101
|
Konermann L, Pan Y. Exploring membrane protein structural features by oxidative labeling and mass spectrometry. Expert Rev Proteomics 2014. [DOI: 10.1586/epr.12.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
102
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
103
|
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013; 82:323-55. [PMID: 23746257 DOI: 10.1146/annurev-biochem-060208-092442] [Citation(s) in RCA: 1014] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.
Collapse
Affiliation(s)
- Yujin E Kim
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
104
|
Tietze AA, Bordusa F, Giernoth R, Imhof D, Lenzer T, Maaß A, Mrestani-Klaus C, Neundorf I, Oum K, Reith D, Stark A. On the Nature of Interactions between Ionic Liquids and Small Amino-Acid-Based Biomolecules. Chemphyschem 2013; 14:4044-64. [DOI: 10.1002/cphc.201300736] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/03/2013] [Indexed: 01/18/2023]
|
105
|
Vahidi S, Stocks BB, Konermann L. Partially Disordered Proteins Studied by Ion Mobility-Mass Spectrometry: Implications for the Preservation of Solution Phase Structure in the Gas Phase. Anal Chem 2013; 85:10471-8. [DOI: 10.1021/ac402490r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siavash Vahidi
- Departments
of Chemistry
and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Bradley B. Stocks
- Departments
of Chemistry
and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lars Konermann
- Departments
of Chemistry
and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
106
|
Vahidi S, Stocks BB, Liaghati-Mobarhan Y, Konermann L. Submillisecond protein folding events monitored by rapid mixing and mass spectrometry-based oxidative labeling. Anal Chem 2013; 85:8618-25. [PMID: 23841479 DOI: 10.1021/ac401148z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Kinetic measurements can provide insights into protein folding mechanisms. However, the initial (submillisecond) stages of folding still represent a formidable analytical challenge. A number of ultrarapid triggering techniques have been available for some time, but coupling of these techniques with detection methods that are capable of providing detailed structural information has proven to be difficult. The current work addresses this issue by combining submillisecond mixing with laser-induced oxidative labeling. Apomyoglobin (aMb) serves as a model system for our measurements. Exposure of the protein to a brief pulse of hydroxyl radical (·OH) at different time points during folding introduces covalent modifications at solvent accessible side chains. The extent of labeling is monitored using mass spectrometry-based peptide mapping, providing spatially resolved measurements of changes in solvent accessibility. The submillisecond mixer used here improves the time resolution by a factor of 50 compared to earlier ·OH labeling experiments from our laboratory. Data obtained in this way indicate that early aMb folding events are driven by both local and sequence-remote docking of hydrophobic side chains. Assembly of a partially formed A(E)G(H) scaffold after 0.2 ms is followed by stepwise consolidation that ultimately yields the native state. Major conformational changes go to completion within 0.1 s. The technique introduced here is capable of providing in-depth structural information on very short time scales that have thus far been dominated by low resolution (global) spectroscopic probes. By employing submillisecond mixing in conjunction with slower mixing techniques, it is possible to observe complete folding pathways, from fractions of a millisecond all the way to minutes.
Collapse
Affiliation(s)
- Siavash Vahidi
- Departments of Chemistry and Biochemistry, The University of Western Ontario , London, Ontario, N6A 5B7, Canada
| | | | | | | |
Collapse
|
107
|
Milosavljević AR, Cerovski VZ, Canon F, Nahon L, Giuliani A. Nanosolvation-Induced Stabilization of a Protonated Peptide Dimer Isolated in the Gas Phase. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
108
|
Mashaghi A, Kramer G, Bechtluft P, Zachmann-Brand B, Driessen AJM, Bukau B, Tans SJ. Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature 2013; 500:98-101. [DOI: 10.1038/nature12293] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/14/2013] [Indexed: 12/20/2022]
|
109
|
Whitney DS, Peterson FC, Kovrigin EL, Volkman BF. Allosteric activation of the Par-6 PDZ via a partial unfolding transition. J Am Chem Soc 2013; 135:9377-83. [PMID: 23705660 PMCID: PMC3736553 DOI: 10.1021/ja400092a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exist in a delicate balance between the native and unfolded states, where thermodynamic stability may be sacrificed to attain the flexibility required for efficient catalysis, binding, or allosteric control. Partition-defective 6 (Par-6) regulates the Par polarity complex by transmitting a GTPase signal through the Cdc42/Rac interaction binding PSD-95/Dlg/ZO-1 (CRIB-PDZ) module that alters PDZ ligand binding. Allosteric activation of the PDZ is achieved by local rearrangement of the L164 and K165 side chains to stabilize the interdomain CRIB:PDZ interface and reposition a conserved element of the ligand binding pocket. However, microsecond to millisecond dynamics measurements revealed that L164/K165 exchange requires a larger rearrangement than expected. The margin of thermodynamic stability for the PDZ domain is modest (∼3 kcal/mol) and further reduced by transient interactions with the disordered CRIB domain. Measurements of local structural stability revealed that tertiary contacts within the PDZ are disrupted by a partial unfolding transition that enables interconversion of the L/K switch. The unexpected participation of partial PDZ unfolding in the allosteric mechanism of Par-6 suggests that native-state unfolding may be essential for the function of other marginally stable proteins.
Collapse
Affiliation(s)
- Dustin S Whitney
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | | | | | | |
Collapse
|
110
|
Milosavljević AR, Cerovski VZ, Canon F, Nahon L, Giuliani A. Nanosolvation-Induced Stabilization of a Protonated Peptide Dimer Isolated in the Gas Phase. Angew Chem Int Ed Engl 2013; 52:7286-90. [DOI: 10.1002/anie.201301667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/05/2013] [Indexed: 11/07/2022]
|
111
|
Chaari A, Hoarau-Véchot J, Ladjimi M. Applying chaperones to protein-misfolding disorders: molecular chaperones against α-synuclein in Parkinson's disease. Int J Biol Macromol 2013; 60:196-205. [PMID: 23748003 DOI: 10.1016/j.ijbiomac.2013.05.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of a protein called α-synuclein (α-syn) into inclusions known as lewy bodies (LB) within neurons. This accumulation is also due to insufficient formation and activity of dopamine produced in certain neurons within the substantia nigra. Lewy bodies are the pathological hallmark of the idiopathic disorder and the cascade that allows α-synuclein to misfold, aggregate and form these inclusions has been the subject of intensive research. Targeting these early steps of oligomerization is one of the main therapeutic approaches in order to develop neurodegenerative-modifying agents. Because the folding and refolding of alpha synuclein is the key point of this cascade, we are interested in this review to summarize the role of some molecular chaperones proteins such as Hsp70, Hsp90 and small heat shock proteins (sHsp) and Hsp 104. Hsp70 and its co-chaperone, Hsp70 and small heat shock proteins can prevent neurodegeneration by preventing α-syn misfolding, oligomerization and aggregation in vitro and in Parkinson disease animal models. Hsp104 is able to resolve disordered protein aggregates and cross beta amyloid conformers. Together, these chaperones have a complementary effect and can be a target for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Ali Chaari
- Department of Biochemistry, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha, Qatar.
| | | | | |
Collapse
|
112
|
Singh C, Atri N. Chemo-informatic design of antibiotic geldenamycin analogs to target stress proteins HSP90 of pathogenic protozoan parasites. Bioinformation 2013; 9:329-33. [PMID: 23750075 PMCID: PMC3669783 DOI: 10.6026/97320630009329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022] Open
Abstract
Stress proteins HSP90 (Heat shock proteins) are essential molecular chaperones involved in signal transduction, cell cycle control,
stress management, folding and degradation of proteins. HSP90 have been found in a variety of organisms including pathogens
suggesting that they are ancient and conserved proteins. Here, using molecular modeling and docking protocols, antibiotic
Geldenamycin and its analog are targeted to the HSP90 homolog proteins of pathogenic protozoans Plasmodium falciparum,
Leishmania donovani, Trypanosoma brucei and Entamoeba Histolytica. The designed analogs of geldenamycin have shown drug like
property with improved binding affinity to their targets. A decrease in insilico affinity of the analogs for the Human HSP90 target
indicates that they can be used as potential drug candidates.
Collapse
Affiliation(s)
- Chaya Singh
- Department of Bioinformatics (MMV), Banaras Hindu University, India
| | | |
Collapse
|
113
|
Abstract
When an amino-acid sequence cannot be optimized for both folding and function, folding can get compromised in favor of function. To understand this tradeoff better, we devise a novel method for extracting the "function-less" folding-motif of a protein fold from a set of structurally similar but functionally diverse proteins. We then obtain the β-trefoil folding-motif, and study its folding using structure-based models and molecular dynamics simulations. CompariA protein sequence serves two purpson with the folding of wild-type β-trefoil proteins shows that function affects folding in two ways: In the slower folding interleukin-1β, binding sites make the fold more complex, increase contact order and slow folding. In the faster folding hisactophilin, residues which could have been part of the folding-motif are used for function. This reduces the density of native contacts in functional regions and increases folding rate. The folding-motif helps identify subtle structural deviations which perturb folding. These may then be used for functional annotation. Further, the folding-motif could potentially be used as a first step in the sequence design of function-less scaffold proteins. Desired function can then be engineered into these scaffolds.
Collapse
Affiliation(s)
- Shachi Gosavi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
114
|
Wilson AJ, Ault JR, Filby MH, Philips HIA, Ashcroft AE, Fletcher NC. Protein destabilisation by ruthenium(II) tris-bipyridine based protein-surface mimetics. Org Biomol Chem 2013; 11:2206-12. [PMID: 23411505 PMCID: PMC3731202 DOI: 10.1039/c3ob26251k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly functionalised ruthenium(II) tris-bipyridine receptor 1 which acts as a selective sensor for equine cytochrome c (cyt c) is shown to destabilise the native protein conformation by around 25 °C. Receptors 2 and 3 do not exert this effect confirming the behaviour is a specific effect of molecular recognition between 1 and cyt c, whilst the absence of a destabilising effect on 60% acetylated cyt c demonstrates the behaviour of 1 to be protein specific. Molecular recognition also modifies the conformational properties of the target protein at room temperature as evidenced by ion-mobility spectrometry (IMS) and accelerated trypsin proteolysis.
Collapse
Affiliation(s)
- Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
115
|
Skibinski G, Finkbeiner S. Longitudinal measures of proteostasis in live neurons: features that determine fate in models of neurodegenerative disease. FEBS Lett 2013; 587:1139-46. [PMID: 23458259 DOI: 10.1016/j.febslet.2013.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Abstract
Protein misfolding and proteostasis decline is a common feature of many neurodegenerative diseases. However, modeling the complexity of proteostasis and the global cellular consequences of its disruption is a challenge, particularly in live neurons. Although conventional approaches, based on population measures and single "snapshots", can identify cellular changes during neurodegeneration, they fail to determine if these cellular events drive cell death or act as adaptive responses. Alternatively, a "systems" cell biology approach known as longitudinal survival analysis enables single neurons to be followed over the course of neurodegeneration. By capturing the dynamics of misfolded proteins and the multiple cellular events that occur along the way, the relationship of these events to each other and their importance and role during cell death can be determined. Quantitative models of proteostasis dysfunction may yield unique insight and novel therapeutic strategies for neurodegenerative disease.
Collapse
Affiliation(s)
- Gaia Skibinski
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | |
Collapse
|
116
|
Liu J, Konermann L. Assembly of Hemoglobin from Denatured Monomeric Subunits: Heme Ligation Effects and Off-Pathway Intermediates Studied by Electrospray Mass Spectrometry. Biochemistry 2013; 52:1717-24. [DOI: 10.1021/bi301693g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jiangjiang Liu
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
117
|
Shen T, Cao Y, Zhuang S, Li H. Engineered bi-histidine metal chelation sites map the structure of the mechanical unfolding transition state of an elastomeric protein domain GB1. Biophys J 2013; 103:807-16. [PMID: 22947942 DOI: 10.1016/j.bpj.2012.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/08/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
Determining the structure of the transition state is critical for elucidating the mechanism behind how proteins fold and unfold. Due to its high free energy, however, the transition state generally cannot be trapped and studied directly using traditional structural biology methods. Thus, characterizing the structure of the transition state that occurs as proteins fold and unfold remains a major challenge. Here, we report a novel (to our knowledge) method that uses engineered bi-histidine (bi-His) metal-binding sites to directly map the structure of the mechanical unfolding transition state of proteins. This method is adapted from the traditional ψ-value analysis, which uses engineered bi-His metal chelation sites to probe chemical (un)folding transition-state structure. The φ(M2+)(U)-value is defined as ΔΔG(‡-N)/ΔΔG(U-N), which is the energetic effects of metal chelation by the bi-His site on the unfolding energy barrier (ΔG(‡-N)) relative to its thermodynamic stability (ΔG(U-N)) and can be used to obtain information about the transition state in the mutational site. As a proof of principle, we used the small protein GB1 as a model system and set out to map its mechanical unfolding transition-state structure. Using single-molecule atomic force microscopy and spectrofluorimetry, we directly quantified the effect of divalent metal ion binding on the mechanical unfolding free energy and thermodynamic stability of GB1, which allowed us to quantify φ(M2+)(U)-values for different sites in GB1. Our results enabled us to map the structure of the mechanical unfolding transition state of GB1. Within GB1's mechanical unfolding transition state, the interface between force-bearing β-strands 1 and 4 is largely disrupted, and the first β-hairpin is partially disordered while the second β-hairpin and the α-helix remain structured. Our results demonstrate the unique application of ψ-value analysis in elucidating the structure of the transition state that occurs during the mechanical unfolding process, offering a potentially powerful new method for investigating the design of novel elastomeric proteins.
Collapse
Affiliation(s)
- Tao Shen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
118
|
Krobath H, Faísca PFN. Interplay between native topology and non-native interactions in the folding of tethered proteins. Phys Biol 2013; 10:016002. [DOI: 10.1088/1478-3975/10/1/016002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
119
|
Du D, Liu H, Ojha B. Study protein folding and aggregation using nonnatural amino acid p-cyanophenylalanine as a sensitive optical probe. Methods Mol Biol 2013; 1081:77-89. [PMID: 24014435 DOI: 10.1007/978-1-62703-652-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Incorporation of nonnatural amino acids with a variety of special side groups into protein sequences has substantially expanded the experimental means of exploring protein structures and functions. Recently, p-cyanophenylalanine (PheCN), the nitrile analogue of phenylalanine, has been used as a novel optical probe for protein binding and folding studies. The fluorescence emission of PheCN is sensitive to solvent and local environment of the residue, making it a useful fluorescent probe of protein structural change at residue-specific resolution. Moreover, the utility of PheCN is increased by its ability to excite tryptophan fluorescence via the mechanism of fluorescence resonance energy transfer. PheCN could be applied to study a variety of biological problems, e.g., protein folding/unfolding and protein aggregation.
Collapse
Affiliation(s)
- Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
| | | | | |
Collapse
|
120
|
Using simulations to provide the framework for experimental protein folding studies. Arch Biochem Biophys 2012; 531:128-35. [PMID: 23266569 DOI: 10.1016/j.abb.2012.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/27/2022]
Abstract
Molecular dynamics simulations are a powerful theoretical tool to model the protein folding process in atomistic details under realistic conditions. Combined with a number of experimental techniques, simulations provide a detailed picture of how a protein folds or unfolds in the presence of explicit solvent and other molecular species, such as cosolvents, osmolytes, cofactors, active binding partners or inert crowding agents. The denaturing effects of temperature, pressure and external mechanical forces can also be probed. Qualitative and quantitative agreement with experiment contributes to a comprehensive molecular picture of protein states along the folding/unfolding pathway. The variety of systems examined reveals key features of the protein folding process.
Collapse
|
121
|
Oukhaled A, Bacri L, Pastoriza-Gallego M, Betton JM, Pelta J. Sensing proteins through nanopores: fundamental to applications. ACS Chem Biol 2012; 7:1935-49. [PMID: 23145870 DOI: 10.1021/cb300449t] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins subjected to an electric field and forced to pass through a nanopore induce blockades of ionic current that depend on the protein and nanopore characteristics and interactions between them. Recent advances in the analysis of these blockades have highlighted a variety of phenomena that can be used to study protein translocation and protein folding, to probe single-molecule catalytic reactions in order to obtain kinetic and thermodynamic information, and to detect protein-antibody complexes, proteins with DNA and RNA aptamers, and protein-pore interactions. Nanopore design is now well controlled, allowing the development of future biotechnologies and medicine applications.
Collapse
Affiliation(s)
- Abdelghani Oukhaled
- CNRS-UMR 8587,
LAMBE, Université de Cergy-Pontoise et Université d’Evry, France
| | - Laurent Bacri
- CNRS-UMR 8587,
LAMBE, Université de Cergy-Pontoise et Université d’Evry, France
| | | | - Jean-Michel Betton
- Unité de Microbiologie
Structurale, CNRS-URA 3528, Institut Pasteur, France
| | - Juan Pelta
- CNRS-UMR 8587,
LAMBE, Université de Cergy-Pontoise et Université d’Evry, France
| |
Collapse
|
122
|
Tiana G, Camilloni C. Ratcheted molecular-dynamics simulations identify efficiently the transition state of protein folding. J Chem Phys 2012; 137:235101. [DOI: 10.1063/1.4769085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
123
|
Jangravi Z, Alikhani M, Arefnezhad B, Sharifi Tabar M, Taleahmad S, Karamzadeh R, Jadaliha M, Mousavi SA, Ahmadi Rastegar D, Parsamatin P, Vakilian H, Mirshahvaladi S, Sabbaghian M, Mohseni Meybodi A, Mirzaei M, Shahhoseini M, Ebrahimi M, Piryaei A, Moosavi-Movahedi AA, Haynes PA, Goodchild AK, Nasr-Esfahani MH, Jabbari E, Baharvand H, Sedighi Gilani MA, Gourabi H, Salekdeh GH. A fresh look at the male-specific region of the human Y chromosome. J Proteome Res 2012; 12:6-22. [PMID: 23253012 DOI: 10.1021/pr300864k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Chromosome-centric Human Proteome Project (C-HPP) aims to systematically map the entire human proteome with the intent to enhance our understanding of human biology at the cellular level. This project attempts simultaneously to establish a sound basis for the development of diagnostic, prognostic, therapeutic, and preventive medical applications. In Iran, current efforts focus on mapping the proteome of the human Y chromosome. The male-specific region of the Y chromosome (MSY) is unique in many aspects and comprises 95% of the chromosome's length. The MSY continually retains its haploid state and is full of repeated sequences. It is responsible for important biological roles such as sex determination and male fertility. Here, we present the most recent update of MSY protein-encoding genes and their association with various traits and diseases including sex determination and reversal, spermatogenesis and male infertility, cancers such as prostate cancers, sex-specific effects on the brain and behavior, and graft-versus-host disease. We also present information available from RNA sequencing, protein-protein interaction, post-translational modification of MSY protein-coding genes and their implications in biological systems. An overview of Human Y chromosome Proteome Project is presented and a systematic approach is suggested to ensure that at least one of each predicted protein-coding gene's major representative proteins will be characterized in the context of its major anatomical sites of expression, its abundance, and its functional relevance in a biological and/or medical context. There are many technical and biological issues that will need to be overcome in order to accomplish the full scale mapping.
Collapse
Affiliation(s)
- Zohreh Jangravi
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Transition paths, diffusive processes, and preequilibria of protein folding. Proc Natl Acad Sci U S A 2012; 109:20919-24. [PMID: 23213246 DOI: 10.1073/pnas.1209891109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Fundamental relationships between the thermodynamics and kinetics of protein folding were investigated using chain models of natural proteins with diverse folding rates by extensive comparisons between the distribution of conformations in thermodynamic equilibrium and the distribution of conformations sampled along folding trajectories. Consistent with theory and single-molecule experiment, duration of the folding transition paths exhibits only a weak correlation with overall folding time. Conformational distributions of folding trajectories near the overall thermodynamic folding/unfolding barrier show significant deviations from preequilibrium. These deviations, the distribution of transition path times, and the variation of mean transition path time for different proteins can all be rationalized by a diffusive process that we modeled using simple Monte Carlo algorithms with an effective coordinate-independent diffusion coefficient. Conformations in the initial stages of transition paths tend to form more nonlocal contacts than typical conformations with the same number of native contacts. This statistical bias, which is indicative of preferred folding pathways, should be amenable to future single-molecule measurements. We found that the preexponential factor defined in the transition state theory of folding varies from protein to protein and that this variation can be rationalized by our Monte Carlo diffusion model. Thus, protein folding physics is different in certain fundamental respects from the physics envisioned by a simple transition-state picture. Nonetheless, transition state theory can be a useful approximate predictor of cooperative folding speed, because the height of the overall folding barrier is apparently a proxy for related rate-determining physical properties.
Collapse
|
125
|
Khanal A, Pan Y, Brown LS, Konermann L. Pulsed hydrogen/deuterium exchange mass spectrometry for time-resolved membrane protein folding studies. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1620-6. [PMID: 23280751 DOI: 10.1002/jms.3127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 05/10/2023]
Abstract
Kinetic folding experiments by pulsed hydrogen/deuterium exchange (HDX) mass spectrometry (MS) are a well-established tool for water-soluble proteins. To the best of our knowledge, the current study is the first that applies this approach to an integral membrane protein. The native state of bacteriorhodopsin (BR) comprises seven transmembrane helices and a covalently bound retinal cofactor. BR exposure to sodium dodecyl sulfate (SDS) induces partial unfolding and retinal loss. We employ a custom-built three-stage mixing device for pulsed-HDX/MS investigations of BR refolding. The reaction is triggered by mixing SDS-denatured protein with bicelles. After a variable folding time (10 ms to 24 h), the protein is exposed to excess D(2) O buffer under rapid exchange conditions. The HDX pulse is terminated by acid quenching after 24 ms. Subsequent off-line analysis is performed by size exclusion chromatography and electrospray MS. These measurements yield the number of protected backbone N-H sites as a function of folding time, reflecting the recovery of secondary structure. Our results indicate that much of the BR secondary structure is formed quite late during the reaction, on a time scale of 10 s and beyond. It is hoped that in the future it will be possible to extend the pulsed-HDX/MS approach employed here to membrane proteins other than BR.
Collapse
Affiliation(s)
- Anil Khanal
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | | | |
Collapse
|
126
|
Vahidi S, Stocks BB, Liaghati-Mobarhan Y, Konermann L. Mapping pH-induced protein structural changes under equilibrium conditions by pulsed oxidative labeling and mass spectrometry. Anal Chem 2012; 84:9124-30. [PMID: 23017165 DOI: 10.1021/ac302393g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mass spectrometry (MS)-based protein conformational studies are a rapidly growing field. The characterization of partially disordered conformers is of particular interest because these species are not amenable to classical high-resolution techniques. Such equilibrium intermediates can often be populated by exposure to mildly acidic pH. Hydroxyl radical (·OH) introduces oxidative modifications at solvent-accessible side chains, while buried sites are protected. ·OH can be generated by laser photolysis of H(2)O(2) (fast photochemical oxidation of proteins-FPOP). The resulting labeling pattern can be analyzed by MS. The characterization of partially disordered intermediates usually involves comparative measurements under different solvent conditions. It can be challenging to separate structurally induced labeling changes from pH-mediated "secondary" effects. The issue of secondary effects in FPOP has received little prior attention. We demonstrate that with a proper choice of conditions (e.g., in the absence of pH-dependent ·OH scavengers) such undesired phenomena can be almost completely eliminated. Using apomyoglobin as a model system, we map the structure of an intermediate that is formed at pH 4. This species retains a highly protected helix G that is surrounded by partially protected helices A, B, and H. Our results demonstrate the utility of FPOP for the structural characterization of equilibrium intermediates. The near absence of an intrinsic pH dependence represents an advantage compared to hydrogen/deuterium exchange MS.
Collapse
Affiliation(s)
- Siavash Vahidi
- Department of Chemistry, Western University, London, Ontario, N6A 5B7, Canada
| | | | | | | |
Collapse
|
127
|
Krobath H, Estácio S, Faísca P, Shakhnovich E. Identification of a Conserved Aggregation-Prone Intermediate State in the Folding Pathways of Spc-SH3 Amyloidogenic Variants. J Mol Biol 2012; 422:705-722. [DOI: 10.1016/j.jmb.2012.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 01/30/2023]
|
128
|
Lombardi A, Gianese G, Arcangeli C, Galeffi P, Sperandei M. Bacterial cytoplasm production of an EGFP-labeled single-chain Fv antibody specific for the HER2 human receptor. J Biomol Struct Dyn 2012; 29:425-39. [PMID: 22066531 DOI: 10.1080/07391102.2011.10507396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human epidermal growth factor receptor 2 (HER2) is the main diagnostic marker of breast and ovary cancers. Here, to obtain a rapid and sensitive immunodiagnostic tool a single-chain antibody (scFv800E6) specific for the HER2 was fused to the N-terminus of the enhanced green fluorescent protein (EGFP) by a flexible linker. The soluble production of the novel scFv800E6-EGFP protein in the cytoplasm of Escherichia coli was investigated at different induction temperatures (25, 30 and 37°C); the intrinsic fluorescent properties and the binding activity to HER2 positive tumour cells of the fusion protein were analysed. Western blotting and fluorescence analysis of SDS-PAGE revealed the presence of two scFv800E6-EGFP forms, with different mobility and optical properties, their ratio depending on the induction temperature. The fluorescent form maintained the optical fluorescence properties of EGFP and exhibited a binding activity to the HER2-expressing cells comparable to that of the non-fused scFv800E6. In addition, to provide an insight into the effect of the induction temperature on the molecular structure, the folding of the fusion protein was assessed at atomic level by performing molecular dynamics simulations of the homology-derived model of scFv800E6-EGFP at 300 K and 310 K. The comparison of the data collected at these two temperatures revealed that the higher temperature affects specific structural elements. To improve the production of the soluble and functional scFv800E6-EGFP protein, "in silico" results could be utilised for ad hoc design of the molecular structure.
Collapse
Affiliation(s)
- Alessio Lombardi
- Institute of Biology and Agrarian Biotechnology (IBBA), National Research Council, via Bassini 15, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
129
|
Saracino GAA, Cigognini D, Silva D, Caprini A, Gelain F. Nanomaterials design and tests for neural tissue engineering. Chem Soc Rev 2012; 42:225-62. [PMID: 22990473 DOI: 10.1039/c2cs35065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanostructured scaffolds recently showed great promise in tissue engineering: nanomaterials can be tailored at the molecular level and scaffold morphology may more closely resemble features of extracellular matrix components in terms of porosity, framing and biofunctionalities. As a consequence, both biomechanical properties of scaffold microenvironments and biomaterial-protein interactions can be tuned, allowing for improved transplanted cell engraftment and better controlled diffusion of drugs. Easier said than done, a nanotech-based regenerative approach encompasses different fields of know-how, ranging from in silico simulations, nanomaterial synthesis and characterization at the nano-, micro- and mesoscales to random library screening methods (e.g. phage display), in vitro cellular-based experiments and validation in animal models of the target injury. All of these steps of the "assembly line" of nanostructured scaffolds are tightly interconnected both in their standard analysis techniques and in their most recent breakthroughs: indeed their efforts have to jointly provide the deepest possible analyses of the diverse facets of the challenging field of neural tissue engineering. The purpose of this review is therefore to provide a critical overview of the recent advances in and drawbacks and potential of each mentioned field, contributing to the realization of effective nanotech-based therapies for the regeneration of peripheral nerve transections, spinal cord injuries and brain traumatic injuries. Far from being the ultimate overview of such a number of topics, the reader will acknowledge the intrinsic complexity of the goal of nanotech tissue engineering for a conscious approach to the development of a regenerative therapy and, by deciphering the thread connecting all steps of the research, will gain the necessary view of its tremendous potential if each piece of stone is correctly placed to work synergically in this impressive mosaic.
Collapse
Affiliation(s)
- Gloria A A Saracino
- Center for Nanomedicine and Tissue Engineering, A.O. Ospedale Niguarda Cà Granda, Milan, 20162, Italy
| | | | | | | | | |
Collapse
|
130
|
Estácio SG, Fernandes CS, Krobath H, Faísca PFN, Shakhnovich EI. Robustness of atomistic Gō models in predicting native-like folding intermediates. J Chem Phys 2012; 137:085102. [DOI: 10.1063/1.4747492] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
131
|
Giuliani A, Milosavljević AR, Hinsen K, Canon F, Nicolas C, Réfrégiers M, Nahon L. Structure and Charge-State Dependence of the Gas-Phase Ionization Energy of Proteins. Angew Chem Int Ed Engl 2012; 51:9552-6. [DOI: 10.1002/anie.201204435] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Indexed: 11/09/2022]
|
132
|
Giuliani A, Milosavljević AR, Hinsen K, Canon F, Nicolas C, Réfrégiers M, Nahon L. Structure and Charge-State Dependence of the Gas-Phase Ionization Energy of Proteins. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
133
|
Lin CY, Huang JY, Lo LW. Dynamic regulation on energy landscape evolution of single-molecule protein by conformational fluctuation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021925. [PMID: 23005803 DOI: 10.1103/physreve.86.021925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Indexed: 06/01/2023]
Abstract
We formalize a theory to help explore the effect of conformational fluctuation on the energy landscape evolution of single-molecule protein. Using this formalization, we investigate the photon emission from single photoactivated fluorescent protein. A bimodal regulation on the energy landscape evolution was discovered, and its origin was attributed to slow conformational fluctuations of the protein matrix.
Collapse
Affiliation(s)
- Chien Y Lin
- Department of Photonics and Institute of Electro-Optical Engineering, Chiao Tung University, Hsinchu 300, Taiwan, Republic of China
| | | | | |
Collapse
|
134
|
Yu Z, Koirala D, Cui Y, Easterling LF, Zhao Y, Mao H. Click chemistry assisted single-molecule fingerprinting reveals a 3D biomolecular folding funnel. J Am Chem Soc 2012; 134:12338-41. [PMID: 22799529 DOI: 10.1021/ja303218s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 3D folding funnel was proposed in the 1990s to explain the fast kinetics exhibited by a biomacromolecule in presence of seemingly unlimited folding pathways. Over the years, numerous simulations have been performed with this concept; however, experimental verification is yet to be attained even for the simplest proteins. Here, we have used a click chemistry based strategy to introduce six pairs of handles in a human telomeric DNA sequence. A laser-tweezers-based, single-molecule structural fingerprinting on the six inter-handle distances reveals the formation of a hybrid-1 G-quadruplex in the sequence. Kinetic and thermodynamic fingerprinting on the six trajectories defined by each handle-pair depict a 3D folding funnel and a kinetic topology in which the kinetics pertaining to each handle residue is annotated for this G-quadruplex. We anticipate the methods and the concepts developed here are well applicable to other biomacromolecules, including RNA and proteins.
Collapse
Affiliation(s)
- Zhongbo Yu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | | | | | | | | | | |
Collapse
|
135
|
Abstract
We use molecular simulations using a coarse-grained model to map the folding landscape of Green Fluorescent Protein (GFP), which is extensively used as a marker in cell biology and biotechnology. Thermal and Guanidinium chloride (GdmCl) induced unfolding of a variant of GFP, without the chromophore, occurs in an apparent two-state manner. The calculated midpoint of the equilibrium folding in GdmCl, taken into account using the Molecular Transfer Model (MTM), is in excellent agreement with the experiments. The melting temperatures decrease linearly as the concentrations of GdmCl and urea are increased. The structural features of rarely populated equilibrium intermediates, visible only in free energy profiles projected along a few order parameters, are remarkably similar to those identified in a number of ensemble experiments in GFP with the chromophore. The excellent agreement between simulations and experiments show that the equilibrium intermediates are stabilized by the chromophore. Folding kinetics, upon temperature quench, show that GFP first collapses and populates an ensemble of compact structures. Despite the seeming simplicity of the equilibrium folding, flux to the native state flows through multiple channels and can be described by the kinetic partitioning mechanism. Detailed analysis of the folding trajectories show that both equilibrium and several kinetic intermediates, including misfolded structures, are sampled during folding. Interestingly, the intermediates characterized in the simulations coincide with those identified in single molecule pulling experiments. Our predictions, amenable to experimental tests, show that MTM is a practical way to simulate the effect of denaturants on the folding of large proteins.
Collapse
|
136
|
Curcó D, Michaux C, Roussel G, Tinti E, Perpète EA, Alemán C. Stochastic simulation of structural properties of natively unfolded and denatured proteins. J Mol Model 2012; 18:4503-16. [DOI: 10.1007/s00894-012-1456-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 05/02/2012] [Indexed: 01/05/2023]
|
137
|
Merstorf C, Cressiot B, Pastoriza-Gallego M, Oukhaled A, Betton JM, Auvray L, Pelta J. Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording. ACS Chem Biol 2012; 7:652-8. [PMID: 22260417 DOI: 10.1021/cb2004737] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding protein folding remains a challenge. A difficulty is to investigate experimentally all the conformations in the energy landscape. Only single molecule methods, fluorescence and force spectroscopy, allow observing individual molecules along their folding pathway. Here we observe that single-nanopore recording can be used as a new single molecule method to explore the unfolding transition and to examine the conformational space of native or variant proteins. We show that we can distinguish unfolded states from partially folded ones with the aerolysin pore. The unfolding transition curves of the destabilized variant are shifted toward the lower values of the denaturant agent compared to the wild type protein. The dynamics of the partially unfolded wild type protein follows a first-order transition. The denaturation curve obtained with the aerolysin pore is similar to that obtained with the α-hemolysin pore. The nanopore geometry or net charge does not influence the folding transition but changes the dynamics.
Collapse
Affiliation(s)
- Céline Merstorf
- LAMBE CNRS-UMR 8587, Université d’Evry and Université de Cergy-Pontoise, France
| | - Benjamin Cressiot
- LAMBE CNRS-UMR 8587, Université d’Evry and Université de Cergy-Pontoise, France
| | | | - Abdelghani Oukhaled
- LAMBE CNRS-UMR 8587, Université d’Evry and Université de Cergy-Pontoise, France
| | | | - Loïc Auvray
- Matière et Systèmes
Complexes, CNRS-UMR 7057, Université Paris Diderot, France
| | - Juan Pelta
- LAMBE CNRS-UMR 8587, Université d’Evry and Université de Cergy-Pontoise, France
| |
Collapse
|
138
|
Shi H, Pierson NA, Valentine SJ, Clemmer DE. Conformation types of ubiquitin [M+8H]8+ Ions from water:methanol solutions: evidence for the N and A States in aqueous solution. J Phys Chem B 2012; 116:3344-52. [PMID: 22315998 PMCID: PMC3351143 DOI: 10.1021/jp210797x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ion mobility and mass spectrometry measurements are used to examine the gas-phase populations of [M+8H](8+) ubiquitin ions formed upon electrospraying 20 different solutions from 100:0 to 5:95 water:methanol that are maintained at pH = 2.0. Over this range of solution conditions, mobility distributions for the +8 charge state show substantial variations. Here we develop a model that treats the combined measurements as one data set. By varying the relative abundances of a discrete set of conformation types, it is possible to represent distributions obtained from any solution. For solutions that favor the well-known A-state ubiquitin, it is possible to represent the gas-phase distributions with seven conformation types. Aqueous conditions that favor the native structure require four more structural types to represent the distribution. This analysis provides the first direct evidence for trace amounts of the A state under native conditions. The method of analysis presented here should help illuminate how solution populations evolve into new gas-phase structures as solvent is removed. Evidence for trace quantities of previously unknown states under native solution conditions may provide insight about the relationship of dynamics to protein function as well as misfolding and aggregation phenomena.
Collapse
Affiliation(s)
- Huilin Shi
- Department of Chemistry, Indiana University, 800 Kirkwood Ave. Bloomington, IN 47405
| | - Nicholas A. Pierson
- Department of Chemistry, Indiana University, 800 Kirkwood Ave. Bloomington, IN 47405
| | - Stephen J. Valentine
- Department of Chemistry, Indiana University, 800 Kirkwood Ave. Bloomington, IN 47405
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Ave. Bloomington, IN 47405
| |
Collapse
|
139
|
Pashley CL, Morgan GJ, Kalverda AP, Thompson GS, Kleanthous C, Radford SE. Conformational properties of the unfolded state of Im7 in nondenaturing conditions. J Mol Biol 2012; 416:300-18. [PMID: 22226836 PMCID: PMC3314952 DOI: 10.1016/j.jmb.2011.12.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/04/2022]
Abstract
The unfolded ensemble in aqueous solution represents the starting point of protein folding. Characterisation of this species is often difficult since the native state is usually predominantly populated at equilibrium. Previous work has shown that the four-helix protein, Im7 (immunity protein 7), folds via an on-pathway intermediate. While the transition states and folding intermediate have been characterised in atomistic detail, knowledge of the unfolded ensemble under the same ambient conditions remained sparse. Here, we introduce destabilising amino acid substitutions into the sequence of Im7, such that the unfolded state becomes predominantly populated at equilibrium in the absence of denaturant. Using far- and near-UV CD, fluorescence, urea titration and heteronuclear NMR experiments, we show that three amino acid substitutions (L18A-L19A-L37A) are sufficient to prevent Im7 folding, such that the unfolded state is predominantly populated at equilibrium. Using measurement of chemical shifts, (15)N transverse relaxation rates and sedimentation coefficients, we show that the unfolded species of L18A-L19A-L37A deviates significantly from random-coil behaviour. Specifically, we demonstrate that this unfolded species is compact (R(h)=25 Å) relative to the urea-denatured state (R(h)≥30 Å) and contains local clusters of hydrophobic residues in regions that correspond to the four helices in the native state. Despite these interactions, there is no evidence for long-range stabilising tertiary interactions or persistent helical structure. The results reveal an unfolded ensemble that is conformationally restricted in regions of the polypeptide chain that ultimately form helices I, II and IV in the native state.
Collapse
Key Words
- ts1, transition state 1
- ts2, transition state 2
- cole7, colicin e7
- ssp, secondary structure propensity
- smfret, single-molecule förster resonance energy transfer
- im7, immunity protein 7
- edta, ethylenediaminetetraacetic acid
- hsqc, heteronuclear single quantum coherence
- auc, analytical ultracentrifugation
- itc, isothermal titration calorimetry
- bmrb, biological magnetic resonance data bank
- noe, nuclear overhauser enhancement
- aabuf, average area buried upon folding
- pdb, protein data bank
- protein folding
- nmr
- unfolded ensemble
- denatured state
- immunity protein
Collapse
Affiliation(s)
- Clare L. Pashley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Gareth J. Morgan
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Gary S. Thompson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
140
|
Fernandes MM, Cavaco-Paulo A. Protein disulphide isomerase-assisted functionalization of proteinaceous substrates. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.646657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
141
|
Zhang W, Ganguly D, Chen J. Residual structures, conformational fluctuations, and electrostatic interactions in the synergistic folding of two intrinsically disordered proteins. PLoS Comput Biol 2012; 8:e1002353. [PMID: 22253588 PMCID: PMC3257294 DOI: 10.1371/journal.pcbi.1002353] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/30/2011] [Indexed: 01/08/2023] Open
Abstract
To understand the interplay of residual structures and conformational fluctuations in the interaction of intrinsically disordered proteins (IDPs), we first combined implicit solvent and replica exchange sampling to calculate atomistic disordered ensembles of the nuclear co-activator binding domain (NCBD) of transcription coactivator CBP and the activation domain of the p160 steroid receptor coactivator ACTR. The calculated ensembles are in quantitative agreement with NMR-derived residue helicity and recapitulate the experimental observation that, while free ACTR largely lacks residual secondary structures, free NCBD is a molten globule with a helical content similar to that in the folded complex. Detailed conformational analysis reveals that free NCBD has an inherent ability to substantially sample all the helix configurations that have been previously observed either unbound or in complexes. Intriguingly, further high-temperature unbinding and unfolding simulations in implicit and explicit solvents emphasize the importance of conformational fluctuations in synergistic folding of NCBD with ACTR. A balance between preformed elements and conformational fluctuations appears necessary to allow NCBD to interact with different targets and fold into alternative conformations. Together with previous topology-based modeling and existing experimental data, the current simulations strongly support an “extended conformational selection” synergistic folding mechanism that involves a key intermediate state stabilized by interaction between the C-terminal helices of NCBD and ACTR. In addition, the atomistic simulations reveal the role of long-range as well as short-range electrostatic interactions in cooperating with readily fluctuating residual structures, which might enhance the encounter rate and promote efficient folding upon encounter for facile binding and folding interactions of IDPs. Thus, the current study not only provides a consistent mechanistic understanding of the NCBD/ACTR interaction, but also helps establish a multi-scale molecular modeling framework for understanding the structure, interaction, and regulation of IDPs in general. Intrinsically disordered proteins (IDPs) are now widely recognized to play fundamental roles in biology and to be frequently associated with human diseases. Although the potential advantages of intrinsic disorder in cellular signaling and regulation have been widely discussed, the physical basis for these proposed phenomena remains sketchy at best. An integration of multi-scale molecular modeling and experimental characterization is necessary to uncover the molecular principles that govern the structure, interaction, and regulation of IDPs. In this work, we characterize the conformational properties of two IDPs involved in transcription regulation at the atomistic level and further examine the roles of these properties in their coupled binding and folding interactions. Our simulations suggest interplay among residual structures, conformational fluctuations, and electrostatic interactions that allows efficient synergistic folding of these two IDPs. In particular, we propose that electrostatic interactions might play an important role in facilitating rapid folding and binding recognition of IDPs, by enhancing the encounter rate and promoting efficient folding upon encounter.
Collapse
Affiliation(s)
- Weihong Zhang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Debabani Ganguly
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Jianhan Chen
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
142
|
Wei K, ZeXiang S, Malini O. Generation of Ultralarge Surface Enhanced Raman Spectroscopy (SERS)-Active Hot-Spot Volumes by an Array of 2D Nano-Superlenses. Anal Chem 2011; 84:908-16. [DOI: 10.1021/ac201712k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- KhoKiang Wei
- School of Physics, National University of Ireland, Galway, Ireland
- National Cancer Centre of Singapore, Division of Medical Sciences, 11 Hospital Drive, 169610 Singapore
| | - Shen ZeXiang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Olivo Malini
- School of Physics, National University of Ireland, Galway, Ireland
- National Cancer Centre of Singapore, Division of Medical Sciences, 11 Hospital Drive, 169610 Singapore
| |
Collapse
|
143
|
Zhi Z, Liu P, Wang P, Huang Y, Zhao XS. Domain-Specific Folding Kinetics of Staphylococcal Nuclease Observed through Single-Molecule FRET in a Microfluidic Mixer. Chemphyschem 2011; 12:3515-8. [DOI: 10.1002/cphc.201100652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/17/2011] [Indexed: 11/07/2022]
|
144
|
Abstract
Analysis of the human genome reveals that approximately a third of all open reading frames code for proteins that enter the endoplasmic reticulum (ER), demonstrating the importance of this organelle for global protein maturation. The path taken by a polypeptide through the secretory pathway starts with its translocation across or into the ER membrane. It then must fold and be modified correctly in the ER before being transported via the Golgi apparatus to the cell surface or another destination. Being physically segregated from the cytosol means that the ER lumen has a distinct folding environment. It contains much of the machinery for fulfilling the task of protein production, including complex pathways for folding, assembly, modification, quality control, and recycling. Importantly, the compartmentalization means that several modifications that do not occur in the cytosol, such as glycosylation and extensive disulfide bond formation, can occur to secreted proteins to enhance their stability before their exposure to the extracellular milieu. How these various machineries interact during the normal pathway of folding and protein secretion is the subject of this review.
Collapse
Affiliation(s)
- Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
145
|
Grossman M, Sela-Passwell N, Sagi I. Achieving broad molecular insights into dynamic protein interactions by integrated structural-kinetic approaches. Curr Opin Struct Biol 2011; 21:678-85. [PMID: 21945040 DOI: 10.1016/j.sbi.2011.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/21/2011] [Accepted: 07/31/2011] [Indexed: 11/30/2022]
Abstract
A network of dynamic protein interactions with their protein partners, substrates, and ligands is known to be crucial for biological function. Revealing molecular and structural-based mechanisms at atomic resolution and in real-time is fundamental for achieving a basic understanding of cellular processes. These technically challenging goals may be achieved by combining time-resolved spectroscopic and structural-kinetic tools, thus providing broad insights into specific molecular events over a wide range of timescales. Here we review representative studies utilizing such an integrated real-time structural approach designed to reveal molecular mechanisms underlying protein interactions at atomic resolution.
Collapse
Affiliation(s)
- Moran Grossman
- Departments of Structural Biology and Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
146
|
Peng Q, Fang J, Wang M, Li H. Kinetic partitioning mechanism governs the folding of the third FnIII domain of tenascin-C: evidence at the single-molecule level. J Mol Biol 2011; 412:698-709. [PMID: 21839747 DOI: 10.1016/j.jmb.2011.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 02/09/2023]
Abstract
Statistical mechanics and molecular dynamics simulations proposed that the folding of proteins can follow multiple parallel pathways on a rugged energy landscape from unfolded state en route to their folded native states. Kinetic partitioning mechanism is one of the possible mechanisms underlying such complex folding dynamics. Here, we use single-molecule atomic force microscopy technique to directly probe the multiplicity of the folding pathways of the third fibronectin type III domain from the extracellular matrix protein tenascin-C (TNfn3). By stretching individual (TNfn3)(8) molecules, we forced TNfn3 domains to undergo mechanical unfolding and refolding cycles, allowing us to directly observe the folding pathways of TNfn3. We found that, after being mechanically unraveled and then relaxed to zero force, TNfn3 follows multiple parallel pathways to fold into their native states. The majority of TNfn3 fold into the native state in a simple two-state fashion, while a small percentage of TNfn3 were found to be trapped into kinetically stable folding intermediate states with well-defined three-dimensional structures. Furthermore, the folding of TNfn3 was also influenced by its neighboring TNfn3 domains. Complex misfolded states of TNfn3 were observed, possibly due to the formation of domain-swapped dimeric structures. Our studies revealed the ruggedness of the folding energy landscape of TNfn3 and provided direct experimental evidence that the folding dynamics of TNfn3 are governed by the kinetic partitioning mechanism. Our results demonstrated the unique capability of single-molecule AFM to probe the folding dynamics of proteins at the single-molecule level.
Collapse
Affiliation(s)
- Qing Peng
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | | | | | | |
Collapse
|
147
|
Abstract
Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.
Collapse
|
148
|
Chan HS, Zhang Z, Wallin S, Liu Z. Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models. Annu Rev Phys Chem 2011; 62:301-26. [PMID: 21453060 DOI: 10.1146/annurev-physchem-032210-103405] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coarse-grained, self-contained polymer models are powerful tools in the study of protein folding. They are also essential to assess predictions from less rigorous theoretical approaches that lack an explicit-chain representation. Here we review advances in coarse-grained modeling of cooperative protein folding, noting in particular that the Levinthal paradox was raised in response to the experimental discovery of two-state-like folding in the late 1960s, rather than to the problem of conformational search per se. Comparisons between theory and experiment indicate a prominent role of desolvation barriers in cooperative folding, which likely emerges generally from a coupling between local conformational preferences and nonlocal packing interactions. Many of these principles have been elucidated by native-centric models, wherein nonnative interactions may be treated perturbatively. We discuss these developments as well as recent applications of coarse-grained chain modeling to knotted proteins and to intrinsically disordered proteins.
Collapse
Affiliation(s)
- Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | |
Collapse
|
149
|
Haupt C, Patzschke R, Weininger U, Gröger S, Kovermann M, Balbach J. Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR. J Am Chem Soc 2011; 133:11154-62. [DOI: 10.1021/ja2010048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caroline Haupt
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Rica Patzschke
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Ulrich Weininger
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Stefan Gröger
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Michael Kovermann
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Jochen Balbach
- Institut für Physik, Biophysik and ‡Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
150
|
Konermann L, Pan Y, Stocks BB. Protein folding mechanisms studied by pulsed oxidative labeling and mass spectrometry. Curr Opin Struct Biol 2011; 21:634-40. [PMID: 21703846 DOI: 10.1016/j.sbi.2011.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 05/21/2011] [Accepted: 05/26/2011] [Indexed: 12/14/2022]
Abstract
Deciphering the mechanisms of protein folding remains a considerable challenge. In this review we discuss the application of pulsed oxidative labeling for tracking protein structural changes in a time-resolved fashion. Exposure to a microsecond OH pulse at selected time points during folding induces the oxidation of solvent-accessible side chains, whereas buried residues are protected. Oxidative modifications can be detected by mass spectrometry. Folding is associated with dramatic accessibility changes, and therefore this method can provide detailed mechanistic insights. Solvent accessibility patterns are complementary to H/D exchange investigations, which report on the extent of hydrogen bonding. This review highlights the application of pulsed OH labeling to soluble proteins as well as membrane proteins.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada.
| | | | | |
Collapse
|