurofibrillary tangles, and neuronal loss. There are no disease-modifying drugs currently available. With the number of affected individuals increasing dramatically throughout the world, there is obvious urgent need for effective treatment strategy for AD. The multifactorial nature of AD encouraged the development of multifunctional compounds, able to interact with several putative targets. Here, we have evaluated the effects of two in-house designed cannabinoid receptors (CB) agonists showing inhibitory actions on β-secretase-1 (BACE-1) (NP137) and BACE-1/butyrylcholinesterase (BuChE) (NP148), on cellular models of AD, including immortalized lymphocytes from late-onset AD patients. Furthermore, the performance of TgAPP mice in a spatial navigation task was investigated following chronic administration of NP137 and NP148. We report here that NP137 and NP148 showed neuroprotective effects in amyloid-β-treated primary cortical neurons, and NP137 in particular rescued the cognitive deficit of TgAPP mice. The latter compound was able to blunt the abnormal cell response to serum addition or withdrawal of lymphoblasts derived from AD patients. It is suggested that NP137 could be a good drug candidate for future treatment of AD.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | - Fernando Bartolomé
- Neurodegenerative Disorders Group, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carolina Alquézar
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Department of Neurology, Memory and Aging Center, University of California, Box 1207, San Francisco, CA, 94158, USA
| | | | | | - Maria L Ceballos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Insituto Cajal (CSIC), Madrid, Spain
| | - Juan A Páez
- Instituto de Química Médica (CSIC), Madrid, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ángeles Martín-Requero
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
116
|
Wirths O, Zampar S. Emerging roles of N- and C-terminally truncated Aβ species in Alzheimer’s disease. Expert Opin Ther Targets 2019; 23:991-1004. [DOI: 10.1080/14728222.2019.1702972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
117
|
Theoretical and Experimental Approaches Aimed at Drug Design Targeting Neurodegenerative Diseases. Processes (Basel) 2019. [DOI: 10.3390/pr7120940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years, green chemistry has been strengthening, showing how basic and applied sciences advance globally, protecting the environment and human health. A clear example of this evolution is the synergy that now exists between theoretical and computational methods to design new drugs in the most efficient possible way, using the minimum of reagents and obtaining the maximum yield. The development of compounds with potential therapeutic activity against multiple targets associated with neurodegenerative diseases/disorders (NDD) such as Alzheimer’s disease is a hot topic in medical chemistry, where different scientists from various disciplines collaborate to find safe, active, and effective drugs. NDD are a public health problem, affecting mainly the population over 60 years old. To generate significant progress in the pharmacological treatment of NDD, it is necessary to employ different experimental strategies of green chemistry, medical chemistry, and molecular biology, coupled with computational and theoretical approaches such as molecular simulations and chemoinformatics, all framed in the rational drug design targeting NDD. Here, we review how green chemistry and computational approaches have been used to develop new compounds with the potential application against NDD, as well as the challenges and new directions of the drug development multidisciplinary process.
Collapse
|
118
|
Peters F, Salihoglu H, Pratsch K, Herzog E, Pigoni M, Sgobio C, Lichtenthaler SF, Neumann U, Herms J. Tau deletion reduces plaque-associated BACE1 accumulation and decelerates plaque formation in a mouse model of Alzheimer's disease. EMBO J 2019; 38:e102345. [PMID: 31701556 PMCID: PMC6885735 DOI: 10.15252/embj.2019102345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 01/24/2023] Open
Abstract
In Alzheimer's disease, BACE1 protease initiates the amyloidogenic processing of amyloid precursor protein (APP) that eventually results in synthesis of β-amyloid (Aβ) peptide. Aβ deposition in turn causes accumulation of BACE1 in plaque-associated dystrophic neurites, thereby potentiating progressive Aβ deposition once initiated. Since systemic pharmacological BACE inhibition causes adverse effects in humans, it is important to identify strategies that specifically normalize overt BACE1 activity around plaques. The microtubule-associated protein tau regulates axonal transport of proteins, and tau deletion rescues Aβ-induced transport deficits in vitro. In the current study, long-term in vivo two-photon microscopy and immunohistochemistry were performed in tau-deficient APPPS1 mice. Tau deletion reduced plaque-associated axonal pathology and BACE1 accumulation without affecting physiological BACE1 expression distant from plaques. Thereby, tau deletion effectively decelerated formation of new plaques and reduced plaque compactness. The data revealed that tau reinforces Aβ deposition, presumably by contributing to accumulation of BACE1 in plaque-associated dystrophies. Targeting tau-dependent mechanisms could become a suitable strategy to specifically reduce overt BACE1 activity around plaques, thereby avoiding adverse effects of systemic BACE inhibition.
Collapse
Affiliation(s)
- Finn Peters
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Hazal Salihoglu
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Katrin Pratsch
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Etienne Herzog
- IINS, UMR 5297Université BordeauxBordeauxFrance
- CNRS, IINS, UMR 5297BordeauxFrance
| | - Martina Pigoni
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Carmelo Sgobio
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- NeuroproteomicsSchool of MedicineKlinikum rechts der Isar and Institute for Advanced StudyTechnical University of MunichMunichGermany
| | - Ulf Neumann
- NeuroscienceNovartis Institutes for BioMedical Research (NIBR)BaselSwitzerland
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Center for Neuropathology and Prion ResearchLudwig‐Maximilians UniversityMunichGermany
| |
Collapse
|
119
|
Bram JMDF, Talib LL, Joaquim HPG, Sarno TA, Gattaz WF, Forlenza OV. Protein levels of ADAM10, BACE1, and PSEN1 in platelets and leukocytes of Alzheimer's disease patients. Eur Arch Psychiatry Clin Neurosci 2019; 269:963-972. [PMID: 29845446 DOI: 10.1007/s00406-018-0905-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
The clinical diagnosis of Alzheimer's disease (AD) is a probabilistic formulation that may lack accuracy particularly at early stages of the dementing process. Abnormalities in amyloid-beta precursor protein (APP) metabolism and in the level of APP secretases have been demonstrated in platelets, and to a lesser extent in leukocytes, of AD patients, with conflicting results. The aim of the present study was to compare the protein level of the APP secretases A-disintegrin and metalloprotease 10 (ADAM10), Beta-site APP-cleaving enzyme 1 (BACE1), and presenilin-1 (PSEN1) in platelets and leukocytes from 20 non-medicated older adults with AD and 20 healthy elders, and to determine the potential use of these biomarkers to discriminate cases of AD from controls. The protein levels of all APP secretases were significantly higher in platelets compared to leukocytes. We found statistically a significant decrease in ADAM10 (52.5%, p < 0.0001) and PSEN1 (32%, p = 0.02) in platelets from AD patients compared to controls, but not in leukocytes. Combining all three secretases to generate receiver-operating characteristic (ROC) curves, we found a good discriminatory effect (AD vs. controls) when using platelets (the area under the curve-AUC-0.90, sensitivity 88.9%, specificity 66.7%, p = 0.003), but not in leukocytes (AUC 0.65, sensitivity 77.8%, specificity 50.0%, p = 0.2). Our findings indicate that platelets represent a better biological matrix than leukocytes to address the peripheral level of APP secretases. In addition, combining the protein level of ADAM10, BACE1, and PSEN1 in platelets, yielded a good accuracy to discriminate AD from controls.
Collapse
Affiliation(s)
- Jessyka Maria de França Bram
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Leda Leme Talib
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Helena Passarelli Giroud Joaquim
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Tamires Alves Sarno
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Wagner Farid Gattaz
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Orestes Vicente Forlenza
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil.
| |
Collapse
|
120
|
Synthesis of a carbon-11 radiolabeled BACE1 inhibitor. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
121
|
Beta-Amyloid Increases the Expression Levels of Tid1 Responsible for Neuronal Cell Death and Amyloid Beta Production. Mol Neurobiol 2019; 57:1099-1114. [PMID: 31686372 DOI: 10.1007/s12035-019-01807-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/30/2019] [Indexed: 01/15/2023]
Abstract
Mitochondrial dysfunctions and oxidative stress play important roles in the early pathogenesis of Alzheimer's disease (AD), which also involves the aberrant expression levels of mitochondrial proteins. However, the molecular mechanisms underlying the aberrant expression levels of these proteins in the pathogenesis of AD are still not completely understood. Tid1 (DnaJA3/mtHsp40), a mammalian homolog of the Drosophila tumor suppressor Tid56, is reported to induce mitochondrial fragmentation associated with an increase in reactive oxygen species (ROS) levels, resulting in cell death in some cancer cells. However, the involvement of Tid1 in AD pathogenesis is as yet unknown. In this study, we found that the Tid1 protein levels were upregulated in the hippocampus of AD patients and Tg2576 mice. Our in vitro studies showed that Aβ42 increased the expression levels of Tid1 in primary rat cortical neurons. The knockdown of Tid1 protected against neuronal cell death induced by Aβ42, and Tid1-mediated neuronal cell death, was dependent on the increased ROS generation and caspase-3 activity. The overexpression of Tid1 in HEK293-APP cells increased the BACE1 levels, resulting in increased Aβ production. Conversely, Tid1 knockdown in HEK293-APP cells and primary cultured neurons decreased Aβ production through the reduction in the BACE1 levels. We also found that the overexpression of Tid1 activated c-Jun N-terminal kinase (JNK) leading to increased Aβ production. Taken together, our results suggest that upregulated Tid1 levels in the hippocampus of patients with AD and Tg2576 mice induce apoptosis and increase Aβ production, and Tid1 may therefore be a suitable target in therapeutic interventions for AD.
Collapse
|
122
|
Imbimbo BP, Watling M. Investigational BACE inhibitors for the treatment of Alzheimer's disease. Expert Opin Investig Drugs 2019; 28:967-975. [PMID: 31661331 DOI: 10.1080/13543784.2019.1683160] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The amyloid hypothesis of Alzheimer's disease (AD) states that brain accumulation of amyloid-β (Aβ) oligomers and soluble aggregates represents the major causal event of the disease. Several small organic molecules have been synthesized and developed to inhibit the enzyme (β-site amyloid precursor protein cleaving enzyme-1 or BACE1) whose action represents the rate-limiting step in Aβ production.Areas covered: We reviewed the pharmacology and clinical trials of major BACE1 inhibitors.Expert opinion: In transgenic mouse models of AD, BACE1 inhibitors dose-dependently lower Aβ levels in brain and cerebrospinal fluid (CSF) but the evidence for attenuation or reversal cognitive or behavioral deficits is very scanty. In AD patients, BACE1 inhibitors robustly lower plasma and CSF Aβ levels and reduce brain plaques but without cognitive, clinical, or functional benefit. To date, seventeen BACE1 inhibitors have failed in double-blind, placebo-controlled clinical trials in patients with mild-to-moderate or prodromal AD, or in cognitively normal subjects at risk of developing AD. Several of these studies were prematurely interrupted due to toxicity or cognitive and behavioral worsening compared to placebo-treated patients. Elenbecestat, the last BACE1 inhibitor remaining in late clinical testing for AD, was recently discontinued due to safety concerns.
Collapse
Affiliation(s)
| | - Mark Watling
- CNS & Pain Department, TranScrip Partners, Reading, UK
| |
Collapse
|
123
|
Weldon Furr J, Morales-Scheihing D, Manwani B, Lee J, McCullough LD. Cerebral Amyloid Angiopathy, Alzheimer's Disease and MicroRNA: miRNA as Diagnostic Biomarkers and Potential Therapeutic Targets. Neuromolecular Med 2019; 21:369-390. [PMID: 31586276 DOI: 10.1007/s12017-019-08568-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The protein molecules must fold into unique conformations to acquire functional activity. Misfolding, aggregation, and deposition of proteins in diverse organs, the so-called "protein misfolding disorders (PMDs)", represent the conformational diseases with highly ordered assemblies, including oligomers and fibrils that are linked to neurodegeneration in brain illnesses such as cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Recent studies have revealed several aspects of brain pathology in CAA and AD, but both the classification and underlying mechanisms need to be further refined. MicroRNAs (miRNAs) are critical regulators of gene expression at the post-transcriptional level. Increasing evidence with the advent of RNA sequencing technology suggests possible links between miRNAs and these neurodegenerative disorders. To provide insights on the small RNA-mediated regulatory circuitry and the translational significance of miRNAs in PMDs, this review will discuss the characteristics and mechanisms of the diseases and summarize circulating or tissue-resident miRNAs associated with AD and CAA.
Collapse
Affiliation(s)
- J Weldon Furr
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Diego Morales-Scheihing
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Bharti Manwani
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Juneyoung Lee
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Louise D McCullough
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
124
|
BACE1 Inhibition Using 2'-OMePS Steric Blocking Antisense Oligonucleotides. Genes (Basel) 2019; 10:genes10090705. [PMID: 31547430 PMCID: PMC6770983 DOI: 10.3390/genes10090705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/03/2022] Open
Abstract
Amyloid beta-peptide is produced by the cleavage of amyloid precursor protein by two secretases, a β-secretase, beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and a γ-secretase. It has been hypothesised that partial inhibition of BACE1 in individuals with a high risk of developing Alzheimer’s disease may be beneficial in preventing cognitive decline. In this study, we report the development of a novel antisense oligonucleotide (AO) that could efficiently downregulate the BACE1 transcript and partially inhibit BACE1 protein. We designed and synthesised a range of 2’-OMethyl-modified antisense oligonucleotides with a phosphorothioate backbone across various exons of the BACE1 transcript, of which AO2, targeting exon 2, efficiently downregulated BACE1 RNA expression by 90%. The sequence of AO2 was later synthesised with a phosphorodiamidate morpholino chemistry, which was found to be not as efficient at downregulating BACE1 expression as the 2’-OMethyl antisense oligonucleotides with a phosphorothioate backbone variant. AO2 also reduced BACE1 protein levels by 45%. In line with our results, we firmly believe that AO2 could be used as a potential preventative therapeutic strategy for Alzheimer’s disease.
Collapse
|
125
|
Liang ZM, Peng YH, Chen Y, Long LL, Luo HJ, Chen YJ, Liang YL, Tian YH, Li SJ, Shi YS, Zhang XM. The BACE1-Specific DNA Aptamer A1 Rescues Amyloid-β Pathology and Behavioral Deficits in a Mouse Model of Alzheimer's Disease. Nucleic Acid Ther 2019; 29:359-366. [PMID: 31513457 DOI: 10.1089/nat.2019.0812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyloid-β (Aβ) plaque deposits in the brain are considered to be one of the main pathological markers of Alzheimer's disease (AD). The sequential proteolytic cleavage of amyloid precursor protein (APP) by the aspartyl proteases β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase produces Aβ. Therefore, BACE1 inhibition is a very attractive target for the treatment of AD. Our previous work identified a DNA aptamer named A1 that can bind to BACE1 with high affinity and specificity and exhibits a distinct inhibitory effect on BACE1 activity in an AD cell model. The purpose of this research was to test the effect of aptamer A1 in Tg6799 mice. Four-month-old Tg6799 mice were randomly divided into two groups and treated with aptamer A1 and ineffective aptamer A1scr, respectively, by intracerebroventricular injection. Subsequent behavioral experiments showed that treatment with the aptamer A1 improved the cognitive abilities of the AD mice. Western blot indicated that BACE1 and soluble amyloid precursor protein β (sAPPβ) expression significantly decreased in the A1-treated mice. Moreover, aptamer A1 reduced the content of Aβ42 and the number and density of senile plaques in AD mice. Therefore, our results indicate that aptamer A1 is a novel specific and potent BACE1 inhibitor and is a promising potential target for the treatment of AD.
Collapse
Affiliation(s)
- Zhi-Man Liang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Hua Peng
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Chen
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li-Li Long
- The First Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Jie Luo
- The First Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ya-Jun Chen
- The First Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Ling Liang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying-Hong Tian
- Experiment Teaching & Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shu-Ji Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu-Sheng Shi
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-Mei Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
126
|
Zhu BL, Long Y, Luo W, Yan Z, Lai YJ, Zhao LG, Zhou WH, Wang YJ, Shen LL, Liu L, Deng XJ, Wang XF, Sun F, Chen GJ. MMP13 inhibition rescues cognitive decline in Alzheimer transgenic mice via BACE1 regulation. Brain 2019; 142:176-192. [PMID: 30596903 DOI: 10.1093/brain/awy305] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
MMP13 (matrix metallopeptidase 13) plays a key role in bone metabolism and cancer development, but has no known functions in Alzheimer's disease. In this study, we used high-throughput small molecule screening in SH-SY5Y cells that stably expressed a luciferase reporter gene driven by the BACE1 (β-site amyloid precursor protein cleaving enzyme 1) promoter, which included a portion of the 5' untranslated region (5'UTR). We identified that CL82198, a selective inhibitor of MMP13, decreased BACE1 protein levels in cultured neuronal cells. This effect was dependent on PI3K (phosphatidylinositide 3-kinase) signalling, and was unrelated to BACE1 gene transcription and protein degradation. Further, we found that eukaryotic translation initiation factor 4B (eIF4B) played a key role, as the mutation of eIF4B at serine 422 (S422R) or deletion of the BACE1 5'UTR attenuated MMP13-mediated BACE1 regulation. In APPswe/PS1E9 mice, an animal model of Alzheimer's disease, hippocampal Mmp13 knockdown or intraperitoneal CL82198 administration reduced BACE1 protein levels and the related amyloid-β precursor protein processing, amyloid-β load and eIF4B phosphorylation, whereas spatial and associative learning and memory performances were improved. Collectively, MMP13 inhibition/CL82198 treatment exhibited therapeutic potential for Alzheimer's disease, via the translational regulation of BACE1.
Collapse
Affiliation(s)
- Bing-Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Yan Long
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Wei Luo
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yu-Jie Lai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Li-Ge Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Wei-Hui Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin-Lin Shen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| |
Collapse
|
127
|
Saadipour K, Tiberi A, Lombardo S, Grajales E, Montroull L, Mañucat-Tan NB, LaFrancois J, Cammer M, Mathews PM, Scharfman HE, Liao FF, Friedman WJ, Zhou XF, Tesco G, Chao MV. Regulation of BACE1 expression after injury is linked to the p75 neurotrophin receptor. Mol Cell Neurosci 2019; 99:103395. [PMID: 31422108 DOI: 10.1016/j.mcn.2019.103395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
BACE1 is a transmembrane aspartic protease that cleaves various substrates and it is required for normal brain function. BACE1 expression is high during early development, but it is reduced in adulthood. Under conditions of stress and injury, BACE1 levels are increased; however, the underlying mechanisms that drive BACE1 elevation are not well understood. One mechanism associated with brain injury is the activation of injurious p75 neurotrophin receptor (p75), which can trigger pathological signals. Here we report that within 72 h after controlled cortical impact (CCI) or laser injury, BACE1 and p75 are increased and tightly co-expressed in cortical neurons of mouse brain. Additionally, BACE1 is not up-regulated in p75 null mice in response to focal cortical injury, while p75 over-expression results in BACE1 augmentation in HEK-293 and SY5Y cell lines. A luciferase assay conducted in SY5Y cell line revealed that BACE1 expression is regulated at the transcriptional level in response to p75 transfection. Interestingly, this effect does not appear to be dependent upon p75 ligands including mature and pro-neurotrophins. In addition, BACE1 activity on amyloid precursor protein (APP) is enhanced in SY5Y-APP cells transfected with a p75 construct. Lastly, we found that the activation of c-jun n-terminal kinase (JNK) by p75 contributes to BACE1 up-regulation. This study explores how two injury-induced molecules are intimately connected and suggests a potential link between p75 signaling and the expression of BACE1 after brain injury.
Collapse
Affiliation(s)
- Khalil Saadipour
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016, USA.
| | - Alexia Tiberi
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016, USA; Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy
| | - Sylvia Lombardo
- Alzheimer's Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Elena Grajales
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016, USA
| | - Laura Montroull
- Department of Biological Sciences, Rutgers Life Sciences Center, Rutgers University, Newark, NJ 07102, USA
| | - Noralyn B Mañucat-Tan
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - John LaFrancois
- The Nathan Kline Institute of Psychiatric Research, Center for Dementia Research, Orangeburg, NY 10962, USA
| | - Michael Cammer
- DART Microscopy Laboratory, NYU Langone Medical Center, New York, NY 10016, USA
| | - Paul M Mathews
- The Nathan Kline Institute of Psychiatric Research, Center for Dementia Research, Orangeburg, NY 10962, USA
| | - Helen E Scharfman
- The Nathan Kline Institute of Psychiatric Research, Center for Dementia Research, Orangeburg, NY 10962, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers Life Sciences Center, Rutgers University, Newark, NJ 07102, USA
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Giueseppina Tesco
- Alzheimer's Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Moses V Chao
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016, USA.
| |
Collapse
|
128
|
Zusso M, Barbierato M, Facci L, Skaper SD, Giusti P. Neuroepigenetics and Alzheimer's Disease: An Update. J Alzheimers Dis 2019; 64:671-688. [PMID: 29991138 DOI: 10.3233/jad-180259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetics is the study of changes in gene expression which may be triggered by both genetic and environmental factors, and independent from changes to the underlying DNA sequence-a change in phenotype without a change in genotype-which in turn affects how cells read genes. Epigenetic changes represent a regular and natural occurrence but can be influenced also by factors such as age, environment, and disease state. Epigenetic modifications can manifest themselves not only as the manner in which cells terminally differentiate, but can have also deleterious effects, resulting in diseases such as cancer. At least three systems including DNA methylation, histone modification, and non-coding RNA (ncRNA)-associated gene silencing are thought to initiate and sustain epigenetic change. For example, in Alzheimer's disease (AD), both genetic and non-genetic factors contribute to disease etiopathology. While over 250 gene mutations have been related to familial AD, less than 5% of AD cases are explained by known disease genes. More than likely, non-genetic factors, probably triggered by environmental factors, are causative factors of late-onset AD. AD is associated with dysregulation of DNA methylation, histone modifications, and ncRNAs. Among the classes of ncRNA, microRNAs (miRNAs) have a well-established regulatory relevance. MicroRNAs are highly expressed in CNS neurons, where they play a major role in neuron differentiation, synaptogenesis, and plasticity. MicroRNAs impact higher cognitive functions, as their functional impairment is involved in the etiology of neurological diseases, including AD. Alterations in the miRNA network contribute to AD disease processes, e.g., in the regulation of amyloid peptides, tau, lipid metabolism, and neuroinflammation. MicroRNAs, both as biomarkers for AD and therapeutic targets, are in the early stages of exploration. In addition, emerging data suggest that altered transcription of long ncRNAs, endogenous, ncRNAs longer than 200 nucleotides, may be involved in an elevated risk for AD.
Collapse
Affiliation(s)
- Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| |
Collapse
|
129
|
Ganeshpurkar A, Swetha R, Kumar D, Gangaram GP, Singh R, Gutti G, Jana S, Kumar D, Kumar A, Singh SK. Protein-Protein Interactions and Aggregation Inhibitors in Alzheimer's Disease. Curr Top Med Chem 2019; 19:501-533. [PMID: 30836921 DOI: 10.2174/1568026619666190304153353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's Disease (AD), a multifaceted disorder, involves complex pathophysiology and plethora of protein-protein interactions. Thus such interactions can be exploited to develop anti-AD drugs. OBJECTIVE The interaction of dynamin-related protein 1, cellular prion protein, phosphoprotein phosphatase 2A and Mint 2 with amyloid β, etc., studied recently, may have critical role in progression of the disease. Our objective has been to review such studies and their implications in design and development of drugs against the Alzheimer's disease. METHODS Such studies have been reviewed and critically assessed. RESULTS Review has led to show how such studies are useful to develop anti-AD drugs. CONCLUSION There are several PPIs which are current topics of research including Drp1, Aβ interactions with various targets including PrPC, Fyn kinase, NMDAR and mGluR5 and interaction of Mint2 with PDZ domain, etc., and thus have potential role in neurodegeneration and AD. Finally, the multi-targeted approach in AD may be fruitful and opens a new vista for identification and targeting of PPIs in various cellular pathways to find a cure for the disease.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gore P Gangaram
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Srabanti Jana
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Dileep Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
130
|
Jiang C, Zou X, Zhu R, Shi Y, Wu Z, Zhao F, Chen L. The correlation between accumulation of amyloid beta with enhanced neuroinflammation and cognitive impairment after intraventricular hemorrhage. J Neurosurg 2019; 131:54-63. [PMID: 30028260 DOI: 10.3171/2018.1.jns172938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Intraventricular hemorrhage (IVH) is found in approximately 40% of intracerebral hemorrhages and is associated with increased mortality and poor functional outcome. Cognitive impairment is one of the complications and occurs due to various pathological changes. Amyloid beta (Aβ) accumulation and neuroinflammation, and the Alzheimer disease-like pathology, may contribute to cognitive impairment. Iron, the degradation product of hemoglobin, correlates with Aβ. In this study, the authors investigated the correlation between Aβ accumulation with enhanced neuroinflammation and cognitive impairment in a rat model of IVH. METHODS Nine male Sprague-Dawley rats underwent an intraventricular injection of autologous blood. Another 9 rats served as controls. Cognitive function was assessed by the Morris water maze and T-maze rewarded alternation tests. Biomarkers of Aβ accumulation, neuroinflammation, and c-Jun N-terminal kinase (JNK) activation were examined. RESULTS Cognitive function was impaired in the autologous blood injection group compared with the control group. In the blood injection group, Aβ accumulation was observed, with a co-located correlation between iron storage protein ferritin and Aβ. Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) activity was elevated. Microgliosis and astrogliosis were observed in hippocampal CA1, CA2, CA3, and dentate gyrus areas, with elevated proinflammatory cytokines tumor necrosis factor-α and interleukin-1. Protein levels of phosphorylated JNK were increased after blood injection. CONCLUSIONS Aβ accumulation and enhanced neuroinflammation have a role in cognitive impairment after IVH. A potential therapeutic method requires further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liang Chen
- 1Department of Neurosurgery and
- 2National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
131
|
Xiang J, Zhang W, Cai XF, Cai M, Yu ZH, Yang F, Zhu W, Li XT, Wu T, Zhang JS, Cai DF. DNA Aptamers Targeting BACE1 Reduce Amyloid Levels and Rescue Neuronal Deficiency in Cultured Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:302-312. [PMID: 30959405 PMCID: PMC6453838 DOI: 10.1016/j.omtn.2019.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 01/02/2023]
Abstract
β-amyloid (Aβ) plays an essential role in the pathogenesis of Alzheimer's disease (AD). Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is indispensable for Aβ production, and knockout of BACE1 has no overt phenotypes in mouse. Thus, fine modulation of BACE1 may be a safe and effective treatment for AD patients. However, the large active site of BACE1 makes it challenging to target BACE1 with classical small-molecule inhibitors. DNA aptamer can have high affinity and specificity against diverse targets, and it provides an alternative strategy to target BACE1. In this study, we used a novel cell-systematic evolution of ligands by exponential enrichment (SELEX) strategy to select specific DNA aptamers optimized to target BACE1 under physiological status. After 17 rounds of selection, we identified two DNA aptamers against BACE1: BI1 and BI2. The identified aptamers interacted with BACE1 in pull-down assay, inhibited BACE1 activity in in vitro fluorescence resonance energy transfer (FRET) assay and HEK293-APP stable cell line, reduced Aβ in the culture medium of HEK293-amyloid protein precursor (APP) stable cell line and APP-PS1 primary cultured neurons, and rescued Aβ-induced neuronal deficiency in APP-PS1 primary cultured neurons. In contrast, the identified aptamers had no effect on α- or γ-secretase. In addition, cholesteryl tetraetylene glycol (TEG) modification further improved the potency of the identified aptamers. Our study suggests that it is feasible and effective to target BACE1 with DNA aptamers, and the therapeutic potential of the identified aptamers deserves further investigation.
Collapse
Affiliation(s)
- Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Xiao-Fang Cai
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Zhong-Hai Yu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Feng Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Wen Zhu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Xiang-Ting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Ting Wu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Jing-Si Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China.
| | - Ding-Fang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
132
|
NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer's models. Proc Natl Acad Sci U S A 2019; 116:12516-12523. [PMID: 31164420 DOI: 10.1073/pnas.1819541116] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACE1 is the rate-limiting enzyme for amyloid-β peptides (Aβ) generation, a key event in the pathogenesis of Alzheimer's disease (AD). By an unknown mechanism, levels of BACE1 and a BACE1 mRNA-stabilizing antisense RNA (BACE1-AS) are elevated in the brains of AD patients, implicating that dysregulation of BACE1 expression plays an important role in AD pathogenesis. We found that nuclear factor erythroid-derived 2-related factor 2 (NRF2/NFE2L2) represses the expression of BACE1 and BACE1-AS through binding to antioxidant response elements (AREs) in their promoters of mouse and human. NRF2-mediated inhibition of BACE1 and BACE1-AS expression is independent of redox regulation. NRF2 activation decreases production of BACE1 and BACE1-AS transcripts and Aβ production and ameliorates cognitive deficits in animal models of AD. Depletion of NRF2 increases BACE1 and BACE1-AS expression and Aβ production and worsens cognitive deficits. Our findings suggest that activation of NRF2 can prevent a key early pathogenic process in AD.
Collapse
|
133
|
Toro CA, Zhang L, Cao J, Cai D. Sex differences in Alzheimer's disease: Understanding the molecular impact. Brain Res 2019; 1719:194-207. [PMID: 31129153 DOI: 10.1016/j.brainres.2019.05.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents with cognitive impairment and behavioral disturbance. Approximately 5.5 million people in the United States live with AD, most of whom are over the age of 65 with two-thirds being woman. There have been major advancements over the last decade or so in the understanding of AD neuropathological changes and genetic involvement. However, studies of sex impact in AD have not been adequately integrated into the investigation of disease development and progression. It becomes indispensable to acknowledge in both basic science and clinical research studies the importance of understanding sex-specific differences in AD pathophysiology and pathogenesis, which could guide future effort in the discovery of novel targets for AD. Here, we review the latest and most relevant literature on this topic, highlighting the importance of understanding sex dimorphism from a molecular perspective and its association to clinical trial design and development in AD research field.
Collapse
Affiliation(s)
- Carlos A Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Larry Zhang
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jiqing Cao
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Dongming Cai
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Neurology Section, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
134
|
Liebsch F, Kulic L, Teunissen C, Shobo A, Ulku I, Engelschalt V, Hancock MA, van der Flier WM, Kunach P, Rosa-Neto P, Scheltens P, Poirier J, Saftig P, Bateman RJ, Breitner J, Hock C, Multhaup G. Aβ34 is a BACE1-derived degradation intermediate associated with amyloid clearance and Alzheimer's disease progression. Nat Commun 2019; 10:2240. [PMID: 31110178 PMCID: PMC6527709 DOI: 10.1038/s41467-019-10152-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
The beta-site APP cleaving enzyme 1 (BACE1) is known primarily for its initial cleavage of the amyloid precursor protein (APP), which ultimately leads to the generation of Aβ peptides. Here, we provide evidence that altered BACE1 levels and activity impact the degradation of Aβ40 and Aβ42 into a common Aβ34 intermediate. Using human cerebrospinal fluid (CSF) samples from the Amsterdam Dementia Cohort, we show that Aβ34 is elevated in individuals with mild cognitive impairment who later progressed to dementia. Furthermore, Aβ34 levels correlate with the overall Aβ clearance rates in amyloid positive individuals. Using CSF samples from the PREVENT-AD cohort (cognitively normal individuals at risk for Alzheimer’s disease), we further demonstrate that the Aβ34/Aβ42 ratio, representing Aβ degradation and cortical deposition, associates with pre-clinical markers of neurodegeneration. We propose that Aβ34 represents a marker of amyloid clearance and may be helpful for the characterization of Aβ turnover in clinical samples. Aβ34 is generated from degradation of Aβ40 and Aβ42 by β-secretase. Here, the authors show that Aβ34 is a marker for amyloid clearance and is elevated in the CSF of patients that go on to convert from mild cognitive impairment to Alzheimer’s disease, suggesting it may be a useful biomarker.
Collapse
Affiliation(s)
- Filip Liebsch
- Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Luka Kulic
- Institute for Regenerative Medicine, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Charlotte Teunissen
- Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HZ, Amsterdam, The Netherlands
| | - Adeola Shobo
- Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Irem Ulku
- Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Vivienne Engelschalt
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Mark A Hancock
- SPR-MS Facility, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081HZ, The Netherlands
| | - Peter Kunach
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, McGill University, Montreal, H4H 1R3, QC, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, McGill University, Montreal, H4H 1R3, QC, Canada
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081HZ, The Netherlands
| | - Judes Poirier
- Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Paul Saftig
- Biochemisches Institut, Christian-Albrechts-Universität-Kiel, 24118, Kiel, Germany
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - John Breitner
- Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, CH-8952, Schlieren, Switzerland.,Neurimmune, CH-8952, Schlieren, Switzerland
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
135
|
Electroacupuncture Mitigates Hippocampal Cognitive Impairments by Reducing BACE1 Deposition and Activating PKA in APP/PS1 Double Transgenic Mice. Neural Plast 2019; 2019:2823679. [PMID: 31223308 PMCID: PMC6541940 DOI: 10.1155/2019/2823679] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Increased amyloid-β (Aβ) plaque deposition is thought to be the main cause of Alzheimer's disease (AD). β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is the key protein involved in Aβ peptide generation. Excessive expression of BACE1 might cause overproduction of neurotoxins in the central nervous system. Previous studies indicated that BACE1 initially cleaves the amyloid precursor protein (APP) and may subsequently interfere with physiological functions of proteins such as PKA, which is recognized to be closely associated with long-term potentiation (LTP) level and can effectively ameliorate cognitive impairments. Therefore, revealing the underlying mechanism of BACE1 in the pathogenesis of AD might have a significant impact on the future development of therapeutic agents targeting dementia. This study examined the effects of electroacupuncture (EA) stimulation on BACE1, APP, and p-PKA protein levels in hippocampal tissue samples. Memory and learning abilities were assessed using the Morris water maze test after EA intervention. Immunofluorescence, immunohistochemistry, and western blot were employed to assess the distribution patterns and expression levels of BACE1, APP, and p-PKA, respectively. The results showed the downregulation of BACE1 and APP and the activation of PKA by EA. In summary, EA treatment might reduce BACE1 deposition in APP/PS1 transgenic mice and regulate PKA and its associated substrates, such as LTP to change memory and learning abilities.
Collapse
|
136
|
Mohajeri M, Behnam B, Barreto GE, Sahebkar A. Carbon nanomaterials and amyloid-beta interactions: potentials for the detection and treatment of Alzheimer's disease? Pharmacol Res 2019; 143:186-203. [DOI: 10.1016/j.phrs.2019.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/24/2023]
|
137
|
Querol-Vilaseca M, Colom-Cadena M, Pegueroles J, Nuñez-Llaves R, Luque-Cabecerans J, Muñoz-Llahuna L, Andilla J, Belbin O, Spires-Jones TL, Gelpi E, Clarimon J, Loza-Alvarez P, Fortea J, Lleó A. Nanoscale structure of amyloid-β plaques in Alzheimer's disease. Sci Rep 2019; 9:5181. [PMID: 30914681 PMCID: PMC6435662 DOI: 10.1038/s41598-019-41443-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Soluble amyloid-β (Aβ) is considered to be a critical component in the pathogenesis of Alzheimer’s disease (AD). Evidence suggests that these non-fibrillar Aβ assemblies are implicated in synaptic dysfunction, neurodegeneration and cell death. However, characterization of these species comes mainly from studies in cellular or animal models, and there is little data in intact human samples due to the lack of adequate optical microscopic resolution to study these small structures. Here, to achieve super-resolution in all three dimensions, we applied Array Tomography (AT) and Stimulated Emission Depletion microscopy (STED), to characterize in postmortem human brain tissue non-fibrillar Aβ structures in amyloid plaques of cases with autosomal dominant and sporadic AD. Ultrathin sections scanned with super-resolution STED microscopy allowed the detection of small Aβ structures of the order of 100 nm. We reconstructed a whole human amyloid plaque and established that plaques are formed by a dense core of higher order Aβ species (~0.022 µm3) and a peripheral halo of smaller Aβ structures (~0.003 µm3). This work highlights the potential of AT-STED for human neuropathological studies.
Collapse
Affiliation(s)
- Marta Querol-Vilaseca
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martí Colom-Cadena
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Nuñez-Llaves
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Joan Luque-Cabecerans
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laia Muñoz-Llahuna
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Olivia Belbin
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Tara L Spires-Jones
- The University of Edinburgh, UK Dementia Research Institute, Centre for Discovery Brain Sciences, Edinburgh, EH8 9JZ, UK
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jordi Clarimon
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
138
|
In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci 2019; 22:524-528. [DOI: 10.1038/s41593-019-0352-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/31/2019] [Indexed: 12/26/2022]
|
139
|
Wang M, Qin L, Tang B. MicroRNAs in Alzheimer's Disease. Front Genet 2019; 10:153. [PMID: 30881384 PMCID: PMC6405631 DOI: 10.3389/fgene.2019.00153] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive and devastating neurodegenerative disorder. It is the leading cause of dementia in the world’s rapidly growing aging population. The characteristics of AD are memory loss and cognitive impairment, meaning patients cannot carry out their daily activities independently. The increase of AD cases poses heavy burdens on families, society and the economy. Despite frequent efforts being made to research the etiology of AD, the causes of AD remain unknown, and no curative treatments are available yet. The pathological hallmarks of AD are amyloid plaques and neurofibrillary tangles in the brain. MicroRNAs are endogenous ∼22 nucleotides non-coding RNAs that could regulate gene expression at a post-transcriptional level by transcript degradation or translation repression. MicroRNAs are involved in many biological processes and diseases, particularly multifactorial diseases, providing an excellent tool with which to research the mechanisms of these diseases. AD is a multifactorial disorder, and accumulating evidence shows that microRNAs play a critical role in the pathogenesis of AD. In this review, we will highlight the effect of microRNAs in different pathological processes throughout AD progression.
Collapse
Affiliation(s)
- Mengli Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
140
|
Identification of the biological affection of long noncoding RNA BC200 in Alzheimer's disease. Neuroreport 2019; 29:1061-1067. [PMID: 29979260 DOI: 10.1097/wnr.0000000000001057] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BC200 is a long noncoding RNA expressed at high levels in the Alzheimer's disease (AD), and blocking of BC200 by siRNA is assumed to be an effective method for various disease therapy. We have established an AD cell model overexpressing amyloid β-peptide (Aβ)1-42 to observe the effects of BC200 on the cell viability and apoptosis, and to investigate the associated underlying mechanisms. Efficient knockdown and overexpression of BC200 were established using BC200 siRNA and BC200 mimics, respectively. Cell viability following BC200 knockdown and overexpression was assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyltetrazolium bromide assay, and cell apoptosis was monitored by flow cytometry. We successfully established an AD cell model overexpressing Aβ1-42 gene, and reported the results of change of BC200 on Aβ1-42 levels. Knockdown of BC200 significantly suppressed b-site amyloid precursor protein-cleaving enzyme 1 (BACE1) expression, and overexpression of BC200 increased BACE1 expression. Besides, inhibition of BC200 significantly increased cell viability and reduced cell apoptosis in the AD model via directly targeting BACE1, which can be increased by overexpression of BC200. BC200 regulated AD cell viability and apoptosis via targeting BACE1, and it may be one of the putative target in AD development and provides potential new insights into genetic therapy against AD.
Collapse
|
141
|
Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure-activity relationship with a strong BBB permeability. Exp Mol Med 2019; 51:1-18. [PMID: 30755593 PMCID: PMC6372667 DOI: 10.1038/s12276-019-0205-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
We extracted 15 pterosin derivatives from Pteridium aquilinum that inhibited β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and cholinesterases involved in the pathogenesis of Alzheimer's disease (AD). (2R)-Pterosin B inhibited BACE1, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with an IC50 of 29.6, 16.2 and 48.1 µM, respectively. The Ki values and binding energies (kcal/mol) between pterosins and BACE1, AChE, and BChE corresponded to the respective IC50 values. (2R)-Pterosin B was a noncompetitive inhibitor against human BACE1 and BChE as well as a mixed-type inhibitor against AChE, binding to the active sites of the corresponding enzymes. Molecular docking simulation of mixed-type and noncompetitive inhibitors for BACE1, AChE, and BChE indicated novel binding site-directed inhibition of the enzymes by pterosins and the structure-activity relationship. (2R)-Pterosin B exhibited a strong BBB permeability with an effective permeability (Pe) of 60.3×10-6 cm/s on PAMPA-BBB. (2R)-Pterosin B and (2R,3 R)-pteroside C significantly decreased the secretion of Aβ peptides from neuroblastoma cells that overexpressed human β-amyloid precursor protein at 500 μM. Conclusively, our study suggested that several pterosins are potential scaffolds for multitarget-directed ligands (MTDLs) for AD therapeutics.
Collapse
|
142
|
Kim HJ, Joe Y, Chen Y, Park GH, Kim UH, Chung HT. Carbon monoxide attenuates amyloidogenesis via down-regulation of NF-κB-mediated BACE1 gene expression. Aging Cell 2019; 18:e12864. [PMID: 30411846 PMCID: PMC6351829 DOI: 10.1111/acel.12864] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) peptides, the major constituent of plaques, are generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) via β-secretase (BACE1) and the γ-secretase complex. It has been proposed that the abnormal secretion and accumulation of Aβ are the initial causative events in the development of Alzheimer's disease (AD). Drugs modulating this pathway could be used for AD treatment. Previous studies indicated that carbon monoxide (CO), a product of heme oxygenase (HO)-1, protects against Aβ-induced toxicity and promotes neuroprotection. However, the mechanism underlying the mitigative effect of CO on Aβ levels and BACE1 expression is unclear. Here, we show that CO modulates cleavage of APP and Aβ production by decreasing BACE1 expression in vivo and in vitro. CO reduces Aβ levels and improves memory deficits in AD transgenic mice. The regulation of BACE1 expression by CO is dependent on nuclear factor-kappa B (NF-κB). Consistent with the negative role of SIRT1 in the NF-κB activity, CO fails to evoke significant decrease in BACE1 expression in the presence of the SIRT1 inhibitor. Furthermore, CO attenuates elevation of BACE1 level in brains of 3xTg-AD mouse model as well as mice fed high-fat, high-cholesterol diets. CO reduces the NF-κB-mediated transcription of BACE1 induced by the cholesterol oxidation product 27-hydroxycholesterol or hydrogen peroxide. These data suggest that CO reduces the NF-κB-mediated BACE1 transcription and consequently decreases Aβ production. Our study provides novel mechanisms by which CO reduces BACE1 expression and Aβ production and may be an effective agent for AD treatment.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Yeonsoo Joe
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Yingqing Chen
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Gyu Hwan Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca Signaling Network, Medical School; Chonbuk National University; Jeonju South Korea
| | - Hun Taeg Chung
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| |
Collapse
|
143
|
Panza F, Lozupone M, Seripa D, Imbimbo BP. Amyloid-β immunotherapy for alzheimer disease: Is it now a long shot? Ann Neurol 2019; 85:303-315. [PMID: 30635926 DOI: 10.1002/ana.25410] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
The amyloid-β (Aβ) cascade hypothesis of Alzheimer disease (AD) holds that brain accumulation of Aβ initiates the disease process. Accordingly, drug research has targeted Aβ production, clearance, and deposition as therapeutic strategies. Unfortunately, candidate drugs have failed to show clinical benefit in established, early, or prodromal disease, or in those with high AD risk. Currently, monoclonal antibodies specifically directed against the most neurotoxic Aβ forms are undergoing large-scale trials to confirm initially encouraging results. However, recent findings on the normal physiology of Aβ suggest that accumulation may be compensatory rather than the pathological initiator. If this is true, alternative strategies will be needed to defeat this devastating disease. ANN NEUROL 2019;85:303-315.
Collapse
Affiliation(s)
- Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Neurodegenerative Disease Unit, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Cardinal G. Panico Pious Foundation, Tricase, Italy.,Geriatric Unit, Home Relief of Suffering, Institute of Hospitalization and Scientific Care Foundation, San Giovanni Rotondo, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Davide Seripa
- Geriatric Unit, Home Relief of Suffering, Institute of Hospitalization and Scientific Care Foundation, San Giovanni Rotondo, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Pharmaceuticals, Parma, Italy
| |
Collapse
|
144
|
Rubin LH, Sundermann EE, Moore DJ. The current understanding of overlap between characteristics of HIV-associated neurocognitive disorders and Alzheimer's disease. J Neurovirol 2019; 25:661-672. [PMID: 30671777 DOI: 10.1007/s13365-018-0702-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
The advent of effective antiretroviral medications (ARVs) has led to an aging of the HIV population with approximately 50% of people with HIV (PWH) being over the age of 50 years. Neurocognitive complications, typically known as HIV-associated neurocognitive disorders (HAND), persist in the era of ARVs and, in addition to risk of HAND, older PWH are also at risk for age-associated, neurodegenerative disorders including Alzheimer's disease (AD). It has been postulated that risk for AD may be greater among PWH due to potential compounding effects of HIV and aging on mechanisms of neural insult. We are now faced with the challenge of disentangling AD from HAND, which has important prognostic and treatment implications given the more rapidly debilitating trajectory of AD. Herein, we review the evidence to date demonstrating both parallels and differences in the profiles of HAND and AD. We specifically address similarities and difference of AD and HAND as it relates to (1) neuropsychological profiles (cross-sectional/longitudinal), (2) AD-associated neuropathological features as evidenced from neuropathological, cerebrospinal fluid and neuroimaging assessments, (3) biological mechanisms underlying cortical amyloid deposition, (4) parallels in mechanisms of neural insult, and (5) common risk factors. Our current understanding of the similarities and dissimilarities of AD and HAND should be further delineated and leveraged in the development of differential diagnostic methods that will allow for the early identification of AD and more suitable and effective treatment interventions among graying PWH.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA.
| | - David J Moore
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA
| |
Collapse
|
145
|
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15:73-88. [DOI: 10.1038/s41582-018-0116-6] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
146
|
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer's Disease Originate in the Periphery and If So How So? Mol Neurobiol 2019; 56:406-434. [PMID: 29705945 PMCID: PMC6372984 DOI: 10.1007/s12035-018-1092-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
The classical amyloid cascade model for Alzheimer's disease (AD) has been challenged by several findings. Here, an alternative molecular neurobiological model is proposed. It is shown that the presence of the APOE ε4 allele, altered miRNA expression and epigenetic dysregulation in the promoter region and exon 1 of TREM2, as well as ANK1 hypermethylation and altered levels of histone post-translational methylation leading to increased transcription of TNFA, could variously explain increased levels of peripheral and central inflammation found in AD. In particular, as a result of increased activity of triggering receptor expressed on myeloid cells 2 (TREM-2), the presence of the apolipoprotein E4 (ApoE4) isoform, and changes in ANK1 expression, with subsequent changes in miR-486 leading to altered levels of protein kinase B (Akt), mechanistic (previously mammalian) target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3), all of which play major roles in microglial activation, proliferation and survival, there is activation of microglia, leading to the subsequent (further) production of cytokines, chemokines, nitric oxide, prostaglandins, reactive oxygen species, inducible nitric oxide synthase and cyclooxygenase-2, and other mediators of inflammation and neurotoxicity. These changes are associated with the development of amyloid and tau pathology, mitochondrial dysfunction (including impaired activity of the electron transport chain, depleted basal mitochondrial potential and oxidative damage to key tricarboxylic acid enzymes), synaptic dysfunction, altered glycogen synthase kinase-3 (GSK-3) activity, mTOR activation, impairment of autophagy, compromised ubiquitin-proteasome system, iron dyshomeostasis, changes in APP translation, amyloid plaque formation, tau hyperphosphorylation and neurofibrillary tangle formation.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
147
|
Takano A, Chen L, Nag S, Brodney MA, Arakawa R, Chang C, Amini N, Doran SD, Dutra JK, McCarthy TJ, Nolan CE, O'Neill BT, Villalobos A, Zhang L, Halldin C. Quantitative Analysis of 18F-PF-06684511, a Novel PET Radioligand for Selective β-Secretase 1 Imaging, in Nonhuman Primate Brain. J Nucl Med 2018; 60:992-997. [PMID: 30530832 DOI: 10.2967/jnumed.118.217372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022] Open
Abstract
β-secretase 1 (BACE1) is a key enzyme in the generation of β-amyloid, which is accumulated in the brain of Alzheimer disease patients. PF-06684511 was identified as a candidate PET ligand for imaging BACE1 in the brain and showed high specific binding in an initial assessment in a nonhuman primate (NHP) PET study using 18F-PF-06684511. In this effort, we aimed to quantitatively evaluate the regional brain distribution of 18F-PF-06684511 in NHPs under baseline and blocking conditions and to assess the target occupancy of BACE1 inhibitors. In addition, NHP whole-body PET measurements were performed to estimate the effective radiation dose. Methods: Initial brain PET measurements were performed at baseline and after oral administration of 5 mg/kg of LY2886721, a BACE1 inhibitor, in 2 cynomolgus monkeys. Kinetic analysis was performed with the radiometabolite-corrected plasma input function. In addition, a wide dose range of another BACE1 inhibitor, PF-06663195, was examined to investigate the relationship between the brain target occupancy and plasma concentration of the drug. Finally, the effective radiation dose of 18F-PF-06684511 was estimated on the basis of the whole-body PET measurements in NHPs. Results: Radiolabeling was accomplished successfully with an incorporation radiochemical yield of 4%-12% (decay-corrected) from 18F ion. The radiochemical purity was greater than 99%. The whole-brain uptake of 18F-PF-06684511 peaked (∼220% SUV) at approximately 20 min and decreased thereafter (∼100% SUV at 180 min). A 2-tissue-compartment model described the time-activity curves well. Pretreatment with LY2886721 reduced the total distribution volume of 18F-PF-06684511 by 48%-80% depending on the brain region, confirming its in vivo specificity. BACE1 occupancy of PF-06663195, estimated using the Lassen occupancy plot, showed a dose-dependent increase. The effective dose of 18F-PF-06684511 was 0.043 mSv/MBq for humans. Conclusion: 18F-PF-06684511 is the first successful PET radioligand for BACE1 brain imaging that demonstrates favorable in vivo binding and brain kinetics in NHPs.
Collapse
Affiliation(s)
- Akihiro Takano
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Laigao Chen
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Michael A Brodney
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Cheng Chang
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Nahid Amini
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Shawn D Doran
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jason K Dutra
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Timothy J McCarthy
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Charles E Nolan
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Brian T O'Neill
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | | | - Lei Zhang
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
148
|
Wang R, Holsinger RMD. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer's dementia. Ageing Res Rev 2018; 48:109-121. [PMID: 30326283 DOI: 10.1016/j.arr.2018.10.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023]
Abstract
Emerging evidence indicates that moderate intensity aerobic exercise is positively correlated with cognitive function and memory. However, the exact mechanisms underlying such improvements remain unclear. Recent research in animal models allows proposition of a pathway in which brain-derived neurotrophic factor (BDNF) is a key mediator. This perspective draws upon evidence from animal and human studies to highlight such a mechanism whereby exercise drives synthesis and accumulation of neuroactive metabolites such as myokines and ketone bodies in the periphery and in the hippocampus to enhance BDNF expression. BDNF is a neurotrophin with well-established properties of promoting neuronal survival and synaptic integrity, while its influence on energy transduction may provide the crucial link between inherent vascular and metabolic benefits of exercise with enhanced brain function. Indeed, BDNF mRNA and protein is robustly elevated in rats following periods of voluntary exercise. This was also correlated with improved spatial memory, while such benefits were abolished upon inhibition of BDNF signaling. Similarly, both BDNF and cardiovascular fitness arising from aerobic exercise have been positively associated with hippocampal volume and function in humans. We postulate that exercise will attenuate cortical atrophy and synaptic loss inherent to neurodegenerative disorders - many of which also exhibit aberrant down-regulation of BDNF. Thus, the proposed link between BDNF, exercise and cognition may have critical therapeutic implications for the prevention and amelioration of memory loss and cognitive impairment in Alzheimer's disease and associated dementias.
Collapse
|
149
|
Panza F, Lozupone M, Solfrizzi V, Sardone R, Piccininni C, Dibello V, Stallone R, Giannelli G, Bellomo A, Greco A, Daniele A, Seripa D, Logroscino G, Imbimbo BP. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev Neurother 2018; 18:847-857. [DOI: 10.1080/14737175.2018.1531706] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Lecce, Italy
- Geriatric Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- Interdisciplinary Department of Medicine, Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Rodolfo Sardone
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
| | - Carla Piccininni
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vittorio Dibello
- Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari Aldo, Moro, Bari, Italy
| | - Roberta Stallone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Greco
- Geriatric Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Davide Seripa
- Geriatric Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Lecce, Italy
| | - Bruno P. Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
150
|
Clausznitzer D, Pichardo-Almarza C, Relo AL, van Bergeijk J, van der Kam E, Laplanche L, Benson N, Nijsen M. Quantitative Systems Pharmacology Model for Alzheimer Disease Indicates Targeting Sphingolipid Dysregulation as Potential Treatment Option. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:759-770. [PMID: 30207429 PMCID: PMC6263662 DOI: 10.1002/psp4.12351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder with high unmet medical need. Drug development is hampered by limited understanding of the disease and its driving factors. Quantitative Systems Pharmacology (QSP) modeling provides a comprehensive quantitative framework to evaluate the relevance of biological mechanisms in the context of disease and to predict the efficacy of novel treatments. Here, we report a QSP model for AD with a particular focus on investigating the relevance of dysregulation of cholesterol and sphingolipids. We show that our model captures the modulation of several biomarkers in subjects with AD, as well as the response to pharmacological interventions. We evaluate the impact of targeting the sphingosine-1-phosphate 5 receptor (S1PR5) as a potential novel treatment option for AD, and model predictions increase our confidence in this novel disease pathway. Future applications for the QSP model are in validation of further targets and identification of potential treatment response biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neil Benson
- Certara QSP, Innovation centre, Unit 43, Canterbury, UK
| | | |
Collapse
|