101
|
Broderick NA. Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila-microbe interactions. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150295. [PMID: 27160597 PMCID: PMC4874392 DOI: 10.1098/rstb.2015.0295] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/07/2023] Open
Abstract
Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Nichole A Broderick
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
102
|
Kroer P, Kjeldsen KU, Nyengaard JR, Schramm A, Funch P. A Novel Extracellular Gut Symbiont in the Marine Worm Priapulus caudatus (Priapulida) Reveals an Alphaproteobacterial Symbiont Clade of the Ecdysozoa. Front Microbiol 2016; 7:539. [PMID: 27199899 PMCID: PMC4844607 DOI: 10.3389/fmicb.2016.00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022] Open
Abstract
Priapulus caudatus (phylum Priapulida) is a benthic marine predatory worm with a cosmopolitan distribution. In its digestive tract we detected symbiotic bacteria that were consistently present in specimens collected over 8 years from three sites at the Swedish west coast. Based on their 16S rRNA gene sequence, these symbionts comprise a novel genus of the order Rickettsiales (Alphaproteobacteria). Electron microscopy and fluorescence in situ hybridization (FISH) identified them as extracellular, elongate bacteria closely associated with the microvilli, for which we propose the name “Candidatus Tenuibacter priapulorum”. Within Rickettsiales, they form a phylogenetically well-defined, family-level clade with uncultured symbionts of marine, terrestrial, and freshwater arthropods. Cand. Tenuibacter priapulorum expands the host range of this candidate family from Arthropoda to the entire Ecdysozoa, which may indicate an evolutionary adaptation of this bacterial group to the microvilli-lined guts of the Ecdysozoa.
Collapse
Affiliation(s)
- Paul Kroer
- Section for Genetics, Ecology, and Evolution, Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Kasper U Kjeldsen
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Jens R Nyengaard
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Peter Funch
- Section for Genetics, Ecology, and Evolution, Department of Bioscience, Aarhus University Aarhus, Denmark
| |
Collapse
|
103
|
Schwartzman JA, Ruby EG. Stress as a Normal Cue in the Symbiotic Environment. Trends Microbiol 2016; 24:414-424. [PMID: 27004825 DOI: 10.1016/j.tim.2016.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
All multicellular hosts form associations with groups of microorganisms. These microbial communities can be taxonomically diverse and dynamic, and their persistence is due to robust, and sometimes coevolved, host-microbe and microbe-microbe interactions. Chemical and physical sources of stress are prominently situated in this molecular exchange, as cues for cellular responses in symbiotic microbes. Stress in the symbiotic environment may arise from three sources: host tissues, microbe-induced immune responses, or other microbes in the host environment. The responses of microbes to these stresses can be general or highly specialized, and collectively may contribute to the stability of the symbiotic system. In this review, we highlight recent work that emphasizes the role of stress as a cue in the symbiotic environment of plants and animals.
Collapse
Affiliation(s)
- Julia A Schwartzman
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Edward G Ruby
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA; Kewalo Marine Laboratory, University of Hawaii, Manoa, Honolulu, HI, USA
| |
Collapse
|
104
|
Zuo H, Yuan J, Chen Y, Li S, Su Z, Wei E, Li C, Weng S, Xu X, He J. A MicroRNA-Mediated Positive Feedback Regulatory Loop of the NF-κB Pathway in Litopenaeus vannamei. THE JOURNAL OF IMMUNOLOGY 2016; 196:3842-53. [DOI: 10.4049/jimmunol.1502358] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
|
105
|
Laughton AM, Garcia JR, Gerardo NM. Condition-dependent alteration of cellular immunity by secondary symbionts in the pea aphid, Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2016; 86:17-24. [PMID: 26699661 DOI: 10.1016/j.jinsphys.2015.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 06/05/2023]
Abstract
Endosymbionts can fundamentally alter host physiology. Whether such changes are beneficial or detrimental to one or both partners may depend on the dynamics of the symbiotic relationship. Here we investigate the relationship between facultative symbionts and host immune responses. The pea aphid, Acyrthosiphon pisum, maintains an obligate primary symbiont, but may also harbour one or more facultative, secondary symbionts. Given their more transient nature and relatively recent adoption of a symbiotic lifestyle compared to primary symbionts, secondary symbionts may present a challenge for the host immune system. We assessed the response of several key components of the cellular immune system (phenoloxidase activity, encapsulation, immune cell counts) in the presence of alternative secondary symbionts, investigating the role of host and secondary symbiont genotype in specific responses. There was no effect of secondary symbiont presence on the phenoloxidase response, but we found variation in the encapsulation response and in immune cell counts based largely on the secondary symbiont. Host genotype was less influential in determining immunity outcomes. Our results highlight the importance of secondary symbionts in shaping host immunity. Understanding the complex physiological responses that can be propagated by host-symbiont associations has important consequences for host ecology, including symbiont and pathogen transmission dynamics.
Collapse
Affiliation(s)
- Alice M Laughton
- Biology Department, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, GA 30322, USA; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Justine R Garcia
- Biology Department, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, GA 30322, USA; Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| | - Nicole M Gerardo
- Biology Department, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
106
|
Detree C, Chabenat A, Lallier FH, Satoh N, Shoguchi E, Tanguy A, Mary J. Multiple I-Type Lysozymes in the Hydrothermal Vent Mussel Bathymodiolus azoricus and Their Role in Symbiotic Plasticity. PLoS One 2016; 11:e0148988. [PMID: 26882089 PMCID: PMC4755537 DOI: 10.1371/journal.pone.0148988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was first to identify lysozymes paralogs in the deep sea mussel Bathymodiolus azoricus then to measure their relative expression or activity in different tissue or conditions. B. azoricus is a bivalve that lives close to hydrothermal chimney in the Mid-Atlantic Ridge (MAR). They harbour in specialized gill cells two types of endosymbiont (gram-bacteria): sulphide oxidizing bacteria (SOX) and methanotrophic bacteria (MOX). This association is thought to be ruled by specific mechanism or actors of regulation to deal with the presence of symbiont but these mechanisms are still poorly understood. Here, we focused on the implication of lysozyme, a bactericidal enzyme, in this endosymbiosis. The relative expression of Ba-lysozymes paralogs and the global anti-microbial activity, were measured in natural population (Lucky Strike--1700 m, Mid-Atlantic Ridge), and in in situ experimental conditions. B. azoricus individuals were moved away from the hydrothermal fluid to induce a loss of symbiont. Then after 6 days some mussels were brought back to the mussel bed to induce a re-acquisition of symbiotic bacteria. Results show the presence of 6 paralogs in B. azoricus. In absence of symbionts, 3 paralogs are up-regulated while others are not differentially expressed. Moreover the global activity of lysozyme is increasing with the loss of symbiont. All together these results suggest that lysozyme may play a crucial role in symbiont regulation.
Collapse
Affiliation(s)
- Camille Detree
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Apolline Chabenat
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
| | - François H. Lallier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Arnaud Tanguy
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Jean Mary
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
| |
Collapse
|
107
|
Lanan MC, Rodrigues PAP, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. ISME JOURNAL 2016; 10:1866-76. [PMID: 26872040 PMCID: PMC5029173 DOI: 10.1038/ismej.2015.264] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/04/2023]
Abstract
Associations with symbionts within the gut lumen of hosts are particularly prone to disruption due to the constant influx of ingested food and non-symbiotic microbes, yet we know little about how partner fidelity is maintained. Here we describe for the first time the existence of a gut morphological filter capable of protecting an animal gut microbiome from disruption. The proventriculus, a valve located between the crop and midgut of insects, functions as a micro-pore filter in the Sonoran Desert turtle ant (Cephalotes rohweri), blocking the entry of bacteria and particles ⩾0.2 μm into the midgut and hindgut while allowing passage of dissolved nutrients. Initial establishment of symbiotic gut bacteria occurs within the first few hours after pupation via oral–rectal trophallaxis, before the proventricular filter develops. Cephalotes ants are remarkable for having maintained a consistent core gut microbiome over evolutionary time and this partner fidelity is likely enabled by the proventricular filtering mechanism. In addition, the structure and function of the cephalotine proventriculus offers a new perspective on organismal resistance to pathogenic microbes, structuring of gut microbial communities, and development and maintenance of host–microbe fidelity both during the animal life cycle and over evolutionary time.
Collapse
Affiliation(s)
| | | | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Patricia Jansma
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
108
|
Wang M, Wang L, Guo Y, Yi Q, Song L. An LRR-only protein representing a new type of pattern recognition receptor in Chlamys farreri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:145-155. [PMID: 26385592 DOI: 10.1016/j.dci.2015.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Accumulating evidence has demonstrated that leucine-rich repeat (LRR)-only proteins could mediate protein-ligand and protein-protein interactions and were involved in the immune response. In the present study, an LRR-only protein (designed as CfLRRop-1) was cloned from Zhikong scallop Chlamys farreri. The complete cDNA sequence of CfLRRop-1 contained an open reading frame (ORF) of 1377 bp, which encoded a protein of 458 amino acids. An LRRNT motif, an LRR_7 motif and seven LRR motifs were found in the deduced amino acid sequence of CfLRRop-1. And these seven LRR motifs contained a conserved signature sequence LxxLxLxxNxL. The mRNA transcripts of CfLRRop-1 were constitutively expressed in all the tested tissues, including haemocytes, muscle, mantle, gill, hepatopancreas and gonad, with the highest expression level in hepatopancreas. After the stimulation of lipopolysaccharide (LPS), peptidoglycan (PGN), glucan (GLU) and polyinosinic-polycytidylic acid (poly I:C), the mRNA transcripts of CfLRRop-1 in haemocytes all increased firstly within the first 6 h and secondly during 12-24 h post stimulation. The mRNA expression level of CfLRRop-1 was continuously up-regulated, after the expression of CfTLR (previously identified Toll-like receptor in C. farreri) was suppressed via RNA interference (RNAi). The recombinant CfLRRop-1 protein could directly bind LPS, PGN, GLU and poly I:C, and induce the release of TNF-α in mixed primary cultured scallop haemocytes. These results collectively indicated that CfLRRop-1 would function as a powerful pattern recognition receptor (PRR) and play a pivotal role in the immune response of scallops.
Collapse
Affiliation(s)
- Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Ying Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Qilin Yi
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
109
|
Schwartzman JA, Ruby EG. A conserved chemical dialog of mutualism: lessons from squid and vibrio. Microbes Infect 2016; 18:1-10. [PMID: 26384815 PMCID: PMC4715918 DOI: 10.1016/j.micinf.2015.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/18/2022]
Abstract
Microorganisms shape, and are shaped by, their environment. In host-microbe associations, this environment is defined by tissue chemistry, which reflects local and organism-wide physiology, as well as inflammatory status. We review how, in the squid-vibrio mutualism, both partners shape tissue chemistry, revealing common themes governing tissue homeostasis in animal-microbe associations.
Collapse
Affiliation(s)
- Julia A Schwartzman
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Edward G Ruby
- Kewalo Marine Laboratory, University of Hawaii, Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
110
|
Tasiemski A, Massol F, Cuvillier-Hot V, Boidin-Wichlacz C, Roger E, Rodet F, Fournier I, Thomas F, Salzet M. Reciprocal immune benefit based on complementary production of antibiotics by the leech Hirudo verbana and its gut symbiont Aeromonas veronii. Sci Rep 2015; 5:17498. [PMID: 26635240 PMCID: PMC4669451 DOI: 10.1038/srep17498] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023] Open
Abstract
The medicinal leech has established a long-term mutualistic association with Aeromonas veronii, a versatile bacterium which can also display free-living waterborne and fish- or human-pathogenic lifestyles. Here, we investigated the role of antibiotics in the dynamics of interaction between the leech and its gut symbiont Aeromonas. By combining biochemical and molecular approaches, we isolated and identified for the first time the antimicrobial peptides (AMPs) produced by the leech digestive tract and by its symbiont Aeromonas. Immunohistochemistry data and PCR analyses evidenced that leech AMP genes are induced in the gut epithelial cells when Aeromonas load is low (starved animals), while repressed when Aeromonas abundance is the highest (post blood feeding). The asynchronous production of AMPs by both partners suggests that these antibiotic substances (i) provide them with reciprocal protection against invasive bacteria and (ii) contribute to the unusual simplicity of the gut microflora of the leech. This immune benefit substantially reinforces the evidence of an evolutionarily stable association between H. verbana and A. veronii. Altogether these data may provide insights into the processes making the association with an Aeromonas species in the digestive tract either deleterious or beneficial.
Collapse
Affiliation(s)
- Aurélie Tasiemski
- Univ. Lille, Unité Evolution, Ecologie et Paléontologie (EEP), CNRS UMR 8198, F-59 000 Lille, France
| | - François Massol
- Univ. Lille, Unité Evolution, Ecologie et Paléontologie (EEP), CNRS UMR 8198, F-59 000 Lille, France
| | - Virginie Cuvillier-Hot
- Univ. Lille, Unité Evolution, Ecologie et Paléontologie (EEP), CNRS UMR 8198, F-59 000 Lille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, Unité Evolution, Ecologie et Paléontologie (EEP), CNRS UMR 8198, F-59 000 Lille, France
| | - Emmanuel Roger
- Univ. Lille, Centre d'infections et d'immunité de Lille, CNRS UMR 8204, INSERM U 1019, F-59 000 Lille, France
| | - Franck Rodet
- Univ. Lille, Unité Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), INSERM U 1192, F-59 000 Lille, France
| | - Isabelle Fournier
- Univ. Lille, Unité Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), INSERM U 1192, F-59 000 Lille, France
| | - Frédéric Thomas
- MIVEGEC, UMR IRD/CNRS/UM5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Michel Salzet
- Univ. Lille, Unité Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), INSERM U 1192, F-59 000 Lille, France
| |
Collapse
|
111
|
Cornet V, Henry J, Corre E, Le Corguillé G, Zatylny-Gaudin C. The Toll/NF-κB pathway in cuttlefish symbiotic accessory nidamental gland. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:42-46. [PMID: 26143243 DOI: 10.1016/j.dci.2015.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
The female genital apparatus of decapod cephalopods contains a symbiotic accessory nidamental gland (ANG) that harbors bacterial symbionts. Although the ANG bacterial consortium is now well described, the impact of symbiosis on Sepia officinalis innate immunity pathways remains unknown. In silico analysis of the de novo transcriptome of ANG highlighted for the first time the existence of the NF-κB pathway in S. officinalis. Several signaling components were identified, i.e. five Toll-like receptors, eight signaling cascade features, and the immune response target gene iNOS, previously described as being involved in the initiation of bacterial symbiosis in a cephalopod gland. This work provides a first key for studying bacterial symbiosis and its impact on innate immunity in S. officinalis ANG.
Collapse
Affiliation(s)
- Valérie Cornet
- Université de Caen Basse-Normandie, F-14032 Caen, France; UMR 7208 BOREA CNRS INEE, F-14032 Caen, France
| | - Joël Henry
- Université de Caen Basse-Normandie, F-14032 Caen, France; UMR 7208 BOREA CNRS INEE, F-14032 Caen, France; Plateforme Post-génomique PROTEOGEN, F-14032 Caen, France
| | - Erwan Corre
- Plateforme ABiMS, Station biologique de Roscoff (UPMC-CNRS), F-29688 Roscoff, France
| | - Gildas Le Corguillé
- Plateforme ABiMS, Station biologique de Roscoff (UPMC-CNRS), F-29688 Roscoff, France
| | - Céline Zatylny-Gaudin
- Université de Caen Basse-Normandie, F-14032 Caen, France; UMR 7208 BOREA CNRS INEE, F-14032 Caen, France.
| |
Collapse
|
112
|
Kisseleva EP. Innate immunity underlies symbiotic relationships. BIOCHEMISTRY (MOSCOW) 2015; 79:1273-85. [PMID: 25716721 DOI: 10.1134/s0006297914120013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, the modern data regarding interactions between normal microbiota and barrier tissues in plants, humans and animals are reviewed. The main homeostatic mechanisms responsible for interactions between epithelium and innate immune cells with symbiotic bacteria are described. A key step in this process is recognition of soluble microbial products by ligation to pattern-recognition receptors expressed on the host cells. As a result, epithelial cells secrete mucus, antibacterial peptides and immunoregulatory molecules. The main outcomes from immunological reactions towards symbiotic bacteria involve development of conditions for formation and maintenance of microbial biocenosis as well as providing safety for the host. Also, it is considered important to preserve and transfer beneficial bacteria to progeny.
Collapse
Affiliation(s)
- E P Kisseleva
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, 197376, Russia.
| |
Collapse
|
113
|
Corcos D. Food-Nonfood Discrimination in Ancestral Vertebrates: Gamete Cannibalism and the Origin of the Adaptive Immune System. Scand J Immunol 2015; 82:409-17. [PMID: 26286030 DOI: 10.1111/sji.12348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023]
Abstract
Adaptive immunity is a complex system that appeared twice in vertebrates (in gnathostomes and in jawless fish) although it is not required for invertebrate defence. The adaptive immune system is tightly associated with self-non-self discrimination, and it is now clear that this interplay is not limited to the prevention of autoreactivity. Micro-organisms are usually considered for their pathogenicity or symbiotic ability, but, for most small metazoans, they mainly constitute food. Vertebrates are characterized by feeding by predation on larger preys, when compared to their ancestors who were filter feeders and ate micro-organisms. Predation gives a strong selective advantage, not only due to the availability of new food resources but also by the ability to eliminate competitors for environmental resources (intraguild predation (IGP)). Unlike size-structured IGP, intraspecific predation of juveniles, zygotes or gametes can be detrimental for species fitness in some circumstances. The ability of individuals to recognize highly polymorphic molecules on the surface of gametes present in the plankton and so distinguish self versus non-self gametes might have constituted a strong selective advantage in intraspecific competition. Here, I propose the theory that the capacity to rearrange receptors has been selected in ancestral vertebrates as a consequence of this strong need for discriminating between hetero-cannibalism versus filial cannibalism. This evolutionary origin sheds light on presently unexplained features of the immune system, including the existence of regulatory T cells and of non-pathogenic natural autoimmunity.
Collapse
Affiliation(s)
- D Corcos
- U1021 INSERM, Institut Curie, Centre National de la Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de Recherche Médicale (INSERM) U1021, Université Paris-Sud 11, Centre Universitaire, Orsay, France
| |
Collapse
|
114
|
Mehr S, Verdes A, DeSalle R, Sparks J, Pieribone V, Gruber DF. Transcriptome sequencing and annotation of the polychaete Hermodice carunculata (Annelida, Amphinomidae). BMC Genomics 2015; 16:445. [PMID: 26059236 PMCID: PMC4462082 DOI: 10.1186/s12864-015-1565-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background The amphinomid polychaete Hermodice carunculata is a cosmopolitan and ecologically important omnivore in coral reef ecosystems, preying on a diverse suite of reef organisms and potentially acting as a vector for coral disease. While amphinomids are a key group for determining the root of the Annelida, their phylogenetic position has been difficult to resolve, and their publically available genomic data was scarce. Results We performed deep transcriptome sequencing (Illumina HiSeq) and profiling on Hermodice carunculata collected in the Western Atlantic Ocean. We focused this study on 58,454 predicted Open Reading Frames (ORFs) of genes longer than 200 amino acids for our homology search, and Gene Ontology (GO) terms and InterPro IDs were assigned to 32,500 of these ORFs. We used this de novo assembled transcriptome to recover major signaling pathways and housekeeping genes. We also identify a suite of H. carunculata genes related to reproduction and immune response. Conclusions We provide a comprehensive catalogue of annotated genes for Hermodice carunculata and expand the knowledge of reproduction and immune response genes in annelids, in general. Overall, this study vastly expands the available genomic data for H. carunculata, of which previously consisted of only 279 nucleotide sequences in NCBI. This underscores the utility of Illumina sequencing for de novo transcriptome assembly in non-model organisms as a cost-effective and efficient tool for gene discovery and downstream applications, such as phylogenetic analysis and gene expression profiling. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1565-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaadi Mehr
- Biological Science Department, State University of New York, College at Old Westbury, Old Westbury, NY, 11568, USA. .,American Museum of Natural History, Sackler Institute for Comparative Genomics, Central Park W at 79th St, New York, NY, 10024, USA.
| | - Aida Verdes
- Baruch College and The Graduate Center, Department of Natural Sciences, City University of New York, New York, NY, 10010, USA.
| | - Rob DeSalle
- American Museum of Natural History, Sackler Institute for Comparative Genomics, Central Park W at 79th St, New York, NY, 10024, USA.
| | - John Sparks
- American Museum of Natural History, Sackler Institute for Comparative Genomics, Central Park W at 79th St, New York, NY, 10024, USA. .,American Museum of Natural History, Department of Ichthyology, American Museum of Natural History, Division of Vertebrate Zoology, New York, NY, 10024, USA.
| | - Vincent Pieribone
- John B. Pierce Laboratory, Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA.
| | - David F Gruber
- American Museum of Natural History, Sackler Institute for Comparative Genomics, Central Park W at 79th St, New York, NY, 10024, USA. .,Baruch College and The Graduate Center, Department of Natural Sciences, City University of New York, New York, NY, 10010, USA.
| |
Collapse
|
115
|
Wernegreen JJ. Endosymbiont evolution: predictions from theory and surprises from genomes. Ann N Y Acad Sci 2015; 1360:16-35. [PMID: 25866055 DOI: 10.1111/nyas.12740] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/27/2015] [Accepted: 02/11/2015] [Indexed: 10/23/2022]
Abstract
Genome data have created new opportunities to untangle evolutionary processes shaping microbial variation. Among bacteria, long-term mutualists of insects represent the smallest and (typically) most AT-rich genomes. Evolutionary theory provides a context to predict how an endosymbiotic lifestyle may alter fundamental evolutionary processes--mutation, selection, genetic drift, and recombination--and thus contribute to extreme genomic outcomes. These predictions can then be explored by comparing evolutionary rates, genome size and stability, and base compositional biases across endosymbiotic and free-living bacteria. Recent surprises from such comparisons include genome reduction among uncultured, free-living species. Some studies suggest that selection generally drives this streamlining, while drift drives genome reduction in endosymbionts; however, this remains an hypothesis requiring additional data. Unexpected evidence of selection acting on endosymbiont GC content hints that even weak selection may be effective in some long-term mutualists. Moving forward, intraspecific analysis offers a promising approach to distinguish underlying mechanisms, by testing the null hypothesis of neutrality and by quantifying mutational spectra. Such analyses may clarify whether endosymbionts and free-living bacteria occupy distinct evolutionary trajectories or, alternatively, represent varied outcomes of similar underlying forces.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Nicholas School of the Environment and Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| |
Collapse
|
116
|
Pinheiro PV, Kliot A, Ghanim M, Cilia M. Is there a role for symbiotic bacteria in plant virus transmission by insects? CURRENT OPINION IN INSECT SCIENCE 2015; 8:69-78. [PMID: 32846684 DOI: 10.1016/j.cois.2015.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 06/11/2023]
Abstract
During the process of circulative plant virus transmission by insect vectors, viruses interact with different insect vector tissues prior to transmission to a new host plant. An area of intense debate in the field is whether bacterial symbionts of insect vectors are involved in the virus transmission process. We critically review the literature in this area and present a simple model that can be used to quantitatively settle the debate. The simple model determines whether the symbiont is involved in virus transmission and determines what fraction of the pathogen transmission phenotype is contributed by the symbiont. The model is general and can be applied to any vector-pathogen-symbiont interactions.
Collapse
Affiliation(s)
- Patricia V Pinheiro
- Department of Entomology, Cornell University, Ithaca, NY 14853, United States; Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, United States; Embrapa Rice and Beans, Santo Antônio de Goiás 75375-000, Brazil
| | - Adi Kliot
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, United States; Department of Entomology, Volcani Center, Bet Dagan 50250, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Bet Dagan 50250, Israel
| | - Michelle Cilia
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, United States; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, United States; Agricultural Research Service, Biological Integrated Pest Management Research Unit, Ithaca, NY 14853, United States.
| |
Collapse
|
117
|
Salazar KA, Joffe NR, Dinguirard N, Houde P, Castillo MG. Transcriptome analysis of the white body of the squid Euprymna tasmanica with emphasis on immune and hematopoietic gene discovery. PLoS One 2015; 10:e0119949. [PMID: 25775132 PMCID: PMC4361686 DOI: 10.1371/journal.pone.0119949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/27/2015] [Indexed: 02/07/2023] Open
Abstract
In the mutualistic relationship between the squid Euprymna tasmanica and the bioluminescent bacterium Vibrio fischeri, several host factors, including immune-related proteins, are known to interact and respond specifically and exclusively to the presence of the symbiont. In squid and octopus, the white body is considered to be an immune organ mainly due to the fact that blood cells, or hemocytes, are known to be present in high numbers and in different developmental stages. Hence, the white body has been described as the site of hematopoiesis in cephalopods. However, to our knowledge, there are no studies showing any molecular evidence of such functions. In this study, we performed a transcriptomic analysis of white body tissue of the Southern dumpling squid, E. tasmanica. Our primary goal was to gain insights into the functions of this tissue and to test for the presence of gene transcripts associated with hematopoietic and immune processes. Several hematopoiesis genes including CPSF1, GATA 2, TFIID, and FGFR2 were found to be expressed in the white body. In addition, transcripts associated with immune-related signal transduction pathways, such as the toll-like receptor/NF-κβ, and MAPK pathways were also found, as well as other immune genes previously identified in E. tasmanica's sister species, E. scolopes. This study is the first to analyze an immune organ within cephalopods, and to provide gene expression data supporting the white body as a hematopoietic tissue.
Collapse
Affiliation(s)
- Karla A. Salazar
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Nina R. Joffe
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Nathalie Dinguirard
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Maria G. Castillo
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
118
|
Hauton C, Hudspith M, Gunton L. Future prospects for prophylactic immune stimulation in crustacean aquaculture - the need for improved metadata to address immune system complexity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:360-368. [PMID: 24796867 DOI: 10.1016/j.dci.2014.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
Future expansion of the crustacean aquaculture industry will be required to ensure global food security. However, this expansion must ensure: (a) that natural resources (including habitat use and fish meal) are sustainably exploited, (b) that the socio-economic development of producing nations is safeguarded, and (c) that the challenge presented by crustacean diseases is adequately met. Conventionally, the problem of disease in crustacean aquaculture has been addressed through prophylactic administration of stimulants, additives or probiotics. However, these approaches have been questioned both experimentally and philosophically. In this review, we argue that real progress in the field of crustacean immune stimulants has now slowed, with only incremental advances now being made. We further contend that an overt focus on the immune effector response has been misguided. In light of the wealth of new data reporting immune system complexity, a more refined approach is necessary - one that must consider the important role played by pattern recognition proteins. In support of this more refined approach, there is now a much greater requirement for the reporting of essential metadata. We propose a broad series of recommendations regarding the 'Minimum Information required to support a Stimulant Assessment experiment' (MISA guidelines) to foster new progression within the field.
Collapse
Affiliation(s)
- Chris Hauton
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, Hants SO14 3ZH, UK.
| | - Meggie Hudspith
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, Hants SO14 3ZH, UK
| | - Laetitia Gunton
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, Hants SO14 3ZH, UK
| |
Collapse
|
119
|
Barros I, Divya B, Martins I, Vandeperre F, Santos RS, Bettencourt R. Post-capture immune gene expression studies in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus acclimatized to atmospheric pressure. FISH & SHELLFISH IMMUNOLOGY 2015; 42:159-170. [PMID: 25462464 DOI: 10.1016/j.fsi.2014.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Deep-sea hydrothermal vents are extreme habitats that are distributed worldwide in association with volcanic and tectonic events, resulting thus in the establishment of particular environmental conditions, in which high pressure, steep temperature gradients, and potentially toxic concentrations of sulfur, methane and heavy metals constitute driving factors for the foundation of chemosynthetic-based ecosystems. Of all the different macroorganisms found at deep-sea hydrothermal vents, the mussel Bathymodiolus azoricus is the most abundant species inhabiting the vent ecosystems from the Mid-Atlantic Ridge (MAR). In the present study, the effect of long term acclimatization at atmospheric pressure on host-symbiotic associations were studied in light of the ensuing physiological adaptations from which the immune and endosymbiont gene expressions were concomitantly quantified by means of real-time PCR. The expression of immune genes at 0 h, 12 h, 24 h, 36 h, 48 h, 72 h, 1 week and 3 weeks post-capture acclimatization was investigated and their profiles compared across the samples tested. The gene signal distribution for host immune and bacterial genes followed phasic changes in gene expression at 24 h, 1 week and 3 weeks acclimatization when compared to other time points tested during this temporal expression study. Analyses of the bacterial gene expression also suggested that both bacterial density and activity could contribute to shaping the intricate association between endosymbionts and host immune genes whose expression patterns seem to be concomitant at 1 week acclimatization. Fluorescence in situ hybridization was used to assess the distribution and prevalence of endosymbiont bacteria within gill tissues confirming the gradual loss of sulfur-oxidizing (SOX) and methane-oxidizing (MOX) bacteria during acclimatization. The present study addresses the deep-sea vent mussel B. azoricus as a model organism to study how acclimatization in aquaria and the prevalence of symbiotic bacteria are driving the expression of host immune genes. Tight associations, unseen thus far, suggest that host immune and bacterial gene expression patterns reflect distinct physiological responses over the course of acclimatization under aquarium conditions.
Collapse
Affiliation(s)
- Inês Barros
- Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal; IMAR-Center of the University of the Azores, LARSyS Associate Laboratory, 9901-862 Horta, Portugal
| | - Baby Divya
- The National Institute of Oceanography (NIO) Dona Paula, Biological Oceanography Division, 403 004 Goa, India
| | - Inês Martins
- IMAR-Center of the University of the Azores, LARSyS Associate Laboratory, 9901-862 Horta, Portugal
| | - Frederic Vandeperre
- Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal; IMAR-Center of the University of the Azores, LARSyS Associate Laboratory, 9901-862 Horta, Portugal
| | - Ricardo Serrão Santos
- Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal; IMAR-Center of the University of the Azores, LARSyS Associate Laboratory, 9901-862 Horta, Portugal
| | - Raul Bettencourt
- IMAR-Center of the University of the Azores, LARSyS Associate Laboratory, 9901-862 Horta, Portugal; MARE-Marine and Environmental Science Center, University of the Azores, 9901-862 Horta, Azores, Portugal.
| |
Collapse
|
120
|
Dishaw LJ, Cannon JP, Litman GW, Parker W. Immune-directed support of rich microbial communities in the gut has ancient roots. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:36-51. [PMID: 24984114 PMCID: PMC4146740 DOI: 10.1016/j.dci.2014.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/30/2014] [Accepted: 06/21/2014] [Indexed: 05/12/2023]
Abstract
The animal gut serves as a primary location for the complex host-microbe interplay that is essential for homeostasis and may also reflect the types of ancient selective pressures that spawned the emergence of immunity in metazoans. In this review, we present a phylogenetic survey of gut host-microbe interactions and suggest that host defense systems arose not only to protect tissue directly from pathogenic attack but also to actively support growth of specific communities of mutualists. This functional dichotomy resulted in the evolution of immune systems much more tuned for harmonious existence with microbes than previously thought, existing as dynamic but primarily cooperative entities in the present day. We further present the protochordate Ciona intestinalis as a promising model for studying gut host-bacterial dialogue. The taxonomic position, gut physiology and experimental tractability of Ciona offer unique advantages in dissecting host-microbe interplay and can complement studies in other model systems.
Collapse
Affiliation(s)
- Larry J Dishaw
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA.
| | - John P Cannon
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA; Department of Molecular Genetics, All Children's Hospital-Johns Hopkins Medicine, 501 6th Avenue South, St. Petersburg, FL 33701, USA
| | - William Parker
- Department of Surgery, Duke University Medical Center, Box 2605, Durham, NC 27710, USA
| |
Collapse
|
121
|
Grasis JA, Lachnit T, Anton-Erxleben F, Lim YW, Schmieder R, Fraune S, Franzenburg S, Insua S, Machado G, Haynes M, Little M, Kimble R, Rosenstiel P, Rohwer FL, Bosch TCG. Species-specific viromes in the ancestral holobiont Hydra. PLoS One 2014; 9:e109952. [PMID: 25343582 PMCID: PMC4208763 DOI: 10.1371/journal.pone.0109952] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/13/2014] [Indexed: 12/24/2022] Open
Abstract
Recent evidence showing host specificity of colonizing bacteria supports the view that multicellular organisms are holobionts comprised of the macroscopic host in synergistic interdependence with a heterogeneous and host-specific microbial community. Whereas host-bacteria interactions have been extensively investigated, comparatively little is known about host-virus interactions and viral contribution to the holobiont. We sought to determine the viral communities associating with different Hydra species, whether these viral communities were altered with environmental stress, and whether these viruses affect the Hydra-associated holobiont. Here we show that each species of Hydra harbors a diverse host-associated virome. Primary viral families associated with Hydra are Myoviridae, Siphoviridae, Inoviridae, and Herpesviridae. Most Hydra-associated viruses are bacteriophages, a reflection of their involvement in the holobiont. Changes in environmental conditions alter the associated virome, increase viral diversity, and affect the metabolism of the holobiont. The specificity and dynamics of the virome point to potential viral involvement in regulating microbial associations in the Hydra holobiont. While viruses are generally regarded as pathogenic agents, our study suggests an evolutionary conserved ability of viruses to function as holobiont regulators and, therefore, constitutes an emerging paradigm shift in host-microbe interactions.
Collapse
Affiliation(s)
- Juris A. Grasis
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
- * E-mail:
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | | | - Yan Wei Lim
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Robert Schmieder
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Sebastian Fraune
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Sören Franzenburg
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Santiago Insua
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - GloriaMay Machado
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Matthew Haynes
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Mark Little
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Robert Kimble
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Forest L. Rohwer
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
122
|
|
123
|
Villegas LM, Pimenta PFP. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem Inst Oswaldo Cruz 2014; 109:672-84. [PMID: 25185007 PMCID: PMC4156461 DOI: 10.1590/0074-0276140194] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/28/2014] [Indexed: 12/18/2022] Open
Abstract
Anophelines harbour a diverse microbial consortium that may represent an extended gene pool for the host. The proposed effects of the insect microbiota span physiological, metabolic and immune processes. Here we synthesise how current metagenomic tools combined with classical culture-dependent techniques provide new insights in the elucidation of the role of the Anopheles-associated microbiota. Many proposed malaria control strategies have been based upon the immunomodulating effects that the bacterial components of the microbiota appear to exert and their ability to express anti-Plasmodium peptides. The number of identified bacterial taxa has increased in the current "omics" era and the available data are mostly scattered or in "tables" that are difficult to exploit. Published microbiota reports for multiple anopheline species were compiled in an Excel® spreadsheet. We then filtered the microbiota data using a continent-oriented criterion and generated a visual correlation showing the exclusive and shared bacterial genera among four continents. The data suggested the existence of a core group of bacteria associated in a stable manner with their anopheline hosts. However, the lack of data from Neotropical vectors may reduce the possibility of defining the core microbiota and understanding the mosquito-bacteria interactive consortium.
Collapse
|
124
|
Schleicher TR, VerBerkmoes NC, Shah M, Nyholm SV. Colonization state influences the hemocyte proteome in a beneficial squid-Vibrio symbiosis. Mol Cell Proteomics 2014; 13:2673-86. [PMID: 25038065 DOI: 10.1074/mcp.m113.037259] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The squid Euprymna scolopes and the luminescent bacterium Vibrio fischeri form a highly specific beneficial light organ symbiosis. Not only does the host have to select V. fischeri from the environment, but it must also prevent subsequent colonization by non-symbiotic microorganisms. Host macrophage-like hemocytes are believed to play a role in mediating the symbiosis with V. fischeri. Previous studies have shown that the colonization state of the light organ influences the host's hemocyte response to the symbiont. To further understand the molecular mechanisms behind this process, we used two quantitative mass-spectrometry-based proteomic techniques, isobaric tags for relative and absolute quantification (iTRAQ) and label-free spectral counting, to compare and quantify the adult hemocyte proteomes from colonized (sym) and uncolonized (antibiotic-treated/cured) squid. Overall, iTRAQ allowed for the quantification of 1,024 proteins with two or more peptides. Thirty-seven unique proteins were determined to be significantly different between sym and cured hemocytes (p value < 0.05), with 20 more abundant proteins and 17 less abundant in sym hemocytes. The label-free approach resulted in 1,241 proteins that were identified in all replicates. Of 185 unique proteins present at significantly different amounts in sym hemocytes (as determined by spectral counting), 92 were more abundant and 93 were less abundant. Comparisons between iTRAQ and spectral counting revealed that 30 of the 37 proteins quantified via iTRAQ exhibited trends similar to those identified by the label-free method. Both proteomic techniques mutually identified 16 proteins that were significantly different between the two groups of hemocytes (p value < 0.05). The presence of V. fischeri in the host light organ influenced the abundance of proteins associated with the cytoskeleton, adhesion, lysosomes, proteolysis, and the innate immune response. These data provide evidence that colonization by V. fischeri alters the hemocyte proteome and reveals proteins that may be important for maintaining host-symbiont specificity.
Collapse
Affiliation(s)
- Tyler R Schleicher
- From the ‡Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06269
| | - Nathan C VerBerkmoes
- §Chemical Biology Division, New England Biolabs Inc., Ipswich, Massachusetts, 01938
| | - Manesh Shah
- ‖Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Spencer V Nyholm
- From the ‡Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06269;
| |
Collapse
|
125
|
A single genus in the gut microbiome reflects host preference and specificity. ISME JOURNAL 2014; 9:90-100. [PMID: 24936765 PMCID: PMC4274434 DOI: 10.1038/ismej.2014.97] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/22/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
Delineating differences in gut microbiomes of human and animal hosts contributes towards understanding human health and enables new strategies for detecting reservoirs of waterborne human pathogens. We focused upon Blautia, a single microbial genus that is important for nutrient assimilation as preliminary work suggested host-related patterns within members of this genus. In our dataset of 57 M sequence reads of the V6 region of the 16S ribosomal RNA gene in samples collected from seven host species, we identified 200 high-resolution taxonomic units within Blautia using oligotyping. Our analysis revealed 13 host-specific oligotypes that occurred exclusively in fecal samples of humans (three oligotypes), swine (six oligotypes), cows (one oligotype), deer (one oligotype), or chickens (two oligotypes). We identified an additional 171 oligotypes that exhibited differential abundance patterns among all the host species. Blautia oligotypes in the human population obtained from sewage and fecal samples displayed remarkable continuity. Oligotypes from only 10 Brazilian human fecal samples collected from individuals in a rural village encompassed 97% of all Blautia oligotypes found in a Brazilian sewage sample from a city of three million people. Further, 75% of the oligotypes in Brazilian human fecal samples matched those in US sewage samples, implying that a universal set of Blautia strains may be shared among culturally and geographically distinct human populations. Such strains can serve as universal markers to assess human fecal contamination in environmental samples. Our results indicate that host-specificity and host-preference patterns of organisms within this genus are driven by host physiology more than dietary habits.
Collapse
|
126
|
Characterization of the digestive tract microbiota of Hirudo orientalis (medicinal leech) and antibiotic resistance profile. Plast Reconstr Surg 2014; 133:408e-418e. [PMID: 24572887 DOI: 10.1097/01.prs.0000438461.06217.bb] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND There are at least three distinct European leech species used medicinally: Hirudo medicinalis, H. orientalis, and H. verbana. Infection caused by leech microbiota is the most widely reported complication. Few studies have reported the culturable and unculturable bacteria and examined the antibiotic resistances in H. orientalis. METHODS Following stratified random sampling from a major worldwide leech supplier, Hirudo orientalis leeches were identified by visual comparison and amplification and sequencing the cox1 locus. Combined culture and culture-independent approaches were used to characterize the microbiota of the midgut, and bacterial gyrB sequences from distinct colonies were used to identify the Aeromonas isolates. Nonculturable studies involved clone libraries of 16S rRNA genes, and Etests were used to investigate antibiotic sensitivities. RESULTS Analysis of 16S rRNA gene clone libraries revealed the presence of several species in the intraluminal fluid of the crop, including a new finding of Morganella morganii, with Rikenella-like (35 percent) and Aeromonas veronii (38 percent) dominant members. The intestinum contained bacteria not previously isolated from the leech: Magnetospirillium species and Roseospira marina. Etests showed all A. veronii isolates were sensitive to ciprofloxacin, with either a complete or intermediate resistance to Augmentin. CONCLUSIONS The authors show diverse microbiota in the leech digestive tract. The pathogenic potential of the additional gut symbionts isolated in this study is yet to be elucidated; however, M. morganii, which is a known human pathogen, is a new finding. In addition to adding to the knowledge base regarding antibiotic sensitivities, this article serves as an update to the reconstructive surgeon regarding leech therapy.
Collapse
|
127
|
Maltz MA, Bomar L, Lapierre P, Morrison HG, McClure EA, Sogin ML, Graf J. Metagenomic analysis of the medicinal leech gut microbiota. Front Microbiol 2014; 5:151. [PMID: 24860552 PMCID: PMC4029005 DOI: 10.3389/fmicb.2014.00151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/21/2014] [Indexed: 12/11/2022] Open
Abstract
There are trillions of microbes found throughout the human body and they exceed the number of eukaryotic cells by 10-fold. Metagenomic studies have revealed that the majority of these microbes are found within the gut, playing an important role in the host's digestion and nutrition. The complexity of the animal digestive tract, unculturable microbes, and the lack of genetic tools for most culturable microbes make it challenging to explore the nature of these microbial interactions within this niche. The medicinal leech, Hirudo verbana, has been shown to be a useful tool in overcoming these challenges, due to the simplicity of the microbiome and the availability of genetic tools for one of the two dominant gut symbionts, Aeromonas veronii. In this study, we utilize 16S rRNA gene pyrosequencing to further explore the microbial composition of the leech digestive tract, confirming the dominance of two taxa, the Rikenella-like bacterium and A. veronii. The deep sequencing approach revealed the presence of additional members of the microbial community that suggests the presence of a moderately complex microbial community with a richness of 36 taxa. The presence of a Proteus strain as a newly identified resident in the leech crop was confirmed using fluorescence in situ hybridization (FISH). The metagenome of this community was also pyrosequenced and the contigs were binned into the following taxonomic groups: Rikenella-like (3.1 MB), Aeromonas (4.5 MB), Proteus (2.9 MB), Clostridium (1.8 MB), Eryspelothrix (0.96 MB), Desulfovibrio (0.14 MB), and Fusobacterium (0.27 MB). Functional analyses on the leech gut symbionts were explored using the metagenomic data and MG-RAST. A comparison of the COG and KEGG categories of the leech gut metagenome to that of other animal digestive-tract microbiomes revealed that the leech digestive tract had a similar metabolic potential to the human digestive tract, supporting the usefulness of this system as a model for studying digestive-tract microbiomes. This study lays the foundation for more detailed metatranscriptomic studies and the investigation of symbiont population dynamics.
Collapse
Affiliation(s)
- Michele A Maltz
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Lindsey Bomar
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Pascal Lapierre
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Hilary G Morrison
- Marine Biological Laboratory, The Josephine Bay Paul Center Woods Hole, MA, USA
| | - Emily Ann McClure
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Mitchell L Sogin
- Marine Biological Laboratory, The Josephine Bay Paul Center Woods Hole, MA, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
128
|
Webster NS. Cooperation, communication, and co-evolution: grand challenges in microbial symbiosis research. Front Microbiol 2014; 5:164. [PMID: 24782852 PMCID: PMC3989713 DOI: 10.3389/fmicb.2014.00164] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/26/2014] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nicole S Webster
- Australian Institute of Marine Science Townsville, QLD, Australia
| |
Collapse
|
129
|
Troncone L, De Lisa E, Bertapelle C, Porcellini A, Laccetti P, Polese G, Di Cosmo A. Morphofunctional characterization and antibacterial activity of haemocytes fromOctopus vulgaris. J NAT HIST 2014. [DOI: 10.1080/00222933.2013.826830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
130
|
Garcia JR, Laughton AM, Malik Z, Parker BJ, Trincot C, S L Chiang S, Chung E, Gerardo NM. Partner associations across sympatric broad-headed bug species and their environmentally acquired bacterial symbionts. Mol Ecol 2014; 23:1333-1347. [PMID: 24384031 DOI: 10.1111/mec.12655] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/01/2022]
Abstract
Many organisms have intimate associations with beneficial microbes acquired from the environment. These host-symbiont associations can be specific and stable, but they are prone to lower partner specificity and more partner-switching than vertically transmitted mutualisms. To investigate partner specificity in an environmentally acquired insect symbiosis, we used 16S rRNA gene and multilocus sequencing to survey the bacterial population in the bacteria-harbouring organ (crypts) of 49 individuals across four sympatric broad-headed bug species (Alydus calcaratus, A. conspersus, A. tomentosus and Megalotomus quinquespinosus). Similar to other insect-bacteria associations, Burkholderia spp. were the most common residents of the crypts in all four insect species (77.2% of recovered sequences). Burkholderia presence was associated with prolonged survival to adulthood in A. tomentosus, suggesting a beneficial role of these specialized associations. Burkholderia were also found in environmental reservoirs in the insects' habitat, which may facilitate acquisition by insects by increasing Burkholderia-insect encounters. Symbiont establishment could also be facilitated by resistance to insect defences; zone of inhibition assays demonstrated that Burkholderia and other bacteria isolated from crypts are resistant to insect defences that limit growth of Escherichia coli. Alternatively, the insects' defences may not efficiently kill a broad range of bacteria. Although the symbiosis is targeted to Burkholderia, the insects' crypts housed other bacteria, including non-Burkholderiaceae species. There is no significant effect of host insect species on Burkholderia distribution, suggesting a lack of strong partner specificity at finer scales. The presence of frequent partner-switching between sympatric insects and their symbionts likely prevents tight co-evolutionary dynamics.
Collapse
Affiliation(s)
- J R Garcia
- Biology Department, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol Ecol 2014; 23:1268-1283. [PMID: 24304129 DOI: 10.1111/mec.12611] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 01/02/2023]
Abstract
Correlation between gut microbiota and host phylogeny could reflect codiversification over shared evolutionary history or a selective environment that is more similar in related hosts. These alternatives imply substantial differences in the relationship between host and symbiont, but can they be distinguished based on patterns in the community data themselves? We explored patterns of phylogenetic correlation in the distribution of gut bacteria among species of turtle ants (genus Cephalotes), which host a dense gut microbial community. We used 16S rRNA pyrosequencing from 25 Cephalotes species to show that their gut community is remarkably stable, from the colony to the genus level. Despite this overall similarity, the existing differences among species' microbiota significantly correlated with host phylogeny. We introduced a novel analytical technique to test whether these phylogenetic correlations are derived from recent bacterial evolution, as would be expected in the case of codiversification, or from broader shifts more likely to reflect environmental filters imposed by factors such as diet or habitat. We also tested this technique on a published data set of ape microbiota, confirming earlier results while revealing previously undescribed patterns of phylogenetic correlation. Our results indicated a high degree of partner fidelity in the Cephalotes microbiota, suggesting that vertical transmission of the entire community could play an important role in the evolution and maintenance of the association. As additional comparative microbiota data become available, the techniques presented here can be used to explore trends in the evolution of host-associated microbial communities.
Collapse
Affiliation(s)
- Jon G Sanders
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | | | | | | | | | | |
Collapse
|
132
|
Fiorito G, Affuso A, Anderson DB, Basil J, Bonnaud L, Botta G, Cole A, D'Angelo L, De Girolamo P, Dennison N, Dickel L, Di Cosmo A, Di Cristo C, Gestal C, Fonseca R, Grasso F, Kristiansen T, Kuba M, Maffucci F, Manciocco A, Mark FC, Melillo D, Osorio D, Palumbo A, Perkins K, Ponte G, Raspa M, Shashar N, Smith J, Smith D, Sykes A, Villanueva R, Tublitz N, Zullo L, Andrews P. Cephalopods in neuroscience: regulations, research and the 3Rs. INVERTEBRATE NEUROSCIENCE 2014; 14:13-36. [PMID: 24385049 PMCID: PMC3938841 DOI: 10.1007/s10158-013-0165-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of "live cephalopods" became regulated within the European Union by Directive 2010/63/EU on the "Protection of Animals used for Scientific Purposes", giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce "guidelines" and the potential contribution of neuroscience research to cephalopod welfare.
Collapse
|
133
|
Abstract
Summary
Recently it has become evident that invertebrates may mount a highly variable immune response that is dependent on which pathogen is involved. The molecular mechanisms behind this diversity are beginning to be unravelled and in several invertebrate taxa immune proteins exhibiting a broad range of diversity have been found. In some cases, evidence has been gathered suggesting that this molecular diversity translates into the ability of an affected invertebrate to mount a defence that is specifically aimed at a particular pathogen.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
134
|
Norsworthy AN, Visick KL. Gimme shelter: how Vibrio fischeri successfully navigates an animal's multiple environments. Front Microbiol 2013; 4:356. [PMID: 24348467 PMCID: PMC3843225 DOI: 10.3389/fmicb.2013.00356] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/09/2013] [Indexed: 12/19/2022] Open
Abstract
Bacteria successfully colonize distinct niches because they can sense and appropriately respond to a variety of environmental signals. Of particular interest is how a bacterium negotiates the multiple, complex environments posed during successful infection of an animal host. One tractable model system to study how a bacterium manages a host’s multiple environments is the symbiotic relationship between the marine bacterium, Vibrio fischeri, and its squid host, Euprymna scolopes. V. fischeri encounters many different host surroundings ranging from initial contact with the squid to ultimate colonization of a specialized organ known as the light organ. For example, upon recognition of the squid, V. fischeri forms a biofilm aggregate outside the light organ that is required for efficient colonization. The bacteria then disperse from this biofilm to enter the organ, where they are exposed to nitric oxide, a molecule that can act as both a signal and an antimicrobial. After successfully managing this potentially hostile environment, V. fischeri cells finally establish their niche in the deep crypts of the light organ where the bacteria bioluminesce in a pheromone-dependent fashion, a phenotype that E. scolopes utilizes for anti-predation purposes. The mechanism by which V. fischeri manages these environments to outcompete all other bacterial species for colonization of E. scolopes is an important and intriguing question that will permit valuable insights into how a bacterium successfully associates with a host. This review focuses on specific molecular pathways that allow V. fischeri to establish this exquisite bacteria–host interaction.
Collapse
Affiliation(s)
- Allison N Norsworthy
- Department of Microbiology and Immunology, Loyola University Medical Center Maywood, IL, USA
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Medical Center Maywood, IL, USA
| |
Collapse
|
135
|
Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 2013; 14:668-75. [PMID: 23778794 DOI: 10.1038/ni.2635] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/02/2013] [Indexed: 02/07/2023]
Abstract
Pattern-recognition receptors (PRRs) are traditionally known to sense microbial molecules during infection to initiate inflammatory responses. However, ligands for PRRs are not exclusive to pathogens and are abundantly produced by the resident microbiota during normal colonization. Mechanism(s) that underlie this paradox have remained unclear. Recent studies reveal that gut bacterial ligands from the microbiota signal through PRRs to promote development of host tissue and the immune system, and protection from disease. Evidence from both invertebrate and vertebrate models reveals that innate immune receptors are required to promote long-term colonization by the microbiota. This emerging perspective challenges current models in immunology and suggests that PRRs may have evolved, in part, to mediate the bidirectional cross-talk between microbial symbionts and their hosts.
Collapse
|
136
|
Draft Genome Sequence of Aeromonas veronii Hm21, a Symbiotic Isolate from the Medicinal Leech Digestive Tract. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00800-13. [PMID: 24092791 PMCID: PMC3790095 DOI: 10.1128/genomea.00800-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aeromonas veronii strain Hm21 was isolated from the digestive tract of the medicinal leech Hirudo verbana and has been used to identify genes that are important for host colonization. This species is also a symbiont in the gut of zebrafish and is a pathogen of mammals and fish. We present here a 4.68-Mbp draft genome sequence for Hm21.
Collapse
|
137
|
Bacterial diversity associated with the tunic of the model chordate Ciona intestinalis. ISME JOURNAL 2013; 8:309-20. [PMID: 24048225 DOI: 10.1038/ismej.2013.156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/07/2013] [Accepted: 07/29/2013] [Indexed: 01/09/2023]
Abstract
The sea squirt Ciona intestinalis is a well-studied model organism in developmental biology, yet little is known about its associated bacterial community. In this study, a combination of 454 pyrosequencing of 16S ribosomal RNA genes, catalyzed reporter deposition-fluorescence in situ hybridization and bacterial culture were used to characterize the bacteria living inside and on the exterior coating, or tunic, of C. intestinalis adults. The 454 sequencing data set demonstrated that the tunic bacterial community structure is different from that of the surrounding seawater. The observed tunic bacterial consortium contained a shared community of <10 abundant bacterial phylotypes across three individuals. Culture experiments yielded four bacterial strains that were also dominant groups in the 454 sequencing data set, including novel representatives of the classes Alphaproteobacteria and Flavobacteria. The relatively simple bacterial community and availability of dominant community members in culture make C. intestinalis a promising system in which to investigate functional interactions between host-associated microbiota and the development of host innate immunity.
Collapse
|
138
|
Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 2013; 37:699-735. [DOI: 10.1111/1574-6976.12025] [Citation(s) in RCA: 1300] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023] Open
|
139
|
Abstract
Despite the clear significance of beneficial animal-microbe associations, mechanisms underlying their initiation and establishment are rarely understood. In this issue of Cell Host & Microbe, Kremer et al. (2013) reveal that first contact within the squid-vibrio symbiosis triggers profound molecular and chemical changes that are crucial for bacterial colonization.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Nicholas School of the Environment and Institute for Genome Science and Policy, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
140
|
Abstract
Most epithelia in animals are colonized by microbial communities. These resident microbes influence fitness and thus ecologically important traits of their hosts, ultimately forming a metaorganism consisting of a multicellular host and a community of associated microorganisms. Recent discoveries in the cnidarian Hydra show that components of the innate immune system as well as transcriptional regulators of stem cells are involved in maintaining homeostasis between animals and their resident microbiota. Here I argue that components of the innate immune system with its host-specific antimicrobial peptides and a rich repertoire of pattern recognition receptors evolved in early-branching metazoans because of the need to control the resident beneficial microbes, not because of invasive pathogens. I also propose a mutual intertwinement between the stem cell regulatory machinery of the host and the resident microbiota composition, such that disturbances in one trigger a restructuring and resetting of the other.
Collapse
|
141
|
Dishaw LJ, Litman GW. Changing views of the evolution of immunity. Front Immunol 2013; 4:122. [PMID: 23734152 PMCID: PMC3659336 DOI: 10.3389/fimmu.2013.00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 01/09/2023] Open
Affiliation(s)
- Larry J Dishaw
- Division of Molecular Genetics, Department of Pediatrics, University of South Florida Tampa, FL, USA
| | | |
Collapse
|
142
|
Clark KD, Strand MR. Hemolymph melanization in the silkmoth Bombyx mori involves formation of a high molecular mass complex that metabolizes tyrosine. J Biol Chem 2013; 288:14476-14487. [PMID: 23553628 DOI: 10.1074/jbc.m113.459222] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (~670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate.
Collapse
Affiliation(s)
- Kevin D Clark
- Department of Entomology, University of Georgia, Athens, Georgia 30602.
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|