101
|
Lee HW, Choi B, Kang HN, Kim H, Min A, Cha M, Ryu JY, Park S, Sohn J, Shin K, Yun MR, Han JY, Shon MJ, Jeong C, Chung J, Lee SH, Im SA, Cho BC, Yoon TY. Profiling of protein–protein interactions via single-molecule techniques predicts the dependence of cancers on growth-factor receptors. Nat Biomed Eng 2018; 2:239-253. [DOI: 10.1038/s41551-018-0212-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/23/2018] [Indexed: 02/04/2023]
|
102
|
Identification of the YEATS domain of GAS41 as a pH-dependent reader of histone succinylation. Proc Natl Acad Sci U S A 2018; 115:2365-2370. [PMID: 29463709 DOI: 10.1073/pnas.1717664115] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lysine succinylation is a newly discovered posttranslational modification with distinctive physical properties. However, to date rarely have studies reported effectors capable of interpreting this modification on histones. Following our previous study of SIRT5 as an eraser of succinyl-lysine (Ksuc), here we identified the GAS41 YEATS domain as a reader of Ksuc on histones. Biochemical studies showed that the GAS41 YEATS domain presents significant binding affinity toward H3K122suc upon a protonated histidine residue. Furthermore, cellular studies showed that GAS41 had prominent interaction with H3K122suc on histones and also demonstrated the coenrichment of GAS41 and H3K122suc on the p21 promoter. To investigate the binding mechanism, we solved the crystal structure of the YEATS domain of Yaf9, the GAS41 homolog, in complex with an H3K122suc peptide that demonstrated the presence of a salt bridge formed when a protonated histidine residue (His39) recognizes the carboxyl terminal of the succinyl group. We also solved the apo structure of GAS41 YEATS domain, in which the conserved His43 residue superimposes well with His39 in the Yaf9 structure. Our findings identified a reader of succinyl-lysine, and the binding mechanism will provide insight into the development of specific regulators targeting GAS41.
Collapse
|
103
|
Ignatius Pang CN, Goel A, Wilkins MR. Investigating the Network Basis of Negative Genetic Interactions in Saccharomyces cerevisiae with Integrated Biological Networks and Triplet Motif Analysis. J Proteome Res 2018; 17:1014-1030. [DOI: 10.1021/acs.jproteome.7b00649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chi Nam Ignatius Pang
- Systems
Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Apurv Goel
- Systems
Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marc R. Wilkins
- Systems
Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
104
|
Suen KM, Lin CC, Seiler C, George R, Poncet-Montange G, Biter AB, Ahmed Z, Arold ST, Ladbury JE. Phosphorylation of threonine residues on Shc promotes ligand binding and mediates crosstalk between MAPK and Akt pathways in breast cancer cells. Int J Biochem Cell Biol 2018; 94:89-97. [PMID: 29208567 DOI: 10.1016/j.biocel.2017.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 01/14/2023]
Abstract
Scaffold proteins play important roles in regulating signalling network fidelity, the absence of which is often the basis for diseases such as cancer. In the present work, we show that the prototypical scaffold protein Shc is phosphorylated by the extracellular signal-regulated kinase, Erk. In addition, Shc threonine phosphorylation is specifically up-regulated in two selected triple-negative breast cancer (TNBC) cell lines. To explore how Erk-mediated threonine phosphorylation on Shc might play a role in the dysregulation of signalling events, we investigated how Shc affects pathways downstream of EGF receptor. Using an in vitro model and biophysical analysis, we show that Shc threonine phosphorylation is responsible for elevated Akt and Erk signalling, potentially through the recruitment of the 14-3-3 ζ and Pin-1 proteins.
Collapse
Affiliation(s)
- K M Suen
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Unit 1954, 1515 Holcombe Blvd, Houston, TX 77030, USA; Graduate School of Biological Sciences, The University of Texas MD Anderson Cancer Center, Unit 1954, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - C C Lin
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - C Seiler
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - R George
- Structural Biology STP, The Francis Crick Institute, Lincolns Inn Fields Laboratory, 44 Lincolns Inn Fields, Holborn, London, WC2A 3LY, UK
| | - G Poncet-Montange
- Orthogon Therapeutics, 960 Turnpike Street, Unit 10, Canton, MA 02021, USA
| | - A B Biter
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, 1102 Bates Avenue, Houston, TX 77030, USA
| | - Z Ahmed
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Unit 1954, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - S T Arold
- Division of Biological and Environmental Sciences and Engineering, CBRC, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - J E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK.
| |
Collapse
|
105
|
Local A, Huang H, Albuquerque CP, Singh N, Lee AY, Wang W, Wang C, Hsia JE, Shiau AK, Ge K, Corbett KD, Wang D, Zhou H, Ren B. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat Genet 2018; 50:73-82. [PMID: 29255264 PMCID: PMC6007000 DOI: 10.1038/s41588-017-0015-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
Enhancers act to regulate cell-type-specific gene expression by facilitating the transcription of target genes. In mammalian cells, active or primed enhancers are commonly marked by monomethylation of histone H3 at lysine 4 (H3K4me1) in a cell-type-specific manner. Whether and how this histone modification regulates enhancer-dependent transcription programs in mammals is unclear. In this study, we conducted SILAC mass spectrometry experiments with mononucleosomes and identified multiple H3K4me1-associated proteins, including many involved in chromatin remodeling. We demonstrate that H3K4me1 augments association of the chromatin-remodeling complex BAF to enhancers in vivo and that, in vitro, H3K4me1-marked nucleosomes are more efficiently remodeled by the BAF complex. Crystal structures of the BAF component BAF45C indicate that monomethylation, but not trimethylation, is accommodated by BAF45C's H3K4-binding site. Our results suggest that H3K4me1 has an active role at enhancers by facilitating binding of the BAF complex and possibly other chromatin regulators.
Collapse
Affiliation(s)
- Andrea Local
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Aptose Biosciences, Inc., San Diego, CA, USA
| | - Hui Huang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | | | - Namit Singh
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Ah Young Lee
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Wei Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Chaochen Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Judy E Hsia
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | | | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Center for Epigenomics, Institute of Genomic Medicine, La Jolla, CA, USA.
| |
Collapse
|
106
|
Su MG, Weng JTY, Hsu JBK, Huang KY, Chi YH, Lee TY. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions. BMC SYSTEMS BIOLOGY 2017; 11:132. [PMID: 29322920 PMCID: PMC5763307 DOI: 10.1186/s12918-017-0506-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Protein post-translational modification (PTM) plays an essential role in various cellular processes that modulates the physical and chemical properties, folding, conformation, stability and activity of proteins, thereby modifying the functions of proteins. The improved throughput of mass spectrometry (MS) or MS/MS technology has not only brought about a surge in proteome-scale studies, but also contributed to a fruitful list of identified PTMs. However, with the increase in the number of identified PTMs, perhaps the more crucial question is what kind of biological mechanisms these PTMs are involved in. This is particularly important in light of the fact that most protein-based pharmaceuticals deliver their therapeutic effects through some form of PTM. Yet, our understanding is still limited with respect to the local effects and frequency of PTM sites near pharmaceutical binding sites and the interfaces of protein-protein interaction (PPI). Understanding PTM’s function is critical to our ability to manipulate the biological mechanisms of protein. Results In this study, to understand the regulation of protein functions by PTMs, we mapped 25,835 PTM sites to proteins with available three-dimensional (3D) structural information in the Protein Data Bank (PDB), including 1785 modified PTM sites on the 3D structure. Based on the acquired structural PTM sites, we proposed to use five properties for the structural characterization of PTM substrate sites: the spatial composition of amino acids, residues and side-chain orientations surrounding the PTM substrate sites, as well as the secondary structure, division of acidity and alkaline residues, and solvent-accessible surface area. We further mapped the structural PTM sites to the structures of drug binding and PPI sites, identifying a total of 1917 PTM sites that may affect PPI and 3951 PTM sites associated with drug-target binding. An integrated analytical platform (CruxPTM), with a variety of methods and online molecular docking tools for exploring the structural characteristics of PTMs, is presented. In addition, all tertiary structures of PTM sites on proteins can be visualized using the JSmol program. Conclusion Resolving the function of PTM sites is important for understanding the role that proteins play in biological mechanisms. Our work attempted to delineate the structural correlation between PTM sites and PPI or drug-target binding. CurxPTM could help scientists narrow the scope of their PTM research and enhance the efficiency of PTM identification in the face of big proteome data. CruxPTM is now available at http://csb.cse.yzu.edu.tw/CruxPTM/. Electronic supplementary material The online version of this article (10.1186/s12918-017-0506-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min-Gang Su
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan
| | - Julia Tzu-Ya Weng
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Kai-Yao Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan.,Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu City, 300, Taiwan
| | - Yu-Hsiang Chi
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan. .,Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan, 320, Taiwan.
| |
Collapse
|
107
|
Koike R, Amemiya T, Horii T, Ota M. Structural changes of homodimers in the PDB. J Struct Biol 2017; 202:42-50. [PMID: 29233747 DOI: 10.1016/j.jsb.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 01/25/2023]
Abstract
Protein complexes are involved in various biological phenomena. These complexes are intrinsically flexible, and structural changes are essential to their functions. To perform a large-scale automated analysis of the structural changes of complexes, we combined two original methods. An application, SCPC, compares two structures of protein complexes and decides the match of binding mode. Another application, Motion Tree, identifies rigid-body motions in various sizes and magnitude from the two structural complexes with the same binding mode. This approach was applied to all available homodimers in the Protein Data Bank (PDB). We defined two complex-specific motions: interface motion and subunit-spanning motion. In the former, each subunit of a complex constitutes a rigid body, and the relative movement between subunits occurs at the interface. In the latter, structural parts from distinct subunits constitute a rigid body, providing the relative movement spanning subunits. All structural changes were classified and examined. It was revealed that the complex-specific motions were common in the homodimers, detected in around 40% of families. The dimeric interfaces were likely to be small and flat for interface motion, while large and rugged for subunit-spanning motion. Interface motion was accompanied by a drastic change in contacts at the interface, while the change in the subunit-spanning motion was moderate. These results indicate that the interface properties of homodimers correlated with the type of complex-specific motion. The study demonstrates that the pipeline of SCPC and Motion Tree is useful for the massive analysis of structural change of protein complexes.
Collapse
Affiliation(s)
- Ryotaro Koike
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takayuki Amemiya
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tatsuya Horii
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
108
|
Peng X, Wang J, Peng W, Wu FX, Pan Y. Protein-protein interactions: detection, reliability assessment and applications. Brief Bioinform 2017; 18:798-819. [PMID: 27444371 DOI: 10.1093/bib/bbw066] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 01/06/2023] Open
Abstract
Protein-protein interactions (PPIs) participate in all important biological processes in living organisms, such as catalyzing metabolic reactions, DNA replication, DNA transcription, responding to stimuli and transporting molecules from one location to another. To reveal the function mechanisms in cells, it is important to identify PPIs that take place in the living organism. A large number of PPIs have been discovered by high-throughput experiments and computational methods. However, false-positive PPIs have been introduced too. Therefore, to obtain reliable PPIs, many computational methods have been proposed. Generally, these methods can be classified into two categories. One category includes the methods that are designed to determine new reliable PPIs. The other one is designed to assess the reliability of existing PPIs and filter out the unreliable ones. In this article, we review the two kinds of methods for detecting reliable PPIs, and then focus on evaluating the performance of some of these typical methods. Later on, we also enumerate several PPI network-based applications with taking a reliability assessment of the PPI data into consideration. Finally, we will discuss the challenges for obtaining reliable PPIs and future directions of the construction of reliable PPI networks. Our research will provide readers some guidance for choosing appropriate methods and features for obtaining reliable PPIs.
Collapse
|
109
|
Hwang H, Rhim H. Functional significance of O-GlcNAc modification in regulating neuronal properties. Pharmacol Res 2017; 129:295-307. [PMID: 29223644 DOI: 10.1016/j.phrs.2017.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) covalently modify proteins and diversify protein functions. Along with protein phosphorylation, another common PTM is the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and/or threonine residues. O-GlcNAc modification is similar to phosphorylation in that it occurs to serine and threonine residues and cycles on and off with a similar time scale. However, a striking difference is that the addition and removal of the O-GlcNAc moiety on all substrates are mediated by the two enzymes regardless of proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. O-GlcNAcylation can interact or potentially compete with phosphorylation on serine and threonine residues, and thus serves as an important molecular mechanism to modulate protein functions and activation. However, it has been challenging to address the role of O-GlcNAc modification in regulating protein functions at the molecular level due to the lack of convenient tools to determine the sites and degrees of O-GlcNAcylation. Studies in this field have only begun to expand significantly thanks to the recent advances in detection and manipulation methods such as quantitative proteomics and highly selective small-molecule inhibitors for OGT and OGA. Interestingly, multiple brain regions, especially hippocampus, express high levels of both OGT and OGA, and a number of neuron-specific proteins have been reported to undergo O-GlcNAcylation. This review aims to discuss the recent updates concerning the impacts of O-GlcNAc modification on neuronal functions at multiple levels ranging from intrinsic neuronal properties to synaptic plasticity and animal behaviors.
Collapse
Affiliation(s)
- Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
110
|
Jadwin JA, Curran TG, Lafontaine AT, White FM, Mayer BJ. Src homology 2 domains enhance tyrosine phosphorylation in vivo by protecting binding sites in their target proteins from dephosphorylation. J Biol Chem 2017; 293:623-637. [PMID: 29162725 DOI: 10.1074/jbc.m117.794412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/17/2017] [Indexed: 02/03/2023] Open
Abstract
Phosphotyrosine (pTyr)-dependent signaling is critical for many cellular processes. It is highly dynamic, as signal output depends not only on phosphorylation and dephosphorylation rates but also on the rates of binding and dissociation of effectors containing phosphotyrosine-dependent binding modules such as Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains. Previous in vitro studies suggested that binding of SH2 and PTB domains can enhance protein phosphorylation by protecting the sites bound by these domains from phosphatase-mediated dephosphorylation. To test whether this occurs in vivo, we used the binding of growth factor receptor bound 2 (GRB2) to phosphorylated epidermal growth factor receptor (EGFR) as a model system. We analyzed the effects of SH2 domain overexpression on protein tyrosine phosphorylation by quantitative Western and far-Western blotting, mass spectrometry, and computational modeling. We found that SH2 overexpression results in a significant, dose-dependent increase in EGFR tyrosine phosphorylation, particularly of sites corresponding to the binding specificity of the overexpressed SH2 domain. Computational models using experimentally determined EGFR phosphorylation and dephosphorylation rates, and pTyr-EGFR and GRB2 concentrations, recapitulated the experimental findings. Surprisingly, both modeling and biochemical analyses suggested that SH2 domain overexpression does not result in a major decrease in the number of unbound phosphorylated SH2 domain-binding sites. Our results suggest that signaling via SH2 domain binding is buffered over a relatively wide range of effector concentrations and that SH2 domain proteins with overlapping binding specificities are unlikely to compete with one another for phosphosites in vivo.
Collapse
Affiliation(s)
- Joshua A Jadwin
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Timothy G Curran
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Adam T Lafontaine
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| | - Forest M White
- the Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Bruce J Mayer
- From the Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, and the Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut 06030 and
| |
Collapse
|
111
|
Abulaiti X, Zhang H, Wang A, Li N, Li Y, Wang C, Du X, Li L. Phosphorylation of Threonine 343 Is Crucial for OCT4 Interaction with SOX2 in the Maintenance of Mouse Embryonic Stem Cell Pluripotency. Stem Cell Reports 2017; 9:1630-1641. [PMID: 28988986 PMCID: PMC5829306 DOI: 10.1016/j.stemcr.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
OCT4 is required to maintain the pluripotency of embryonic stem cells (ESCs); yet, overdose-expression of OCT4 induces ESC differentiation toward primitive endoderm. The molecular mechanism underlying this differentiation switch is not fully understood. Here, we found that substitution of threonine343 by alanine (T343A), but not aspartic acid (T343D), caused a significant loss of OCT4-phosphorylation signal in ESCs. Loss of such OCT4-phosphorylation compromises its interaction with SOX2 but promotes interaction with SOX17. We therefore propose that threonine343-based OCT4-phosphorylation is crucial for the maintenance of ESC pluripotency. This OCT4-phosphorylation-based mechanism may provide insight into the regulation of lineage specification during early embryonic development. Phosphorylation of threonine343 mediates global OCT4-phosphorylation (phos-OCT4T343) Phos-OCT4T343 is crucial for OCT4 to protect embryonic stem cell pluripotency Phos-OCT4T343 binds to SOX2 but non-phos-OCT4T343 binds to SOX17 in cell fate decision Phos-OCT4T343 may regulate lineage commitment in early embryonic development
Collapse
Affiliation(s)
- Xianmixinuer Abulaiti
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Han Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aifang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chenchen Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lingsong Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
112
|
Cuijpers SAG, Willemstein E, Vertegaal ACO. Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-modified Target Proteins. Mol Cell Proteomics 2017; 16:2281-2295. [PMID: 28951443 PMCID: PMC5724187 DOI: 10.1074/mcp.tir117.000152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
Post-translational protein modifications (PTMs) including small chemical groups and small proteins, belonging to the ubiquitin family, are essential for virtually all cellular processes. In addition to modification by a single PTM, proteins can be modified by a combination of different modifiers, which are able to influence each other. Because little is known about crosstalk among different ubiquitin family members, we developed an improved method enabling identification of co-modified proteins on a system-wide level using mass spectrometry. We focused on the role of crosstalk between SUMO and ubiquitin during proteasomal degradation. Using two complementary approaches, we identified 498 proteins to be significantly co-modified by SUMO and ubiquitin upon MG132 treatment. These targets included many enzymatic components of PTM machinery, involved in SUMOylation and ubiquitylation, but also phosphorylation, methylation and acetylation, revealing a highly complex interconnected network of crosstalk among different PTMs. In addition, various other biological processes were found to be significantly enriched within the group of co-modified proteins, including transcription, DNA repair and the cell cycle. Interestingly, the latter group mostly consisted of proteins involved in mitosis, including a subset of chromosome segregation regulators. We hypothesize that group modification by SUMO-targeted ubiquitin ligases regulates the stability of the identified subset of mitotic proteins, which ensures proper chromosome segregation. The mitotic regulators KIF23 and MIS18BP1 were verified to be co-modified by SUMO and ubiquitin on inhibition of the proteasome and subsequently identified as novel RNF4 targets. Both modifications on MIS18BP1 were observed to increase simultaneously during late mitosis, whereas the total protein level decreased immediately afterward. These results confirm the regulation of MIS18BP1 via SUMO-ubiquitin crosstalk during mitosis. Combined, our work highlights extensive crosstalk between SUMO and ubiquitin, providing a resource for further unraveling of SUMO-ubiquitin crosstalk.
Collapse
Affiliation(s)
- Sabine A G Cuijpers
- From the ‡Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Edwin Willemstein
- From the ‡Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Alfred C O Vertegaal
- From the ‡Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
113
|
Keller JG, Tesauro C, Coletta A, Graversen AD, Ho YP, Kristensen P, Stougaard M, Knudsen BR. On-slide detection of enzymatic activities in selected single cells. NANOSCALE 2017; 9:13546-13553. [PMID: 28872165 DOI: 10.1039/c7nr05125e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With increasing recognition of the importance in addressing cell-to-cell heterogeneity for the understanding of complex biological systems, there is a growing need for assays capable of single cell analyses. In the current study, we describe the measurement of human topoisomerase I activity in single CD44 positive Caco2 cells specifically captured from a mixed population on glass slides, which were dual functionalized with anti-CD44-antibodies and specific DNA primers. On-slide lysis of captured CD44 positive cells, resulted in the release of human topoisomerase I, allowing the enzyme to circularize a specific linear DNA substrate added to the slides. The generated circles hybridized to the anchored DNA primers and acted as templates for a solid support rolling circle amplification reaction leading to the generation of long tandem repeat products that were detected at the single molecule level in a fluorescent microscope upon hybridization of fluorescent labelled probes. The on-slide detection system was demonstrated to be directly quantitative and specific towards CD44 positive cells. Moreover, it allowed reproducible detection of human topoisomerase I activity in single cells.
Collapse
Affiliation(s)
- Josephine Geertsen Keller
- Department of Molecular Biology and Genetics, C. F. Møllers Allé 3, Bldg. 1131, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Almawi AW, Matthews LA, Guarné A. FHA domains: Phosphopeptide binding and beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:105-110. [DOI: 10.1016/j.pbiomolbio.2016.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/06/2016] [Indexed: 01/18/2023]
|
115
|
Nukarinen E, Tomanov K, Ziba I, Weckwerth W, Bachmair A. Protein sumoylation and phosphorylation intersect in Arabidopsis signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:505-517. [PMID: 28419593 PMCID: PMC5518230 DOI: 10.1111/tpj.13575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 05/09/2023]
Abstract
Conjugation of the small ubiquitin-related modifier (SUMO) to protein substrates has an impact on stress responses and on development. We analyzed the proteome and phosphoproteome of mutants in this pathway. The mutants chosen had defects in SUMO ligase SIZ1, which catalyzes attachment of single SUMO moieties onto substrates, and in ligases PIAL1 and PIAL2, which are known to form SUMO chains. A total of 2657 proteins and 550 phosphopeptides were identified and quantified. Approximately 40% of the proteins and 20% of the phosphopeptides showed differences in abundance in at least one of the analyzed genotypes, demonstrating the influence of SUMO conjugation on protein abundance and phosphorylation. The data show that PIAL1 and PIAL2 are integral parts of the SUMO conjugation system with an impact on stress response, and confirm the involvement of SIZ1 in plant defense. We find a high abundance of predicted SUMO attachment sites in phosphoproteins (70% versus 40% in the total proteome), suggesting convergence of phosphorylation and sumoylation signals onto a set of common targets.
Collapse
Affiliation(s)
- Ella Nukarinen
- Department of Ecogenomics and Systems BiologyBZAUniversity of ViennaViennaAustria
| | - Konstantin Tomanov
- Department of Biochemistry and Cell BiologyCenter for Molecular BiologyMax F. Perutz LaboratoriesViennaAustria
| | - Ionida Ziba
- Department of Biochemistry and Cell BiologyCenter for Molecular BiologyMax F. Perutz LaboratoriesViennaAustria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems BiologyBZAUniversity of ViennaViennaAustria
- Vienna Metabolomics CenterUniversity of ViennaA‐1060ViennaAustria
| | - Andreas Bachmair
- Department of Biochemistry and Cell BiologyCenter for Molecular BiologyMax F. Perutz LaboratoriesViennaAustria
| |
Collapse
|
116
|
Teske KA, Hadden MK. Methyllysine binding domains: Structural insight and small molecule probe development. Eur J Med Chem 2017; 136:14-35. [DOI: 10.1016/j.ejmech.2017.04.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
|
117
|
O'Kane PT, Mrksich M. An Assay Based on SAMDI Mass Spectrometry for Profiling Protein Interaction Domains. J Am Chem Soc 2017; 139:10320-10327. [PMID: 28689418 DOI: 10.1021/jacs.7b03805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper describes an assay that can profile the binding of a protein to ligands and can rank the affinities of a library of ligands. The method is based on the enhanced rate of an enzyme-mediated reaction that follows from colocalization of the enzyme and substrate by a protein-ligand interaction. This assay uses a self-assembled monolayer that presents a candidate peptide ligand for a receptor and a peptide substrate for an enzyme. The receptor is prepared as a fusion to the relevant enzyme so that binding of the receptor to the immobilized ligand brings the enzyme to the surface, where it can more rapidly modify its substrate. The extent of conversion of the substrate to product is therefore a measure of the average time the ligand-receptor complex is present and is quantified using the SAMDI mass spectrometry technique. The approach is used to profile the binding of chromodomain proteins to methylated lysine peptides derived from the histone 3 protein. The relative affinities for the peptide ligands found in this work agreed with results from prior studies. Additionally, this work revealed cross-talk interactions whereby phosphorylation of certain residues impaired binding of chromodomains to the peptide ligands. The method presented here, which we term protein interaction by SAMDI (PI-SAMDI), has the advantages that it is applicable to low-affinity interactions because the complexes are not observed directly, but rather leave a "covalent record" of the interaction that is measured with mass spectrometry and because it is compatible with laboratory automation for high-throughput analysis.
Collapse
Affiliation(s)
- Patrick T O'Kane
- Department of Chemistry, Department of Biomedical Engineering, and Department of Cell & Molecular Biology, Northwestern University , Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Chemistry, Department of Biomedical Engineering, and Department of Cell & Molecular Biology, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
118
|
The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem Soc Trans 2017; 44:1185-1200. [PMID: 27911701 PMCID: PMC5095923 DOI: 10.1042/bst20160172] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
Abstract
In the 1960s, Christian Anfinsen postulated that the unique three-dimensional structure of a protein is determined by its amino acid sequence. This work laid the foundation for the sequence–structure–function paradigm, which states that the sequence of a protein determines its structure, and structure determines function. However, a class of polypeptide segments called intrinsically disordered regions does not conform to this postulate. In this review, I will first describe established and emerging ideas about how disordered regions contribute to protein function. I will then discuss molecular principles by which regulatory mechanisms, such as alternative splicing and asymmetric localization of transcripts that encode disordered regions, can increase the functional versatility of proteins. Finally, I will discuss how disordered regions contribute to human disease and the emergence of cellular complexity during organismal evolution.
Collapse
|
119
|
Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J 2017; 50:50/1/1601805. [PMID: 28679607 DOI: 10.1183/13993003.01805-2016] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/29/2017] [Indexed: 12/13/2022]
Abstract
The pulmonary extracellular matrix (ECM) determines the tissue architecture of the lung, and provides mechanical stability and elastic recoil, which are essential for physiological lung function. Biochemical and biomechanical signals initiated by the ECM direct cellular function and differentiation, and thus play a decisive role in lung development, tissue remodelling processes and maintenance of adult homeostasis. Recent proteomic studies have demonstrated that at least 150 different ECM proteins, glycosaminoglycans and modifying enzymes are expressed in the lung, and these assemble into intricate composite biomaterials. These highly insoluble assemblies of interacting ECM proteins and their glycan modifications can act as a solid phase-binding interface for hundreds of secreted proteins, which creates an information-rich signalling template for cell function and differentiation. Dynamic changes within the ECM that occur upon injury or with ageing are associated with several chronic lung diseases. In this review, we summarise the available data about the structure and function of the pulmonary ECM, and highlight changes that occur in idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. We discuss potential mechanisms of ECM remodelling and modification, which we believe are relevant for future diagnosis and treatment of chronic lung disease.
Collapse
Affiliation(s)
- Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Bettina Oehrle
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Michael Gerckens
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Herbert B Schiller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Oliver Eickelberg
- Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| |
Collapse
|
120
|
Rangaswamy S, Pandey A, Mitra S, Hegde ML. Pre-Replicative Repair of Oxidized Bases Maintains Fidelity in Mammalian Genomes: The Cowcatcher Role of NEIL1 DNA Glycosylase. Genes (Basel) 2017; 8:E175. [PMID: 28665322 PMCID: PMC5541308 DOI: 10.3390/genes8070175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/16/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023] Open
Abstract
Genomic fidelity in the humans is continuously challenged by genotoxic reactive oxygen species (ROS) generated both endogenously during metabolic processes, and by exogenous agents. Mispairing of most ROS-induced oxidized base lesions during DNA replication induces mutations. Although bulky base adducts induced by ultraviolet light and other environmental mutagens block replicative DNA polymerases, most oxidized base lesions do not block DNA synthesis. In 8-oxo-G:A mispairs generated by the incorporation of A opposite unrepaired 8-oxo-G, A is removed by MutYH (MYH) for post-replicative repair, and other oxidized base lesions must be repaired prior to replication in order to prevent mutation fixation. Our earlier studies documented S phase-specific overexpression of endonuclease VIII-like 1 (NEIL1) DNA glycosylase (DG), one of five oxidized base excision repair (BER)-initiating enzymes in mammalian cells, and its high affinity for replication fork-mimicking single-stranded (ss)DNA substrates. We recently provided experimental evidence for the role of NEIL1 in replicating-strand repair, and proposed the "cowcatcher" model of pre-replicative BER, where NEIL1's nonproductive binding to the lesion base in ssDNA template blocks DNA chain elongation, causing fork regression. Repair of the lesion in the then re-annealed duplex is carried out by NEIL1 in association with the DNA replication proteins. In this commentary, we highlight the critical role of pre-replicative BER in preventing mutagenesis, and discuss the distinction between pre-replicative vs. post-replicative BER.
Collapse
Affiliation(s)
- Suganya Rangaswamy
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
- Houston Methodist Neurological Institute, Houston, TX 77030, USA.
| |
Collapse
|
121
|
Nüße J, Blumrich EM, Mirastschijski U, Kappelmann L, Kelm S, Dietz F. Intra- or extra-exosomal secretion of HDGF isoforms: the extraordinary function of the HDGF-A N-terminal peptide. Biol Chem 2017; 398:793-811. [DOI: 10.1515/hsz-2016-0315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
Abstract
Hepatoma-derived growth factor (HDGF) is a protein with diverse intracellular functions. Moreover, after non-conventional secretion, extracellular HDGF is able to influence different signaling pathways, leading for example to induction of processes like epithelial-mesenchymal transition (EMT) and cell migration. Intriguingly, in recent proteome studies, HDGF was also found secreted by special microvesicles called exosomes. Recently, we demonstrated the existence of two new HDGF isoforms (B and C). These isoforms are involved in different cellular processes than HDGF-A. Along this line, in the present study we discovered that full length HDGF-A clearly is located inside of exosomes, whereas the isoforms HDGF-B and HDGF-C are found exclusively on the outer surface. Furthermore, while HDGF-B and HDGF-C seem to use exosomes mediated pathway exclusively, HDGF-A was found also as unbound protein in the conditioned media. The new finding of an intra- or extra-exosomal localisation of protein splice variants opens a fascinating new perspective concerning functional diversity of HDGF isoforms. Dysregulation of HDGF expression during cancer development and tumor progression is a commonly known fact. With our new findings, unraveling the potential functional impact according to physiological versus pathophysiologically altered levels and compositions of intra- and extra-exosomal HDGF has to be addressed in future studies.
Collapse
|
122
|
Campla CK, Breit H, Dong L, Gumerson JD, Roger JE, Swaroop A. Pias3 is necessary for dorso-ventral patterning and visual response of retinal cones but is not required for rod photoreceptor differentiation. Biol Open 2017; 6:881-890. [PMID: 28495965 PMCID: PMC5483026 DOI: 10.1242/bio.024679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein inhibitor of activated Stat 3 (Pias3) is implicated in guiding specification of rod and cone photoreceptors through post-translational modification of key retinal transcription factors. To investigate its role during retinal development, we deleted exon 2-5 of the mouse Pias3 gene, which resulted in complete loss of the Pias3 protein. Pias3−/− mice did not show any overt phenotype, and retinal lamination appeared normal even at 18 months. We detected reduced photopic b-wave amplitude by electroretinography following green light stimulation of postnatal day (P)21 Pias3−/− retina, suggesting a compromised visual response of medium wavelength (M) cones. No change was evident in response of short wavelength (S) cones or rod photoreceptors until 7 months. Increased S-opsin expression in the M-cone dominant dorsal retina suggested altered distribution of cone photoreceptors. Transcriptome profiling of P21 and 18-month-old Pias3−/− retina revealed aberrant expression of a subset of photoreceptor genes. Our studies demonstrate functional redundancy in SUMOylation-associated transcriptional control mechanisms and identify a specific, though limited, role of Pias3 in modulating spatial patterning and optimal function of cone photoreceptor subtypes in the mouse retina. Summary: Loss of Pias3 in mice results in altered dorso-ventral patterning of retinal cone photoreceptors by modulating the expression of a subset of genes, but does not affect rod development.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA.,Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hannah Breit
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica D Gumerson
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Jerome E Roger
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA .,Centre d'Etude et de Recherches Thérapeutiques en Ophtalmologie, Retina France, Orsay 91405, France.,Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay 91405, France
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
123
|
Sanchez-Quiles V, Akimov V, Osinalde N, Francavilla C, Puglia M, Barrio-Hernandez I, Kratchmarova I, Olsen JV, Blagoev B. Cylindromatosis Tumor Suppressor Protein (CYLD) Deubiquitinase is Necessary for Proper Ubiquitination and Degradation of the Epidermal Growth Factor Receptor. Mol Cell Proteomics 2017; 16:1433-1446. [PMID: 28572092 DOI: 10.1074/mcp.m116.066423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
Cylindromatosis tumor suppressor protein (CYLD) is a deubiquitinase, best known as an essential negative regulator of the NFkB pathway. Previous studies have suggested an involvement of CYLD in epidermal growth factor (EGF)-dependent signal transduction as well, as it was found enriched within the tyrosine-phosphorylated complexes in cells stimulated with the growth factor. EGF receptor (EGFR) signaling participates in central cellular processes and its tight regulation, partly through ubiquitination cascades, is decisive for a balanced cellular homeostasis. Here, using a combination of mass spectrometry-based quantitative proteomic approaches with biochemical and immunofluorescence strategies, we demonstrate the involvement of CYLD in the regulation of the ubiquitination events triggered by EGF. Our data show that CYLD regulates the magnitude of ubiquitination of several major effectors of the EGFR pathway by assisting the recruitment of the ubiquitin ligase Cbl-b to the activated EGFR complex. Notably, CYLD facilitates the interaction of EGFR with Cbl-b through its Tyr15 phosphorylation in response to EGF, which leads to fine-tuning of the receptor's ubiquitination and subsequent degradation. This represents a previously uncharacterized strategy exerted by this deubiquitinase and tumors suppressor for the negative regulation of a tumorigenic signaling pathway.
Collapse
Affiliation(s)
- Virginia Sanchez-Quiles
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Vyacheslav Akimov
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nerea Osinalde
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Chiara Francavilla
- §Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michele Puglia
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Inigo Barrio-Hernandez
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Irina Kratchmarova
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper V Olsen
- §Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Blagoy Blagoev
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark;
| |
Collapse
|
124
|
Facile synthesis of Fmoc-protected phosphonate pSer mimetic and its application in assembling a substrate peptide of 14-3-3 ζ. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
125
|
Tegtmeyer N, Neddermann M, Asche CI, Backert S. Subversion of host kinases: a key network in cellular signaling hijacked byHelicobacter pyloriCagA. Mol Microbiol 2017; 105:358-372. [DOI: 10.1111/mmi.13707] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Matthias Neddermann
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Carmen Isabell Asche
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| |
Collapse
|
126
|
Buuh ZY, Lyu Z, Wang RE. Interrogating the Roles of Post-Translational Modifications of Non-Histone Proteins. J Med Chem 2017; 61:3239-3252. [PMID: 28505447 DOI: 10.1021/acs.jmedchem.6b01817] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) allot versatility to the biological functions of highly conserved proteins. Recently, modifications to non-histone proteins such as methylation, acetylation, phosphorylation, glycosylation, ubiquitination, and many more have been linked to the regulation of pivotal pathways related to cellular response and stability. Due to the roles these dynamic modifications assume, their dysregulation has been associated with cancer and many other important diseases such as inflammatory disorders and neurodegenerative diseases. For this reason, we present a review and perspective on important post-translational modifications on non-histone proteins, with emphasis on their roles in diseases and small molecule inhibitors developed to target PTM writers. Certain PTMs' contribution to epigenetics has been extensively expounded; yet more efforts will be needed to systematically dissect their roles on non-histone proteins, especially for their relationships with nononcological diseases. Finally, current research approaches for PTM study will be discussed and compared, including limitations and possible improvements.
Collapse
Affiliation(s)
- Zakey Yusuf Buuh
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Zhigang Lyu
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Rongsheng E Wang
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
127
|
Uegaki K, Kumanogoh H, Mizui T, Hirokawa T, Ishikawa Y, Kojima M. BDNF Binds Its Pro-Peptide with High Affinity and the Common Val66Met Polymorphism Attenuates the Interaction. Int J Mol Sci 2017; 18:ijms18051042. [PMID: 28498321 PMCID: PMC5454954 DOI: 10.3390/ijms18051042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 02/03/2023] Open
Abstract
Most growth factors are initially synthesized as precursors then cleaved into bioactive mature domains and pro-domains, but the biological roles of pro-domains are poorly understood. In the present study, we investigated the pro-domain (or pro-peptide) of brain-derived neurotrophic factor (BDNF), which promotes neuronal survival, differentiation and synaptic plasticity. The BDNF pro-peptide is a post-processing product of the precursor BDNF. Using surface plasmon resonance and biochemical experiments, we first demonstrated that the BDNF pro-peptide binds to mature BDNF with high affinity, but not other neurotrophins. This interaction was more enhanced at acidic pH than at neutral pH, suggesting that the binding is significant in intracellular compartments such as trafficking vesicles rather than the extracellular space. The common Val66Met BDNF polymorphism results in a valine instead of a methionine in the pro-domain, which affects human brain functions and the activity-dependent secretion of BDNF. We investigated the influence of this variation on the interaction between BDNF and the pro-peptide. Interestingly, the Val66Met polymorphism stabilized the heterodimeric complex of BDNF and its pro-peptide. Furthermore, compared with the Val-containing pro-peptide, the complex with the Met-type pro-peptide was more stable at both acidic and neutral pH, suggesting that the Val66Met BDNF polymorphism forms a more stable complex. A computational modeling provided an interpretation to the role of the Val66Met mutation in the interaction of BDNF and its pro-peptide. Lastly, we performed electrophysiological experiments, which indicated that the BDNF pro-peptide, when pre-incubated with BDNF, attenuated the ability of BDNF to inhibit hippocampal long-term depression (LTD), suggesting a possibility that the BDNF pro-peptide may interact directly with BDNF and thereby inhibit its availability. It was previously reported that the BDNF pro-domain exerts a chaperone-like function and assists the folding of the BDNF protein. However, our results suggest a new role for the BDNF pro-domain (or pro-peptide) following proteolytic cleave of precursor BDNF, and provide insight into the Val66Met polymorphism.
Collapse
Affiliation(s)
- Koichi Uegaki
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Haruko Kumanogoh
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Toshiyuki Mizui
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Takatsugu Hirokawa
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan.
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan.
| | - Yasuyuki Ishikawa
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
- Department of Systems Life Engineering, Maebashi Institute of Technology 460-1, Kamisadori, Maebashi 370-0816, Japan.
| | - Masami Kojima
- Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
- Graduate School of Frontier Bioscience, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
128
|
Li Y, Zhou X, Zhai Z, Li T. Co-occurring protein phosphorylation are functionally associated. PLoS Comput Biol 2017; 13:e1005502. [PMID: 28459814 PMCID: PMC5432191 DOI: 10.1371/journal.pcbi.1005502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 05/15/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022] Open
Abstract
Post-translational modifications (PTMs) add a further layer of complexity to the proteome and regulate a wide range of cellular protein functions. With the increasing number of known PTM sites, it becomes imperative to understand their functional interplays. In this study, we proposed a novel analytical strategy to explore functional relationships between PTM sites by testing their tendency to be modified together (co-occurrence) under the same condition, and applied it to proteome-wide human phosphorylation data collected under 88 different laboratory or physiological conditions. Co-occurring phosphorylation occurs significantly more frequently than randomly expected and include many known examples of cross-talk or functional connections. Such pairs, either within the same phosphoprotein or between interacting partners, are more likely to be in sequence or structural proximity, be phosphorylated by the same kinases, participate in similar biological processes, and show residue co-evolution across vertebrates. In addition, we also found that their co-occurrence states tend to be conserved in orthologous phosphosites in the mouse proteome. Together, our results support that the co-occurring phosphorylation are functionally associated. Comparison with existing methods further suggests that co-occurrence analysis can be a useful complement to uncover novel functional associations between PTM sites. In addition to gene expression and translation control, post-translational modifications (PTMs) represent another level to regulate proteins functions. Different PTM sites within a protein usually co-operate to fulfill their functional roles. Recent advances in high-throughput mass spectrometry (MS) technologies have facilitated the proteome-wide identification of PTM sites, giving rise to both challenge and opportunity to understand their functional relationships. Previously, several data mining approaches have been developed to explore the global PTM interplays. In this study, we proposed to infer functional associations between PTM sites from the correlation of their modification status across many biological conditions, which was not exploited before. In practice, we tested if a pair of sites are modified together under the same condition significantly more often than expected (co-occurrence). As a proof of principle, we applied this analytical strategy to human phosphorylation because we could collect data sets of proteome-wide coverage under 88 different conditions. We demonstrated that sites with co-occurring phosphorylation status are functionally associated from several lines of evidence. The co-occurrence analysis can also uncover functionally connected phosphosites with clear biological evidence which are missed by other approaches. With increasing proteome-wide data for other types of PTMs under different conditions, the co-occurrence analysis can be integrated with other methods to identify novel PTM associations.
Collapse
Affiliation(s)
- Ying Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xueya Zhou
- Department of Psychiatry and Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zichao Zhai
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail:
| |
Collapse
|
129
|
Kohlgrüber S, Upadhye A, Dyballa-Rukes N, McNamara CA, Altschmied J. Regulation of Transcription Factors by Reactive Oxygen Species and Nitric Oxide in Vascular Physiology and Pathology. Antioxid Redox Signal 2017; 26:679-699. [PMID: 27841660 PMCID: PMC5421514 DOI: 10.1089/ars.2016.6946] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cardiovascular diseases are the main cause of death worldwide and pose an immense economical burden. In most cases, the underlying problem is vascular occlusion by atherosclerotic plaques. Importantly, different cell types of the vascular wall and the immune system play crucial roles in atherosclerosis at different stages of the disease. Furthermore, atherosclerosis and conditions recognized as risk factors are characterized by a reduced availability of the vasoprotective molecule nitric oxide and an increase in reactive oxygen species, so-called oxidative stress. Transcription factors function as intracellular signal integrators and relays and thus, play a central role in cellular responses to changing conditions. Recent Advances: Work on specific transcriptional regulators has uncovered many of their functions and the upstream pathways modulating their activity in response to reactive oxygen and nitrogen species. Here, we have reviewed for a few selected examples how this can contribute not only to protection against atherosclerosis development but also to disease progression and the occurrence of clinical manifestations, such as plaque rupture. CRITICAL ISSUES Transcription factors have pleiotropic outputs and often also divergent functions in different cell types and tissues. Thus, in light of potential severe adverse side effects, a global activation or inhibition of particular transcriptions factors does not seem a feasible therapeutic option. FUTURE DIRECTIONS A further in-depth characterization of the cell- and stage-specific actions and regulation of transcription factors in atherosclerosis with respect to protein-protein interactions and target genes could open up new avenues for prevention or therapeutic interventions in this vascular disease. Antioxid. Redox Signal. 26, 679-699.
Collapse
Affiliation(s)
- Stefanie Kohlgrüber
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | - Aditi Upadhye
- 2 Department of Microbiology, Immunology, Cancer Biology, University of Virginia , Charlottesville, Virginia
| | - Nadine Dyballa-Rukes
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | - Coleen A McNamara
- 3 Cardiovascular Division, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine , Charlottesville, Virginia
| | - Joachim Altschmied
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| |
Collapse
|
130
|
ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat Struct Mol Biol 2017; 24:534-543. [PMID: 28436945 PMCID: PMC5461201 DOI: 10.1038/nsmb.3403] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/27/2017] [Indexed: 01/10/2023]
Abstract
Both p150 and p110 isoforms of ADAR1 convert adenosine to inosine in double-stranded RNA (dsRNA). ADAR1p150 suppresses the dsRNA sensing mechanism that activates MDA5-MAVS-IFN signaling in the cytoplasm. In contrast, the biological function of the ADAR1p110 isoform, usually located in the nucleus, remains largely unknown. Here we show that stress-activated phosphorylation of ADAR1p110 by MKK6-p38-MSK MAP kinases promotes its binding to Exportin-5 and export from the nucleus. Once translocated to the cytoplasm, ADAR1p110 suppresses apoptosis of stressed cells by protecting many anti-apoptotic gene transcripts that contain 3′UTR dsRNA structures primarily made from inverted Alu repeats. ADAR1p110 competitively inhibits binding of Staufen1 to the 3′UTR dsRNAs and antagonizes the Staufen1-mediated mRNA decay. Our studies revealed a new stress response mechanism, in which human ADAR1p110 and Staufen1 regulate surveillance of a set of mRNAs required for survival of stressed cells.
Collapse
|
131
|
Toriyama M, Toriyama M, Wallingford JB, Finnell RH. Folate-dependent methylation of septins governs ciliogenesis during neural tube closure. FASEB J 2017; 31:3622-3635. [PMID: 28432198 DOI: 10.1096/fj.201700092r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Periconception maternal folic acid (vitamin B9) supplementation can reduce the prevalence of neural tube defects (NTDs), although just how folates benefit the developing embryo and promote closing of the neural tube and other morphologic processes during development remains unknown. Folate contributes to a 1-carbon metabolism, which is essential for purine biosynthesis and methionine recycling and affects methylation of DNA, histones, and nonhistone proteins. Herein, we used animal models and cultured mammalian cells to demonstrate that disruption of the methylation pathway mediated by folate compromises normal neural tube closure (NTC) and ciliogenesis. We demonstrate that the embryos with NTD failed to adequately methylate septin2, a key regulator of cilium structure and function. We report that methylation of septin2 affected its GTP binding activity and formation of the septin2-6-7 complex. We propose that folic acid promotes normal NTC in some embryos by regulating the methylation of septin2, which is critical for normal cilium formation during early embryonic development.-Toriyama, M., Toriyama, M., Wallingford, J. B., Finnell, R. H. Folate-dependent methylation of septins governs ciliogenesis during neural tube closure.
Collapse
Affiliation(s)
- Manami Toriyama
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Michinori Toriyama
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Richard H Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin Dell Medical School, Austin, Texas, USA;
| |
Collapse
|
132
|
Hänzelmann P, Schindelin H. The Interplay of Cofactor Interactions and Post-translational Modifications in the Regulation of the AAA+ ATPase p97. Front Mol Biosci 2017; 4:21. [PMID: 28451587 PMCID: PMC5389986 DOI: 10.3389/fmolb.2017.00021] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
The hexameric type II AAA ATPase (ATPase associated with various activities) p97 (also referred to as VCP, Cdc48, and Ter94) is critically involved in a variety of cellular activities including pathways such as DNA replication and repair which both involve chromatin remodeling, and is a key player in various protein quality control pathways mediated by the ubiquitin proteasome system as well as autophagy. Correspondingly, p97 has been linked to various pathophysiological states including cancer, neurodegeneration, and premature aging. p97 encompasses an N-terminal domain, two highly conserved ATPase domains and an unstructured C-terminal tail. This enzyme hydrolyzes ATP and utilizes the resulting energy to extract or disassemble protein targets modified with ubiquitin from stable protein assemblies, chromatin and membranes. p97 participates in highly diverse cellular processes and hence its activity is tightly controlled. This is achieved by multiple regulatory cofactors, which either associate with the N-terminal domain or interact with the extreme C-terminus via distinct binding elements and target p97 to specific cellular pathways, sometimes requiring the simultaneous association with more than one cofactor. Most cofactors are recruited to p97 through conserved binding motifs/domains and assist in substrate recognition or processing by providing additional molecular properties. A tight control of p97 cofactor specificity and diversity as well as the assembly of higher-order p97-cofactor complexes is accomplished by various regulatory mechanisms, which include bipartite binding, binding site competition, changes in oligomeric assemblies, and nucleotide-induced conformational changes. Furthermore, post-translational modifications (PTMs) like acetylation, palmitoylation, phosphorylation, SUMOylation, and ubiquitylation of p97 have been reported which further modulate its diverse molecular activities. In this review, we will describe the molecular basis of p97-cofactor specificity/diversity and will discuss how PTMs can modulate p97-cofactor interactions and affect the physiological and patho-physiological functions of p97.
Collapse
Affiliation(s)
- Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, University of WürzburgWürzburg, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of WürzburgWürzburg, Germany
| |
Collapse
|
133
|
Tay AP, Pang CNI, Winter DL, Wilkins MR. PTMOracle: A Cytoscape App for Covisualizing and Coanalyzing Post-Translational Modifications in Protein Interaction Networks. J Proteome Res 2017; 16:1988-2003. [PMID: 28349685 DOI: 10.1021/acs.jproteome.6b01052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications of proteins (PTMs) act as key regulators of protein activity and of protein-protein interactions (PPIs). To date, it has been difficult to comprehensively explore functional links between PTMs and PPIs. To address this, we developed PTMOracle, a Cytoscape app for coanalyzing PTMs within PPI networks. PTMOracle also allows extensive data to be integrated and coanalyzed with PPI networks, allowing the role of domains, motifs, and disordered regions to be considered. For proteins of interest, or a whole proteome, PTMOracle can generate network visualizations to reveal complex PTM-associated relationships. This is assisted by OraclePainter for coloring proteins by modifications, OracleTools for network analytics, and OracleResults for exploring tabulated findings. To illustrate the use of PTMOracle, we investigate PTM-associated relationships and their role in PPIs in four case studies. In the yeast interactome and its rich set of PTMs, we construct and explore histone-associated and domain-domain interaction networks and show how integrative approaches can predict kinases involved in phosphodegrons. In the human interactome, a phosphotyrosine-associated network is analyzed but highlights the sparse nature of human PPI networks and lack of PTM-associated data. PTMOracle is open source and available at the Cytoscape app store: http://apps.cytoscape.org/apps/ptmoracle .
Collapse
Affiliation(s)
- Aidan P Tay
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Chi Nam Ignatius Pang
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Daniel L Winter
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
134
|
Murakami Y, Tripathi LP, Prathipati P, Mizuguchi K. Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery. Curr Opin Struct Biol 2017; 44:134-142. [PMID: 28364585 DOI: 10.1016/j.sbi.2017.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/05/2017] [Accepted: 02/23/2017] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions (PPIs) are vital to maintaining cellular homeostasis. Several PPI dysregulations have been implicated in the etiology of various diseases and hence PPIs have emerged as promising targets for drug discovery. Surface residues and hotspot residues at the interface of PPIs form the core regions, which play a key role in modulating cellular processes such as signal transduction and are used as starting points for drug design. In this review, we briefly discuss how PPI networks (PPINs) inferred from experimentally characterized PPI data have been utilized for knowledge discovery and how in silico approaches to PPI characterization can contribute to PPIN-based biological research. Next, we describe the principles of in silico PPI prediction and survey the existing PPI and PPI site prediction servers that are useful for drug discovery. Finally, we discuss the potential of in silico PPI prediction in drug discovery.
Collapse
Affiliation(s)
- Yoichi Murakami
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Lokesh P Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Philip Prathipati
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
135
|
Wang L, Huang X, Chai Y, Zou L, Chedrawe M, Ding Y. Octreotide inhibits the proliferation of gastric cancer cells through P300-HAT activity and the interaction of ZAC and P300. Oncol Rep 2017; 37:2041-2048. [PMID: 28260048 DOI: 10.3892/or.2017.5451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/28/2016] [Indexed: 11/06/2022] Open
Abstract
Somatostatin (SST) exhibits a wide range of physiological functions, including the regulation of tumor cell growth. Octreotide (OCT) is a synthetic analogue of SST that can be used to slow gastrointestinal bleeding, inhibit the release of growth hormone and impede gastrointestinal tumor growth. The aim of the present study was to investigate the molecular mechanism of OCT underlying the inhibition of gastric cancer cell proliferation. Proteins of interest were detected using western blotting, and the zinc finger protein (ZAC)-P300 complex was quantified using co-immunoprecipitation. P300-histone acetyltransferase (P300-HAT) activity was determined spectrophotometrically. The results showed that OCT decreased the phosphorylation of Akt which caused the level of ZAC to increase. In turn, the interaction between ZAC and P300 increased the activity of P300-HAT; ultimately, the phosphorylation of serine 10 in histone H3 (pS10-H3) was decreased and the acetylation of lysine 14 in histone H3 (acK14-H3) was increased. These results suggest that OCT attenuates SGC-7901 cell proliferation by enhancing P300-HAT activity through the interaction of ZAC and P300, causing a reduction in pS10-H3 and an increase in acK14-H3. These findings provide insight for future research on OCT and further demonstrate the potential of OCT to be used as a therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Liping Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xin Huang
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yurong Chai
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Liyang Zou
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Matthew Chedrawe
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yi Ding
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
136
|
Wright EJ, De Castro KP, Joshi AD, Elferink CJ. Canonical and non-canonical aryl hydrocarbon receptor signaling pathways. CURRENT OPINION IN TOXICOLOGY 2017; 2:87-92. [PMID: 32296737 DOI: 10.1016/j.cotox.2017.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Decades of research on the Aryl hydrocarbon Receptor (AhR) has unveiled its involvement in the toxicity of halogenated and polycyclic aromatic hydrocarbons, and a myriad of normal physiological processes. The molecular dissection of AhR biology has centered on a canonical signaling pathway in an effort to mechanistically reconcile the diverse pathophysiological effects of exposure to environmental pollutants. As a consequence, we now know that canonical signaling can explain many but not all of the AhR-mediated effects. Here we describe recent findings that point to non-canonical signaling pathways, and focus on a novel AhR interaction with the Krüppel-like Factor 6 protein responsible for previously un-recognized epigenetic changes in the chromatin affecting gene expression.
Collapse
Affiliation(s)
- Eric J Wright
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0654, USA
| | - Karen Pereira De Castro
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0654, USA
| | - Aditya D Joshi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0654, USA
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0654, USA
| |
Collapse
|
137
|
Abstract
Post-translational modifications (PTMs) are an important source of protein regulation; they fine-tune the function, localization, and interaction with other molecules of the majority of proteins and are partially responsible for their multifunctionality. Usually, proteins have several potential modification sites, and their patterns of occupancy are associated with certain functional states. These patterns imply cross talk among PTMs within and between proteins, the majority of which are still to be discovered. Several methods detect associations between PTMs; these have recently combined into a global resource, the PTMcode database, which contains already known and predicted functional associations between pairs of PTMs from more than 45,000 proteins in 19 eukaryotic species.
Collapse
Affiliation(s)
- Pablo Minguez
- Department of Genetics and Genomics, Instituto de Investigacion Sanitaria-University Hospital Fundacion Jimenez Diaz (IIS-FJD), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, 13125, Berlin, Germany
| |
Collapse
|
138
|
Ke M, Chu B, Lin L, Tian R. SH2 Domains as Affinity Reagents for Phosphotyrosine Protein Enrichment and Proteomic Analysis. Methods Mol Biol 2017; 1555:395-406. [PMID: 28092045 DOI: 10.1007/978-1-4939-6762-9_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dynamic tyrosine phosphorylation is a key molecular modulation for many signal transduction events. Because of their low abundance and dynamic nature in cells, the detection and enrichment of phosphotyrosine proteins has long relied on specific antibodies, such as 4G10 and P-Tyr-100. Another well-established approach for phosphotyrosine proteins recognition and enrichment is by their specific binding domains, such as Src homology 2 (SH2) domains. In this chapter, we describe a typical analytical approach for purifying specific SH2 domains, enriching specific phosphotyrosine proteins from activated cells, mass spectrometry analysis, and related data analysis.
Collapse
Affiliation(s)
- Mi Ke
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China
| | - Bizhu Chu
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China
| | - Lin Lin
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China
- Materials Characterization and Preparation Center, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China
| | - Ruijun Tian
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China.
- Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
139
|
Abstract
SH2 domains first shed light on the key role of modular binding domains in cell signaling. Much of what we now know about the logic and design principles underlying cell signaling mechanisms, and how such mechanisms might have evolved, can be traced back to early work on SH2 domains. Here we briefly outline several key concepts that emerged from such studies.
Collapse
Affiliation(s)
- Bruce J Mayer
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, USA.
| |
Collapse
|
140
|
Tape CJ, Jørgensen C. Cell-Specific Labeling for Analyzing Bidirectional Signaling by Mass Spectrometry. Methods Mol Biol 2017; 1636:219-234. [PMID: 28730482 DOI: 10.1007/978-1-4939-7154-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Cell-specific proteome labeling enables global proteome-wide analysis of cell signaling in heterotypic co-cultures. Such approaches have provided unique insight in contact-initiated receptor tyrosine kinase signaling, transfer of proteomic material between heterotypic cells, and interactions between normal and oncogenic cells. Here we describe current methods for cell-specific labeling of heterotypic cells with isotopic labeled amino acids (e.g., SILAC and CTAP). We outline the advantages and disadvantages of individual approaches, describe typical experimental scenarios, and discuss where each experimental approach is optimally applied.
Collapse
Affiliation(s)
- Christopher J Tape
- The Institute of Cancer Research, London, SW3 6JB, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Claus Jørgensen
- Systems Oncology, CRUK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4QL, UK.
| |
Collapse
|
141
|
Na Z, Pan S, Uttamchandani M, Yao SQ. Protein-Protein Interaction Inhibitors of BRCA1 Discovered Using Small Molecule Microarrays. Methods Mol Biol 2017; 1518:139-156. [PMID: 27873205 DOI: 10.1007/978-1-4939-6584-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microarray screening technology has transformed the life sciences arena over the last decade. The platform is widely used in the area of mapping interaction networks, to molecular fingerprinting and small molecular inhibitor discovery. The technique has significantly impacted both basic and applied research. The microarray platform can likewise enable high-throughput screening and discovery of protein-protein interaction (PPI) inhibitors. Herein we demonstrate the application of microarray-guided PPI inhibitor discovery, using human BRCA1 as an example. Mutations in BRCA1 have been implicated in ~50 % of hereditary breast cancers. By targeting the (BRCT)2 domain, we showed compound 15a and its prodrug 15b inhibited BRCA1 activities in tumor cells. Unlike previously reported peptide-based PPI inhibitors of BRCA1, the compounds identified could be directly administered to tumor cells, thus making them useful in targeting BRCA1/PARP-related pathways involved in DNA damage and repair response, for cancer therapy.
Collapse
Affiliation(s)
- Zhenkun Na
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Sijun Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Mahesh Uttamchandani
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Shao Q Yao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
142
|
Cifani P, Kentsis A. Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics 2016; 17. [PMID: 27775219 DOI: 10.1002/pmic.201600079] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022]
Abstract
Given superior analytical features, MS proteomics is well suited for the basic investigation and clinical diagnosis of human disease. Modern MS enables detailed functional characterization of the pathogenic biochemical processes, as achieved by accurate and comprehensive quantification of proteins and their regulatory chemical modifications. Here, we describe how high-accuracy MS in combination with high-resolution chromatographic separations can be leveraged to meet these analytical requirements in a mechanism-focused manner. We review the quantification methods capable of producing accurate measurements of protein abundance and posttranslational modification stoichiometries. We then discuss how experimental design and chromatographic resolution can be leveraged to achieve comprehensive functional characterization of biochemical processes in complex biological proteomes. Finally, we describe current approaches for quantitative analysis of a common functional protein modification: reversible phosphorylation. In all, current instrumentation and methods of high-resolution chromatography and MS proteomics are poised for immediate translation into improved diagnostic strategies for pediatric and adult diseases.
Collapse
Affiliation(s)
- Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pediatrics, Weill Cornell College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
143
|
Katsube A, Hayashi H, Kusuhara H. Pim-1L Protects Cell Surface–Resident ABCA1 From Lysosomal Degradation in Hepatocytes and Thereby Regulates Plasma High-Density Lipoprotein Level. Arterioscler Thromb Vasc Biol 2016; 36:2304-2314. [DOI: 10.1161/atvbaha.116.308472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 10/05/2016] [Indexed: 01/13/2023]
Abstract
Objective—
ATP-binding cassette transporter A1 (ABCA1) exerts an atheroprotective action through the biogenesis of high-density lipoprotein in hepatocytes and prevents the formation of foam cells from macrophages. Controlling ABCA1 is a rational approach to improving atherosclerotic cardiovascular disease. Although much is known about the regulatory mechanism of ABCA1 synthesis, the molecular mechanism underpinning its degradation remains to be clearly described.
Approach and Results—
ABCA1 possesses potential sites of phosphorylation by serine/threonine-protein kinase Pim-1 (Pim-1). Pim-1 depletion decreased the expression of cell surface–resident ABCA1 (csABCA1) and apolipoprotein A-I–mediated [
3
H]cholesterol efflux in the human hepatoma cell line HepG2, but not in peritoneal macrophages from mice. In vitro kinase assay, immunoprecipitation, and immunocytochemistry suggested phosphorylation of csABCA1 by the long form of Pim-1 (Pim-1L). Cell surface biotinylation indicated that Pim-1L inhibited lysosomal degradation of csABCA1 involving the liver X receptor β, which interacts with csABCA1 and thereby protects it from ubiquitination and subsequent lysosomal degradation. Cell surface coimmunoprecipitation with COS-1 cells expressing extracellularly hemagglutinin-tagged ABCA1 showed that Pim-1L–mediated phosphorylation of csABCA1 facilitated the interaction between csABCA1 and liver X receptor β and thereby stabilized the csABCA1–Pim-1L complex. Mice deficient in Pim-1 kinase activity showed lower expression of ABCA1 in liver plasma membranes and lower plasma high-density lipoprotein levels than control mice.
Conclusions—
Pim-1L protects hepatic csABCA1 from lysosomal degradation by facilitating the physical interaction between csABCA1 and liver X receptor β and subsequent stabilization of the csABCA1–Pim-1L complex and thereby regulates the circulating level of high-density lipoprotein. Our findings may aid the development of high-density lipoprotein–targeted therapy.
Collapse
Affiliation(s)
- Akira Katsube
- From the Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Hisamitsu Hayashi
- From the Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Hiroyuki Kusuhara
- From the Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| |
Collapse
|
144
|
Liu J, Chan KKJ, Chan W. Identification of Protein Thiazolidination as a Novel Molecular Signature for Oxidative Stress and Formaldehyde Exposure. Chem Res Toxicol 2016; 29:1865-1871. [DOI: 10.1021/acs.chemrestox.6b00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingjing Liu
- Environmental Science Programs and ‡Department of
Chemistry, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong
| | - K. K. Jason Chan
- Environmental Science Programs and ‡Department of
Chemistry, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Environmental Science Programs and ‡Department of
Chemistry, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong
| |
Collapse
|
145
|
Zheng H, He Y, Zhou X, Qian G, Lv G, Shen Y, Liu J, Li D, Li X, Liu W. Systematic Analysis of the Lysine Succinylome in Candida albicans. J Proteome Res 2016; 15:3793-3801. [PMID: 27605073 DOI: 10.1021/acs.jproteome.6b00578] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Candida albicans is the most common human fungal pathogen for both immunocompetent and immunocompromised individuals. Lysine succinylation is a frequently occurring post-translational modification that is found in many organisms; however, the role of succinylation is still under investigation. Here, we initiated a first screening of lysine succinylation in C. albicans. We identified 1550 succinylation sites from 389 proteins in C. albicans, demonstrating that succinylation is conservative in this organism. However, the lysine succinylation sites showed some difference in C. albicans, with the overlapping rates between C. albicans and other species ranging from 55% for Saccharomyces cerevisiae, 40% for human, 35% for mouse, and to only 16% for Escherichia coli. The further bioinformatics analysis indicated that the succinylated proteins were involved in a wide range of cellular functions with diverse subcellular localizations. Furthermore, we discovered that lysine succinylation could coexist with phosphorylation and/or acetylation in C. albicans. The KEGG enrichment pathway analysis of these succinylated proteins suggested that succinylation may play an indispensable role in the regulation of the tricarboxylic acid cycle. The bioinformatic data obtained from this study therefore enable the depth-resolved physiological roles of lysine succinylation in C. albicans.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing, Jiangsu 210042 People's Republic of China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs , Nanjing, Jiangsu 210042, People's Republic of China
| | - Yun He
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing, Jiangsu 210042 People's Republic of China
| | - Xiaowei Zhou
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing, Jiangsu 210042 People's Republic of China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs , Nanjing, Jiangsu 210042, People's Republic of China
| | - Guanyu Qian
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing, Jiangsu 210042 People's Republic of China
| | - Guixia Lv
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing, Jiangsu 210042 People's Republic of China
| | - Yongnian Shen
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing, Jiangsu 210042 People's Republic of China
| | - Jiyun Liu
- Jingjie PTM Biolab (Hangzhou) Co., Ltd. , Hangzhou, Zhejiang 310018, People's Republic of China
| | - Dongmei Li
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing, Jiangsu 210042 People's Republic of China.,Department of Microbiology & Immunology, Georgetown University Medical Center , Washington, D.C. 20057, United States
| | - Xiaofang Li
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing, Jiangsu 210042 People's Republic of China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs , Nanjing, Jiangsu 210042, People's Republic of China
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing, Jiangsu 210042 People's Republic of China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs , Nanjing, Jiangsu 210042, People's Republic of China
| |
Collapse
|
146
|
Basharat Z, Qazi SR, Yasmin A, Ali SA, Baig DN. Prediction of post translation modifications at the contact site between Anaplasma phagocytophilum and human host during autophagosome induction using a bioinformatic approach. Mol Cell Probes 2016; 31:76-84. [PMID: 27618775 DOI: 10.1016/j.mcp.2016.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
Autophagy is crucial for maintaining physiological homeostasis, but its role in infectious diseases is not yet adequately understood. The binding of Anaplasma translocated substrate-1 (ATS1) to the human Beclin1 (BECN1) protein is responsible for the modulation of autophagy pathway. ATS1-BECN1 is a novel type of interaction that facilitates Anaplasma phagocytophilum proliferation, leading to intracellular infection via autophagosome induction and segregation from the lysosome. Currently, there is no report of post translational modifications (PTMs) of BECN1 or cross-talk required for ATS-BECN1 complex formation. Prediction/modeling of the cross-talk between phosphorylation and other PTMs (O-β-glycosylation, sumoylation, methylation and palmitoylation) has been attempted in this study, which might be responsible for regulating function after the interaction of ATS1 with BECN1. PTMs were predicted computationally and mapped onto the interface of the docked ATS1-BECN1 complex. Results show that BECN1 phosphorylation at five residues (Thr91, Ser93, Ser96, Thr141 and Ser234), the interplay with O-β-glycosylation at three sites (Thr91, Ser93 and Ser96) with ATS1 may be crucial for attachment and, hence, infection. No other PTM site at the BECN1 interface was predicted to associate with ATS1. These findings may have significant clinical implications for understanding the etiology of Anaplasma infection and for therapeutic studies.
Collapse
Affiliation(s)
- Zarrin Basharat
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, 46000 Rawalpindi, Pakistan.
| | - Sarah Rizwan Qazi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, 46000 Rawalpindi, Pakistan
| | - Syed Aoun Ali
- Department of Biological Sciences, Forman Christian College (A Chartered University), 54600 Lahore, Pakistan
| | - Deeba Noreen Baig
- Department of Biological Sciences, Forman Christian College (A Chartered University), 54600 Lahore, Pakistan
| |
Collapse
|
147
|
Pedersen SW, Moran GE, Sereikaitė V, Haugaard-Kedström LM, Strømgaard K. Importance of a Conserved Lys/Arg Residue for Ligand/PDZ Domain Interactions as Examined by Protein Semisynthesis. Chembiochem 2016; 17:1936-1944. [DOI: 10.1002/cbic.201600322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Søren W. Pedersen
- Center for Biopharmaceuticals; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Griffin E. Moran
- Center for Biopharmaceuticals; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Vita Sereikaitė
- Center for Biopharmaceuticals; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Linda M. Haugaard-Kedström
- Center for Biopharmaceuticals; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
148
|
Groves B, Khakhar A, Nadel CM, Gardner RG, Seelig G. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination. eLife 2016; 5. [PMID: 27525484 PMCID: PMC5019841 DOI: 10.7554/elife.15200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/14/2016] [Indexed: 12/18/2022] Open
Abstract
Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form. DOI:http://dx.doi.org/10.7554/eLife.15200.001 Nature has evolved a number of ways to link signals from a cell’s environment, like the concentration of a hormone, to the behavior of that cell. These new connections often form by reusing certain common signaling components, such as mitogen-activated protein kinases. These enzymes – referred to as MAPKs for short – are activated by specific signals and alter the activity of target proteins in the cell by adding a phosphate group to them: a process called phosphorylation. These connections thus dictate how cells respond to their environments – and consequently, disruptions to the connections are a common source of disease. Groves, Khakhar et al. set out to understand how connections can be made between a MAPK and a new target protein to gain insights into how these links emerge through evolution and how they might break in disease. Their approach focused on one of the ways that phosphorylation can alter the activity of a target protein: marking it for degradation. Experiments with budding yeast showed that a MAPK could only achieve this if two conditions are met. First, the target protein and kinase need to bind to each other. Second, the target needs to contain a site that when phosphorylated is subsequently recognized by the cell’s protein degradation machinery. By engineering proteins so that they fulfilled these two criteria, Groves, Khakhar et al. created new connections between a yeast MAPK called Fus3 or a human MAPK called ERK2 and a variety of targets. The results showed that the parts of the proteins involved in the interaction step could be completely separate from the parts that are involved in the phosphorylation step. This suggests that connections between kinases and their targets can be rewired simple by mixing together parts of other existing proteins. Finally, Groves, Khakhar et al. confirmed that engineered connections between kinases and targets could predictably change how yeast cells responded to a hormone that normally controls the yeast’s reproductive cycle. Together these results bring us one step closer to understanding how cells assemble the signaling pathways that they use to process information. However further work is needed to see if these findings can be generalized to other signaling components, and if so, to explore if new connections can be built to yield more complicated cellular behaviors. DOI:http://dx.doi.org/10.7554/eLife.15200.002
Collapse
Affiliation(s)
- Benjamin Groves
- Department of Electrical Engineering, University of Washington, Seattle, United States
| | - Arjun Khakhar
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Cory M Nadel
- Department of Pharmacology, University of Washington, Seattle, United States
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, United States
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, United States.,Department of Computer Science and Engineering, University of Washington, Seattle, United States
| |
Collapse
|
149
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
150
|
Single-molecule sorting of DNA helicases. Methods 2016; 108:14-23. [PMID: 27223403 DOI: 10.1016/j.ymeth.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 11/22/2022] Open
Abstract
DNA helicases participate in virtually all aspects of cellular DNA metabolism by using ATP-fueled directional translocation along the DNA molecule to unwind DNA duplexes, dismantle nucleoprotein complexes, and remove non-canonical DNA structures. Post-translational modifications and helicase interacting partners are often viewed as determining factors in controlling the switch between bona fide helicase activity and other functions of the enzyme that do not involve duplex separation. The bottleneck in developing a mechanistic understanding of human helicases and their control by post-translational modifications is obtaining sufficient quantities of the modified helicase for traditional structure-functional analyses and biochemical reconstitutions. This limitation can be overcome by single-molecule analysis, where several hundred surface-tethered molecules are sufficient to obtain a complete kinetic and thermodynamic description of the helicase-mediated substrate binding and rearrangement. Synthetic oligonucleotides site-specifically labeled with Cy3 and Cy5 fluorophores can be used to create a variety of DNA substrates that can be used to characterize DNA binding, as well as helicase translocation and duplex unwinding activities. This chapter describes "single-molecule sorting", a robust experimental approach to simultaneously quantify, and distinguish the activities of helicases carrying their native post-translational modifications. Using this technique, a DNA helicase of interest can be produced and biotinylated in human cells to enable surface-tethering for the single-molecule studies by total internal reflection fluorescence microscopy. The pool of helicases extracted from the cells is expected to contain a mixture of post-translationally modified and unmodified enzymes, and the contributions from either population can be monitored separately, but in the same experiment providing a direct route to evaluating the effect of a given modification.
Collapse
|