101
|
Vilà-Balló A, Marti-Marca A, Torres-Ferrús M, Alpuente A, Gallardo VJ, Pozo-Rosich P. Neurophysiological correlates of abnormal auditory processing in episodic migraine during the interictal period. Cephalalgia 2020; 41:45-57. [PMID: 32838536 DOI: 10.1177/0333102420951509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The characteristics of the hypersensitivity to auditory stimuli during the interictal period in episodic migraine are discussed. The combined use of event-related potentials, time-frequency power and phase-synchronization can provide relevant information about the time-course of sensory-attentional processing in migraine and its underlying mechanisms. OBJECTIVE The aim of this nested case-control study was to examine these processes in young, female, episodic migraine patients interictally and compare them to controls using an active auditory oddball task. METHOD We recorded, using 20 channels, the electrophysiological brain activity of 21 women with episodic migraine without aura and 21 healthy matched controls without family history of migraine, during a novelty oddball paradigm. We collected sociodemographic and clinical data as well as scores related to disability, quality of life, anxiety and depression. We calculated behavioural measures including reaction times, hit rates and false alarms. Spectral power and phase-synchronization of oscillatory activity as well as event-related potentials were obtained for standard stimuli. For target and novel stimuli, event-related potentials were acquired. RESULTS There were no significant differences at the behavioural level. In migraine patients, we found an increased phase-synchronization at the theta frequency range and a higher N1 response to standard trials. No differences were observed in spectral power. No evidence for a lack of habituation in any of the measures was seen between migraine patients and controls. The Reorienting Negativity was reduced in migraine patients as compared to controls on novel but not on target trials. CONCLUSION Our findings suggest that migraine patients process stimuli as more salient, seem to allocate more of their attentional resources to their surrounding environment, and have less available resources to reorient attention back to the main task.
Collapse
Affiliation(s)
- Adrià Vilà-Balló
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angela Marti-Marca
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Torres-Ferrús
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Headache Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alicia Alpuente
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Headache Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Victor José Gallardo
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Headache Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
102
|
Sowers LP, Wang M, Rea BJ, Taugher RJ, Kuburas A, Kim Y, Wemmie JA, Walker CS, Hay DL, Russo AF. Stimulation of Posterior Thalamic Nuclei Induces Photophobic Behavior in Mice. Headache 2020; 60:1961-1981. [PMID: 32750230 DOI: 10.1111/head.13917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE A hallmark of migraine is photophobia. In mice, photophobia-like behavior is induced by calcitonin gene-related peptide (CGRP), a neuropeptide known to be a key player in migraine. In this study, we sought to identify sites within the brain from which CGRP could induce photophobia. DESIGN We focused on the posterior thalamic region, which contains neurons responsive to both light and dural stimulation and has CGRP binding sites. We probed this area with both optogenetic stimulation and acute CGRP injections in wild-type mice. Since the light/dark assay has historically been used to investigate anxiety-like responses in animals, we measured anxiety in a light-independent open field assay and asked if stimulation of a brain region, the periaqueductal gray, that induces anxiety would yield similar results to posterior thalamic stimulation. The hippocampus was used as an anatomical control to ensure that light-aversive behaviors could not be induced by the stimulation of any brain region. RESULTS Optogenetic activation of neuronal cell bodies in the posterior thalamic nuclei elicited light aversion in both bright and dim light without an anxiety-like response in an open field assay. Injection of CGRP into the posterior thalamic region triggered similar light-aversive behavior without anxiety. In contrast to the posterior thalamic nuclei, optogenetic stimulation of dorsal periaqueductal gray cell bodies caused both light aversion and an anxiety-like response, while CGRP injection had no effect. In the dorsal hippocampus, neither optical stimulation nor CGRP injection affected light aversion or open field behaviors. CONCLUSION Stimulation of posterior thalamic nuclei is able to initiate light-aversive signals in mice that may be modulated by CGRP to cause photophobia in migraine.
Collapse
Affiliation(s)
- Levi P Sowers
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Mengya Wang
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Brandon J Rea
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Rebecca J Taugher
- Veterans Administration Health Center, Iowa City, IA, USA.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Adisa Kuburas
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Andrew F Russo
- Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.,Veterans Administration Health Center, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
103
|
Bassez I, Ricci K, Vecchio E, Delussi M, Gentile E, Marinazzo D, de Tommaso M. The effect of painful laser stimuli on EEG gamma-band activity in migraine patients and healthy controls. Clin Neurophysiol 2020; 131:1755-1766. [DOI: 10.1016/j.clinph.2020.04.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/09/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023]
|
104
|
Hougaard A, Nielsen SH, Gaist D, Puonti O, Garde E, Reislev NL, Iversen P, Madsen CG, Blaabjerg M, Nielsen HH, Krøigård T, Østergaard K, Kyvik KO, Madsen KH, Siebner HR, Ashina M. Migraine with aura in women is not associated with structural thalamic abnormalities. NEUROIMAGE-CLINICAL 2020; 28:102361. [PMID: 32763831 PMCID: PMC7404547 DOI: 10.1016/j.nicl.2020.102361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Migraine with aura is a highly prevalent disorder involving transient neurological disturbances associated with migraine headache. While the pathophysiology is incompletely understood, findings from clinical and basic science studies indicate a potential key role of the thalamus in the mechanisms underlying migraine with and without aura. Two recent, clinic-based MRI studies investigated the volumes of individual thalamic nuclei in migraine patients with and without aura using two different data analysis methods. Both studies found differences of thalamic nuclei volumes between patients and healthy controls, but the results of the studies were not consistent. Here, we investigated whether migraine with aura is associated with changes in thalamic volume by analysing MRI data obtained from a large, cross-sectional population-based study which specifically included women with migraine with aura (N = 156), unrelated migraine-free matched controls (N = 126), and migraine aura-free co-twins (N = 29) identified from the Danish Twin Registry. We used two advanced, validated analysis methods to assess the volume of the thalamus and its nuclei; the MAGeT Brain Algorithm and a recently developed FreeSurfer-based method based on a probabilistic atlas of the thalamic nuclei combining ex vivo MRI and histology. These approaches were very similar to the methods used in each of the two previous studies. Between-group comparisons were corrected for potential effects of age, educational level, BMI, smoking, alcohol, and hypertension using a linear mixed model. Further, we used linear mixed models and visual inspection of data to assess relations between migraine aura frequency and thalamic nuclei volumes in patients. In addition, we performed paired t-tests to compare volumes of twin pairs (N = 29) discordant for migraine with aura. None of our analyses showed any between-group differences in volume of the thalamus or of individual thalamic nuclei. Our results indicate that the pathophysiology of migraine with aura does not involve alteration of thalamic volume.
Collapse
Affiliation(s)
- Anders Hougaard
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Silas Haahr Nielsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - David Gaist
- Department of Neurology, Odense University Hospital, Denmark, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Ellen Garde
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Nina Linde Reislev
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Pernille Iversen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Camilla Gøbel Madsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, Denmark, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Helle Hvilsted Nielsen
- Department of Neurology, Odense University Hospital, Denmark, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Thomas Krøigård
- Department of Neurology, Odense University Hospital, Denmark, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kamilla Østergaard
- Department of Neurology, Odense University Hospital, Denmark, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kirsten Ohm Kyvik
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Kristoffer Hougaard Madsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
105
|
Burke MJ, Joutsa J, Cohen AL, Soussand L, Cooke D, Burstein R, Fox MD. Mapping migraine to a common brain network. Brain 2020; 143:541-553. [PMID: 31919494 DOI: 10.1093/brain/awz405] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 11/14/2022] Open
Abstract
Inconsistent findings from migraine neuroimaging studies have limited attempts to localize migraine symptomatology. Novel brain network mapping techniques offer a new approach for linking neuroimaging findings to a common neuroanatomical substrate and localizing therapeutic targets. In this study, we attempted to determine whether neuroanatomically heterogeneous neuroimaging findings of migraine localize to a common brain network. We used meta-analytic coordinates of decreased grey matter volume in migraineurs as seed regions to generate resting state functional connectivity network maps from a normative connectome (n = 1000). Network maps were overlapped to identify common regions of connectivity across all coordinates. Specificity of our findings was evaluated using a whole-brain Bayesian spatial generalized linear mixed model and a region of interest analysis with comparison groups of chronic pain and a neurologic control (Alzheimer's disease). We found that all migraine coordinates (11/11, 100%) were negatively connected (t ≥ ±7, P < 10-6 family-wise error corrected for multiple comparisons) to a single location in left extrastriate visual cortex overlying dorsal V3 and V3A subregions. More than 90% of coordinates (10/11) were also positively connected with bilateral insula and negatively connected with the hypothalamus. Bayesian spatial generalized linear mixed model whole-brain analysis identified left V3/V3A as the area with the most specific connectivity to migraine coordinates compared to control coordinates (voxel-wise probability of ≥90%). Post hoc region of interest analyses further supported the specificity of this finding (ANOVA P = 0.02; pairwise t-tests P = 0.03 and P = 0.003, respectively). In conclusion, using coordinate-based network mapping, we show that regions of grey matter volume loss in migraineurs localize to a common brain network defined by connectivity to visual cortex V3/V3A, a region previously implicated in mechanisms of cortical spreading depression in migraine. Our findings help unify migraine neuroimaging literature and offer a migraine-specific target for neuromodulatory treatment.
Collapse
Affiliation(s)
- Matthew J Burke
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Juho Joutsa
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Turku Brain and Mind Center, Department of Neurology, University of Turku, Turku, Finland.,Division of Clinical Neurosciences and Turku PET Center, Turku University Hospital, Turku, Finland
| | - Alexander L Cohen
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Louis Soussand
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Danielle Cooke
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Centre for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
106
|
Masson R, Lévêque Y, Demarquay G, ElShafei H, Fornoni L, Lecaignard F, Morlet D, Bidet-Caulet A, Caclin A. Auditory attention alterations in migraine: A behavioral and MEG/EEG study. Clin Neurophysiol 2020; 131:1933-1946. [PMID: 32619799 DOI: 10.1016/j.clinph.2020.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To evaluate alterations of top-down and/or bottom-up attention in migraine and their cortical underpinnings. METHODS 19 migraineurs between attacks and 19 matched control participants performed a task evaluating jointly top-down and bottom-up attention, using visually-cued target sounds and unexpected task-irrelevant distracting sounds. Behavioral responses and magneto- and electro-encephalography signals were recorded. Event-related potentials and fields were processed and source reconstruction was applied to event-related fields. RESULTS At the behavioral level, neither top-down nor bottom-up attentional processes appeared to be altered in migraine. However, migraineurs presented heightened evoked responses following distracting sounds (orienting component of the N1 and Re-Orienting Negativity, RON) and following target sounds (orienting component of the N1), concomitant to an increased recruitment of the right temporo-parietal junction. They also displayed an increased effect of the cue informational value on target processing resulting in the elicitation of a negative difference (Nd). CONCLUSIONS Migraineurs appear to display increased bottom-up orienting response to all incoming sounds, and an enhanced recruitment of top-down attention. SIGNIFICANCE The interictal state in migraine is characterized by an exacerbation of the orienting response to attended and unattended sounds. These attentional alterations might participate to the peculiar vulnerability of the migraine brain to all incoming stimuli.
Collapse
Affiliation(s)
- Rémy Masson
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
| | - Yohana Lévêque
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Geneviève Demarquay
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Neurological Hospital Pierre Wertheimer, Functional Neurology and Epilepsy Department, Hospices Civils de Lyon and Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Hesham ElShafei
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Lesly Fornoni
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Françoise Lecaignard
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Dominique Morlet
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Aurélie Bidet-Caulet
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
107
|
Zhang Y, Zhang Y, Tian K, Wang Y, Fan X, Pan Q, Qin G, Zhang D, Chen L, Zhou J. Calcitonin gene-related peptide facilitates sensitization of the vestibular nucleus in a rat model of chronic migraine. J Headache Pain 2020; 21:72. [PMID: 32522232 PMCID: PMC7288551 DOI: 10.1186/s10194-020-01145-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background Vestibular migraine has recently been recognized as a novel subtype of migraine. However, the mechanism that relate vestibular symptoms to migraine had not been well elucidated. Thus, the present study investigated vestibular dysfunction in a rat model of chronic migraine (CM), and to dissect potential mechanisms between migraine and vertigo. Methods Rats subjected to recurrent intermittent administration of nitroglycerin (NTG) were used as the CM model. Migraine- and vestibular-related behaviors were analyzed. Immunofluorescent analyses and quantitative real-time polymerase chain reaction were employed to detect expressions of c-fos and calcitonin gene-related peptide (CGRP) in the trigeminal nucleus caudalis (TNC) and vestibular nucleus (VN). Morphological changes of vestibular afferent terminals was determined under transmission electron microscopy. FluoroGold (FG) and CTB-555 were selected as retrograde tracers and injected into the VN and TNC, respectively. Lentiviral vectors comprising CGRP short hairpin RNA (LV-CGRP) was injected into the trigeminal ganglion. Results CM led to persistent thermal hyperalgesia, spontaneous facial pain, and prominent vestibular dysfunction, accompanied by the upregulation of c-fos labeling neurons and CGRP immunoreactivity in the TNC (c-fos: vehicle vs. CM = 2.9 ± 0.6 vs. 45.5 ± 3.4; CGRP OD: vehicle vs. CM = 0.1 ± 0.0 vs. 0.2 ± 0.0) and VN (c-fos: vehicle vs. CM = 2.3 ± 0.8 vs. 54.0 ± 2.1; CGRP mRNA: vehicle vs. CM = 1.0 ± 0.1 vs. 2.4 ± 0.1). Furthermore, FG-positive neurons was accumulated in the superficial layer of the TNC, and the number of c-fos+/FG+ neurons were significantly increased in rats with CM compared to the vehicle group (vehicle vs. CM = 25.3 ± 2.2 vs. 83.9 ± 3.0). Meanwhile, CTB-555+ neurons dispersed throughout the VN. The structure of vestibular afferent terminals was less pronounced after CM compared with the peripheral vestibular dysfunction model. In vivo knockdown of CGRP in the trigeminal ganglion significantly reduced the number of c-fos labeling neurons (LV-CGRP vs. LV-NC = 9.9 ± 3.0 vs. 60.0 ± 4.5) and CGRP mRNA (LV-CGRP vs. LV-NC = 1.0 ± 0.1 vs. 2.1 ± 0.2) in the VN, further attenuating vestibular dysfunction after CM. Conclusions These data demonstrates the possibility of sensitization of vestibular nucleus neurons to impair vestibular function after CM, and anti-CGRP treatment to restore vestibular dysfunction in patients with CM.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Ke Tian
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoping Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
108
|
Versino M, Mandalà M, Colnaghi S, Ricci G, Faralli M, Ramat S. The integration of multisensory motion stimuli is impaired in vestibular migraine patients. J Neurol 2020; 267:2842-2850. [PMID: 32448951 DOI: 10.1007/s00415-020-09905-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vestibular migraine (VM) is a relatively recently acknowledged vestibular syndrome with a very relevant prevalence of about 10% among patients complaining of vertigo. The diagnostic criteria for VM have been recently published by the Bárány Society, and they are now included in the latest version of the International Classification of Headache Disorders, yet there is no instrumental test that supports the diagnosis of VM. OBJECTIVE In the hypothesis that the integration of different vestibular stimuli is functionally impaired in VM, we tested whether the combination of abrupt vestibular stimuli and full-field, moving visual stimuli would challenge vestibular migraine patients more than controls and other non-vestibular migraineurs. METHODS In three clinical centers, we compared the performance in the functional head impulse test (fHIT) without and with an optokinetic stimulus rotating in the frontal plane in a group of 44 controls (Ctrl), a group of 42 patients with migraine (not vestibular migraine, MnoV), a group of 39 patients with vestibular migraine (VM) and a group of 15 patients with vestibular neuritis (VN). RESULTS The optokinetic stimulation reduced the percentage of correct answers (%CA) in all groups, and in about 33% of the patients with migraine, in as many as 87% of VM patients and 60% of VN patients, this reduction was larger than expected from controls' data. CONCLUSIONS The comparison of the fHIT results without and with optokinetic stimulation unveils a functional vestibular impairment in VM that is not as large as the one detectable in VN, and that, in contrast with all the other patient groups, mainly impairs the capability to integrate different vestibular stimuli.
Collapse
Affiliation(s)
- Maurizio Versino
- Neurology Unit, ASST Settelaghi, Insubria University, DMC, Varese, Italy.,Neuro-Otology and Neuro-Ophthalmology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Marco Mandalà
- Department of Otology and Skull Base Surgery, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Silvia Colnaghi
- Neuro-Otology and Neuro-Ophthalmology Lab, IRCCS Mondino Foundation, Pavia, Italy.,Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Giampietro Ricci
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Mario Faralli
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Ramat
- Department of Computer, Electric and Biomedical Engineering, University of Pavia, Via Ferrata, 5, 27100, Pavia, Italy.
| |
Collapse
|
109
|
Lugo A, Edvall NK, Lazar A, Mehraei G, Lopez-Escamez JA, Bulla J, Uhlen I, Canlon B, Gallus S, Cederroth CR. Relationship between headaches and tinnitus in a Swedish study. Sci Rep 2020; 10:8494. [PMID: 32444677 PMCID: PMC7244494 DOI: 10.1038/s41598-020-65395-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
The heterogeneity of tinnitus is likely accounting for the lack of effective treatment approaches. Headaches have been related to tinnitus, yet little is known on how headaches impact tinnitus. We use cross-sectional data from the Swedish Tinnitus Outreach Project to i) evaluate the association between headaches and tinnitus (n = 1,984 cases and 1,661 controls) and ii) investigate the phenotypic characteristics of tinnitus subjects with tinnitus (n = 660) or without (n = 1,879) headaches. In a multivariable logistic regression model, headache was significantly associated with any tinnitus (odds ratio, OR = 2.61) and more so with tinnitus as a big problem (as measured by the tinnitus functional index, TFI ≥ 48; OR = 5.63) or severe tinnitus (using the tinnitus handicap inventory, THI ≥ 58; OR = 4.99). When focusing on subjects with tinnitus, the prevalence of headaches was 26% and reached 40% in subjects with severe tinnitus. A large number of socioeconomic, phenotypic and psychological characteristics differed between headache and non-headache subjects with any tinnitus. With increasing tinnitus severity, fewer differences were found, the major ones being vertigo, neck pain and other pain syndromes, as well as stress and anxiety. Our study suggests that headaches could contribute to tinnitus distress and potentially its severity.
Collapse
Affiliation(s)
- Alessandra Lugo
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Niklas K Edvall
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Andra Lazar
- Hörsel och balansmottagningen, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | | | - Jose-Antonio Lopez-Escamez
- Otology & Neurotology Group, Department of Genomic Medicine, Pfizer - Universidad de Granada - Junta de Andalucía Centro de Genómica e Investigación Oncológica (GENYO), PTS, Avenida de la Ilustración 114, 18016, Granada, Spain
- Department of Otolaryngology, Hospital Universitario Virgen de las Nieves, Instituto de Investigacion Biosanitaria ibs.GRANADA, Granada, Spain
| | - Jan Bulla
- University of Bergen, Bergen, Norway
- University of Regensburg, Regensburg, Germany
| | - Inger Uhlen
- Hörsel och balansmottagningen, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Barbara Canlon
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Silvano Gallus
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Christopher R Cederroth
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
110
|
Pan LLH, Wang YF, Lai KL, Chen WT, Chen SP, Ling YH, Chou LW, Treede RD, Wang SJ. Mechanical punctate pain threshold is associated with headache frequency and phase in patients with migraine. Cephalalgia 2020; 40:990-997. [DOI: 10.1177/0333102420925540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective Previous studies regarding the quantitative sensory testing are inconsistent in migraine. We hypothesized that the quantitative sensory testing results were influenced by headache frequency or migraine phase. Methods This study recruited chronic and episodic migraine patients as well as healthy controls. Participants underwent quantitative sensory testing, including heat, cold, and mechanical punctate pain thresholds at the supraorbital area (V1 dermatome) and the forearm (T1 dermatome). Prospective headache diaries were used for headache frequency and migraine phase when quantitative sensory testing was performed. Results Twenty-eight chronic migraine, 64 episodic migraine and 32 healthy controls completed the study. Significant higher mechanical punctate pain thresholds were found in episodic migraine but not chronic migraine when compared with healthy controls. The mechanical punctate pain thresholds decreased as headache frequency increased then nadired. In episodic migraine, mechanical punctate pain thresholds were highest ( p < 0.05) in those in the interictal phase and declined when approaching the ictal phase in both V1 and T1 dermatomes. Linear regression analyses showed that in those with episodic migraine, headache frequency and phase were independently associated with mechanical punctate pain thresholds and accounted for 29.7% and 38.9% of the variance in V1 ( p = 0.003) and T1 ( p < 0.001) respectively. Of note, unlike mechanical punctate pain thresholds, our study did not demonstrate similar findings for heat pain thresholds and cold pain thresholds in migraine. Conclusion Our study provides new insights into the dynamic changes of quantitative sensory testing, especially mechanical punctate pain thresholds in patients with migraine. Mechanical punctate pain thresholds vary depending on headache frequency and migraine phase, providing an explanation for the inconsistency across studies.
Collapse
Affiliation(s)
- Li-Ling Hope Pan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Feng Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Hsiang Ling
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Rolf-Detlef Treede
- Chair of Neurophysiology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
111
|
Shepherd AJ, Patterson AJK. Exploration of anomalous perceptual experiences in migraine between attacks using the Cardiff Anomalous Perceptions Scale. Conscious Cogn 2020; 82:102945. [PMID: 32422548 DOI: 10.1016/j.concog.2020.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/04/2023]
Abstract
Distortions in sensory experiences that precede a migraine attack have been extensively documented, the most well-known being the visual aura. Distortions in the experience of other senses are also reported as part of an aura, albeit less frequently, together with changes in the perception or ownership of the body or body parts. There are many examples of differences in aspects of visual perception between migraine and control groups, between attacks, but not as much on unusual experiences involving other senses, the sense of the body or the experience of the environment. Seventy-seven migraine (33 with aura) and 74 control participants took part. Anomalous perceptions were experienced by both migraine and control groups, but more with migraine experienced them and rated them as more distressing, intrusive and frequent. Associations with reports of visual triggers of migraine and visual discomfort are presented. This study is the first to show relationships between these factors.
Collapse
Affiliation(s)
- Alex J Shepherd
- Department of Psychological Sciences, Birkbeck College, University of London, UK.
| | - Adam J K Patterson
- Department of Psychological Sciences, Birkbeck College, University of London, UK
| |
Collapse
|
112
|
Genizi J, Halevy A, Schertz M, Osman K, Assaf N, Segal I, Srugo I, Kessel A, Engel-Yeger B. Sensory processing patterns affect headache severity among adolescents with migraine. J Headache Pain 2020; 21:48. [PMID: 32375649 PMCID: PMC7203579 DOI: 10.1186/s10194-020-01119-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To evaluate the relationship between pain catastrophizing level, sensory processing patterns, and headache severity among adolescents with episodic migraine. BACKGROUND Catastrophizing about pain is a critical variable in how we understand adjustment to pain and has a unique contribution in predicting pain intensity. Recent reports found that migraine is also related to enhanced sensory sensitivity. However, the relationship between pain severity, pain catastrophizing level and sensory sensitivity requires greater study especially among adolescents. METHODS Participants were 92 adolescents aged 13-18 years, 40 with episodic migraine and 52 healthy controls. The migraine patients were prospectively recruited from outpatient pediatric neurology clinics. All participants completed the Adolescent/Adult Sensory Profile (AASP), and the Pain Catastrophizing Scale for children (PCS-ch). The migraine groups also completed the PedMIDAS, which measures Headache related disability. RESULTS Adolescents with migraine had significantly lower tendency to seek sensory input than healthy controls. Elevated rumination and helplessness correlated with higher migraine pain severity. Tendency to avoid sensory input predicted the migraine related disability level. They also significantly higher pain catastrophizing level than healthy controls, as seen in enhanced rumination (p ≤ 0.001) and helplessness (p ≤ 0.05). CONCLUSIONS Sensory processing difficulties are common among adolescents with episodic migraine. Sensory avoidance may be related to pain experience, and pain catastrophizing and disability level. TRIAL REGISTRATION ISRCTN ISRCTN73824458. Registered 28 September 2014. retrospectively registered.
Collapse
Affiliation(s)
- Jacob Genizi
- Pediatric Neurology Unit, Bnai Zion Medical Center, Haifa, Israel.
- Department of Pediatrics, Bnai Zion Medical Center, Haifa, Israel.
- Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | - Ayelet Halevy
- Department of Pediatric Neurology, Schneider Children's Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mitchell Schertz
- Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Child Development and Pediatric Neurology Service, Meuhedet-Northern Region, Haifa, Israel
| | - Khaled Osman
- Department of Pediatrics, Bnai Zion Medical Center, Haifa, Israel
| | - Nurit Assaf
- Pediatric Neurology Unit, Bnai Zion Medical Center, Haifa, Israel
- Department of Pediatrics, Bnai Zion Medical Center, Haifa, Israel
- Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Idan Segal
- Pediatric Neurology Unit, Bnai Zion Medical Center, Haifa, Israel
- Department of Pediatrics, Bnai Zion Medical Center, Haifa, Israel
| | - Isaac Srugo
- Department of Pediatrics, Bnai Zion Medical Center, Haifa, Israel
- Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Aharon Kessel
- Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Israel
| | | |
Collapse
|
113
|
Rahimi MD, Fadardi JS, Saeidi M, Bigdeli I, Kashiri R. Effectiveness of cathodal tDCS of the primary motor or sensory cortex in migraine: A randomized controlled trial. Brain Stimul 2020; 13:675-682. [DOI: 10.1016/j.brs.2020.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 01/03/2023] Open
|
114
|
Shepherd AJ. Tracking the Migraine Cycle Using Visual Tasks. Vision (Basel) 2020; 4:vision4020023. [PMID: 32365776 PMCID: PMC7355979 DOI: 10.3390/vision4020023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
There are a number of reports that perceptual, electrophysiological and imaging measures can track migraine periodicity. As the electrophysiological and imaging research requires specialist equipment, it has few practical applications. This study sought to track changes in performance on four visual tasks over the migraine cycle. Coherence thresholds were measured for two motion and two orientation tasks. The first part of the study confirmed that the data obtained from an online study produced comparable results to those obtained under controlled laboratory conditions. Thirteen migraine with aura, 12 without aura, and 12 healthy controls participated. The second part of the study showed that thresholds for discriminating vertical coherent motion varied with the migraine cycle for a majority of the participants who tested themselves multiple times (four with aura, seven without). Performance improved two days prior to a migraine attack and remained improved for two days afterwards. This outcome is as expected from an extrapolation of earlier electrophysiological research. This research points to the possibility of developing sensitive visual tests that patients can use at home to predict an impending migraine attack and so take steps to try to abort it or, if it is inevitable, to plan their lives around it.
Collapse
Affiliation(s)
- A J Shepherd
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| |
Collapse
|
115
|
Martins IP, Maruta C, Alves PN, Loureiro C, Morgado J, Tavares J, Gil-Gouveia R. Cognitive aging in migraine sufferers is associated with more subjective complaints but similar age-related decline: a 5-year longitudinal study. J Headache Pain 2020; 21:31. [PMID: 32264821 PMCID: PMC7137205 DOI: 10.1186/s10194-020-01100-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/20/2020] [Indexed: 01/19/2023] Open
Abstract
Objectives and background The effect of headache on cognitive performance is controversial, due to conflicting results obtained from studies in clinical or population settings. We aimed to understand if migraine and other headaches modify the rates of decline on different cognitive measures, during a 5-year interval. Design and method A cohort of community dwelling adults (> 50 years) with migraine (MH), non-migraine headaches (NMH) and controls without headache (WoH), was assessed by a comprehensive neuropsychological battery with tests of memory, language and executive functions, repeated 5 years apart. Change in performance between baseline and reevaluation was compared between groups, and controlled for age, gender, literacy and depressive symptoms. Results A total of 275 participants (78.5% WoH, 12.7% MH, 8.7% NMH) were reevaluated (average age 70.40 + 8.34 years, 64% females). Cognitive decline or dementia occurred in 11.4%, with a similar proportion among the three groups. Although MH participants had significantly more subjective cognitive complaints (p = 0.030, 95%CI:]-3.929,-0.014[), both MH and NMH subjects showed an age-associated decline identical to controls. Furthermore, migraine features (disease and attack duration, frequency and aura) were unrelated with cognitive performance. Conclusion Migraine and non-migraine headache are not associated with increasing risk of dementia or cognitive decline at an older age although subjects with migraine have more cognitive complaints. Longer longitudinal studies are necessary to understand if this pattern persists for more than 5 years.
Collapse
Affiliation(s)
- Isabel Pavão Martins
- Departamento de Neurociências e Saúde Mental, Centro Hospitalar Universitário Lisboa Norte - Hospital de Santa Maria, Lisboa, Portugal. .,Laboratório de Estudos de Linguagem, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Portugal, Av Professor Egas Moniz, Lisboa, Portugal.
| | - Carolina Maruta
- Laboratório de Estudos de Linguagem, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Portugal, Av Professor Egas Moniz, Lisboa, Portugal.,Universidade Católica Portuguesa, Católica Research Centre for Psychological - Family and Social Wellbeing, Lisboa, Portugal
| | - Pedro Nacimento Alves
- Departamento de Neurociências e Saúde Mental, Centro Hospitalar Universitário Lisboa Norte - Hospital de Santa Maria, Lisboa, Portugal.,Laboratório de Estudos de Linguagem, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Portugal, Av Professor Egas Moniz, Lisboa, Portugal
| | - Clara Loureiro
- Laboratório de Estudos de Linguagem, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Portugal, Av Professor Egas Moniz, Lisboa, Portugal
| | - Joana Morgado
- Serviço de Neurologia, Hospital Beatriz Angelo, Loures, Lisboa, Portugal
| | - Joana Tavares
- Serviço de Imagiologia, Hospital de Santa Maria, Lisboa, Portugal
| | - Raquel Gil-Gouveia
- Departamento de Neurociências e Saúde Mental, Centro Hospitalar Universitário Lisboa Norte - Hospital de Santa Maria, Lisboa, Portugal.,Headache Center, Hospital da Luz, Lisboa, Portugal
| |
Collapse
|
116
|
Perenboom MJ, van de Ruit M, Zielman R, van den Maagdenberg AM, Ferrari MD, Carpay JA, Tolner EA. Enhanced pre-ictal cortical responsivity in migraine patients assessed by visual chirp stimulation. Cephalalgia 2020; 40:913-923. [PMID: 32188264 PMCID: PMC7412874 DOI: 10.1177/0333102420912725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Migraine is associated with altered sensory processing and cortical responsivity that may contribute to susceptibility to attacks by changing brain network excitability dynamics. To gain better insight into cortical responsivity changes in migraine we subjected patients to a short series of light inputs over a broad frequency range (“chirp” stimulation), designed to uncover dynamic features of visual cortex responsivity. Methods EEG responses to visual chirp stimulation (10–40 Hz) were measured in controls (n = 24) and patients with migraine with aura (n = 19) or migraine without aura (n = 20). Average EEG responses were assessed at (i) all EEG frequencies between 5 and 125 Hz, (ii) stimulation frequencies, and (iii) harmonic frequencies. We compared average responses in a low (10–18 Hz), medium (19–26 Hz) and high (27–40 Hz) frequency band. Results Responses to chirp stimulation were similar in controls and migraine subtypes. Eight measurements (n = 3 migraine with aura; n = 5 without aura) were assigned as “pre-ictal”, based on reported headache within 48 hours after investigation. Pre-ictally, an increased harmonic response to 22–32 Hz stimulation (beta band) was observed (p = 0.001), compared to interictal state measurements. Conclusions We found chirp responses to be enhanced in the 48 hours prior to migraine headache onset. Visual chirp stimulation proved a simple and reliable technique with potential to detect changes in cortical responsivity associated with the onset of migraine attacks.
Collapse
Affiliation(s)
| | - Mark van de Ruit
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ronald Zielman
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn Mjm van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johannes A Carpay
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, the Tergooi Hospital, Hilversum, the Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
117
|
Murofushi T, Goto F, Tsubota M. Vestibular Migraine Patients Show Lack of Habituation in Auditory Middle Latency Responses to Repetitive Stimuli: Comparison With Meniere's Disease Patients. Front Neurol 2020; 11:24. [PMID: 32153487 PMCID: PMC7044244 DOI: 10.3389/fneur.2020.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/09/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives: To compare habituation in auditory middle latency response (AMLR) to repetitive stimuli of vestibular migraine (VM) patients with Meniere's disease (MD) patients and healthy controls (HC) and to assess usefulness of AMLR for diagnosis of VM. Subjects: Thirteen unilateral definite MD patients (2 men, 11 women, mean age 50.6), 13 definite VM patients (3 men, 10 women, mean age 45.5), and 8 HC subjects (2 men, 6 women, mean age 37.1) were enrolled. Methods: The electrodes were placed on the vertex and the spinal process of the fifth cervical vertebra. Binaural click stimulation (0.1 ms, 70 dBnHL) was presented. A total of 800 responses were averaged. Averaged responses were divided into four sets (S1 to S4) according to the temporal order. No, Po, Na, and Pa were identified, and amplitudes and latencies were measured. Results: Concerning latencies, HC subjects showed a tendency of shorter latencies. However, there was no clear effect of repetitive stimulation. Concerning No-Po amplitudes, no significant differences were observed. Raw amplitudes of Na-Pa showed statistically significant differences in S1 and S2 among the groups (p < 0.01 one-way ANOVA). Differences were shown in MD vs. VM and HC vs. VM in S1 (smaller in VM) (p < 0.01 Bonferroni's test) and in MD vs. VM in S2 (smaller in VM) (p < 0.01 Bonferroni test). Relative amplitudes of Na-Pa to S1 showed statistically significant differences in S4 (p < 0.01 one-way ANOVA). Differences were shown in MD vs. VM and HC vs. VM (larger in VM) (p < 0.01 Bonferroni's test). Differences of Na-Pa amplitudes in S2 to S4 from Na-Pa amplitude in S1 were significant in S4 of VM patients (Dunnett's test). Conclusions: VM patients showed lack of habituation (potentiation) of Na-Pa amplitude in AMLR to repetitive stimuli while MD patients and HC subjects showed habituation. Observation of lack of habituation has high diagnostic accuracy for differential diagnosis of VM from MD.
Collapse
Affiliation(s)
- Toshihisa Murofushi
- Department of Otolaryngology, Teikyo University School of Medicine Mizonokuchi Hospital, Kawasaki, Japan
| | - Fumiyuki Goto
- Department of Otolaryngology, Tokai University School of Medicine, Isehara, Japan
| | - Masahito Tsubota
- Department of Otolaryngology, Teikyo University School of Medicine Mizonokuchi Hospital, Kawasaki, Japan
| |
Collapse
|
118
|
Wattiez AS, Sowers LP, Russo AF. Calcitonin gene-related peptide (CGRP): role in migraine pathophysiology and therapeutic targeting. Expert Opin Ther Targets 2020; 24:91-100. [PMID: 32003253 DOI: 10.1080/14728222.2020.1724285] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The neuropeptide calcitonin gene-related peptide (CGRP) is recognized as a critical player in migraine pathophysiology. Excitement has grown regarding CGRP because of the development and clinical testing of drugs targeting CGRP or its receptor. While these drugs alleviate migraine symptoms in half of the patients, the remaining unresponsive half of this population creates an impetus to address unanswered questions that exist in this field.Areas covered: We describe the role of CGRP in migraine pathophysiology and CGRP-targeted therapeutics currently under development and in use. We also discuss how a second CGRP receptor may provide a new therapeutic target.Expert opinion: CGRP-targeting drugs have shown a remarkable safety profile. We speculate that this may reflect the redundancy of peptides within the CGRP family and a second CGRP receptor that may compensate for reduced CGRP activity. Furthermore, we propose that an inherent safety feature of peptide-blocking antibodies is attributed to the fundamental nature of peptide release, which occurs as a large bolus in short bursts of volume transmission. These facts support the development of more refined CGRP therapeutic drugs, as well as drugs that target other neuropeptides. We believe that the future of migraine research is bright with exciting advances on the horizon.
Collapse
Affiliation(s)
- Anne-Sophie Wattiez
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,VA Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA
| | - Levi P Sowers
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,VA Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA
| | - Andrew F Russo
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,VA Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
119
|
Susvirkar AA, Velusami D, Srinivasan N. Evaluation of habituation to visual evoked potentials using pattern reversal among migraine individuals - a cross-sectional study. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0217/jbcpp-2019-0217.xml. [PMID: 31940287 DOI: 10.1515/jbcpp-2019-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Background Migraine is a multifaceted chronic disease with common ocular symptoms. Habituation is the decremental response on repeated stimulations. The literature review indicates controversial results regarding habituation in migraine individuals. The present study aimed to compare the habituation response using visual evoked potential (VEP) measures among migraine and control subjects. Methods This was a cross-sectional study performed among migraine individuals attending the Department of Medicine and Neurology, of the age group of 18-30 years at Sri Manakula Vinayagar Medical College and Hospital, Puducherry. Habituation was evaluated in the two groups, control (n = 40) and migraine (n = 40), using pattern reversal VEP. The recording was done for 15-min duration and divided into four blocks of 3.8 min each. The results were compared employing Student t-test, and p < 0.05 was considered to be statistically significant. Results Our study indicates that latency N75, N145, and P100 amplitude showed significant differences between the two groups. In the right eye, on comparing the first and fourth block P100 amplitude in the migraine group, a significant increase (p < 0.001) was observed in the fourth block. Similarly, in the left eye, the control group showed a significant decrease in the fourth block (p = 0.002), whereas the migraine group showed a significant increase (p < 0.001). Conclusions The present study concludes that migraine individuals report deficient habituation, evaluated using pattern reversal VEP.
Collapse
Affiliation(s)
- Ashish Anand Susvirkar
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695011, India
| | - Deepika Velusami
- Department of Physiology, Sri Manakula Vinayagar Medical College and Hospital, Madagadipet, Puducherry 605107, India
| | - Nithiyasree Srinivasan
- Sri Manakula Vinayagar Medical College and Hospital, Madagadipet, Puducherry 605107, India
| |
Collapse
|
120
|
Santoro M, Vollono C, Pazzaglia C, Di Sipio E, Giordano R, Padua L, Arendt‐Nielsen L, Valeriani M. ZNRD1‐AS
and
RP11‐819C21.1
long non‐coding RNA changes following painful laser stimulation correlate with laser‐evoked potential amplitude and habituation in healthy subjects: A pilot study. Eur J Pain 2020; 24:593-603. [DOI: 10.1002/ejp.1511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Affiliation(s)
| | - Catello Vollono
- Unit of Neurophysiopathology Fondazione Policlinico Universitario Agostino Gemelli IRCCS Rome Italy
- Università Cattolica del Sacro Cuore Rome Italy
| | - Costanza Pazzaglia
- Unit of High Intensity NeurorehabilitationFondazione Policlinico Universitario Agostino Gemelli IRCCS Rome Italy
| | | | - Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP) SMI Department of Health Science and Technology Faculty of Medicine Aalborg University Aalborg Denmark
| | - Luca Padua
- Università Cattolica del Sacro Cuore Rome Italy
- Unit of High Intensity NeurorehabilitationFondazione Policlinico Universitario Agostino Gemelli IRCCS Rome Italy
| | - Lars Arendt‐Nielsen
- Center for Neuroplasticity and Pain (CNAP) SMI Department of Health Science and Technology Faculty of Medicine Aalborg University Aalborg Denmark
| | - Massimiliano Valeriani
- Neurology Unit, Ospedale Pediatrico Bambino Gesú IRCCSPiazza di Sant'Onofrio Rome Italy
- Center for Sensory-Motor Interaction Aalborg University Aalborg Denmark
| |
Collapse
|
121
|
Lapp HS, Sabatowski R, Weidner K, Croy I, Gossrau G. C-tactile touch perception in migraineurs – a case-control study. Cephalalgia 2019; 40:478-492. [DOI: 10.1177/0333102419889349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Migraine is characterized by sensory hypersensitivity and habituation deficits. Slow brushing over the skin activates C-tactile nerve fibers, which mediate pleasant touch and analgesic effects in healthy subjects. As this function is altered in painful conditions, we aimed to examine whether the C-tactile processing is disrupted in migraines. Methods To psychophysically assess C-tactile function, we applied optimal and suboptimal C-tactile stroking stimuli on the dorsal forearm (body reference area) and the trigeminally innervated skin of 52 interictal migraineurs and 52 matched healthy controls. For habituation testing, 60 repeated C-tactile optimal stimuli were presented in both test areas. The participants rated each stimulus on a visual analogue scale by intensity, pleasantness, and painfulness. Results Regarding C-tactile function, migraineurs showed unphysiological rating patterns but no significantly different pleasantness ratings than controls. During repeated stimulation, controls showed stable pleasantness ratings while migraineurs’ ratings decreased, especially in those experiencing tactile allodynia during headaches. Migraineurs taking triptans responded like controls. Conclusion The C-tactile function of migraineurs is subclinically altered. Repeated C-tactile stimulation leads to altered habituation but differs from previous work by the direction of the changes. Although the pathophysiology remains unknown, causative mechanisms could include central and peripheral neuronal sensitization, tactile allodynia and hedonic stimulus attributions.
Collapse
Affiliation(s)
- Hanna Sophie Lapp
- Pain Center, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - Rainer Sabatowski
- Pain Center, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - Ilona Croy
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - Gudrun Gossrau
- Pain Center, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| |
Collapse
|
122
|
Dysregulation of multisensory processing stands out from an early stage of migraine: a study in pediatric patients. J Neurol 2019; 267:760-769. [DOI: 10.1007/s00415-019-09639-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
|
123
|
Pohl H, Schubring-Giese M, Gantenbein AR. Can Anything Good Ever Come From Bearing Migraine Attacks? Suggestions for a Comprehensive Concept of Gain in Migraine. Curr Pain Headache Rep 2019; 23:90. [PMID: 31734850 DOI: 10.1007/s11916-019-0829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarise the current state of knowledge concerning known types of gain, the reasons why patients might seek it, as well as implications for headache disorders. RECENT FINDINGS Even though the subject has been studied in the past, it received less attention in recent years. There is no doubt that migraine is a highly disabling disorder. However, attacks sometimes may be beneficial for the migraine brain as a time-out from the daily routine. On the other hand, patients are often stigmatised as trying to satisfy other needs through their disease. These "other needs" may be the exaggerated seeking for attention and affection or an undue official sickness certificate and were named secondary gain. Striving for secondary gain denotes a behaviour that aims at benefiting from a disease in a way that is seen as inappropriate by others. The fact that the term has persisted in doctors' vocabulary for decades probably indicates that it designates a concept considered relevant by many. However, its usage is complicated by its usually imprecise definition. We found in a literature search that the strive for secondary gain is not limited to neurosis, might both occur consciously and unconsciously, sometimes may aim at financial gain and sometimes at social gain, and can either be potentially expected or readily obtained. This behaviour mainly seems to aim at shaping one's interactions with the environment. Its causes have not been elucidated completely, though, but "unrequited demands for love, attention and affection" have been postulated. The desire for social gain can be influenced by approaches based upon behavioural psychology. Broaching the issue of secondary gain may be beneficial in the daily clinical routine.
Collapse
Affiliation(s)
- Heiko Pohl
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
| | | | - Andreas R Gantenbein
- RehaClinic Bad Zurzach, Bad Zurzach, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
124
|
Abstract
OBJECTIVE To review clinical and pre-clinical evidence supporting the role of visual pathways, from the eye to the cortex, in the development of photophobia in headache disorders. BACKGROUND Photophobia is a poorly understood light-induced phenomenon that emerges in a variety of neurological and ophthalmological conditions. Over the years, multiple mechanisms have been proposed to explain its causes; however, scarce research and lack of systematic assessment of photophobia in patients has made the search for answers quite challenging. In the field of headaches, significant progress has been made recently on how specific visual networks contribute to photophobia features such as light-induced intensification of headache, increased perception of brightness and visual discomfort, which are frequently experienced by migraineurs. Such progress improved our understanding of the phenomenon and points to abnormal processing of light by both cone/rod-mediated image-forming and melanopsin-mediated non-image-forming visual pathways, and the consequential transfer of photic signals to multiple brain regions involved in sensory, autonomic and emotional regulation. CONCLUSION Photophobia phenotype is diverse, and the relative contribution of visual, trigeminal and autonomic systems may depend on the disease it emerges from. In migraine, photophobia could result from photic activation of retina-driven pathways involved in the regulation of homeostasis, making its association with headache more complex than previously thought.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Copenhagen
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
125
|
Tolner EA, Chen SP, Eikermann-Haerter K. Current understanding of cortical structure and function in migraine. Cephalalgia 2019; 39:1683-1699. [PMID: 30922081 PMCID: PMC6859601 DOI: 10.1177/0333102419840643] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To review and discuss the literature on the role of cortical structure and function in migraine. DISCUSSION Structural and functional findings suggest that changes in cortical morphology and function contribute to migraine susceptibility by modulating dynamic interactions across cortical and subcortical networks. The involvement of the cortex in migraine is well established for the aura phase with the underlying phenomenon of cortical spreading depolarization, while increasing evidence suggests an important role for the cortex in perception of head pain and associated sensations. As part of trigeminovascular pain and sensory processing networks, cortical dysfunction is likely to also affect initiation of attacks. CONCLUSION Morphological and functional changes identified across cortical regions are likely to contribute to initiation, cyclic recurrence and chronification of migraine. Future studies are needed to address underlying mechanisms, including interactions between cortical and subcortical regions and effects of internal (e.g. genetics, gender) and external (e.g. sensory inputs, stress) modifying factors, as well as possible clinical and therapeutic implications.
Collapse
Affiliation(s)
- Else A Tolner
- Departments of Neurology and Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Shih-Pin Chen
- Insitute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei
| | | |
Collapse
|
126
|
Enhanced Thalamocortical Synaptic Transmission and Dysregulation of the Excitatory-Inhibitory Balance at the Thalamocortical Feedforward Inhibitory Microcircuit in a Genetic Mouse Model of Migraine. J Neurosci 2019; 39:9841-9851. [PMID: 31645463 DOI: 10.1523/jneurosci.1840-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022] Open
Abstract
Migraine is a complex brain disorder, characterized by attacks of unilateral headache and global dysfunction in multisensory information processing, whose underlying cellular and circuit mechanisms remain unknown. The finding of enhanced excitatory, but unaltered inhibitory, neurotransmission at intracortical synapses in mouse models of familial hemiplegic migraine (FHM) suggested the hypothesis that dysregulation of the excitatory-inhibitory balance in specific circuits is a key pathogenic mechanism. Here, we investigated the thalamocortical (TC) feedforward inhibitory microcircuit in FHM1 mice of both sexes carrying a gain-of-function mutation in CaV2.1. We show that TC synaptic transmission in somatosensory cortex is enhanced in FHM1 mice. Due to similar gain of function of TC excitation of layer 4 excitatory and fast-spiking inhibitory neurons elicited by single thalamic stimulations, neither the excitatory-inhibitory balance nor the integration time window set by the TC feedforward inhibitory microcircuit was altered in FHM1 mice. However, during repetitive thalamic stimulation, the typical shift of the excitatory-inhibitory balance toward excitation and the widening of the integration time window were both smaller in FHM1 compared with WT mice, revealing a dysregulation of the excitatory-inhibitory balance, whereby the balance is relatively skewed toward inhibition. This is due to an unexpected differential effect of the FHM1 mutation on short-term synaptic plasticity at TC synapses on cortical excitatory and fast-spiking inhibitory neurons. Our findings point to enhanced transmission of sensory, including trigeminovascular nociceptive, signals from thalamic nuclei to cortex and TC excitatory-inhibitory imbalance as mechanisms that may contribute to headache, increased sensory gain, and sensory processing dysfunctions in migraine.SIGNIFICANCE STATEMENT Migraine is a complex brain disorder, characterized by attacks of unilateral headache and by global dysfunction in multisensory information processing, whose underlying cellular and circuit mechanisms remain unknown. Here we provide insights into these mechanisms by investigating thalamocortical (TC) synaptic transmission and the function of the TC feedforward inhibitory microcircuit in a mouse model of a rare monogenic migraine. This microcircuit is critical for gating information flow to cortex and for sensory processing. We reveal increased TC transmission and dysregulation of the cortical excitatory-inhibitory balance set by the TC feedforward inhibitory microcircuit, whereby the balance is relatively skewed toward inhibition during repetitive thalamic activity. These alterations may contribute to headache, increased sensory gain, and sensory processing dysfunctions in migraine.
Collapse
|
127
|
Coppola G, Parisi V, Di Renzo A, Pierelli F. Cortical pain processing in migraine. J Neural Transm (Vienna) 2019; 127:551-566. [DOI: 10.1007/s00702-019-02089-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
|
128
|
The metabolic face of migraine - from pathophysiology to treatment. Nat Rev Neurol 2019; 15:627-643. [PMID: 31586135 DOI: 10.1038/s41582-019-0255-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Migraine can be regarded as a conserved, adaptive response that occurs in genetically predisposed individuals with a mismatch between the brain's energy reserve and workload. Given the high prevalence of migraine, genotypes associated with the condition seem likely to have conferred an evolutionary advantage. Technological advances have enabled the examination of different aspects of cerebral metabolism in patients with migraine, and complementary animal research has highlighted possible metabolic mechanisms in migraine pathophysiology. An increasing amount of evidence - much of it clinical - suggests that migraine is a response to cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity and that the attack itself helps to restore brain energy homeostasis and reduces harmful oxidative stress levels. Greater understanding of metabolism in migraine offers novel therapeutic opportunities. In this Review, we describe the evidence for abnormalities in energy metabolism and mitochondrial function in migraine, with a focus on clinical data (including neuroimaging, biochemical, genetic and therapeutic studies), and consider the relationship of these abnormalities with the abnormal sensory processing and cerebral hyper-responsivity observed in migraine. We discuss experimental data to consider potential mechanisms by which metabolic abnormalities could generate attacks. Finally, we highlight potential treatments that target cerebral metabolism, such as nutraceuticals, ketone bodies and dietary interventions.
Collapse
|
129
|
Self-motion perception is sensitized in vestibular migraine: pathophysiologic and clinical implications. Sci Rep 2019; 9:14323. [PMID: 31586151 PMCID: PMC6778132 DOI: 10.1038/s41598-019-50803-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
Vestibular migraine (VM) is the most common cause of spontaneous vertigo but remains poorly understood. We investigated the hypothesis that central vestibular pathways are sensitized in VM by measuring self-motion perceptual thresholds in patients and control subjects and by characterizing the vestibulo-ocular reflex (VOR) and vestibular and headache symptom severity. VM patients were abnormally sensitive to roll tilt, which co-modulates semicircular canal and otolith organ activity, but not to motions that activate the canals or otolith organs in isolation, implying sensitization of canal-otolith integration. When tilt thresholds were considered together with vestibular symptom severity or VOR dynamics, VM patients segregated into two clusters. Thresholds in one cluster correlated positively with symptoms and with the VOR time constant; thresholds in the second cluster were uniformly low and independent of symptoms and the time constant. The VM threshold abnormality showed a frequency-dependence that paralleled the brain stem velocity storage mechanism. These results support a pathogenic model where vestibular symptoms emanate from the vestibular nuclei, which are sensitized by migraine-related brainstem regions and simultaneously suppressed by inhibitory feedback from the cerebellar nodulus and uvula, the site of canal-otolith integration. This conceptual framework elucidates VM pathophysiology and could potentially facilitate its diagnosis and treatment.
Collapse
|
130
|
Martins IP, Westerfield M, Lopes M, Maruta C, Gil-da-Costa R. Brain state monitoring for the future prediction of migraine attacks. Cephalalgia 2019; 40:255-265. [PMID: 31530007 DOI: 10.1177/0333102419877660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Migraine attacks are unpredictable, precluding preemptive interventions and leading to lack of control over individuals' lives. Although there are neurophysiological changes 24-48 hours before migraine attacks, so far, they have not been used in patients' management. This study evaluates the applicability and the ability to identify pre-attack changes of daily "at home" electroencephalography obtained with a portable system for migraine patients. METHODS Patients with episodic migraine fulfilling ICHD-3 beta criteria used a mobile system composed of a wireless EEG device (BrainStation®, Neuroverse®, Inc., USA) and mobile application (BrainVitalsM®, Neuroverse®, Inc., USA) to self-record their neural activity daily at home while resting and while performing an attention task, over the course of 2 weeks. Standard EEG spectral analysis and event-related brain potentials (ERP) methods were used and recordings were grouped by time from migraine attacks (i.e. "Interictal day", "24 h Before Migraine", "Migraine day" and "Post Migraine"). RESULTS Twenty-four patients (22 women) recorded an average of 13.3 ± 1.9 days and had 2 ± 0.9 attacks. Twenty-four hours before attack onset, there was a statistically significant modulation of relative power in the delta (decrease) and beta (increase) frequency bands, at rest, and a significant reduction of the amplitude and inter-trial coherence measures of an attention event-related brain potential (P300). CONCLUSIONS This proof-of-concept study shows that brain state monitoring, utilising an easy-to-use wearable EEG system to track neural modulations at home, can identify physiological changes preceding a migraine attack enabling valuable pre-symptom prediction and subsequent early intervention.
Collapse
Affiliation(s)
- Isabel P Martins
- Department of Clinical Neurosciences, Faculty of Medicine and Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | | | - Marco Lopes
- Research and Development Unit, Neuroverse, Inc., San Diego, CA, USA
| | - Carolina Maruta
- Department of Clinical Neurosciences, Faculty of Medicine and Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | | |
Collapse
|
131
|
Abstract
BACKGROUND Migraine is a complex neurological disorder that affects a significant percentage of the human species, from all geographic areas and cultures. Cognitive symptoms and dysfunctions are interim and disabling components of this disorder and may be related to the brain processes underlying the pathophysiology. Yet they are often undervalued by clinicians. In this review, we present the different types of cognitive dysfunctions associated with migraine and the mechanisms that are potentially causing them. FINDINGS While reversible attack-related cognitive dysfunction seems extremely consistent and likely related to functional cortical and subcortical brain changes occurring during attacks, interictal cognitive dysfunction is less consistent and might become more relevant as attack frequency and disease complexity increase. Migraine traits do not seem a predisposition to long-term cognitive decline. Cognitive dysfunction is a frequent manifestation of migraine attacks and may be specific to this disorder; it is important to understand if it could be useful in migraine diagnosis. Attack-related cognitive dysfunction is clinically relevant and contributes to disability, so it should be perceived as a therapeutic target. While there is no evidence to support that migraine increases the risk of long-term or persistent cognitive dysfunction, the fact that it occurs during the attacks and may persist in subjects with frequent or complicated attacks should prompt the understanding of the mechanisms related to its pathophysiology for it may also clarify the processes underlying migraine.
Collapse
|
132
|
Maccora S, Giglia G, Bolognini N, Cosentino G, Gangitano M, Salemi G, Brighina F. Cathodal Occipital tDCS Is Unable to Modulate the Sound Induced Flash Illusion in Migraine. Front Hum Neurosci 2019; 13:247. [PMID: 31379542 PMCID: PMC6650581 DOI: 10.3389/fnhum.2019.00247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
Migraine is a highly disabling disease characterized by recurrent pain. Despite an intensive effort, mechanisms of migraine pathophysiology still represent an unsolved issue. Evidence from both animal and human studies suggests that migraine is characterized by hyperresponsivity or hyperexcitability of sensory cortices, especially the visual cortex. This phenomenon, in turn, may affect multisensory processing. Indeed, migraineurs present with an abnormal, reduced, perception of the Sound-induced Flash Illusion (SiFI), a crossmodal illusion that relies on optimal integration of visual and auditory stimuli by the occipital visual cortex. Decreasing visual cortical excitability with transcranial direct current stimulation (tDCS) can increase the SiFI in healthy subjects. Moving away from these issues, we applied cathodal tDCS over the visual cortex of migraineurs, with and without aura, in order to decrease cortical excitability and thus physiologically restoring the perception of a reliable SiFI. Differently from our expectations, tDCS was unable to reliably modulate SiFI in migraine. The chronic, relatively excessive, visual cortex hyperexcitability, featuring the migraineur brain, may render tDCS ineffective for restoring multisensory processing in this disease.
Collapse
Affiliation(s)
- Simona Maccora
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMi Milan Center for Neuroscience, University of Milan Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCSS Istituto Auxologico Italiano, Milan, Italy
| | - Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Massimo Gangitano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
133
|
Pietrobon D, Brennan KC. Genetic mouse models of migraine. J Headache Pain 2019; 20:79. [PMID: 31299902 PMCID: PMC6734414 DOI: 10.1186/s10194-019-1029-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Mouse models of rare monogenic forms of migraine provide a unique experimental system to study the cellular and circuit mechanisms of the primary brain dysfunctions causing a migraine disorder. Here, we discuss the migraine-relevant phenotypes and the migraine-relevant functional alterations in the brain of five genetic mouse models of migraine, four of which carry mutations derived from patients with familial hemiplegic migraine (FHM) and the fifth carry a mutation from patients with both phenotypically normal MA and familial advanced sleep phase syndrome (FASPS). We focus on the latter mouse model, in which a ubiquitous serine-threonine kinase is mutated, and on two mouse models of pure FHM, in which a voltage-gated calcium channel controlling neurotransmitter release at most brain synapses and a Na/K ATPase that is expressed mainly in astrocytes in the adult brain are mutated, respectively. First, we describe the behavioral phenotypes of the genetic animal models and review the evidence that an increased susceptibility to experimentally induced cortical spreading depression (CSD) is a key migraine-relevant phenotype common to the five models. Second, we review the synaptic alterations in the cerebral cortex of the genetic models of migraine and discuss the mechanisms underlying their increased susceptibility to CSD. Third, we review the alterations in the trigeminovascular pain pathway and discuss possible implications for migraine pain mechanisms. Finally, we discuss the insights into migraine pathophysiology obtained from the genetic models of migraine, in particular regarding the mechanisms that make the brain of migraineurs susceptible to the ignition of “spontaneous” CSDs. Although the reviewed functional studies support the view of migraine as a disorder of the brain characterized by dysfunctional regulation of the excitatory/inhibitory balance in specific neuronal circuits, much work remains to be done in the genetic mouse models e.g. to identfy the relevant dysfunctional circuits and to establish whether and how the alterations in the function of specific circuits (in the cerebral cortex and/or other brain areas) are state-dependent and may, in certain conditions, favor CSD ignition and the migraine attack.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, 35131, Padova, Italy. .,CNR Institute of Neuroscience, 35131, Padova, Italy.
| | - K C Brennan
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
134
|
Mykland MS, Bjørk MH, Stjern M, Omland PM, Uglem M, Sand T. Fluctuations of sensorimotor processing in migraine: a controlled longitudinal study of beta event related desynchronization. J Headache Pain 2019; 20:77. [PMID: 31288756 PMCID: PMC6734210 DOI: 10.1186/s10194-019-1026-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Background The migraine brain seems to undergo cyclic fluctuations of sensory processing. For instance, during the preictal phase, migraineurs experience symptoms and signs of altered pain perception as well as other well-known premonitory CNS-symptoms. In the present study we measured EEG-activation to non-painful motor and sensorimotor tasks in the different phases of the migraine cycle by longitudinal measurements of beta event related desynchronization (beta-ERD). Methods We recorded electroencephalography (EEG) of 41 migraine patients and 31 healthy controls. Each subject underwent three EEG recordings on three different days with classification of each EEG recording according to the actual migraine phase. During each recording, subjects performed one motor and one sensorimotor task with the flexion-extension movement of the right wrist. Results Migraine patients had significantly increased beta-ERD and higher baseline beta power at the contralateral C3 electrode overlying the primary sensorimotor cortex in the preictal phase compared to the interictal phase. We found no significant differences in beta-ERD or baseline beta power between interictal migraineurs and controls. Conclusion Increased preictal baseline beta activity may reflect a decrease in pre-activation in the sensorimotor cortex. Altered pre-activation may lead to changes in thresholds for inhibitory responses and increased beta-ERD response, possibly reflecting a generally increased preictal cortical responsivity in migraine. Cyclic fluctuations in the activity of second- and third-order afferent somatosensory neurons, and their associated cortical and/or thalamic interneurons, may accordingly also be a central part of the migraine pathophysiology.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Marte Helene Bjørk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Marit Stjern
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Petter Moe Omland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Martin Uglem
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
135
|
Caroli A, Klan T, Gaul C, Liesering-Latta E, Martin P, Witthöft M. Die Erfassung von Triggerempfindlichkeit und -vermeidung bei primären Kopfschmerzen: Entwicklung und psychometrische Erprobung einer deutschen Version des Headache Triggers Sensitivity and Avoidance Questionnaire (HTSAQ-G). VERHALTENSTHERAPIE 2019. [DOI: 10.1159/000501218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
136
|
de Coo IF, Marin JCA, Silberstein SD, Friedman DI, Gaul C, McClure CK, Tyagi A, Liebler E, Tepper SJ, Ferrari MD, Goadsby PJ. Differential efficacy of non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: A meta-analysis. Cephalalgia 2019; 39:967-977. [PMID: 31246132 PMCID: PMC6637721 DOI: 10.1177/0333102419856607] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Two randomized, double-blind, sham-controlled trials (ACT1, ACT2) evaluated non-invasive vagus nerve stimulation (nVNS) as acute treatment for cluster headache. We analyzed pooled ACT1/ACT2 data to increase statistical power and gain insight into the differential efficacy of nVNS in episodic and chronic cluster headache. METHODS Data extracted from ACT1 and ACT2 were pooled using a fixed-effects model. Main outcome measures were the primary endpoints of each study. This was the proportion of participants whose first treated attack improved from moderate (2), severe (3), or very severe (4) pain intensity to mild (1) or nil (0) for ACT1 and the proportion of treated attacks whose pain intensity improved from 2-4 to 0 for ACT2. RESULTS The pooled population included 225 participants (episodic: n = 112; chronic: n = 113) from ACT1 (n = 133) and ACT2 (n = 92) in the nVNS (n = 108) and sham (n = 117) groups. Interaction was shown between treatment group and cluster headache subtype (p < 0.05). nVNS was superior to sham in episodic but not chronic cluster headache (both endpoints p < 0.01). Only four patients discontinued the studies due to adverse events. CONCLUSIONS nVNS is a well-tolerated and effective acute treatment for episodic cluster headache. TRIAL REGISTRATION The studies were registered at clinicaltrials.gov (ACT1: NCT01792817; ACT2: NCT01958125).
Collapse
Affiliation(s)
- Ilse F de Coo
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Juana CA Marin
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, UK
| | | | - Deborah I Friedman
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| | - Charly Gaul
- Migraine and Headache Clinic, Königstein, Germany
| | | | - Alok Tyagi
- Neurology Department, The Southern Hospital, Glasgow, UK
| | | | | | | | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, UK
| |
Collapse
|
137
|
Alaydin HC, Vuralli D, Keceli Y, Can E, Cengiz B, Bolay H. Reduced Short‐Latency Afferent Inhibition Indicates Impaired Sensorimotor Integrity During Migraine Attacks. Headache 2019; 59:906-914. [DOI: 10.1111/head.13554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Halil Can Alaydin
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Doga Vuralli
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
- Division of Algology, Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Yeliz Keceli
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Ezgi Can
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Bulent Cengiz
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
- Division of Clinical Neurophysiology, Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| | - Hayrunnisa Bolay
- Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
- Division of Algology, Department of Neurology, Faculty of Medicine Gazi University Ankara Turkey
| |
Collapse
|
138
|
Viticchi G, Falsetti L, Paolucci M, Altamura C, Buratti L, Salvemini S, Brunelli N, Bartolini M, Vernieri F, Silvestrini M. Influence of chronotype on migraine characteristics. Neurol Sci 2019; 40:1841-1848. [DOI: 10.1007/s10072-019-03886-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
|
139
|
Klan T, Liesering‐Latta E, Gaul C, Martin PR, Witthöft M. An Integrative Cognitive Behavioral Therapy Program for Adults With Migraine: A Feasibility Study. Headache 2019; 59:741-755. [DOI: 10.1111/head.13532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Timo Klan
- Department of Psychology University of Mainz Mainz Germany
| | | | - Charly Gaul
- Migraine and Headache Clinic Königstein Königstein Germany
| | - Paul R. Martin
- Research School of Psychology The Australian National University Canberra Australia
| | | |
Collapse
|
140
|
Bauer PR, Helling RM, Perenboom MJL, Lopes da Silva FH, Tolner EA, Ferrari MD, Sander JW, Visser GH, Kalitzin SN. Phase clustering in transcranial magnetic stimulation-evoked EEG responses in genetic generalized epilepsy and migraine. Epilepsy Behav 2019; 93:102-112. [PMID: 30875639 DOI: 10.1016/j.yebeh.2019.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Epilepsy and migraine are paroxysmal neurological conditions associated with disturbances of cortical excitability. No useful biomarkers to monitor disease activity in these conditions are available. Phase clustering was previously described in electroencephalographic (EEG) responses to photic stimulation and may be a potential epilepsy biomarker. OBJECTIVE The objective of this study was to investigate EEG phase clustering in response to transcranial magnetic stimulation (TMS), compare it with photic stimulation in controls, and explore its potential as a biomarker of genetic generalized epilepsy or migraine with aura. METHODS People with (possible) juvenile myoclonic epilepsy (JME), migraine with aura, and healthy controls underwent single-pulse TMS with concomitant EEG recording during the interictal period. We compared phase clustering after TMS with photic stimulation across the groups using permutation-based testing. RESULTS We included eight people with (possible) JME (five off medication, three on), 10 with migraine with aura, and 37 controls. The TMS and photic phase clustering spectra showed significant differences between those with epilepsy without medication and controls. Two phase clustering-based indices successfully captured these differences between groups. One participant was tested multiple times. In this case, the phase clustering-based indices were inversely correlated with the dose of antiepileptic medication. Phase clustering did not differ between people with migraine and controls. CONCLUSION We present methods to quantify phase clustering using TMS-EEG and show its potential value as a measure of brain network activity in genetic generalized epilepsy. Our results suggest that the higher propensity to phase clustering is not shared between genetic generalized epilepsy and migraine.
Collapse
Affiliation(s)
- Prisca R Bauer
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| | - Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands
| | - Matthijs J L Perenboom
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Fernando H Lopes da Silva
- Center of Neurosciences, Swammerdam Institute of Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, the Netherlands; Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands
| | - Stiliyan N Kalitzin
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands; Image Sciences Institute, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, the Netherlands
| |
Collapse
|
141
|
|
142
|
Szabó E, Galambos A, Kocsel N, Édes AE, Pap D, Zsombók T, Kozák LR, Bagdy G, Kökönyei G, Juhász G. Association between migraine frequency and neural response to emotional faces: An fMRI study. NEUROIMAGE-CLINICAL 2019; 22:101790. [PMID: 31146320 PMCID: PMC6462777 DOI: 10.1016/j.nicl.2019.101790] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/12/2019] [Accepted: 03/23/2019] [Indexed: 01/03/2023]
Abstract
Previous studies have demonstrated that migraine is associated with enhanced perception and altered cerebral processing of sensory stimuli. More recently, it has been suggested that this sensory hypersensitivity might reflect a more general enhanced response to aversive emotional stimuli. Using functional magnetic resonance imaging and emotional face stimuli (fearful, happy and sad faces), we compared whole-brain activation between 41 migraine patients without aura in interictal period and 49 healthy controls. Migraine patients showed increased neural activation to fearful faces compared to neutral faces in the right middle frontal gyrus and frontal pole relative to healthy controls. We also found that higher attack frequency in migraine patients was related to increased activation mainly in the right primary somatosensory cortex (corresponding to the face area) to fearful expressions and in the right dorsal striatal regions to happy faces. In both analyses, activation differences remained significant after controlling for anxiety and depressive symptoms. These findings indicate that enhanced response to emotional stimuli might explain the migraine trigger effect of psychosocial stressors that gradually leads to increased somatosensory response to emotional clues and thus contributes to the progression or chronification of migraine. First fMRI study to explore neural response to emotional faces in migraine patients Migraine patients showed increased activation to fear in the right frontal regions Migraine frequency was related to enhanced activation to fearful and happy faces Activation in the right S1 and dorsal striatum was linked to migraine frequency Sensitivity to emotional stimuli might have a role in triggering migraine
Collapse
Affiliation(s)
- Edina Szabó
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary.
| | - Attila Galambos
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary.
| | - Natália Kocsel
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Andrea Edit Édes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Dorottya Pap
- Department of Neurology, Faculty of Medicine, Semmelweis University, Balassa street 6, H-1083 Budapest, Hungary
| | - Terézia Zsombók
- MR Research Center, Semmelweis University, Balassa street 6, H-1083 Budapest, Hungary
| | - Lajos Rudolf Kozák
- Neuroscience and Psychiatry Unit, The University of Manchester and Manchester Academic Health Sciences Centre, Stopford Building, Oxford Road, Manchester, United Kingdom.
| | - György Bagdy
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Gyöngyi Kökönyei
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Gabriella Juhász
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary; Neuroscience and Psychiatry Unit, The University of Manchester and Manchester Academic Health Sciences Centre, Stopford Building, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
143
|
Zhu B, Coppola G, Shoaran M. Migraine classification using somatosensory evoked potentials. Cephalalgia 2019; 39:1143-1155. [DOI: 10.1177/0333102419839975] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective The automatic detection of migraine states using electrophysiological recordings may play a key role in migraine diagnosis and early treatment. Migraineurs are characterized by a deficit of habituation in cortical information processing, causing abnormal changes of somatosensory evoked potentials. Here, we propose a machine learning approach to utilize somatosensory evoked potential-based biomarkers for migraine classification in a noninvasive setting. Methods Forty-two migraine patients, including 29 interictal and 13 ictal, were recruited and compared with 15 healthy volunteers of similar age and gender distribution. The right median nerve somatosensory evoked potentials were collected from all subjects. State-of-the-art machine learning algorithms including random forest, extreme gradient-boosting trees, support vector machines, K-nearest neighbors, multilayer perceptron, linear discriminant analysis, and logistic regression were used for classification and were built upon somatosensory evoked potential features in time and frequency domains. A feature selection method was employed to assess the contribution of features and compare it with previous clinical findings, and to build an optimal feature set by removing redundant features. Results Using a set of relevant features and different machine learning models, accuracies ranging from 51.2% to 72.4% were achieved for the healthy volunteers-ictal-interictal classification task. Following model and feature selection, we successfully separated the three groups of subjects with an accuracy of 89.7% for the healthy volunteers-ictal, 88.7% for healthy volunteers-interictal, 80.2% for ictal-interictal, and 73.3% for healthy volunteers-ictal-interictal classification tasks, respectively. Conclusion Our proposed model suggests the potential use of somatosensory evoked potentials as a prominent and reliable signal in migraine classification. This non-invasive somatosensory evoked potential-based classification system offers the potential to reliably separate migraine patients in ictal and interictal states from healthy controls.
Collapse
Affiliation(s)
- Bingzhao Zhu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Gianluca Coppola
- Research Unit of Neurophysiology of Vision and Neurophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| | - Mahsa Shoaran
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
144
|
Abstract
Introduction: In the past few years, brain functional analysis has provided scientific evidence supporting the neuronal basis of migraine. The role of electroencephalography (EEG) in detecting subtle dysfunctions in sensory temporal processing has been fully re-evaluated, thanks to advances in methods of quantitative analysis. However, the diagnostic value of EEG in migraine is very low, and migraine diagnosis is completely based on clinical criteria, while the utility of EEG in migraine pathophysiology has only been confirmed in more recent applications. Areas covered: The present review focuses on the few situations in which EEG may provide diagnostic utility, and on the numerous and intriguing applications of novel analysis, based on time-related changes in neuronal network oscillations and functional connectivity. Expert opinion: Although routine EEG is not particularly useful for the clinical assessment of migraine, novel methods of analysis, mostly based on functional connectivity, could improve knowledge of the migraine brain. The application is worthy of promotion and improvement in support of neuroimaging data to shed light on migraine mechanisms and support the rationale for therapeutic approaches.
Collapse
Affiliation(s)
- Marina de Tommaso
- a Applied Neurophysiology and Pain Unit, Basic Medical Neuroscience and Sensory System Department , Bari Aldo Moro University , Bari , Italy
| |
Collapse
|
145
|
Bogdanov VB, Bogdanova OV, Viganò A, Noirhomme Q, Laureys S, Dallel R, Phillips C, Schoenen J. Increased cerebral responses to salient transitions between alternating stimuli in chronic migraine with medication overuse headache and during migraine attacks. Cephalalgia 2019; 39:988-999. [DOI: 10.1177/0333102418825359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction In a previous study exploring central pain modulation with heterotopic stimuli in healthy volunteers, we found that transitions between sustained noxious and innocuous thermal stimulations on the foot activated the “salience matrix”. Knowing that central sensory processing is abnormal in migraine, we searched in the present study for possible abnormalities of these salient transitional responses in different forms of migraine and at different time points of the migraine cycle. Methods Participants of both sexes, mostly females, took part in a conditioned pain modulation experiment: Migraineurs between (n = 14) and during attacks (n = 5), chronic migraine patients with medication overuse headache (n = 7) and healthy volunteers (n = 24). To evoke the salience response, continuous noxious cold or innocuous warm stimulations were alternatively applied on the right foot. Cerebral blood oxygenation level dependent responses were recorded with fMRI. Results Switching between the two stimulations caused a significant transition response in the “salience matrix” in all subject groups (effect of the condition). Moreover, some group effects appeared on subsequent post-hoc analyses. Augmented transitional blood oxygenation level dependent responses in the motor cortex and superior temporal sulcus were found in two patient groups compared to healthy controls: chronic migraine with medication overuse headache patients and migraineurs recorded during an attack. In chronic migraine with medication overuse headache patients, salience-related responses were moreover greater in the premotor cortex, supplementary motor area, lingual gyrus and dorso-medial prefrontal cortex and other “salience matrix” areas, such as the anterior cingulate and primary somatosensory cortices. Conclusion This study shows salience-related hyperactivation of affective and motor control areas in chronic migraine with medication overuse headache patients and, to a lesser extent, in episodic migraine patients during an attack. The greater extension of exaggerated blood oxygenation level dependent responses to unspecific salient stimuli in chronic migraine with medication overuse headache than during a migraine attack could be relevant for headache chronification.
Collapse
Affiliation(s)
- Volodymyr B Bogdanov
- Centre de Recherche en Neurosciences de Lyon Inserm, U1028 - CNRS UMR5292 Bâtiment Inserm, Bron, France
- Headache Research Unit, Department of Neurology, CHR Citadelle, University of Liège, Liège, Belgium
| | - Olena V Bogdanova
- Centre de Recherche en Neurosciences de Lyon Inserm, U1028 - CNRS UMR5292 Bâtiment Inserm, Bron, France
- Headache Research Unit, Department of Neurology, CHR Citadelle, University of Liège, Liège, Belgium
| | - Alessandro Viganò
- Headache Research Unit, Department of Neurology, CHR Citadelle, University of Liège, Liège, Belgium
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy
- Department of Neurology and Psychiatry, La Sapienza, University of Rome, Rome, Italy
| | - Quentin Noirhomme
- GIGA institute, University of Liège, Liège, Belgium
- Coma Science Group, Department of Neurology, University and University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- GIGA institute, University of Liège, Liège, Belgium
- Coma Science Group, Department of Neurology, University and University Hospital of Liège, Liège, Belgium
| | - Radhouane Dallel
- Université Clermont Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clermont-Ferrand, France
- Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Christophe Phillips
- GIGA institute, University of Liège, Liège, Belgium
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology, CHR Citadelle, University of Liège, Liège, Belgium
| |
Collapse
|
146
|
Electroencephalography and magnetoencephalography in pain research-current state and future perspectives. Pain 2019; 159:206-211. [PMID: 29944612 DOI: 10.1097/j.pain.0000000000001087] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
147
|
Russo AF. CGRP-based Migraine Therapeutics: How Might They Work, Why So Safe, and What Next? ACS Pharmacol Transl Sci 2019; 2:2-8. [PMID: 31559394 PMCID: PMC6761833 DOI: 10.1021/acsptsci.8b00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 01/20/2023]
Abstract
Migraine is a debilitating neurological condition that involves the neuropeptide calcitonin gene-related peptide (CGRP). An exciting development is the recent FDA approval of the first in an emerging class of CGRP-targeted drugs designed to prevent migraine. Yet despite this efficacy, there are some fundamental unanswered questions, such as where and how CGRP works in migraine. Preclinical data suggest that CGRP acts via both peripheral and central mechanisms. The relevance of peripheral sites is highlighted by the clinical efficacy of CGRP-blocking antibodies, even though they do not appreciably cross the blood-brain barrier. The most likely sites of action are within the dura and trigeminal ganglia. Furthermore, it would be foolish to ignore perivascular actions in the dura since CGRP is the most potent vasodilatory peptide. Ultimately, the consequence of blocking CGRP or its receptor is reduced peripheral neural sensitization. Underlying their efficacy is the question of why the antibodies have such an excellent safety profile so far. This may be due to the presence of a second CGRP receptor and vesicular release of a large bolus of peptides. Finally, despite the promise of these drugs, there are unmet gaps because they do not work for all patients; so what next? We can expect advances on several fronts, including CGRP receptor structures that may help development of centrally-acting antagonists, combinatorial treatments that integrate other therapies, and development of drugs that target other neuropeptides. This is truly an exciting time for CGRP and the migraine field with many more discoveries on the horizon.
Collapse
Affiliation(s)
- Andrew F. Russo
- Departments
of Molecular Physiology and Biophysics, Neurology, University of Iowa, Iowa City, Iowa 52242, United States
- Center
for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, Iowa 52246, United States
| |
Collapse
|
148
|
Viganò A, Toscano M, Puledda F, Di Piero V. Treating Chronic Migraine With Neuromodulation: The Role of Neurophysiological Abnormalities and Maladaptive Plasticity. Front Pharmacol 2019; 10:32. [PMID: 30804782 PMCID: PMC6370938 DOI: 10.3389/fphar.2019.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic migraine (CM) is the most disabling form of migraine, because pharmacological treatments have low efficacy and cumbersome side effects. New evidence has shown that migraine is primarily a disorder of brain plasticity and migraine chronification depends on a maladaptive process favoring the development of a brain state of hyperexcitability. Due to the ability to induce plastic changes in the brain, researchers started to look at Non-Invasive Brain Stimulation (NIBS) as a possible therapeutic option in migraine field. On one side, NIBS techniques induce changes of neural plasticity that outlast the period of the stimulation (a fundamental prerequisite of a prophylactic migraine treatment, concurrently they allow targeting neurophysiological abnormalities that contribute to the transition from episodic to CM. The action may thus influence not only the cortex but also brainstem and diencephalic structures. Plus, NIBS is not burdened by serious medication side effects and drug–drug interactions. Although the majority of the studies reported somewhat beneficial effects in migraine patients, no standard intervention has been defined. This may be due to methodological differences regarding the used techniques (e.g., transcranial magnetic stimulation, transcranial direct current stimulation), the brain regions chosen as targets, and the stimulation types (e.g., the use of inhibitory and excitatory stimulations on the basis of opposite rationales), and an intrinsic variability of stimulation effect. Hence, it is difficult to draw a conclusion on the real effect of neuromodulation in migraine. In this article, we first will review the definition and mechanisms of brain plasticity, some neurophysiological hallmarks of migraine, and migraine chronification-related (dys)plasticity. Secondly, we will review available results from therapeutic and physiological studies using neuromodulation in CM. Lastly we will discuss the results obtained in these preventive trials in the light of a possible effect on brain plasticity.
Collapse
Affiliation(s)
- Alessandro Viganò
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,Molecular and Cellular Networks Lab, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Toscano
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,Department of Neurology, Fatebenefratelli Hospital, Rome, Italy
| | - Francesca Puledda
- Headache Group, Department of Basic and Clinical Neuroscience, King's College Hospital, King's College London, London, United Kingdom
| | - Vittorio Di Piero
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,University Consortium for Adaptive Disorders and Head Pain - UCADH, Pavia, Italy
| |
Collapse
|
149
|
Affiliation(s)
- Anna Ambrosini
- Headache Unit, IRCCS Neuromed, Via Atinense, 18, I-86077, Pozzilli, Isernia, Italy.
| |
Collapse
|
150
|
Shahaf G, Kuperman P, Bloch Y, Yariv S, Granovsky Y. Monitoring Migraine Cycle Dynamics with an Easy-to-Use Electrophysiological Marker-A Pilot Study. SENSORS 2018; 18:s18113918. [PMID: 30441751 PMCID: PMC6263618 DOI: 10.3390/s18113918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 11/22/2022]
Abstract
Migraine attacks can cause significant discomfort and reduced functioning for days at a time, including the pre-ictal and post-ictal periods. During the inter-ictsal period, however, migraineurs seem to function normally. It is puzzling, therefore, that event-related potentials of migraine patients often differ in the asymptomatic and inter-ictal period. Part of the electrophysiological dynamics demonstrated in the migraine cycle are attention related. In this pilot study we evaluated an easy-to-use new marker, the Brain Engagement Index (BEI), for attention monitoring during the migraine cycle. We sampled 12 migraine patients for 20 days within one calendar month. Each session consisted of subjects’ reports of stress level and migraine-related symptoms, and a 5 min EEG recording, with a 2-electrode EEG device, during an auditory oddball task. The first minute of the EEG sample was analyzed. Repetitive samples were also obtained from 10 healthy controls. The brain engagement index increased significantly during the pre-ictal (p ≈ 0.001) and the ictal (p ≈ 0.020) periods compared with the inter-ictal period. No difference was observed between the pre-ictal and ictal periods. Control subjects demonstrated intermediate Brain Engagement Index values, that is, higher than inter-ictal, yet lower than pre-ictal. Our preliminary results demonstrate the potential advantage of the use of a simple EEG system for improved prediction of migraine attacks. Further study is required to evaluate the efficacy of the Brain Engagement Index in monitoring the migraine cycle and the possible effects of interventions.
Collapse
Affiliation(s)
| | - Pora Kuperman
- The Laboratory of Clinical Neurophysiology, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Yuval Bloch
- The Emotion-Cognition Research Center, Shalvata Mental Health Care Center, Hod-Hasharon 45100, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel.
| | - Shahak Yariv
- Department of Psychiatry, Emek Medical Center, Afula 1834111, Israel.
| | - Yelena Granovsky
- The Laboratory of Clinical Neurophysiology, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
- Department of Neurology, Rambam Medical Center, Haifa 3655306, Israel.
| |
Collapse
|