101
|
One step back before moving forward: regulation of transcription elongation by arrest and backtracking. FEBS Lett 2012; 586:2820-5. [PMID: 22819814 DOI: 10.1016/j.febslet.2012.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 12/14/2022]
Abstract
RNA polymerase II backtracking is a well-known phenomenon, but its involvement in gene regulation is yet to be addressed. Structural studies into the backtracked complex, new reactivation mechanisms and genome-wide approaches are shedding some light on this interesting aspect of gene transcription. In this review, we briefly summarise these new findings, comment about some results recently obtained in our laboratory, and propose a new model for the influence of the chromatin context on RNA polymerase II backtracking.
Collapse
|
102
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
103
|
Kulaeva OI, Studitsky VM. Mechanism of histone survival during transcription by RNA polymerase II. Transcription 2012; 1:85-8. [PMID: 21326897 DOI: 10.4161/trns.1.2.12519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 02/05/2023] Open
Abstract
This work is related to and stems from our recent NSMB paper, "Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II" (December 2009). Synopsis. Recent genomic studies from many laboratories have suggested that nucleosomes are not displaced from moderately transcribed genes. Furthermore, histones H3/H4 carrying the primary epigenetic marks are not displaced or exchanged (in contrast to H2A/H2B histones) during moderate transcription by RNA polymerase II (Pol II) in vivo. These exciting observations suggest that the large molecule of Pol II passes through chromatin structure without even transient displacement of H3/H4 histones. The most recent analysis of the RNA polymerase II (Pol II)-type mechanism of chromatin remodeling in vitro (described in our NSMB 2009 paper) suggests that nucleosome survival is tightly coupled with formation of a novel intermediate: a very small intranucleosomal DNA loop (Ø-loop) containing transcribing Pol II. In the submitted manuscript we critically evaluate one of the key predictions of this model: the lack of even transient displacement of histones H3/H4 during Pol II transcription in vitro. The data suggest that, indeed, histones H3/H4 are not displaced during Pol II transcription in vitro. These studies are directly connected with the observation in vivo on the lack of exchange of histones H3/H4 during Pol II transcription.
Collapse
Affiliation(s)
- Olga I Kulaeva
- University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, USA
| | | |
Collapse
|
104
|
Effects of histone acetylation and CpG methylation on the structure of nucleosomes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:974-82. [PMID: 22627143 DOI: 10.1016/j.bbapap.2012.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 12/12/2022]
Abstract
Nucleosomes are the fundamental packing units of the eukaryotic genome. A nucleosome core particle comprises an octameric histone core wrapped around by ~147bp DNA. Histones and DNA are targets for covalent modifications mediated by various chromatin modification enzymes. These modifications play crucial roles in various gene regulation activities. A group of common hypotheses for the mechanisms of gene regulation involves changes in the structure and structural dynamics of chromatin induced by chromatin modifications. We employed single molecule fluorescence methods to test these hypotheses by monitoring the structure and structural dynamics of nucleosomes before and after histone acetylation and DNA methylation, two of the best-conserved chromatin modifications throughout eukaryotes. Our studies revealed that these modifications induce changes in the structure and structural dynamics of nucleosomes that may contribute directly to the formation of open or repressive chromatin conformation.
Collapse
|
105
|
Petesch SJ, Lis JT. Overcoming the nucleosome barrier during transcript elongation. Trends Genet 2012; 28:285-94. [PMID: 22465610 DOI: 10.1016/j.tig.2012.02.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 12/21/2022]
Abstract
RNA polymerase II (Pol II) must break the nucleosomal barrier to gain access to DNA and transcribe genes efficiently. New single-molecule techniques have elucidated many molecular details of nucleosome disassembly and what happens once Pol II encounters a nucleosome. Our review highlights mechanisms that Pol II utilizes to transcribe through nucleosomes, including the roles of chromatin remodelers, histone chaperones, post-translational modifications of histones, incorporation of histone variants into nucleosomes, and activation of the poly(ADP-ribose) polymerase (PARP) enzyme. Future studies need to assess the molecular details and the contribution of each of these mechanisms, individually and in combination, to transcription across the genome to understand how cells are able to regulate transcription in response to developmental, environmental and nutritional cues.
Collapse
Affiliation(s)
- Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
106
|
Palangat M, Larson DR. Complexity of RNA polymerase II elongation dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:667-72. [PMID: 22480952 DOI: 10.1016/j.bbagrm.2012.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 12/24/2022]
Abstract
Transcription of protein-coding genes by RNA polymerase II can be regulated at multiple points during the process of RNA synthesis, including initiation, elongation, and termination. In vivo data suggests that elongating polymerases exhibit heterogeneity throughout the gene body, suggestive of changes in elongation rate and/or pausing. Here, we review evidence from a variety of different experimental approaches for understanding regulation of transcription elongation. We compare steady-state measurements of nascent RNA density and polymerase occupancy to time-resolved measurements and point out areas of disagreement. Finally, we discuss future avenues of investigation for understanding this critically important step in gene regulation. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Murali Palangat
- Center for Cancer Research, National Cancer Institute, National Institues of Health, Bethesda, MD, USA
| | | |
Collapse
|
107
|
|
108
|
Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro. Proc Natl Acad Sci U S A 2012; 109:1931-6. [PMID: 22308335 DOI: 10.1073/pnas.1109994109] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATPases and histone chaperones facilitate RNA polymerase II (pol II) elongation on chromatin. In vivo, the coordinated action of these enzymes is necessary to permit pol II passage through a nucleosome while restoring histone density afterward. We have developed a biochemical system recapitulating this basic process. Transcription through a nucleosome in vitro requires the ATPase remodels structure of chromatin (RSC) and the histone chaperone nucleosome assembly protein 1 (NAP1). In the presence of NAP1, RSC generates a hexasome. Despite the propensity of RSC to evict histones, NAP1 reprograms the reaction such that the hexasome is retained on the template during multiple rounds of transcription. This work has implications toward understanding the mechanism of pol II elongation on chromatin.
Collapse
|
109
|
Gaykalova DA, Kulaeva OI, Pestov NA, Hsieh FK, Studitsky VM. Experimental analysis of the mechanism of chromatin remodeling by RNA polymerase II. Methods Enzymol 2012; 512:293-314. [PMID: 22910212 DOI: 10.1016/b978-0-12-391940-3.00013-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vital process of transcription by RNA polymerase II (Pol II) occurs in chromatin environment in eukaryotic cells; in fact, moderately transcribed genes retain nucleosomal structure. Recent studies suggest that chromatin structure presents a strong barrier for transcribing Pol II in vitro, and that DNA-histone interactions are only partially and transiently disrupted during transcript elongation on moderately active genes. Furthermore, elongating Pol II complex is one of the major targets during gene regulation. Below, we describe a highly purified, defined experimental system that recapitulates many important properties of transcribed chromatin in vitro and allows detailed analysis of the underlying mechanisms.
Collapse
Affiliation(s)
- Daria A Gaykalova
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
110
|
Teves SS, Henikoff S. Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide. Genes Dev 2011; 25:2387-97. [PMID: 22085965 DOI: 10.1101/gad.177675.111] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heat shock rapidly induces expression of a subset of genes while globally repressing transcription, making it an attractive system to study alterations in the chromatin landscape that accompany changes in gene regulation. We characterized these changes in Drosophila cells by profiling classical low-salt-soluble chromatin, RNA polymerase II (Pol II), and nucleosome turnover dynamics at single-base-pair resolution. With heat shock, low-salt-soluble chromatin and stalled Pol II levels were found to decrease within gene bodies, but no overall changes were detected at transcriptional start sites. Strikingly, nucleosome turnover decreased genome-wide within gene bodies upon heat shock in a pattern similar to that observed with inhibition of Pol II elongation, especially at genes involved in the heat-shock response. Relatively high levels of nucleosome turnover were also observed throughout the bodies of genes with paused Pol II. These observations suggest that down-regulation of transcription during heat shock involves reduced nucleosome mobility and that this process has evolved to promote heat-shock gene regulation. Our ability to precisely map both nucleosomal and subnucleosomal particles directly from low-salt-soluble chromatin extracts to assay changes in the chromatin landscape provides a simple general strategy for epigenome characterization.
Collapse
Affiliation(s)
- Sheila S Teves
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
111
|
Killian JL, Li M, Sheinin MY, Wang MD. Recent advances in single molecule studies of nucleosomes. Curr Opin Struct Biol 2011; 22:80-7. [PMID: 22172540 DOI: 10.1016/j.sbi.2011.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 01/14/2023]
Abstract
As the fundamental packing units of DNA in eukaryotes, nucleosomes play a central role in governing DNA accessibility in a variety of cellular processes. Our understanding of the mechanisms underlying this complex regulation has been aided by unique structural and dynamic perspectives offered by single molecule techniques. Recent years have witnessed remarkable advances achieved using these techniques, including the generation of a detailed histone-DNA energy landscape, elucidation of nucleosome disassembly processes, and real-time monitoring of molecular motors interacting with nucleosomes. These and other highlights of single molecule nucleosome studies will be discussed in this review.
Collapse
Affiliation(s)
- Jessica L Killian
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
112
|
Bintu L, Kopaczynska M, Hodges C, Lubkowska L, Kashlev M, Bustamante C. The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes. Nat Struct Mol Biol 2011; 18:1394-9. [PMID: 22081017 PMCID: PMC3279329 DOI: 10.1038/nsmb.2164] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/13/2011] [Indexed: 12/25/2022]
Abstract
Upon transcription, histones can either detach from DNA or transfer behind the polymerase through a process believed to involve template looping. The details governing nucleosomal fate during transcription are not well understood. Our atomic force microscopy images of RNA polymerase II-nucleosome complexes confirm the presence of looped transcriptional intermediates and provide mechanistic insight into the histone-transfer process via the distribution of transcribed nucleosome positions. Significantly, we find that a fraction of the transcribed nucleosomes are remodeled to hexasomes, and that this fraction depends on the transcription elongation rate. A simple model involving the kinetic competition between transcription elongation, histone transfer, and histone-histone dissociation quantitatively rationalizes our observations and unifies results obtained with other polymerases. Factors affecting the relative magnitude of these processes provide the physical basis for nucleosomal fate during transcription and, therefore, for the regulation of gene expression.
Collapse
Affiliation(s)
- Lacramioara Bintu
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
113
|
Hondele M, Ladurner AG. The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity. Curr Opin Struct Biol 2011; 21:698-708. [PMID: 22054910 DOI: 10.1016/j.sbi.2011.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 01/25/2023]
Abstract
Histones are highly positively charged proteins that wrap our genome. Their surface properties also make them prone to nonspecific interactions and aggregation. A class of proteins known as histone chaperones is dedicated to safeguard histones by aiding their proper incorporation into nucleosomes. Histone chaperones facilitate ordered nucleosome assembly and disassembly reactions through the formation of semi-stable histone-chaperone intermediates without requiring ATP, but merely providing a complementary protein surface for histones to dynamically interact with. Recurrent 'chaperoning' mechanisms involve the masking of the histone's positive charge and the direct blocking of crucial histone surface sites, including those required for H3-H4 tetramerization or the binding of nucleosomal DNA. This shielding prevents histones from engaging in premature or unwanted interactions with nucleic acids and other cellular components. In this review, we analyze recent structural studies on chaperone-histone interactions and discuss the implications of this vital partnership for nucleosome assembly and disassembly pathways.
Collapse
Affiliation(s)
- Maria Hondele
- Department of Physiological Chemistry, Butenandt Institute of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany
| | | |
Collapse
|
114
|
Razin SV, Gavrilov AA, Pichugin A, Lipinski M, Iarovaia OV, Vassetzky YS. Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res 2011; 39:9085-92. [PMID: 21880598 PMCID: PMC3241665 DOI: 10.1093/nar/gkr683] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the eukaryotic nucleus, genes are transcribed in transcription factories. In the present review, we re-evaluate the models of transcription factories in the light of recent and older data. Based on this analysis, we propose that transcription factories result from the aggregation of RNA polymerase II-containing pre-initiation complexes assembled next to each other in the nuclear space. Such an aggregation can be triggered by the phosphorylation of the C-terminal domain of RNA polymerase II molecules and their interaction with various transcription factors. Individual transcription factories would thus incorporate tissue-specific, co-regulated as well as housekeeping genes based only on their initial proximity to each other in the nuclear space. Targeting genes to be transcribed to protein-dense factories that contain all factors necessary for transcription initiation and elongation through chromatin templates clearly favors a more economical utilization and better recycling of the transcription machinery.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
115
|
Abstract
The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena.
Collapse
|
116
|
Identification of histone mutants that are defective for transcription-coupled nucleosome occupancy. Mol Cell Biol 2011; 31:3557-68. [PMID: 21730290 DOI: 10.1128/mcb.05195-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies of Saccharomyces cerevisiae described a gene repression mechanism where the transcription of intergenic noncoding DNA (ncDNA) (SRG1) assembles nucleosomes across the promoter of the adjacent SER3 gene that interfere with the binding of transcription factors. To investigate the role of histones in this mechanism, we screened a comprehensive library of histone H3 and H4 mutants for those that derepress SER3. We identified mutations altering eight histone residues (H3 residues V46, R49, V117, Q120, and K122 and H4 residues R36, I46, and S47) that strongly increase SER3 expression without reducing the transcription of the intergenic SRG1 ncDNA. We detected reduced nucleosome occupancy across SRG1 in these mutants to degrees that correlate well with the level of SER3 derepression. The histone chromatin immunoprecipitation experiments on several other genes suggest that the loss of nucleosomes in these mutants is specific to highly transcribed regions. Interestingly, two of these histone mutants, H3 R49A and H3 V46A, reduce Set2-dependent methylation of lysine 36 of histone H3 and allow transcription initiation from cryptic intragenic promoters. Taken together, our data identify a new class of histone mutants that is defective for transcription-dependent nucleosome occupancy.
Collapse
|
117
|
Luse DS, Studitsky VM. The mechanism of nucleosome traversal by RNA polymerase II: roles for template uncoiling and transcript elongation factors. RNA Biol 2011; 8:581-5. [PMID: 21519186 DOI: 10.4161/rna.8.4.15389] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA polymerase II traverses nucleosomes rapidly and efficiently in the cell but it has not been possible to duplicate this process in the test tube. A single nucleosome has generally been found to provide a strong barrier to transcript elongation in vitro. Recent studies have shown that effective transcript elongation can occur on nucleosomal templates in vitro, but this depends on both facilitated uncoiling of DNA from the octamer surface and the presence of transcription factors that maintain polymerase in the transcriptionally competent state. These findings indicate that the efficiency and rate of transcription through chromatin could be regulated through controlled DNA uncoiling. These studies also demonstrate that nucleosome traversal need not result in nucleosome displacement.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA.
| | | |
Collapse
|
118
|
Morrissy AS, Griffith M, Marra MA. Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res 2011; 21:1203-12. [PMID: 21719572 DOI: 10.1101/gr.113431.110] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To analyze the relationship between antisense transcription and alternative splicing, we developed a computational approach for the detection of antisense-correlated exon splicing events using Affymetrix exon array data. Our analysis of expression data from 176 lymphoblastoid cell lines revealed that the majority of expressed sense-antisense genes exhibited alternative splicing events that were correlated to the expression of the antisense gene. Most of these events occurred in areas of sense-antisense (SAS) gene overlap, which were significantly enriched in both exons and nucleosome occupancy levels relative to nonoverlapping regions of the same genes. Nucleosome occupancy was highly correlated with Pol II abundance across overlapping regions and with concomitant increases in local alternative exon usage. These results are consistent with an antisense transcription-mediated mechanism of splicing regulation in normal human cells. A comparison of the prevalence of antisense-correlated splicing events between individuals of Mormon versus African descent revealed population-specific events that may indicate the continued evolution of new SAS loci. Furthermore, the presence of antisense transcription was correlated to alternative splicing across multiple metazoan species, suggesting that it may be a conserved mechanism contributing to splicing regulation.
Collapse
Affiliation(s)
- A Sorana Morrissy
- British Columbia Cancer Agency, Genome Sciences Centre, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | |
Collapse
|
119
|
Celona B, Weiner A, Di Felice F, Mancuso FM, Cesarini E, Rossi RL, Gregory L, Baban D, Rossetti G, Grianti P, Pagani M, Bonaldi T, Ragoussis J, Friedman N, Camilloni G, Bianchi ME, Agresti A. Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol 2011; 9:e1001086. [PMID: 21738444 PMCID: PMC3125158 DOI: 10.1371/journal.pbio.1001086] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. Nucleosome number in cells was considered fixed, but recently aging yeast and mammalian cells were shown to contain fewer nucleosomes. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker, and variant histones, and a correspondingly reduced number of nucleosomes, possibly because HMGB1 facilitates nucleosome assembly. Yeast nhp6 mutants lacking Nhp6a and -b proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and affects the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform and can be modelled assuming that different nucleosomal sites compete for available histones. Sites with a high propensity to occupation are almost always packaged into nucleosomes both in wild type and nucleosome-depleted cells; nucleosomes on sites with low propensity to occupation are disproportionately lost in nucleosome-depleted cells. We suggest that variation in nucleosome number, by affecting nucleosomal occupancy both genomewide and gene-specifically, constitutes a novel layer of epigenetic regulation.
Collapse
Affiliation(s)
| | - Assaf Weiner
- School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Francesca Di Felice
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | | | - Elisa Cesarini
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Riccardo L. Rossi
- Integrative Biology Program, Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Lorna Gregory
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Dilair Baban
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Grazisa Rossetti
- Integrative Biology Program, Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | - Paolo Grianti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Pagani
- Integrative Biology Program, Istituto Nazionale di Genetica Molecolare, Milan, Italy
| | | | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nir Friedman
- School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy
| | - Marco E. Bianchi
- San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milan, Italy
- * E-mail: (MEB); (AA)
| | - Alessandra Agresti
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milan, Italy
- * E-mail: (MEB); (AA)
| |
Collapse
|
120
|
Radman-Livaja M, Verzijlbergen KF, Weiner A, van Welsem T, Friedman N, Rando OJ, van Leeuwen F. Patterns and mechanisms of ancestral histone protein inheritance in budding yeast. PLoS Biol 2011; 9:e1001075. [PMID: 21666805 PMCID: PMC3110181 DOI: 10.1371/journal.pbio.1001075] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 04/22/2011] [Indexed: 11/18/2022] Open
Abstract
Tracking of ancestral histone proteins over multiple generations of genome
replication in yeast reveals that old histones move along genes from 3′
toward 5′ over time, and that maternal histones move up to around 400 bp
during genomic replication. Replicating chromatin involves disruption of histone-DNA contacts and subsequent
reassembly of maternal histones on the new daughter genomes. In bulk, maternal
histones are randomly segregated to the two daughters, but little is known about
the fine details of this process: do maternal histones re-assemble at preferred
locations or close to their original loci? Here, we use a recently developed
method for swapping epitope tags to measure the disposition of ancestral histone
H3 across the yeast genome over six generations. We find that ancestral H3 is
preferentially retained at the 5′ ends of most genes, with strongest
retention at long, poorly transcribed genes. We recapitulate these observations
with a quantitative model in which the majority of maternal histones are
reincorporated within 400 bp of their pre-replication locus during replication,
with replication-independent replacement and transcription-related retrograde
nucleosome movement shaping the resulting distributions of ancestral histones.
We find a key role for Topoisomerase I in retrograde histone movement during
transcription, and we find that loss of Chromatin Assembly Factor-1 affects
replication-independent turnover. Together, these results show that specific
loci are enriched for histone proteins first synthesized several generations
beforehand, and that maternal histones re-associate close to their original
locations on daughter genomes after replication. Our findings further suggest
that accumulation of ancestral histones could play a role in shaping histone
modification patterns. It is widely believed that chromatin, the nucleoprotein packaged state of
eukaryotic genomes, can carry epigenetic information and thus transmit gene
expression patterns to replicating cells. However, the inheritance of genomic
packaging status is subject to mechanistic challenges that do not confront the
inheritance of genomic DNA sequence. Most notably, histone proteins must at
least transiently dissociate from the maternal genome during replication, and it
is unknown whether or not maternal proteins re-associate with daughter genomes
near the sequence they originally occupied on the maternal genome. Here, we use
a novel method for tracking old proteins to determine where histone proteins
accumulate after 1, 3, or 6 generations of growth in yeast. To our surprise,
ancestral histones accumulate near the 5′ end of long, relatively inactive
genes. Using a mathematical model, we show that our results can be explained by
the combined effects of histone replacement, histone movement along genes from
3′ towards 5′ ends, and histone spreading during replication. Our
results show that old histones do move but stay relatively close to their
original location (within around 400 base-pairs), which places important
constraints on how chromatin could potentially carry epigenetic information. Our
findings also suggest that accumulation of the ancestral histones that are
inherited can influence histone modification patterns.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Biochemistry and Molecular
Pharmacology, University of Massachusetts Medical School, Worcester,
Massachusetts, United States of America
| | - Kitty F. Verzijlbergen
- Division of Gene Regulation, Netherlands
Cancer Institute, and Netherlands Proteomics Center, Amsterdam, The
Netherlands
| | - Assaf Weiner
- School of Computer Science and Engineering,
The Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life
Sciences, The Hebrew University, Jerusalem, Israel
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands
Cancer Institute, and Netherlands Proteomics Center, Amsterdam, The
Netherlands
| | - Nir Friedman
- School of Computer Science and Engineering,
The Hebrew University, Jerusalem, Israel
- Alexander Silberman Institute of Life
Sciences, The Hebrew University, Jerusalem, Israel
- * E-mail: (NF); (OJR); (FVL)
| | - Oliver J. Rando
- Department of Biochemistry and Molecular
Pharmacology, University of Massachusetts Medical School, Worcester,
Massachusetts, United States of America
- * E-mail: (NF); (OJR); (FVL)
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands
Cancer Institute, and Netherlands Proteomics Center, Amsterdam, The
Netherlands
- * E-mail: (NF); (OJR); (FVL)
| |
Collapse
|
121
|
Abstract
Chromatin is by its very nature a repressive environment which restricts the recruitment of transcription factors and acts as a barrier to polymerases. Therefore the complex process of gene activation must operate at two levels. In the first instance, localized chromatin decondensation and nucleosome displacement is required to make DNA accessible. Second, sequence-specific transcription factors need to recruit chromatin modifiers and remodellers to create a chromatin environment that permits the passage of polymerases. In this review I will discuss the chromatin structural changes that occur at active gene loci and at regulatory elements that exist as DNase I hypersensitive sites.
Collapse
Affiliation(s)
- Peter N Cockerill
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, UK.
| |
Collapse
|
122
|
Jagannathan I, Pepenella S, Hayes JJ. Activity of FEN1 endonuclease on nucleosome substrates is dependent upon DNA sequence but not flap orientation. J Biol Chem 2011; 286:17521-9. [PMID: 21454907 DOI: 10.1074/jbc.m111.229658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.
Collapse
Affiliation(s)
- Indu Jagannathan
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
123
|
Gaykalova DA, Nagarajavel V, Bondarenko VA, Bartholomew B, Clark DJ, Studitsky VM. A polar barrier to transcription can be circumvented by remodeler-induced nucleosome translocation. Nucleic Acids Res 2011; 39:3520-8. [PMID: 21245049 PMCID: PMC3089449 DOI: 10.1093/nar/gkq1273] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many eukaryotic genes are regulated at the level of transcript elongation. Nucleosomes are likely targets for this regulation. Previously, we have shown that nucleosomes formed on very strong positioning sequences (601 and 603), present a high, orientation-dependent barrier to transcription by RNA polymerase II in vitro. The existence of this polar barrier correlates with the interaction of a 16-bp polar barrier signal (PBS) with the promoter-distal histone H3-H4 dimer. Here, we show that the polar barrier is relieved by ISW2, an ATP-dependent chromatin remodeler, which translocates the nucleosome over a short distance, such that the PBS no longer interacts with the distal H3-H4 dimer, although it remains within the nucleosome. In vivo, insertion of the 603 positioning sequence into the yeast CUP1 gene results in a modest reduction in transcription, but this reduction is orientation-independent, indicating that the polar barrier can be circumvented. However, the 603-nucleosome is present at the expected position in only a small fraction of cells. Thus, the polar barrier is probably non-functional in vivo because the nucleosome is not positioned appropriately, presumably due to nucleosome sliding activities. We suggest that interactions between PBSs and chromatin remodelers might have significant regulatory potential.
Collapse
Affiliation(s)
- Daria A Gaykalova
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
124
|
Luse DS, Spangler LC, Újvári A. Efficient and rapid nucleosome traversal by RNA polymerase II depends on a combination of transcript elongation factors. J Biol Chem 2010; 286:6040-8. [PMID: 21177855 DOI: 10.1074/jbc.m110.174722] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nucleosome is generally found to be a strong barrier to transcript elongation by RNA polymerase II (pol II) in vitro. The elongation factors TFIIF and TFIIS have been shown to cooperate in maintaining pol II in the catalytically competent state on pure DNA templates. We now show that although TFIIF or TFIIS alone is modestly stimulatory for nucleosome traversal, both factors together increase transcription through nucleosomes in a synergistic manner. We also studied the effect of TFIIF and TFIIS on transcription of nucleosomes containing a Sin mutant histone. The Sin point mutations reduce critical histone-DNA contacts near the center of the nucleosome. Significantly, we found that nucleosomes with a Sin mutant histone are traversed to the same extent and at nearly the same rate as equivalent pure DNA templates if both TFIIS and TFIIF are present. Thus, the nucleosome is not necessarily an insurmountable barrier to transcript elongation by pol II. If unfolding of template DNA from the nucleosome surface is facilitated and the tendency of pol II to retreat from barriers is countered, transcription of nucleosomal templates can be rapid and efficient.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
125
|
Böhm V, Hieb AR, Andrews AJ, Gansen A, Rocker A, Tóth K, Luger K, Langowski J. Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res 2010; 39:3093-102. [PMID: 21177647 PMCID: PMC3082900 DOI: 10.1093/nar/gkq1279] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nucleosomes are multi-component macromolecular assemblies which present a formidable obstacle to enzymatic activities that require access to the DNA, e.g. DNA and RNA polymerases. The mechanism and pathway(s) by which nucleosomes disassemble to allow DNA access are not well understood. Here we present evidence from single molecule FRET experiments for a previously uncharacterized intermediate structural state before H2A–H2B dimer release, which is characterized by an increased distance between H2B and the nucleosomal dyad. This suggests that the first step in nucleosome disassembly is the opening of the (H3–H4)2 tetramer/(H2A–H2B) dimer interface, followed by H2A–H2B dimer release from the DNA and, lastly, (H3–H4)2 tetramer removal. We estimate that the open intermediate state is populated at 0.2–3% under physiological conditions. This finding could have significant in vivo implications for factor-mediated histone removal and exchange, as well as for regulating DNA accessibility to the transcription and replication machinery.
Collapse
Affiliation(s)
- Vera Böhm
- Abteilung Biophysik der Makromoleküle, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Control of chromatin structure by spt6: different consequences in coding and regulatory regions. Mol Cell Biol 2010; 31:531-41. [PMID: 21098123 DOI: 10.1128/mcb.01068-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spt6 is a highly conserved factor required for normal transcription and chromatin structure. To gain new insights into the roles of Spt6, we measured nucleosome occupancy along Saccharomyces cerevisiae chromosome III in an spt6 mutant. We found that the level of nucleosomes is greatly reduced across some, but not all, coding regions in an spt6 mutant, with nucleosome loss preferentially occurring over highly transcribed genes. This result provides strong support for recent studies that have suggested that transcription at low levels does not displace nucleosomes, while transcription at high levels does, and adds the idea that Spt6 is required for restoration of nucleosomes at the highly transcribed genes. Unexpectedly, our studies have also suggested that the spt6 effects on nucleosome levels across coding regions do not cause the spt6 effects on mRNA levels, suggesting that the role of Spt6 across coding regions is separate from its role in transcriptional regulation. In the case of the CHA1 gene, regulation by Spt6 likely occurs by controlling the position of the +1 nucleosome. These results, along with previous studies, suggest that Spt6 regulates transcription by controlling chromatin structure over regulatory regions, and its effects on nucleosome levels over coding regions likely serve an independent function.
Collapse
|
127
|
Histone Sin mutations promote nucleosome traversal and histone displacement by RNA polymerase II. EMBO Rep 2010; 11:705-10. [PMID: 20706221 DOI: 10.1038/embor.2010.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 11/09/2022] Open
Abstract
Nucleosome traversal by RNA polymerase II (pol II) and recovery of chromatin structure after transcription are essential for proper gene expression. In this paper we show that nucleosomes assembled with Sin mutant histones present a much weaker barrier to traversal by pol II and are less likely to survive transcription. Increases in traversal from incorporation of Sin mutant histones and histones lacking H2A/H2B amino-terminal tails were in most cases additive, indicating that traversal can be facilitated by distinct mechanisms. We had identified a key intermediate in traversal, the zero (slashed circle)-loop, which mediates nucleosome survival during transcription. Sin mutations probably destabilize these intermediates and thus increase the likelihood of nucleosome disassociation.
Collapse
|
128
|
Liu N, Hayes JJ. When push comes to shove: SWI/SNF uses a nucleosome to get rid of a nucleosome. Mol Cell 2010; 38:484-6. [PMID: 20513424 DOI: 10.1016/j.molcel.2010.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A report in this issue of Molecular Cell (Dechassa et al., 2010) provides evidence that a translocating SWI/SNF-nucleosome complex efficiently displaces neighboring nucleosomes in vitro and may account for SWI/SNF-dependent nucleosome eviction in vivo.
Collapse
Affiliation(s)
- Ning Liu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
129
|
RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones. Proc Natl Acad Sci U S A 2010; 107:11325-30. [PMID: 20534568 DOI: 10.1073/pnas.1001148107] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maintenance of the chromatin states and histone modification patterns during transcription is essential for proper gene regulation and cell survival. Histone octamer survives moderate transcription, but is evicted during intense transcription in vivo by RNA polymerase II (Pol II). Previously we have shown that nucleosomes can survive transcription by single Pol II complexes in vitro. To study the mechanism of histone displacement from DNA, the encounter between multiple complexes of RNA polymerase and a nucleosome was analyzed in vitro. Multiple transcribing Pol II complexes can efficiently overcome the high nucleosomal barrier and displace the entire histone octamer, matching the observations in vivo. DNA-bound histone hexamer left behind the first complex of transcribing enzyme is evicted by the next Pol II complex. Thus transcription by single Pol II complexes allows survival of the original H3/H4 histones, while multiple, closely spaced complexes of transcribing Pol II can induce displacement of all core histones along the gene.
Collapse
|
130
|
Cui F, Zhurkin VB. Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro. J Biomol Struct Dyn 2010; 27:821-41. [PMID: 20232936 PMCID: PMC2993692 DOI: 10.1080/073911010010524947] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken beta-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the '601' nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp - an accuracy exceeding that of earlier predictions. Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning 'rules' they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL+/- 3.5 and +/- 5.5, which is similar to the alpha-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the '601' clone) the same YR/YYRR motifs occur predominantly at the sites SHL +/- 1.5. The interaction between the H3/H4 tetramer and the central part of the nucleosomal DNA is likely to be responsible for the positioning of nucleosomes of this group, and the DNA trajectory in these nucleosomes may differ in detail from the published structures. Thus, from the stereochemical perspective, the in vitro nucleosomes studied here follow either an X-ray-like pattern (with strong deformations in the terminal parts of nucleosomal DNA), or an alternative pattern (with the deformations occurring predominantly in the central part of the nucleosomal DNA). The results presented here may be useful for genome-wide classification of nucleosomes, linking together structural and thermodynamic characteristics of nucleosomes with the underlying DNA sequence patterns guiding their positions.
Collapse
Affiliation(s)
- Feng Cui
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Victor B. Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
131
|
Jin J, Bai L, Johnson DS, Fulbright RM, Kireeva ML, Kashlev M, Wang MD. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nat Struct Mol Biol 2010; 17:745-52. [PMID: 20453861 PMCID: PMC2938954 DOI: 10.1038/nsmb.1798] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 03/05/2010] [Indexed: 12/25/2022]
Abstract
During gene expression, RNA polymerase (RNAP) encounters a major barrier at a nucleosome and yet must access the nucleosomal DNA. Previous in vivo evidence has suggested that multiple RNAPs might increase transcription efficiency through nucleosomes. Here we have quantitatively investigated this hypothesis using Escherichia coli RNAP as a model system by directly monitoring its location on the DNA via a single-molecule DNA-unzipping technique. When an RNAP encountered a nucleosome, it paused with a distinctive 10-base pair periodicity and backtracked by approximately 10-15 base pairs. When two RNAPs elongate in close proximity, the trailing RNAP apparently assists in the leading RNAP's elongation, reducing its backtracking and enhancing its transcription through a nucleosome by a factor of 5. Taken together, our data indicate that histone-DNA interactions dictate RNAP pausing behavior, and alleviation of nucleosome-induced backtracking by multiple polymerases may prove to be a mechanism for overcoming the nucleosomal barrier in vivo.
Collapse
Affiliation(s)
- Jing Jin
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, USA
| | | | | | | | | | | | | |
Collapse
|