101
|
Leão P, Chen YR, Abreu F, Wang M, Zhang WJ, Zhou K, Xiao T, Wu LF, Lins U. Ultrastructure of ellipsoidal magnetotactic multicellular prokaryotes depicts their complex assemblage and cellular polarity in the context of magnetotaxis. Environ Microbiol 2017; 19:2151-2163. [PMID: 28120460 DOI: 10.1111/1462-2920.13677] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 11/28/2022]
Abstract
Magnetotactic multicellular prokaryotes (MMPs) consist of unique microorganisms formed by genetically identical Gram-negative bacterial that live as a single individual capable of producing magnetic nano-particles called magnetosomes. Two distinct morphotypes of MMPs are known: spherical MMPs (sMMPs) and ellipsoidal MMPs (eMMPs). sMMPs have been extensively characterized, but less information exists for eMMPs. Here, we report the ultrastructure and organization as well as gene clusters responsible for magnetosome and flagella biosynthesis in the magnetite magnetosome producer eMMP Candidatus Magnetananas rongchenensis. Transmission electron microscopy and focused ion beam scanning electron microscopy (FIB-SEM) 3D reconstruction reveal that cells with a conspicuous core-periphery polarity were organized around a central space. Magnetosomes were organized in multiple chains aligned along the periphery of each cell. In the partially sequenced genome, magnetite-related mamAB gene and mad gene clusters were identified. Two cell morphologies were detected: irregular elliptical conical 'frustum-like' (IECF) cells and H-shaped cells. IECF cells merge to form H-shaped cells indicating a more complex structure and possibly a distinct evolutionary position of eMMPs when compared with sMMPs considering multicellularity.
Collapse
Affiliation(s)
- Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Yi-Ran Chen
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille, France
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mingling Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei-Jia Zhang
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille, France.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Ke Zhou
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tian Xiao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille, France
| | - Long-Fei Wu
- CNRS, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille, France.,Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
102
|
Chen R, Canales A, Anikeeva P. Neural Recording and Modulation Technologies. NATURE REVIEWS. MATERIALS 2017; 2:16093. [PMID: 31448131 PMCID: PMC6707077 DOI: 10.1038/natrevmats.2016.93] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Within the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the tools capable of probing the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not address the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices capable of simultaneous recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes, and look at emergent directions inspired by the principles of neural transduction.
Collapse
Affiliation(s)
- Ritchie Chen
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andres Canales
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
103
|
Ji B, Zhang SD, Zhang WJ, Rouy Z, Alberto F, Santini CL, Mangenot S, Gagnot S, Philippe N, Pradel N, Zhang L, Tempel S, Li Y, Médigue C, Henrissat B, Coutinho PM, Barbe V, Talla E, Wu LF. The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of P
roteobacteria. Environ Microbiol 2017; 19:1103-1119. [DOI: 10.1111/1462-2920.13637] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Boyang Ji
- Aix Marseille Univ, CNRS, LCB; Marseille France
| | - Sheng-Da Zhang
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Wei-Jia Zhang
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences; China Agricultural University; Beijing 100193 China
| | - Zoe Rouy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme; 2 rue Gaston Crémieux Evry F-91057 France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8030; 2 rue Gaston Crémieux Evry F-91057 France
- UEVE; Université d'Evry, Boulevard François Mitterrand; Evry F-91025 France
| | - François Alberto
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Claire-Lise Santini
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire de Biologie Moléculaire pour l'Etude des Génomes; 2 rue Gaston Crémieux Evry cedex CP 5706 - 91057 France
| | | | | | - Nathalie Pradel
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- Aix Marseille Univ, Univ Toulon, CNRS, IRD; Marseille France
| | | | | | - Ying Li
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences; China Agricultural University; Beijing 100193 China
| | - Claudine Médigue
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme; 2 rue Gaston Crémieux Evry F-91057 France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8030; 2 rue Gaston Crémieux Evry F-91057 France
- UEVE; Université d'Evry, Boulevard François Mitterrand; Evry F-91025 France
| | | | | | - Valérie Barbe
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire de Biologie Moléculaire pour l'Etude des Génomes; 2 rue Gaston Crémieux Evry cedex CP 5706 - 91057 France
| | | | - Long-Fei Wu
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| |
Collapse
|
104
|
Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization. Sci Rep 2016; 6:35670. [PMID: 27759096 PMCID: PMC5069546 DOI: 10.1038/srep35670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/15/2016] [Indexed: 01/15/2023] Open
Abstract
Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology.
Collapse
|
105
|
Polka JK, Hays SG, Silver PA. Building Spatial Synthetic Biology with Compartments, Scaffolds, and Communities. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a024018. [PMID: 27270297 DOI: 10.1101/cshperspect.a024018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traditional views of synthetic biology often treat the cell as an unstructured container in which biological reactions proceed uniformly. In reality, the organization of biological molecules has profound effects on cellular function: not only metabolic, but also physical and mechanical. Here, we discuss a variety of perturbations available to biologists in controlling protein, nucleotide, and membrane localization. These range from simple tags, fusions, and scaffolds to heterologous expression of compartments and other structures that confer unique physical properties to cells. Next, we relate these principles to those guiding the spatial environments outside of cells such as the extracellular matrix. Finally, we discuss new directions in building intercellular organizations to create novel symbioses.
Collapse
Affiliation(s)
- Jessica K Polka
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| | - Stephanie G Hays
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115
| |
Collapse
|
106
|
Yamagishi A, Tanaka M, Lenders JJM, Thiesbrummel J, Sommerdijk NAJM, Matsunaga T, Arakaki A. Control of magnetite nanocrystal morphology in magnetotactic bacteria by regulation of mms7 gene expression. Sci Rep 2016; 6:29785. [PMID: 27417732 PMCID: PMC4945951 DOI: 10.1038/srep29785] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/24/2016] [Indexed: 11/09/2022] Open
Abstract
Living organisms can produce inorganic materials with unique structure and properties. The biomineralization process is of great interest as it forms a source of inspiration for the development of methods for production of diverse inorganic materials under mild conditions. Nonetheless, regulation of biomineralization is still a challenging task. Magnetotactic bacteria produce chains of a prokaryotic organelle comprising a membrane-enveloped single-crystal magnetite with species-specific morphology. Here, we describe regulation of magnetite biomineralization through controlled expression of the mms7 gene, which plays key roles in the control of crystal growth and morphology of magnetite crystals in magnetotactic bacteria. Regulation of the expression level of Mms7 in bacterial cells enables switching of the crystal shape from dumbbell-like to spherical. The successful regulation of magnetite biomineralization opens the door to production of magnetite nanocrystals of desired size and morphology.
Collapse
Affiliation(s)
- Ayana Yamagishi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Masayoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Jos J M Lenders
- Laboratory of Materials and Interface Chemistry and TU/e Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jarla Thiesbrummel
- Laboratory of Materials and Interface Chemistry and TU/e Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Nico A J M Sommerdijk
- Laboratory of Materials and Interface Chemistry and TU/e Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
107
|
Peigneux A, Valverde-Tercedor C, López-Moreno R, Pérez-González T, Fernández-Vivas MA, Jiménez-López C. Learning from magnetotactic bacteria: A review on the synthesis of biomimetic nanoparticles mediated by magnetosome-associated proteins. J Struct Biol 2016; 196:75-84. [PMID: 27378728 DOI: 10.1016/j.jsb.2016.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/16/2022]
Abstract
Much interest has gained the biomineralization process carried out by magnetotactic bacteria. These bacteria are ubiquitous in natural environments and share the ability to passively align along the magnetic field lines and actively swim along them. This ability is due to their magnetosome chain, each magnetosome consisting on a magnetic crystal enveloped by a lipid bilayer membrane to which very unique proteins are associated. Magnetotactic bacteria exquisitely control magnetosome formation, making the magnetosomes the ideal magnetic nanoparticle of potential use in many technological applications. The difficulty to scale up magnetosome production has triggered the research on the in vitro production of biomimetic (magnetosome-like) magnetite nanoparticles. In this context, magnetosome proteins are being used to mediate such in vitro magnetite precipitation experiments. The present work reviews the knowledgement on the magnetosome proteins thought to have a role on the in vivo formation of magnetite crystals in the magnetosome, and the recombinant magnetosome proteins used in vitro to form biomimetic magnetite. It also summarizes the data provided in the literature on the biomimetic magnetite nanoparticles obtained from those in vitro experiments.
Collapse
Affiliation(s)
- Ana Peigneux
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain
| | - Carmen Valverde-Tercedor
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain
| | - Rafael López-Moreno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain
| | - Teresa Pérez-González
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain
| | - M A Fernández-Vivas
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain
| | - Concepción Jiménez-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain.
| |
Collapse
|
108
|
Hershey DM, Browne PJ, Iavarone AT, Teyra J, Lee EH, Sidhu SS, Komeili A. Magnetite Biomineralization in Magnetospirillum magneticum Is Regulated by a Switch-like Behavior in the HtrA Protease MamE. J Biol Chem 2016; 291:17941-52. [PMID: 27302060 DOI: 10.1074/jbc.m116.731000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 11/06/2022] Open
Abstract
Magnetotactic bacteria are aquatic organisms that produce subcellular magnetic particles in order to orient in the earth's geomagnetic field. MamE, a predicted HtrA protease required to produce magnetite crystals in the magnetotactic bacterium Magnetospirillum magneticum AMB-1, was recently shown to promote the proteolytic processing of itself and two other biomineralization factors in vivo Here, we have analyzed the in vivo processing patterns of three proteolytic targets and used this information to reconstitute proteolysis with a purified form of MamE. MamE cleaves a custom peptide substrate with positive cooperativity, and its autoproteolysis can be stimulated with exogenous substrates or peptides that bind to either of its PDZ domains. A misregulated form of the protease that circumvents specific genetic requirements for proteolysis causes biomineralization defects, showing that proper regulation of its activity is required during magnetite biosynthesis in vivo Our results represent the first reconstitution of the proteolytic activity of MamE and show that its behavior is consistent with the previously proposed checkpoint model for biomineralization.
Collapse
Affiliation(s)
| | | | - Anthony T Iavarone
- the California Institute for Quantitative Biosciences, and the QB3/Chemistry Mass Spectrometry Facility, and the University of California, Berkeley, California 94720 and
| | - Joan Teyra
- the Department of Molecular Genetics, Terrance Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | - Sachdev S Sidhu
- the Department of Molecular Genetics, Terrance Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arash Komeili
- From the Departments of Plant and Microbial Biology and the California Institute for Quantitative Biosciences, and Molecular and Cell Biology,
| |
Collapse
|
109
|
Biomagnetic Recovery and Bioaccumulation of Selenium Granules in Magnetotactic Bacteria. Appl Environ Microbiol 2016; 82:3886-3891. [PMID: 27107111 DOI: 10.1128/aem.00508-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Using microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated an account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independent of magnetite crystal biomineralization when grown in a medium containing selenium oxyanion (SeO3 (2-)). Quantitative analysis shows that magnetotactic bacteria accumulate the largest amount of target molecules (Se) per cell compared with any other previously reported nonferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated than Te taken up into cells and Cd(2+) adsorbed onto the cell surface, respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. The biomagnetic recovery and the effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water. IMPORTANCE The development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganisms has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report an example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to accumulate the largest amount of Se compared to other foreign elements. More importantly, the Se-accumulating bacteria were successfully recovered with an external magnetic field. We believe magnetotactic bacteria confer unique advantages of biomagnetic cell recovery and of Se accumulation, providing a new and effective methodology for bioremediation of polluted water.
Collapse
|
110
|
Wang X, Wang Q, Zhang Y, Wang Y, Zhou Y, Zhang W, Wen T, Li L, Zuo M, Zhang Z, Tian J, Jiang W, Li Y, Wang L, Li J. Transcriptome analysis reveals physiological characteristics required for magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:371-381. [PMID: 27043321 DOI: 10.1111/1758-2229.12395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Magnetosome synthesis ability of Magnetospirillum gryphiswaldense MSR-1 in an autofermentor can be precisely controlled through strict control of dissolved oxygen concentration. In this study, using transcriptome data we discovered gene transcriptional differences and compared physiological characteristics of MSR-1 cells cultured under aerobic (high-oxygen) and micro-aerobic (low-oxygen) conditions. The results showed that 77 genes were up-regulated and 95 genes were down-regulated significantly under micro-aerobic situation. These genes were involved primarily in the categories of cell metabolism, transport, regulation and unknown-function proteins. The nutrient transport and physiological metabolism were slowed down under micro-aerobic condition, whereas dissimilatory denitrification pathways were activated and it may supplemental energy was made available for magnetosome synthesis. The result suggested that the genes of magnetosome membrane proteins (Mam and Mms) are not directly regulated by oxygen level, or are constitutively expressed. A proposed regulatory network of differentially expressed genes reflects the complexity of physiological metabolism in MSR-1, and suggests that some yet-unknown functional proteins play important roles such as ferric iron uptake and transport during magnetosome synthesis. The transcriptome data provides a holistic view of the responses of MSR-1 cells to differing oxygen levels. This approach will give new insights into general principles of magnetosome formation.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Qing Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Yang Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Yinjia Wang
- Tianjin Biochip Corporation, Tianjin, 300457, P. R. China
| | - Yuan Zhou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Weijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Tong Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Li Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Meiqing Zuo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Ziding Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Jiesheng Tian
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Wei Jiang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Ying Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| | - Lei Wang
- Tianjin Biochip Corporation, Tianjin, 300457, P. R. China
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
- France-China Bio-mineralization and Nano-structure Laboratory, Beijing, 100193, P. R. China
| |
Collapse
|
111
|
Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium. Appl Environ Microbiol 2016; 82:3032-3041. [PMID: 26969709 DOI: 10.1128/aem.03860-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of ∼35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches. IMPORTANCE Before our study, it had remained unknown how the upper sizes and numbers of magnetosomes are genetically regulated, and overproduction of magnetosome biosynthesis had not been achieved, owing to the difficulties of large-scale genome engineering in the recalcitrant magnetotactic bacteria. In this study, we established and systematically explored a strategy for the overexpression of magnetosome biosynthesis genes by genomic amplification of single and multiple magnetosome gene clusters via sequential chromosomal insertion by transposition. Our findings also indicate that the expression levels of magnetosome proteins together limit the upper size and number of magnetosomes within the cell. We demonstrate that tuned overexpression of magnetosome gene clusters provides a powerful strategy for the precise control of magnetosome size and number.
Collapse
|
112
|
Deng A, Lin W, Shi N, Wu J, Sun Z, Sun Q, Bai H, Pan Y, Wen T. In vitro assembly of the bacterial actin protein MamK from ' Candidatus Magnetobacterium casensis' in the phylum Nitrospirae. Protein Cell 2016; 7:267-280. [PMID: 26960409 PMCID: PMC4818849 DOI: 10.1007/s13238-016-0253-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 10/29/2022] Open
Abstract
Magnetotactic bacteria (MTB), a group of phylogenetically diverse organisms that use their unique intracellular magnetosome organelles to swim along the Earth's magnetic field, play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have revealed that the bacterial actin protein MamK plays essential roles in the linear arrangement of magnetosomes in MTB cells belonging to the Proteobacteria phylum. However, the molecular mechanisms of multiple-magnetosome-chain arrangements in MTB remain largely unknown. Here, we report that the MamK filaments from the uncultivated 'Candidatus Magnetobacterium casensis' (Mcas) within the phylum Nitrospirae polymerized in the presence of ATP alone and were stable without obvious ATP hydrolysis-mediated disassembly. MamK in Mcas can convert NTP to NDP and NDP to NMP, showing the highest preference to ATP. Unlike its Magnetospirillum counterparts, which form a single magnetosome chain, or other bacterial actins such as MreB and ParM, the polymerized MamK from Mcas is independent of metal ions and nucleotides except for ATP, and is assembled into well-ordered filamentous bundles consisted of multiple filaments. Our results suggest a dynamically stable assembly of MamK from the uncultivated Nitrospirae MTB that synthesizes multiple magnetosome chains per cell. These findings further improve the current knowledge of biomineralization and organelle biogenesis in prokaryotic systems.
Collapse
Affiliation(s)
- Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Nana Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaopeng Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinyun Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxin Pan
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
113
|
Condori S, Atkinson S, Leys N, Wattiez R, Mastroleo F. Construction and phenotypic characterization of M68, an RruI quorum sensing knockout mutant of the photosynthetic alphaproteobacterium Rhodospirillum rubrum. Res Microbiol 2016; 167:380-92. [PMID: 26993754 DOI: 10.1016/j.resmic.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 01/08/2023]
Abstract
Many bacterial species communicate using a complex system known as quorum sensing (QS) in which gene expression is controlled in response to cell density. In this study an N-acylhomoserine lactone (AHL) synthase (Rru_A3396) knockout mutant (M68) of Rhodospirillum rubrum S1H (WT) was constructed and characterized phenotypically under light anaerobic conditions. Results showed that R. rubrum WT produces unsubstituted, 3-OH and 3-oxo-substituted AHLs with acyl chains ranging from 4 to 14 carbons, with 3-OH-C8 being the most abundant. Growth, pigment content and swimming motility were found to be under the control of this LuxI-type QS system. In addition, cultivation in a low shear environment put forward the aggregative phenotype of M68 and linked biofilm formation to QS in R. rubrum S1H. Interestingly, QS-mutant M68 continued to produce decreased levels of 3-OH-C8-HSL, probably due to the presence of an extra HdtS-type AHL synthase.
Collapse
Affiliation(s)
- Sandra Condori
- Research Unit for Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, 2400 Mol, Belgium; Research Institute for Biosciences, Proteomics and Microbiology Laboratory, University of Mons, Avenue du champ de Mars 6, Mons, Belgium.
| | - Steve Atkinson
- Center for Biomolecular Science, School of Molecular Medical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| | - Natalie Leys
- Research Unit for Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, 2400 Mol, Belgium.
| | - Ruddy Wattiez
- Research Institute for Biosciences, Proteomics and Microbiology Laboratory, University of Mons, Avenue du champ de Mars 6, Mons, Belgium.
| | - Felice Mastroleo
- Research Unit for Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, 2400 Mol, Belgium.
| |
Collapse
|
114
|
Nudelman H, Valverde-Tercedor C, Kolusheva S, Perez Gonzalez T, Widdrat M, Grimberg N, Levi H, Nelkenbaum O, Davidov G, Faivre D, Jimenez-Lopez C, Zarivach R. Structure-function studies of the magnetite-biomineralizing magnetosome-associated protein MamC. J Struct Biol 2016; 194:244-52. [PMID: 26970040 DOI: 10.1016/j.jsb.2016.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/17/2016] [Accepted: 03/01/2016] [Indexed: 11/18/2022]
Abstract
Magnetotactic bacteria are Gram-negative bacteria that navigate along geomagnetic fields using the magnetosome, an organelle that consists of a membrane-enveloped magnetic nanoparticle. Magnetite formation and its properties are controlled by a specific set of proteins. MamC is a small magnetosome-membrane protein that is known to be active in iron biomineralization but its mechanism has yet to be clarified. Here, we studied the relationship between the MamC magnetite-interaction loop (MIL) structure and its magnetite interaction using an inert biomineralization protein-MamC chimera. Our determined structure shows an alpha-helical fold for MamC-MIL with highly charged surfaces. Additionally, the MamC-MIL induces the formation of larger magnetite crystals compared to protein-free and inert biomineralization protein control experiments. We suggest that the connection between the MamC-MIL structure and the protein's charged surfaces is crucial for magnetite binding and thus for the size control of the magnetite nanoparticles.
Collapse
Affiliation(s)
- Hila Nudelman
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Carmen Valverde-Tercedor
- Universidad de Granada, Departamento de Microbiologia, Campus de Fuentenueva, 18071 Granada, Spain; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Teresa Perez Gonzalez
- Universidad de Granada, Departamento de Microbiologia, Campus de Fuentenueva, 18071 Granada, Spain
| | - Marc Widdrat
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Noam Grimberg
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hilla Levi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Or Nelkenbaum
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Geula Davidov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Damien Faivre
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Concepcion Jimenez-Lopez
- Universidad de Granada, Departamento de Microbiologia, Campus de Fuentenueva, 18071 Granada, Spain.
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
115
|
A novel role for Crp in controlling magnetosome biosynthesis in Magnetospirillum gryphiswaldense MSR-1. Sci Rep 2016; 6:21156. [PMID: 26879571 PMCID: PMC4754748 DOI: 10.1038/srep21156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023] Open
Abstract
Magnetotactic bacteria (MTB) are specialized microorganisms that synthesize intracellular magnetite particles called magnetosomes. Although many studies have focused on the mechanism of magnetosome synthesis, it remains unclear how these structures are formed. Recent reports have suggested that magnetosome formation is energy dependent. To investigate the relationship between magnetosome formation and energy metabolism, a global regulator, named Crp, which mainly controls energy and carbon metabolism in most microorganisms, was genetically disrupted in Magnetospirillum gryphiswaldense MSR-1. Compared with the wild-type or complemented strains, the growth, ferromagnetism and intracellular iron content of crp-deficient mutant cells were dramatically decreased. Transmission electron microscopy (TEM) showed that magnetosome synthesis was strongly impaired by the disruption of crp. Further gene expression profile analysis showed that the disruption of crp not only influenced genes related to energy and carbon metabolism, but a series of crucial magnetosome island (MAI) genes were also down regulated. These results indicate that Crp is essential for magnetosome formation in MSR-1. This is the first time to demonstrate that Crp plays an important role in controlling magnetosome biomineralization and provides reliable expression profile data that elucidate the mechanism of Crp regulation of magnetosome formation in MSR-1.
Collapse
|
116
|
Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering. Sci Rep 2016; 6:21066. [PMID: 26875499 PMCID: PMC4753468 DOI: 10.1038/srep21066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/18/2016] [Indexed: 11/08/2022] Open
Abstract
Disorazol, a macrocyclic polykitide produced by the myxobacterium Sorangium cellulosum So ce12 and it is reported to have potential cytotoxic activity towards several cancer cell lines, including multi-drug resistant cells. The disorazol biosynthetic gene cluster (dis) from Sorangium cellulosum (So ce12) was identified by transposon mutagenesis and cloned in a bacterial artificial chromosome (BAC) library. The 58-kb dis core gene cluster was reconstituted from BACs via Red/ET recombineering and expressed in Myxococcus xanthus DK1622. For the first time ever, a myxobacterial trans-AT polyketide synthase has been expressed heterologously in this study. Expression in M. xanthus allowed us to optimize the yield of several biosynthetic products using promoter engineering. The insertion of an artificial synthetic promoter upstream of the disD gene encoding a discrete acyl transferase (AT), together with an oxidoreductase (Or), resulted in 7-fold increase in disorazol production. The successful reconstitution and expression of the genetic sequences encoding for these promising cytotoxic compounds will allow combinatorial biosynthesis to generate novel disorazol derivatives for further bioactivity evaluation.
Collapse
|
117
|
Faivre D, Godec TU. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials. Angew Chem Int Ed Engl 2016; 54:4728-47. [PMID: 25851816 DOI: 10.1002/anie.201408900] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 01/28/2023]
Abstract
Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions.
Collapse
Affiliation(s)
- Damien Faivre
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Wissenschaftspark Golm, 14424 Potsdam (Germany) http://www.mpikg.mpg.de/135282/MBMB.
| | | |
Collapse
|
118
|
Pluháček T, Lemr K, Ghosh D, Milde D, Novák J, Havlíček V. Characterization of microbial siderophores by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:35-47. [PMID: 25980644 DOI: 10.1002/mas.21461] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/19/2014] [Indexed: 05/28/2023]
Abstract
Siderophores play important roles in microbial iron piracy, and are applied as infectious disease biomarkers and novel pharmaceutical drugs. Inductively coupled plasma and molecular mass spectrometry (ICP-MS) combined with high resolution separations allow characterization of siderophores in complex samples taking advantages of mass defect data filtering, tandem mass spectrometry, and iron-containing compound quantitation. The enrichment approaches used in siderophore analysis and current ICP-MS technologies are reviewed. The recent tools for fast dereplication of secondary metabolites and their databases are reported. This review on siderophores is concluded with their recent medical, biochemical, geochemical, and agricultural applications in mass spectrometry context.
Collapse
Affiliation(s)
- Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Karel Lemr
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Dipankar Ghosh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Novák
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Vladimír Havlíček
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| |
Collapse
|
119
|
Lee CY, Thompson RT, Prato FS, Goldhawk DE, Gelman N. Investigating the Relationship between Transverse Relaxation Rate (R2) and Interecho Time in MagA-Expressing, Iron-Labeled Cells. Mol Imaging 2015; 14:551-60. [PMID: 26637544 DOI: 10.2310/7290.2015.00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reporter gene-based labeling of cells with iron is an emerging method of providing magnetic resonance imaging contrast for long-term cell tracking and monitoring cellular activities. This report investigates 9.4 T nuclear magnetic resonance properties of mammalian cells overexpressing MagA, a putative iron transport protein from magnetotactic bacteria. MagA-expressing MDA-MB-435 cells were cultured in the presence and absence of iron supplementation and compared to the untransfected control. The relationship between the transverse relaxation rate (R2) and interecho time was investigated using the Carr-Purcell-Meiboom-Gill sequence. This relationship was analyzed using a model based on water diffusion in weak magnetic field inhomogeneities (Jensen-Chandra model) as well as a fast-exchange model (Luz-Meiboom model). Increases in R2 with increasing interecho time were larger in the iron-supplemented, MagA-expressing cells compared to other cells. The dependence of R2 on interecho time in these iron-supplemented, MagA-expressing cells was better represented by the Jensen-Chandra model compared to the Luz-Meiboom model, whereas the Luz-Meiboom model performed better for the remaining cell types. Our findings provide an estimate of the distance scale of microscopic magnetic field variations in MagA-expressing cells, which is thought to be related to the size of iron-containing vesicles.
Collapse
|
120
|
Ni TW, Staicu LC, Nemeth RS, Schwartz CL, Crawford D, Seligman JD, Hunter WJ, Pilon-Smits EAH, Ackerson CJ. Progress toward clonable inorganic nanoparticles. NANOSCALE 2015; 7:17320-7. [PMID: 26350616 PMCID: PMC4785824 DOI: 10.1039/c5nr04097c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO3(2-) in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO3(2-) (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO3(2-) concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO3(2-)] to 50 nm maximum diameter when formed at 100 μM [SeO3(2-)]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.
Collapse
Affiliation(s)
- Thomas W Ni
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Barber-Zucker S, Keren-Khadmy N, Zarivach R. From invagination to navigation: The story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci 2015; 25:338-51. [PMID: 26457474 DOI: 10.1002/pro.2827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) are a group of Gram-negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome-chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome-associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Noa Keren-Khadmy
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
122
|
Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2). Sci Rep 2015; 5:15081. [PMID: 26459865 PMCID: PMC4602208 DOI: 10.1038/srep15081] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022] Open
Abstract
Linear plus linear homologous recombination-mediated recombineering (LLHR) is ideal for obtaining natural product biosynthetic gene clusters from pre-digested bacterial genomic DNA in one or two steps of recombineering. The natural product salinomycin has a potent and selective activity against cancer stem cells and is therefore a potential anti-cancer drug. Herein, we separately isolated three fragments of the salinomycin gene cluster (salO-orf18) from Streptomyces albus (S. albus) DSM41398 using LLHR and assembled them into intact gene cluster (106 kb) by Red/ET and expressed it in the heterologous host Streptomyces coelicolor (S. coelicolor) A3(2). We are the first to report a large genomic region from a Gram-positive strain has been cloned using LLHR. The successful reconstitution and heterologous expression of the salinomycin gene cluster offer an attractive system for studying the function of the individual genes and identifying novel and potential analogues of complex natural products in the recipient strain.
Collapse
|
123
|
Goldhawk DE, Gelman N, Sengupta A, Prato FS. The Interface Between Iron Metabolism and Gene-Based Iron Contrast for MRI. MAGNETIC RESONANCE INSIGHTS 2015; 8:9-14. [PMID: 26483608 PMCID: PMC4597585 DOI: 10.4137/mri.s23555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/27/2023]
Abstract
Using a gene-based approach to track cellular and molecular activity with magnetic resonance imaging (MRI) has many advantages. The strong correlation between transverse relaxation rates and total cellular iron content provides a basis for developing sensitive and quantitative detection of MRI reporter gene expression. In addition to biophysical concepts, general features of mammalian iron regulation add valuable context for interpreting molecular MRI predicated on gene-based iron labeling. With particular reference to the potential of magnetotactic bacterial gene expression as a magnetic resonance (MR) contrast agent for mammalian cell tracking, studies in different cell culture models highlight the influence of intrinsic iron regulation on the MRI signal. The interplay between dynamic regulation of mammalian iron metabolism and expression systems designed to sequester iron biominerals for MRI is presented from the perspective of their potential influence on MR image interpretation.
Collapse
Affiliation(s)
- Donna E Goldhawk
- Imaging Program, Lawson Health Research Institute, London, Canada. ; Medical Biophysics, Western University, London, Canada. ; Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| | - Neil Gelman
- Imaging Program, Lawson Health Research Institute, London, Canada. ; Medical Biophysics, Western University, London, Canada
| | - Anindita Sengupta
- Imaging Program, Lawson Health Research Institute, London, Canada. ; Medical Biophysics, Western University, London, Canada. ; Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| | - Frank S Prato
- Imaging Program, Lawson Health Research Institute, London, Canada. ; Medical Biophysics, Western University, London, Canada
| |
Collapse
|
124
|
Prozorov T. Magnetic microbes: Bacterial magnetite biomineralization. Semin Cell Dev Biol 2015; 46:36-43. [DOI: 10.1016/j.semcdb.2015.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 11/27/2022]
|
125
|
Encapsulation as a Strategy for the Design of Biological Compartmentalization. J Mol Biol 2015; 428:916-27. [PMID: 26403362 DOI: 10.1016/j.jmb.2015.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/16/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Compartmentalization is one of the defining features of life. Through intracellular spatial control, cells are able to organize and regulate their metabolism. One of the most broadly used organizational principles in nature is encapsulation. Cellular processes can be encapsulated within either membrane-bound organelles or proteinaceous compartments that create distinct microenvironments optimized for a given task. Further challenges addressed through intracellular compartmentalization are toxic or volatile pathway intermediates, slow turnover rates and competing side reactions. This review highlights a selection of naturally occurring membrane- and protein-based encapsulation systems in microbes and their recent applications and emerging opportunities in synthetic biology. We focus on examples that use engineered cellular organization to control metabolic pathway flux for the production of useful compounds and materials.
Collapse
|
126
|
Liu X, Zhang H, Nayak S, Parada G, Anderegg J, Feng S, Nilsen-Hamilton M, Akinc M, Mallapragada SK. Effect of Surface Hydrophobicity on the Function of the Immobilized Biomineralization Protein Mms6. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xunpei Liu
- Division
of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011, United States
| | - Honghu Zhang
- Division
of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011, United States
| | - Srikanth Nayak
- Division
of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011, United States
| | | | - James Anderegg
- Division
of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011, United States
| | - Shuren Feng
- Division
of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011, United States
| | - Marit Nilsen-Hamilton
- Division
of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011, United States
| | - Mufit Akinc
- Division
of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011, United States
| | - Surya K. Mallapragada
- Division
of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
127
|
Kumar S, Lather V, Pandita D. Green synthesis of therapeutic nanoparticles: an expanding horizon. Nanomedicine (Lond) 2015; 10:2451-71. [DOI: 10.2217/nnm.15.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nanotechnology continues to achieve tremendous awards in therapeutics, but the economical and ecofriendly production of nanoparticles (NPs) is still in infancy, simply due to the nanotoxicity, unprecedented health hazards and scale up issues. Green nanotechnology was introduced in the quest to mitigate such risks by utilizing natural resources as biological tool for NP synthesis. The key advantages offered by green approach include lower capital and operating expenses, reduced environmental impacts, superior biocompatibility and higher stability. In this review, we shed light on the biosynthesis of therapeutic NPs along with their numerous biomedical applications. Toxicity aspects of NPs and the impact of green approach on it, is also discussed briefly.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa-125055, Haryana, India
| | - Viney Lather
- Department of Pharmaceutical Chemistry, JCDM College of Pharmacy, Sirsa-125055, Haryana, India
| | - Deepti Pandita
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa-125055, Haryana, India
| |
Collapse
|
128
|
Kolinko S, Richter M, Glöckner FO, Brachmann A, Schüler D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol 2015; 18:21-37. [PMID: 26060021 DOI: 10.1111/1462-2920.12907] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 11/26/2022]
Abstract
While magnetosome biosynthesis within the magnetotactic Proteobacteria is increasingly well understood, much less is known about the genetic control within deep-branching phyla, which have a unique ultrastructure and biosynthesize up to several hundreds of bullet-shaped magnetite magnetosomes arranged in multiple bundles of chains, but have no cultured representatives. Recent metagenomic analysis identified magnetosome genes in the genus 'Candidatus Magnetobacterium' homologous to those in Proteobacteria. However, metagenomic analysis has been limited to highly abundant members of the community, and therefore only little is known about the magnetosome biosynthesis, ecophysiology and metabolic capacity in deep-branching MTB. Here we report the analysis of single-cell derived draft genomes of three deep-branching uncultivated MTB. Single-cell sorting followed by whole genome amplification generated draft genomes of Candidatus Magnetobacterium bavaricum and Candidatus Magnetoovum chiemensis CS-04 of the Nitrospirae phylum. Furthermore, we present the first, nearly complete draft genome of a magnetotactic representative from the candidate phylum Omnitrophica, tentatively named Candidatus Omnitrophus magneticus SKK-01. Besides key metabolic features consistent with a common chemolithoautotrophic lifestyle, we identified numerous, partly novel genes most likely involved in magnetosome biosynthesis of bullet-shaped magnetosomes and their arrangement in multiple bundles of chains.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Michael Richter
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
| | - Frank-Oliver Glöckner
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany.,Department of Life Sciences & Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Andreas Brachmann
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Dirk Schüler
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany.,Department of Microbiology, University Bayreuth, Bayreuth, Germany
| |
Collapse
|
129
|
Davidov G, Müller FD, Baumgartner J, Bitton R, Faivre D, Schüler D, Zarivach R. Crystal structure of the magnetobacterial protein MtxA C-terminal domain reveals a new sequence-structure relationship. Front Mol Biosci 2015; 2:25. [PMID: 26052516 PMCID: PMC4439547 DOI: 10.3389/fmolb.2015.00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/04/2015] [Indexed: 01/07/2023] Open
Abstract
Magnetotactic bacteria (MTB) are a diverse group of aquatic bacteria that have the magnetotaxis ability to align themselves along the geomagnetic field lines and to navigate to a microoxic zone at the bottom of chemically stratified natural water. This special navigation is the result of a unique linear assembly of a specialized organelle, the magnetosome, which contains a biomineralized magnetic nanocrystal enveloped by a cytoplasmic membrane. The Magnetospirillum gryphiswaldense MtxA protein (MGR_0208) was suggested to play a role in bacterial magnetotaxis due to its gene location in an operon together with putative signal transduction genes. Since no homology is found for MtxA, and to better understand the role and function of MtxA in MTBés magnetotaxis, we initiated structural and functional studies of MtxA via X-ray crystallography and deletion mutagenesis. Here, we present the crystal structure of the MtxA C-terminal domain and provide new insights into its sequence-structure relationship.
Collapse
Affiliation(s)
- Geula Davidov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Frank D. Müller
- Department of Microbiology, University of BayreuthBayreuth, Germany
| | - Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces (MPI)Potsdam, Germany
| | - Ronit Bitton
- Department of Chemical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the NegevBeer-Sheva, Israel
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces (MPI)Potsdam, Germany
| | - Dirk Schüler
- Department of Microbiology, University of BayreuthBayreuth, Germany
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel,*Correspondence: Raz Zarivach, Department of Life Sciences, Ben Gurion University of the Negev, PO Box. 653, Beer-Sheva 84105, Israel
| |
Collapse
|
130
|
Mériaux S, Boucher M, Marty B, Lalatonne Y, Prévéral S, Motte L, Lefèvre CT, Geffroy F, Lethimonnier F, Péan M, Garcia D, Adryanczyk-Perrier G, Pignol D, Ginet N. Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Adv Healthc Mater 2015; 4:1076-83. [PMID: 25676134 DOI: 10.1002/adhm.201400756] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/13/2015] [Indexed: 12/28/2022]
Abstract
The fast development of sensitive molecular diagnostic tools is currently paving the way for a personalized medicine. A new class of ultrasensitive magnetic resonance imaging (MRI) T₂-contrast agents based on magnetosomes, magnetite nanocrystals biomineralized by magnetotactic bacteria, is proposed here. The contrast agents can be injected into the blood circulation and detected in the picomolar range. Purified magnetosomes are water-dispersible and stable within physiological conditions and exhibit at 17.2 T a transverse relaxivity r₂ four times higher than commercial ferumoxide. The subsequent gain in sensitivity by T₂(*) -weighted imaging at 17.2 T of the mouse brain vasculature is evidenced in vivo after tail vein injection of magnetosomes representing a low dose of iron (20 μmoliron kg(-1)), whereas no such phenomenon with the same dose of ferumoxide is observed. Preclinical studies of human pathologies in animal models will benefit from the combination of high magnetic field MRI with sensitive, low dose, easy-to-produce biocompatible contrast agents derived from bacterial magnetosomes.
Collapse
Affiliation(s)
- Sébastien Mériaux
- CEA/DSV/I BM/NeuroSpin/UNIRS; CEA Saclay; 91191 Gif-sur-Yvette Cedex France
| | - Marianne Boucher
- CEA/DSV/I BM/NeuroSpin/UNIRS; CEA Saclay; 91191 Gif-sur-Yvette Cedex France
| | - Benjamin Marty
- Institute of Myology (NMR Laboratory); CEA/DSV/I BM/MIRCen (IdM NMR Laboratory); UPMC Paris 6 University; 75013 Paris France
| | - Yoann Lalatonne
- Paris 13 University/Sorbonne Paris Cité/CSPBAT/CNRS (UMR7244); 93017 Bobigny Cedex France
| | - Sandra Prévéral
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Laurence Motte
- Paris 13 University/Sorbonne Paris Cité/CSPBAT/CNRS (UMR7244); 93017 Bobigny Cedex France
| | - Christopher T. Lefèvre
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Françoise Geffroy
- CEA/DSV/I BM/NeuroSpin/UNIRS; CEA Saclay; 91191 Gif-sur-Yvette Cedex France
| | | | - Michel Péan
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Daniel Garcia
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Géraldine Adryanczyk-Perrier
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - David Pignol
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Nicolas Ginet
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| |
Collapse
|
131
|
Faivre D, Godec TU. Bakterien und Weichtiere: Prinzipien der Biomineralisation von Eisenoxid-Materialien. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
132
|
Lin W, Pan Y. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:237-242. [PMID: 25382584 DOI: 10.1111/1758-2229.12234] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature.
Collapse
Affiliation(s)
- Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
| | | |
Collapse
|
133
|
Zhang H, Liu X, Feng S, Wang W, Schmidt-Rohr K, Akinc M, Nilsen-Hamilton M, Vaknin D, Mallapragada S. Morphological transformations in the magnetite biomineralizing protein Mms6 in iron solutions: a small-angle X-ray scattering study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2818-2825. [PMID: 25669122 DOI: 10.1021/la5044377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetotactic bacteria that produce magnetic nanocrystals of uniform size and well-defined morphologies have inspired the use of biomineralization protein Mms6 to promote formation of uniform magnetic nanocrystals in vitro. Small angle X-ray scattering (SAXS) studies in physiological solutions reveal that Mms6 forms compact globular three-dimensional (3D) micelles (approximately 10 nm in diameter) that are, to a large extent, independent of concentration. In the presence of iron ions in the solutions, the general micellar morphology is preserved, however, with associations among micelles that are induced by iron ions. Compared with Mms6, the m2Mms6 mutant (with the sequence of hydroxyl/carboxyl containing residues in the C-terminal domain shuffled) exhibits subtle morphological changes in the presence of iron ions in solutions. The analysis of the SAXS data is consistent with a hierarchical core-corona micellar structure similar to that found in amphiphilic polymers. The addition of ferric and ferrous iron ions to the protein solution induces morphological changes in the micellar structure by transforming the 3D micelles into objects of reduced dimensionality of 2, with fractal-like characteristics (including Gaussian-chain-like) or, alternatively, platelet-like structures.
Collapse
Affiliation(s)
- Honghu Zhang
- Division of Materials Science and Engineering, Ames Laboratory, USDOE , Ames, Iowa 50011, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Valverde-Tercedor C, Montalbán-López M, Perez-Gonzalez T, Sanchez-Quesada MS, Prozorov T, Pineda-Molina E, Fernandez-Vivas MA, Rodriguez-Navarro AB, Trubitsyn D, Bazylinski DA, Jimenez-Lopez C. Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1. Appl Microbiol Biotechnol 2015; 99:5109-21. [PMID: 25874532 DOI: 10.1007/s00253-014-6326-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/09/2014] [Accepted: 12/14/2014] [Indexed: 11/27/2022]
Abstract
Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10-60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30-40 nm) compared to those of the control (~20-30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.
Collapse
Affiliation(s)
- C Valverde-Tercedor
- Departamento de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Magnetotactic bacteria as potential sources of bioproducts. Mar Drugs 2015; 13:389-430. [PMID: 25603340 PMCID: PMC4306944 DOI: 10.3390/md13010389] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) produce intracellular organelles called magnetosomes which are magnetic nanoparticles composed of magnetite (Fe3O4) or greigite (Fe3S4) enveloped by a lipid bilayer. The synthesis of a magnetosome is through a genetically controlled process in which the bacterium has control over the composition, direction of crystal growth, and the size and shape of the mineral crystal. As a result of this control, magnetosomes have narrow and uniform size ranges, relatively specific magnetic and crystalline properties, and an enveloping biological membrane. These features are not observed in magnetic particles produced abiotically and thus magnetosomes are of great interest in biotechnology. Most currently described MTB have been isolated from saline or brackish environments and the availability of their genomes has contributed to a better understanding and culturing of these fastidious microorganisms. Moreover, genome sequences have allowed researchers to study genes related to magnetosome production for the synthesis of magnetic particles for use in future commercial and medical applications. Here, we review the current information on the biology of MTB and apply, for the first time, a genome mining strategy on these microorganisms to search for secondary metabolite synthesis genes. More specifically, we discovered that the genome of the cultured MTB Magnetovibrio blakemorei, among other MTB, contains several metabolic pathways for the synthesis of secondary metabolites and other compounds, thereby raising the possibility of the co-production of new bioactive molecules along with magnetosomes by this species.
Collapse
|
136
|
Rahn-Lee L, Byrne ME, Zhang M, Le Sage D, Glenn DR, Milbourne T, Walsworth RL, Vali H, Komeili A. A genetic strategy for probing the functional diversity of magnetosome formation. PLoS Genet 2015; 11:e1004811. [PMID: 25569806 PMCID: PMC4287615 DOI: 10.1371/journal.pgen.1004811] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Model genetic systems are invaluable, but limit us to understanding only a few organisms in detail, missing the variations in biological processes that are performed by related organisms. One such diverse process is the formation of magnetosome organelles by magnetotactic bacteria. Studies of model magnetotactic α-proteobacteria have demonstrated that magnetosomes are cubo-octahedral magnetite crystals that are synthesized within pre-existing membrane compartments derived from the inner membrane and orchestrated by a specific set of genes encoded within a genomic island. However, this model cannot explain all magnetosome formation, which is phenotypically and genetically diverse. For example, Desulfovibrio magneticus RS-1, a δ-proteobacterium for which we lack genetic tools, produces tooth-shaped magnetite crystals that may or may not be encased by a membrane with a magnetosome gene island that diverges significantly from those of the α-proteobacteria. To probe the functional diversity of magnetosome formation, we used modern sequencing technology to identify hits in RS-1 mutated with UV or chemical mutagens. We isolated and characterized mutant alleles of 10 magnetosome genes in RS-1, 7 of which are not found in the α-proteobacterial models. These findings have implications for our understanding of magnetosome formation in general and demonstrate the feasibility of applying a modern genetic approach to an organism for which classic genetic tools are not available.
Collapse
Affiliation(s)
- Lilah Rahn-Lee
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Meghan E. Byrne
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Manjing Zhang
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - David Le Sage
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States of America
| | - David R. Glenn
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States of America
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Timothy Milbourne
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ronald L. Walsworth
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States of America
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, Canada
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
137
|
Xu JK, Zhang FF, Sun JJ, Sheng J, Wang F, Sun M. Bio and nanomaterials based on Fe3O4. Molecules 2014; 19:21506-28. [PMID: 25532846 PMCID: PMC6271433 DOI: 10.3390/molecules191221506] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022] Open
Abstract
During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4, have attracted a great deal of attention due to their unique magnetic properties and the ability of being easily chemical modified for improved biocompatibility, dispersibility. This review covers recent advances in the fabrication of functional materials based on Fe3O4 nanoparticles together with their possibilities and limitations for application in different fields.
Collapse
Affiliation(s)
- Jia-Kun Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Fang-Fang Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Jing-Jing Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Jun Sheng
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Fang Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Mi Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
138
|
|
139
|
Körnig A, Dong J, Bennet M, Widdrat M, Andert J, Müller F, Schüler D, Klumpp S, Faivre D. Probing the mechanical properties of magnetosome chains in living magnetotactic bacteria. NANO LETTERS 2014; 14:4653-9. [PMID: 25003507 PMCID: PMC4133184 DOI: 10.1021/nl5017267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The mechanical properties of cytoskeletal networks are intimately involved in determining how forces and cellular processes are generated, directed, and transmitted in living cells. However, determining the mechanical properties of subcellular molecular complexes in vivo has proven to be difficult. Here, we combine in vivo measurements by optical microscopy, X-ray diffraction, and transmission electron microscopy with theoretical modeling to decipher the mechanical properties of the magnetosome chain system encountered in magnetotactic bacteria. We exploit the magnetic properties of the endogenous intracellular nanoparticles to apply a force on the filament-connector pair involved in the backbone formation and stabilization. We show that the magnetosome chain can be broken by the application of external field strength higher than 30 mT and suggest that this originates from the rupture of the magnetosome connector MamJ. In addition, we calculate that the biological determinants can withstand in vivo a force of 25 pN. This quantitative understanding provides insights for the design of functional materials such as actuators and sensors using cellular components.
Collapse
Affiliation(s)
- André Körnig
- Department of Biomaterials and Department of
Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Jiajia Dong
- Department of Biomaterials and Department of
Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department
of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Mathieu Bennet
- Department of Biomaterials and Department of
Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Marc Widdrat
- Department of Biomaterials and Department of
Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Janet Andert
- Department of Biomaterials and Department of
Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Frank
D. Müller
- Department
1, Microbiology, Ludwig-Maximilians-Universität
München, Großhaderner
Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Dirk Schüler
- Department
1, Microbiology, Ludwig-Maximilians-Universität
München, Großhaderner
Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Stefan Klumpp
- Department of Biomaterials and Department of
Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Damien Faivre
- Department of Biomaterials and Department of
Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- (D.F.)
E-mail:
| |
Collapse
|
140
|
Abstract
Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field.
Collapse
|
141
|
Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense. J Bacteriol 2014; 196:2658-69. [PMID: 24816605 DOI: 10.1128/jb.01716-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of bacterial magnetosomes, which are intracellular membrane-enclosed, nanosized magnetic crystals, is controlled by a set of >30 specific genes. In Magnetospirillum gryphiswaldense, these are clustered mostly within a large conserved genomic magnetosome island (MAI) comprising the mms6, mamGFDC, mamAB, and mamXY operons. Here, we demonstrate that the five previously uncharacterized genes of the mms6 operon have crucial functions in the regulation of magnetosome biomineralization that partially overlap MamF and other proteins encoded by the adjacent mamGFDC operon. While all other deletions resulted in size reduction, elimination of either mms36 or mms48 caused the synthesis of magnetite crystals larger than those in the wild type (WT). Whereas the mms6 operon encodes accessory factors for crystal maturation, the large mamAB operon contains several essential and nonessential genes involved in various other steps of magnetosome biosynthesis, as shown by single deletions of all mamAB genes. While single deletions of mamL, -P, -Q, -R, -B, -S, -T, and -U showed phenotypes similar to those of their orthologs in a previous study in the related M. magneticum, we found mamI and mamN to be not required for at least rudimentary iron biomineralization in M. gryphiswaldense. Thus, only mamE, -L, -M, -O, -Q, and -B were essential for formation of magnetite, whereas a mamI mutant still biomineralized tiny particles which, however, consisted of the nonmagnetic iron oxide hematite, as shown by high-resolution transmission electron microscopy (HRTEM) and the X-ray absorption near-edge structure (XANES). Based on this and previous studies, we propose an extended model for magnetosome biosynthesis in M. gryphiswaldense.
Collapse
|
142
|
Sustainable magnetic nanoparticle synthesis. Nat Methods 2014. [DOI: 10.1038/nmeth.2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
143
|
Staniland S. Nanoparticle biosynthesis: An accommodating host. NATURE NANOTECHNOLOGY 2014; 9:163-164. [PMID: 24561357 DOI: 10.1038/nnano.2014.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Sarah Staniland
- Department of Chemistry at the University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| |
Collapse
|