101
|
Chou CK, Chi SY, Huang CH, Chou FF, Huang CC, Liu RT, Kang HY. IRAK1, a Target of miR-146b, Reduces Cell Aggressiveness of Human Papillary Thyroid Carcinoma. J Clin Endocrinol Metab 2016; 101:4357-4366. [PMID: 27533309 DOI: 10.1210/jc.2016-2276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT MicroRNA (miR)-146b is overexpressed in papillary thyroid carcinoma (PTC) and is associated with extrathyroidal invasion, advanced tumor stage, and poor prognosis. However, the underlying mechanism of miR-146b in relation to its oncogenic behavior in PTC and its putative targets remain unknown. OBJECTIVE The purpose was to investigate IL-1 receptor-associated kinase 1 (IRAK1) as the potential miR-146b target gene and its involvement in PTC. DESIGN We used genome-wide microarray, computational analysis, and 3' UTR reporter gene assays to identify IRAK1 as a miR-146b target gene. In vitro gain/loss-of-function experiments were further performed to determine the effects of IRAK1 on proliferation, colony formation, and wound-healing in PTC cancer cell lines. Expression levels of miR-146b and IRAK1 of 50 cases of PTC and its adjacent normal thyroid specimens were assessed via qRT-PCR. RESULTS Microarray expression profile revealed that the mRNA level of IRAK1 gene was down-regulated by miR-146b. The 3' UTR of IRAK1 mRNA was found to be a molecular target of miR-146b posttranscriptional repression in BCPAP cells by reporter gene assays. MiR-146b promoted the migration and proliferation of PTC cells by down-regulating IRAK1 expression, whereas restoration of IRAK1 expression reversed this effect. In addition, the expression of IRAK1 mRNA was significantly lower in PTC clinical tissue samples than normal adjacent thyroid specimens and showed a strong inverse correlation with the expression of miR-146b in PTC specimens. CONCLUSION Our results demonstrated that IRAK1 is a direct target of miR-146b and has functional roles to inhibit various aggressive PTC cell activities. In conjunction with current therapeutic regimens, targeting the miR-146b-IRAK1 axis may provide a potential approach for PTC management.
Collapse
Affiliation(s)
- Chen-Kai Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine (C.-K.C., C.-H.H., R.-T.L.), Graduate Institute of Clinical Medical Sciences (C.-K.C., H.-Y.K.), Chang Gung University, Taiwan, Departments of Surgery (S.-Y.C., F.-F.C.), Pathology (C.-C.H.), and Obstetrics and Gynecology (H.-Y.K.), Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaoshiung City 833, Taiwan
| | - Shun-Yu Chi
- Division of Endocrinology and Metabolism, Department of Internal Medicine (C.-K.C., C.-H.H., R.-T.L.), Graduate Institute of Clinical Medical Sciences (C.-K.C., H.-Y.K.), Chang Gung University, Taiwan, Departments of Surgery (S.-Y.C., F.-F.C.), Pathology (C.-C.H.), and Obstetrics and Gynecology (H.-Y.K.), Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaoshiung City 833, Taiwan
| | - Cai-Hua Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine (C.-K.C., C.-H.H., R.-T.L.), Graduate Institute of Clinical Medical Sciences (C.-K.C., H.-Y.K.), Chang Gung University, Taiwan, Departments of Surgery (S.-Y.C., F.-F.C.), Pathology (C.-C.H.), and Obstetrics and Gynecology (H.-Y.K.), Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaoshiung City 833, Taiwan
| | - Fong-Fu Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine (C.-K.C., C.-H.H., R.-T.L.), Graduate Institute of Clinical Medical Sciences (C.-K.C., H.-Y.K.), Chang Gung University, Taiwan, Departments of Surgery (S.-Y.C., F.-F.C.), Pathology (C.-C.H.), and Obstetrics and Gynecology (H.-Y.K.), Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaoshiung City 833, Taiwan
| | - Chao-Cheng Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine (C.-K.C., C.-H.H., R.-T.L.), Graduate Institute of Clinical Medical Sciences (C.-K.C., H.-Y.K.), Chang Gung University, Taiwan, Departments of Surgery (S.-Y.C., F.-F.C.), Pathology (C.-C.H.), and Obstetrics and Gynecology (H.-Y.K.), Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaoshiung City 833, Taiwan
| | - Rue-Tsuan Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine (C.-K.C., C.-H.H., R.-T.L.), Graduate Institute of Clinical Medical Sciences (C.-K.C., H.-Y.K.), Chang Gung University, Taiwan, Departments of Surgery (S.-Y.C., F.-F.C.), Pathology (C.-C.H.), and Obstetrics and Gynecology (H.-Y.K.), Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaoshiung City 833, Taiwan
| | - Hong-Yo Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine (C.-K.C., C.-H.H., R.-T.L.), Graduate Institute of Clinical Medical Sciences (C.-K.C., H.-Y.K.), Chang Gung University, Taiwan, Departments of Surgery (S.-Y.C., F.-F.C.), Pathology (C.-C.H.), and Obstetrics and Gynecology (H.-Y.K.), Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaoshiung City 833, Taiwan
| |
Collapse
|
102
|
Ma Z, Liu T, Huang W, Liu H, Zhang HM, Li Q, Chen Z, Guo AY. MicroRNA regulatory pathway analysis identifies miR-142-5p as a negative regulator of TGF-β pathway via targeting SMAD3. Oncotarget 2016; 7:71504-71513. [PMID: 27683030 PMCID: PMC5342096 DOI: 10.18632/oncotarget.12229] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with functions of posttranscriptional regulation. The abnormally expressed miRNAs have been shown to be crucial contributors and may serve as biomarkers in many diseases. However, determining the biological function of miRNAs is an ongoing challenge. By combining miRNA targets prediction, miRNA and mRNA expression profiles in TCGA cancers, and pathway data, we performed a miRNA-pathway regulation inference by Fisher's exact test for enrichment analysis. Then we constructed a database to show the cancer related miRNA-pathway regulatory network (http://bioinfo.life.hust.edu.cn/miR_path). As one of the miRNAs targeting many cancer related pathways, miR-142-5p potentially regulates the maximum number of genes in TGF-β signaling pathway. We experimentally confirmed that miR-142-5p directly targeted and suppressed SMAD3, a key component in TGF-β signaling. Ectopic overexpression of miR-142-5p significantly promoted tumor cell proliferation and inhibited apoptosis, while silencing of miR-142-5p inhibited the tumor cell proliferation and promoted apoptosis in vitro. These findings indicate that miR-142-5p plays as a negative regulator in TGF-β pathway by targeting SMAD3 and suppresses TGF-β-induced growth inhibition in cancer cells. Our study proved the feasibility of miRNA regulatory pathway analysis and shed light on combining bioinformatics with experiments in the research of complex diseases.
Collapse
Affiliation(s)
- Zhaowu Ma
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Laboratory of Neuronal Network and Brain Diseases Modulation, School of Medicine, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Teng Liu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Huang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Liu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong-Mei Zhang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - An-Yuan Guo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
103
|
Liu J, Xu J, Li H, Sun C, Yu L, Li Y, Shi C, Zhou X, Bian X, Ping Y, Wen Y, Zhao S, Xu H, Ren L, An T, Wang Q, Yu S. miR-146b-5p functions as a tumor suppressor by targeting TRAF6 and predicts the prognosis of human gliomas. Oncotarget 2016; 6:29129-42. [PMID: 26320176 PMCID: PMC4745716 DOI: 10.18632/oncotarget.4895] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/24/2015] [Indexed: 12/05/2022] Open
Abstract
Down-regulation of miR-146b-5p contributes to tumorigenesis in several human cancers. However, the relevance of miR-146b-5p to prognosis, proliferation and apoptosis in gliomas remains unknown. In the present study, we demonstrated that miR-146b-5p expression was inversely correlated with grades and Ki-67 index in 147 human glioma specimens, but positively correlated with patients’ survival. Furthermore, two distinct subgroups of patients with grade I-IV gliomas with different prognoses were identified according to miR-146b-5p expression in our specimens. Cox regression showed that miR-146b-5p was an independent predictor for patients’ survival. Overexpression of miR-146b-5p dramatically suppressed glioma cell proliferation and induced apoptosis. Mechanistically, we validated TRAF6 as a direct functional target of miR-146b-5p and found that miR-146b-5p overexpression significantly decreased phosphorylated TAK1 and IκBα, the pivotal downstream effectors of TRAF6. Moreover, TRAF6 expression was positively correlated with glioma grades and Ki-67 index but inversely correlated with miR-146b-5p expression and predicted poor prognosis of glioma patients. In glioblastoma cell lines, silencing of TRAF6 could mimic the anti-tumor effect of miR-146b-5p. Our findings identify miR-146b-5p as a tumor suppressor and novel prognostic biomarker of gliomas, and suggest miR-146b-5p and TRAF6 as potential therapeutic candidates for malignant gliomas.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Jinling Xu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Huining Li
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Lin Yu
- Department of Biochemistry, Basic Medical College of Tianjin Medical University, Tianjin 300070, China
| | - Yanyan Li
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yifang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yanjun Wen
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Shujun Zhao
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Laboratory of Hormone and Development, Ministry of Health, Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Hui Xu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Linlin Ren
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Tongling An
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| |
Collapse
|
104
|
Mitchell B, Dhingra JK, Mahalingam M. BRAF and Epithelial-Mesenchymal Transition: Lessons From Papillary Thyroid Carcinoma and Primary Cutaneous Melanoma. Adv Anat Pathol 2016; 23:244-71. [PMID: 27145091 DOI: 10.1097/pap.0000000000000113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The increased prevalence of BRAF mutations in thyroid carcinoma and primary cutaneous melanoma (PCM) hint that dysregulation of BRAF might contribute to the noted association between PCM and thyroid carcinoma. A recent study evaluating the rate of BRAFV600E mutations among patients who had been diagnosed with primary papillary thyroid carcinoma (PTC) and PCM showed that patients with either PCM or PTC were at an increased risk of developing the other as a second primary malignant neoplasm. Furthermore, the authors noted that samples from patients suffering from both malignancies exhibited a higher rate of incidence of the BRAFV600E mutation, compared with patients not suffering from both malignancies. These studies support the hypothesis that the pathogenesis of these 2 malignancies might share a conserved molecular pattern associated with dysregulation of the BRAF protein. One mechanism through which BRAF might contribute to PCM and thyroid carcinoma progression is through induction of epithelial-mesenchymal transition (EMT). Specifically, the Snail/E-cadherin axis has been demonstrated as a pathway dysregulated by BRAF, leading to EMT in both malignancies. Our analysis focuses on the results of these recent investigations, and through a review of select molecules relevant to EMT, looks to provide a context by which to better understand the relevance and role of stromal-parenchymal signaling and the BRAF mutation in the pathogenesis of PTC and PCM.
Collapse
Affiliation(s)
- Brendon Mitchell
- *University of Florida College of Medicine, Gainesville, FL †Department of Otolaryngology, Tufts Medical center, Boston, MA ‡Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA Consolidated Laboratories, West Roxbury, MA
| | | | | |
Collapse
|
105
|
Ibrutinib downregulates a subset of miRNA leading to upregulation of tumor suppressors and inhibition of cell proliferation in chronic lymphocytic leukemia. Leukemia 2016; 31:340-349. [PMID: 27431016 DOI: 10.1038/leu.2016.181] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/05/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
Abstract
The lymph node (LN) is the site of chronic lymphocytic leukemia (CLL) cell activation and proliferation. Aberrant microRNA (miRNA) expression has been shown to have a role in CLL pathogenesis; however, a comparison of miRNA expression between CLL cells in the LN and the peripheral blood (PB) has previously not been reported. On the basis of the analysis of 17 paired LN and PB samples from CLL patients, we identify a panel of miRNAs that are increased in LN CLL cells correlating with an activation phenotype. When evaluated in CLL cells from 38 patients pre and post treatment with ibrutinib, a subset of these miRNAs (miR-22, miR-34a, miR-146b and miR-181b) was significantly decreased in response to ibrutinib. A concomitant increase in putative miRNA target transcripts (ARID1B, ARID2, ATM, CYLD, FOXP1, HDAC1, IBTK, PTEN and SMAD4) was also observed. Functional studies confirmed targets of ibrutinib-responsive miRNAs to include messenger RNA transcripts of multiple tumor suppressors. Knockdown of endogenous miR-34a and miR146b resulted in increased transcription of tumor suppressors and inhibition of cell proliferation. These findings demonstrate that ibrutinib downregulates the expression of a subset of miRNAs related to B-cell activation leading to increased expression of miRNA targets including tumor suppressors and a reduction in cell proliferation.
Collapse
|
106
|
Ab Mutalib NS, Othman SN, Mohamad Yusof A, Abdullah Suhaimi SN, Muhammad R, Jamal R. Integrated microRNA, gene expression and transcription factors signature in papillary thyroid cancer with lymph node metastasis. PeerJ 2016; 4:e2119. [PMID: 27350898 PMCID: PMC4918724 DOI: 10.7717/peerj.2119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/18/2016] [Indexed: 01/30/2023] Open
Abstract
Background. Papillary thyroid carcinoma (PTC) is the commonest thyroid malignancy originating from the follicle cells in the thyroid. Despite a good overall prognosis, certain high-risk cases as in those with lymph node metastasis (LNM) have progressive disease and poorer prognosis. MicroRNAs are a class of non-protein-coding, 19–24 nucleotides single-stranded RNAs which regulate gene expression and these molecules have been shown to play a role in LNM. The integrated analysis of miRNAs and gene expression profiles together with transcription factors (TFs) has been shown to improve the identification of functional miRNA-target gene-TF relationships, providing a more complete view of molecular events underlying metastasis process. Objectives. We reanalyzed The Cancer Genome Atlas (TCGA) datasets on PTC to identify differentially expressed miRNAs/genes in PTC patients with LNM-positive (LNM-P) versus lymph node negative (LNN) PTC patients and to investigate the miRNA-gene-TF regulatory circuit that regulate LNM in PTC. Results. PTC patients with LNM (PTC LNM-P) have a significantly shorter disease-free survival rate compared to PTC patients without LNM (PTC LNN) (Log-rank Mantel Cox test, p = 0.0049). We identified 181 significantly differentially expressed miRNAs in PTC LNM-P versus PTC LNN; 110 were upregulated and 71 were downregulated. The five topmost deregulated miRNAs were hsa-miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204. In addition, 395 miRNAs were differentially expressed between PTC LNM-P and normal thyroid while 400 miRNAs were differentially expressed between PTC LNN and normal thyroid. We found four significant enrichment pathways potentially involved in metastasis to the lymph nodes, namely oxidative phosphorylation (OxPhos), cell adhesion molecules (CAMs), leukocyte transendothelial migration and cytokine–cytokine receptor interaction. OxPhos was the most significantly perturbed pathway (p = 4.70E−06) involving downregulation of 90 OxPhos-related genes. Significant interaction of hsa-miR-301b with HLF, HIF and REL/NFkB transcription factors were identified exclusively in PTC LNM-P versus PTC LNN. Conclusion. We found evidence of five miRNAs differentially expressed in PTC LNM-P. Alteration in OxPhos pathway could be the central event in metastasis to the lymph node in PTC. We postulate that hsa-miR-301b might be involved in regulating LNM in PTC via interactions with HLF, HIF and REL/NFkB. To the best of our knowledge, the roles of these TFs have been studied in PTC but the precise role of this miRNA with these TFs in LNM in PTC has not been investigated.
Collapse
Affiliation(s)
- Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Sri Noraima Othman
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Azliana Mohamad Yusof
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | | | - Rohaizak Muhammad
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
107
|
Azizian A, Epping I, Kramer F, Jo P, Bernhardt M, Kitz J, Salinas G, Wolff HA, Grade M, Beißbarth T, Ghadimi BM, Gaedcke J. Prognostic Value of MicroRNAs in Preoperative Treated Rectal Cancer. Int J Mol Sci 2016; 17:568. [PMID: 27092493 PMCID: PMC4849024 DOI: 10.3390/ijms17040568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Patients with locally advanced rectal cancer are treated with preoperative chemoradiotherapy followed by surgical resection. Despite similar clinical parameters (uT2-3, uN+) and standard therapy, patients’ prognoses differ widely. A possible prediction of prognosis through microRNAs as biomarkers out of treatment-naïve biopsies would allow individualized therapy options. Methods: Microarray analysis of 45 microdissected preoperative biopsies from patients with rectal cancer was performed to identify potential microRNAs to predict overall survival, disease-free survival, cancer-specific survival, distant-metastasis-free survival, tumor regression grade, or nodal stage. Quantitative real-time polymerase chain reaction (qPCR) was performed on an independent set of 147 rectal cancer patients to validate relevant miRNAs. Results: In the microarray screen, 14 microRNAs were significantly correlated to overall survival. Five microRNAs were included from previous work. Finally, 19 miRNAs were evaluated by qPCR. miR-515-5p, miR-573, miR-579 and miR-802 demonstrated significant correlation with overall survival and cancer-specific survival (p < 0.05). miR-573 was also significantly correlated with the tumor regression grade after preoperative chemoradiotherapy. miR-133b showed a significant correlation with distant-metastasis-free survival. miR-146b expression levels showed a significant correlation with nodal stage. Conclusion: Specific microRNAs can be used as biomarkers to predict prognosis of patients with rectal cancer and possibly stratify patients’ therapy if validated in a prospective study.
Collapse
Affiliation(s)
- Azadeh Azizian
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Ingo Epping
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Frank Kramer
- Department of Medical Statistics, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Peter Jo
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Markus Bernhardt
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Julia Kitz
- Department of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Gabriela Salinas
- Department of Developmental Biochemistry, University of Göttingen, Göttingen 37075, Germany.
| | - Hendrik A Wolff
- Medical Practice Radiotherapy München, Burgstraße 7, München 80331, Germany.
| | - Marian Grade
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - B Michael Ghadimi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Jochen Gaedcke
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| |
Collapse
|
108
|
Zhang HM, Li Q, Zhu X, Liu W, Hu H, Liu T, Cheng F, You Y, Zhong Z, Zou P, Li Q, Chen Z, Guo AY. miR-146b-5p within BCR-ABL1-Positive Microvesicles Promotes Leukemic Transformation of Hematopoietic Cells. Cancer Res 2016; 76:2901-11. [PMID: 27013199 DOI: 10.1158/0008-5472.can-15-2120] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 03/13/2016] [Indexed: 11/16/2022]
Abstract
Evidence is accumulating that extracellular microvesicles (MV) facilitate progression and relapse in cancer. Using a model in which MVs derived from K562 chronic myelogenous leukemia (CML) cells transform normal hematopoietic transplants into leukemia-like cells, we defined the underlying mechanisms of this process through gene-expression studies and network analyses of transcription factors (TF) and miRNAs. We found that antitumor miRNAs were increased and several defense pathways were initiated during the early phases of oncogenic transformation. Later, oncomiRs and genes involved in cell cycle, DNA repair, and energy metabolism pathways were upregulated. Regulatory network analyses revealed that a number of TFs and miRNAs were responsible for the pathway dysregulation and the oncogenic transformation. In particular, we found that miR-146b-5p, which was highly expressed in MVs, coordinated the regulation of cancer-related genes to promote cell-transforming processes. Notably, treatment of recipient cells with MV derived from K562 cells expressing mimics of miR-146b-5p revealed that it accelerated the transformation process in large part by silencing the tumor-suppressor NUMB High levels of miR-146b-5p also enhanced reactive oxygen species levels and genome instability of recipient cells. Taken together, our finding showed how upregulation of oncogenic miRNAs in MVs promote hematopoetic cells to a leukemic state, as well as a demonstration for TF and miRNA coregulatory analysis in exploring the dysregulation of cancers and discovering key factors. Cancer Res; 76(10); 2901-11. ©2016 AACR.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei Liu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Hu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Teng Liu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhaodong Zhong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
109
|
Romitti M, Wajner SM, Ceolin L, Ferreira CV, Ribeiro RVP, Rohenkohl HC, Weber SDS, Lopez PLDC, Fuziwara CS, Kimura ET, Maia AL. MAPK and SHH pathways modulate type 3 deiodinase expression in papillary thyroid carcinoma. Endocr Relat Cancer 2016; 23:135-46. [PMID: 26825960 DOI: 10.1530/erc-15-0162] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type 3 deiodinase (DIO3, D3) is reactivated in human neoplasias. Increased D3 levels in papillary thyroid carcinoma (PTC) have been associated with tumor size and metastatic disease. The objective of this study is to investigate the signaling pathways involved in DIO3 upregulation in PTC. Experiments were performed in human PTC cell lines (K1 and TPC-1 cells) or tumor samples. DIO3 mRNA and activity were evaluated by real-time PCR and ion-exchange column chromatography respectively. Western blot analysis was used to determine the levels of D3 protein. DIO3 gene silencing was performed via siRNA transfection. DIO3 mRNA levels and activity were readily detected in K1 (BRAF(V6) (0) (0E)) and, at lower levels, in TPC-1 (RET/PTC1) cells (P<0.007 and P=0.02 respectively). Similarly, DIO3 mRNA levels were higher in PTC samples harboring the BRAF(V600E) mutation as compared with those with RET/PTC1 rearrangement or negative for these mutations (P<0.001). Specific inhibition of BRAF oncogene (PLX4032, 3 μM), MEK (U0126, 10-20 μM) or p38 (SB203580, 10-20 μM) signaling was associated with decreases in DIO3 expression in K1 and TPC-1 cells. Additionally, the blockage of the sonic hedgehog (SHH) pathway by cyclopamine (10 μM) resulted in markedly decreases in DIO3 mRNA levels. Interestingly, siRNA-mediated DIO3 silencing induced decreases on cyclin D1 expression and partial G1 phase cell cycle arrest, thereby downregulating cell proliferation. In conclusion, sustained activation of the MAPK and SHH pathways modulate the levels of DIO3 expression in PTC. Importantly, DIO3 silencing was associated with decreases in cell proliferation, thus suggesting a D3 role in tumor growth and aggressiveness.
Collapse
Affiliation(s)
- Mírian Romitti
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Simone Magagnin Wajner
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lucieli Ceolin
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carla Vaz Ferreira
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rafaela Vanin Pinto Ribeiro
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helena Cecin Rohenkohl
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Shana de Souto Weber
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrícia Luciana da Costa Lopez
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cesar Seigi Fuziwara
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Edna Teruko Kimura
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Luiza Maia
- Thyroid SectionEndocrine Division, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, BrazilExperimental Research CenterHospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BrazilDepartment of Cell and Developmental BiologyInstitute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
110
|
Lima CR, Geraldo MV, Fuziwara CS, Kimura ET, Santos MF. MiRNA-146b-5p upregulates migration and invasion of different Papillary Thyroid Carcinoma cells. BMC Cancer 2016; 16:108. [PMID: 26883911 PMCID: PMC4754828 DOI: 10.1186/s12885-016-2146-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 02/08/2016] [Indexed: 01/17/2023] Open
Abstract
Background Tumor invasiveness is directly related to the ability of tumor cells to migrate and invade surrounding tissues, usually degrading extracellular matrix. Despite significant progress in the knowledge about migration and invasion, there is much more to elucidate about their regulatory mechanisms, especially in cancer cells. MicroRNAs (miRs) were recently described as important regulators of migration. Differential expression of miRs in cancer is frequently associated with progression, invasion and metastasis. In papillary thyroid carcinoma (PTC), miR-146b-5p is highly expressed and positively correlated to the degree of malignancy. Methods This study aimed to investigate the role of miR-146b-5p on the migratory and invasive behaviors of thyroid cells, using a non tumor rat thyroid follicular cell line (PCCl3) transfected with the miR-146b-5p genomic region, and two PTC cell lines (TPC-1 and BCPAP, bearing distinct oncogenic backgrounds), which express high levels of miR-146b-5p, after miR-146b inhibition by antagomiR and miR-146b overexpression by mimics-miR. Migration and invasion were studied by time-lapse and transwell assays (with and without Matrigel®). Gelatin degradation assays were also employed, as well as F-actin staining. Results Migration and invasion of PCCl3 were increased 2-3x after miR-146b-5p overexpression (10X) and large lamellipodia were evident in those cells. After miR-146b-5p inhibition, TPC-1 and BCPAP migration and invasion were significantly reduced, with cells showing several simultaneous processes and low polarity. Gelatin degradation was inhibited in TPC-1 cells after inhibition of miR-146b-5p, but was unaffected in BCPAP cells, which did not degrade gelatin. The inhibition of miR-146b-5p in PCCl3 also inhibited migration and invasion, and additional (exogenous) overexpression of this miR in TPC-1 and BCPAP cells increased migration and invasion, without effects on cell morphology or gelatin degradation. The overexpression of SMAD4 in BCPAP cells, a validated target of miR-146b-5p and key protein in the TGF-β signaling pathway, inhibited migration similarly to the effects observed with the antagomiR 146b-5p. Conclusions miR-146b-5p positively regulates migration and invasion of thyroid normal and tumor follicular cells (independently from their original mutation, either BRAF or RET/PTC), through a mechanism that involves the actin cytoskeleton but not an increased capacity of matrix degradation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2146-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Murilo Vieira Geraldo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Marinilce Fagundes Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
111
|
Mutalib NSA, Yusof AM, Mokhtar NM, Harun R, Muhammad R, Jamal R. MicroRNAs and Lymph Node Metastasis in Papillary Thyroid Cancers. Asian Pac J Cancer Prev 2016; 17:25-35. [DOI: 10.7314/apjcp.2016.17.1.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
112
|
Missing link between microRNA and prostate cancer. Tumour Biol 2016; 37:5683-704. [DOI: 10.1007/s13277-016-4900-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/20/2016] [Indexed: 12/12/2022] Open
|
113
|
Miao X, Zhao Y. ST6GalNAcII mediates tumor invasion through PI3K/Akt/NF-κB signaling pathway in follicular thyroid carcinoma. Oncol Rep 2016; 35:2131-40. [PMID: 26820593 DOI: 10.3892/or.2016.4590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/17/2015] [Indexed: 11/05/2022] Open
Abstract
Altered sialylation, closely associated with tumor progression and metastasis, has been implicated in human thyroid carcinoma. The present study investigated the alteration in expression of ST6GalNAcII involved in invasion and to clarify the possible mechanism of ST6GalNAcII in the metastasis process in human follicular thyroid carcinoma cell lines. Using real-time PCR, western blot and IHC analysis, ST6GalNAcII differed in three follicular thyroid cancer cell lines (FTC133, primary and FTC238, lung metastasis). It also showed differential expression in follicular thyroid carcinoma and tissue specimens. In addition, we analyzed the PI3K/Akt signaling pathway. The altered expression of ST6GalNAcII corresponded to changed invasive phenotype of FTC-238 and FTC-133 cells in vitro and in vivo. Further studies showed that regulating ST6GalNAcII expression markedly modulated the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Targeting the PI3K/Akt pathway by its specific inhibitor LY294002, or by Akt small interfering RNA (siRNA) resulted in reduced capacity in invasion of FTC-238. In conclusion, taken together, our results imply that ST6GalNAcII activated the invasion in follicular thyroid cancer cells through regulating the activity of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiaolong Miao
- Department of General Surgery, Dalian Medical University, Liaoning, P.R. China
| | - Yongfu Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Liaoning, P.R. China
| |
Collapse
|
114
|
Stokowy T, Gawel D, Wojtas B. Differences in miRNA and mRNA Profile of Papillary Thyroid Cancer Variants. Int J Endocrinol 2016; 2016:1427042. [PMID: 27656207 PMCID: PMC5021476 DOI: 10.1155/2016/1427042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/21/2016] [Accepted: 08/07/2016] [Indexed: 01/01/2023] Open
Abstract
Papillary thyroid cancer (PTC) can be divided into classical variant of PTC (cPTC), follicular variant of PTC (fvPTC), and tall cell variant (tcPTC). These variants differ in their histopathology and cytology; however, their molecular background is not clearly understood. Our results shed some new light on papillary thyroid cancer biology as new direct miRNA-gene regulations are discovered. The Cancer Genome Atlas (TCGA) 466 thyroid cancer samples were studied in parallel datasets to discover potential miRNA-mRNA regulations. Additionally, miRNAs and genes differentiating PTC variants (cPTC, fvPTC, and tcPTC) were indicated. Putative miRNA regulatory pairs were discovered: hsa-miR-146b-5p with PHKB and IRAK1, hsa-miR-874-3p with ITGB4 characteristic for classic PTC samples, and hsa-miR-152-3p with TGFA characteristic for follicular variant PTC samples. MiRNA-mRNA regulations discovery opens a new perspective in understanding of PTC biology. Furthermore, our successful pipeline of miRNA-mRNA regulatory pathways discovery could serve as a universal tool to find new miRNA-mRNA regulations, also in different datasets.
Collapse
Affiliation(s)
- Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Postboks 7804, 5020 Bergen, Norway
- *Tomasz Stokowy:
| | - Danuta Gawel
- Department of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
| | - Bartosz Wojtas
- Department of Nuclear Medicine and Endocrine Oncology, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch Wybrzeze AK 15, 44-101 Gliwice, Poland
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
115
|
Guo L, Zhang Y, Zhang L, Huang F, Li J, Wang S. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer. Tumour Biol 2016; 37:115-25. [PMID: 26563372 PMCID: PMC4841843 DOI: 10.1007/s13277-015-4374-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/03/2015] [Indexed: 12/19/2022] Open
Abstract
Inflammatory cells and mediators form a major part of the tumor microenvironment and play important roles in the regulation of cancer initiation, tumor cell proliferation, and metastasis. MicroRNAs (miRNAs) play important roles in several physiological and pathological processes, including the regulation of the inflammatory microenvironment in cancer. Transforming growth factor-β (TGF-β) is an inflammation-related cytokine that functions in both tumor suppression and promotion; however, its underlying molecular mechanisms remain unclear. Recent evidence indicates an association between miRNAs and TGF-β signaling, providing new insight into the nature of the inflammatory microenvironment in cancer. The present review is an overview of the interaction between miRNAs and inflammatory cytokines, with emphasis on the cross talk between TGF-β signaling and miRNAs and their influence on cancer cell behavior. The emerging roles of miRNAs in cancer-related inflammation and the potential to target miRNA signaling pathways for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Lingling Guo
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lifeng Zhang
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fengbo Huang
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Shouli Wang
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
- Institute of Radiology and Oncology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
116
|
MicroRNA-663 suppresses cell invasion and migration by targeting transforming growth factor beta 1 in papillary thyroid carcinoma. Tumour Biol 2015; 37:7633-44. [PMID: 26687649 DOI: 10.1007/s13277-015-4653-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023] Open
Abstract
MicroRNA-663 (miR-663) has been detected in a large variety of tumor types; however, it still holds both tumor suppressive and oncogenic roles in different tumor types. The miRNA-CHIP microarray assay revealed downregulation of miR-663 in papillary thyroid carcinoma (PTC); however, the effect of miR-663 on PTC cell invasion and migration remains unknown. Accordingly, this study aimed to investigate the potential involvement of miR-663 in PTC. In this study, miR-663 expression level was measured via quantitative real-time PCR in 91 pairs of human PTC and adjacent normal tissues and in two human PTC cell lines. The effect of miR-663 on PTC cell invasion and migration were studied by transwell and wound healing assays. In addition, the miR-663 target was searched and the underlying mechanism was clarified by reporter assay and rescue experiment. The current study confirmed that miR-663 expression was inhibited in PTC tissue samples and PTC cell lines. There were statistically significant differences in expression of miR-663 with regard to age and tumor size. Upregulation of miR-663 suppressed PTC cell invasion and migration. Further study showed that transforming growth factor beta 1 (TGFβ1) was the direct target of miR-663 and mediated the effect of miR-663 on PTC development. By targeting TGFβ1, miR-663 efficiently regulates the expression of epithelial-mesenchymal transition (EMT) markers and matrix metalloproteinases (MMPs). The data indicated that miR-663 may suppress tumor invasion and migration by targeting TGFβ1 and regulate EMT progress of PTC cells.
Collapse
|
117
|
Stucki-Koch A, Hauck G, Kreipe H, Hussein K. MicroRNA expression profiles in BCR-ABL-negative primary myelofibrosis with chromosome 7q defects. J Hematop 2015. [DOI: 10.1007/s12308-015-0258-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
118
|
Wang F, Jiang C, Sun Q, Yan F, Wang L, Fu Z, Liu T, Hu F. miR-195 is a key regulator of Raf1 in thyroid cancer. Onco Targets Ther 2015; 8:3021-8. [PMID: 26527888 PMCID: PMC4621222 DOI: 10.2147/ott.s90710] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proto-oncogene Raf1 serves as a part of the mitogen-activated protein kinases/extracellular signal-regulated kinase signal transduction pathway and regulates cell migration, apoptosis, and differentiation. Although a large number of studies have shown that Raf1 is overexpressed in various kinds of cancer, little is known about the association between Raf1 and miRNAs in thyroid carcinoma. This study proves that Raf1 is overexpressed in thyroid cancer, which has been confirmed by many other studies. Besides, we identify that Raf1 is a direct target of miR-15a/b, miR-16, and miR-195 by dual luciferase reporter assay. We also find that the expression of miR-195 is downregulated in 50 pairs of thyroid tumor tissues compared to the adjacent nontumor tissues, while there is no difference in the expression of miR-15a/b and miR-16 between the groups. Furthermore, exogenous overexpression of miR-195 significantly inhibits the protein expression of Raf1 and blocks the thyroid cancer cell proliferation. Our findings delineate a novel mechanism for the regulation of Raf1 in thyroid cancer, which may help to provide a new direction for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Fangzheng Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Chuner Jiang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Fenqin Yan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Lei Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Zhenfu Fu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Tongxin Liu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| | - Fujun Hu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China ; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, People's Republic of China
| |
Collapse
|
119
|
Riesco-Eizaguirre G, Wert-Lamas L, Perales-Patón J, Sastre-Perona A, Fernández LP, Santisteban P. The miR-146b-3p/PAX8/NIS Regulatory Circuit Modulates the Differentiation Phenotype and Function of Thyroid Cells during Carcinogenesis. Cancer Res 2015; 75:4119-30. [PMID: 26282166 DOI: 10.1158/0008-5472.can-14-3547] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/13/2015] [Indexed: 11/16/2022]
Abstract
The presence of differentiated thyroid cells in thyroid cancer is critical for the antitumor response to radioactive iodide treatment, and loss of the differentiated phenotype is a key hallmark of iodide-refractory metastatic disease. The role of microRNAs (miRNA) in fine-tuning gene expression has become a major regulatory mechanism by which developmental and pathologic processes occur. In this study, we performed next-generation sequencing and expression analysis of eight papillary thyroid carcinomas (PTC) to comprehensively characterize miRNAs involved in loss of differentiation. We found that only a small set of abundant miRNAs is differentially expressed between PTC tissue and normal tissue from the same patient. In addition, we integrated computational prediction of potential targets and mRNA sequencing and identified a master miRNA regulatory network involved in essential biologic processes such as thyroid differentiation. Both mature products of mir-146b (miR-146b-5p and -3p) were among the most abundantly expressed miRNAs in tumors. Specifically, we found that miR-146b-3p binds to the 3'-untranslated region of PAX8 and sodium/iodide symporter (NIS), leading to impaired protein translation and a subsequent reduction in iodide uptake. Furthermore, our findings show that miR-146b and PAX8 regulate each other and share common target genes, thus highlighting a novel regulatory circuit that governs the differentiated phenotype of PTC. In conclusion, our study has uncovered the existence of a miR-146b-3p/PAX8/NIS regulatory circuit that may be exploited therapeutically to modulate thyroid cell differentiation and iodide uptake for improved treatment of advanced thyroid cancer.
Collapse
Affiliation(s)
- Garcilaso Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain. Servicio de Endocrinología y Nutrición, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain. Servicio de Endocrinología Hospital Universitario de Móstoles, Madrid, Spain
| | - León Wert-Lamas
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Javier Perales-Patón
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain. Translational Bioinformatics Unit, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Sastre-Perona
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Lara P Fernández
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
120
|
SMAD4 gene promoter mutations in patients with thyroid tumors. Exp Mol Pathol 2015; 99:100-3. [PMID: 26079547 DOI: 10.1016/j.yexmp.2015.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/12/2015] [Indexed: 01/11/2023]
Abstract
As a key component of the transforming growth factor beta (TGFB) pathway, which regulates the expression of thyroid-specific genes, tumor suppressor SMAD4 is crucial for thyroid development and function. Aberrant expression of SMAD4 in thyroid tumor tissue was reported and mutations affecting the coding region have been detected, but a potential role of mutations in SMAD4 gene regulatory regions remains unexplored. The aim of this study was to analyze SMAD4 gene promoters in thyroid tumors. A total of 76 thyroidectomy specimens were studied, including 42 malignant and 34 benign tumors. The presence of mutations in four SMAD4 gene promoters was analyzed in thyroid tumor tissue and peripheral blood by PCR and DNA sequencing. The expression and intracellular localization of endogenous SMAD4 protein in selected tumor samples was studied by immunostaining and confocal microscopy. Of three novel variants detected, two were within promoter A (-204T/C and -5C/T) and one in promoter D (-180delA). Unlike somatic mutations previously detected in the nearby region, germline mutation -180delA in promoter D doesn't appear to affect SMAD4 expression in the thyroid tumor tissue. However, all newly detected SMAD4 promoter variants affect predicted binding sites of transcription factors involved in cell cycle regulation and should be further characterized functionally. Although not directly involved in carcinogenesis, detected variants may alter SMAD4 transcriptional regulation to some extent. Considering that dosage dependence is of great importance for the role of SMAD4 protein as a tumor suppressor, potential clinical significance of SMAD4 gene promoter mutations is worth further investigation.
Collapse
|
121
|
Guo Z, Hardin H, Montemayor-Garcia C, Asioli S, Righi A, Maletta F, Sapino A, Lloyd RV. In Situ Hybridization Analysis of miR-146b-5p and miR-21 in Thyroid Nodules: Diagnostic Implications. Endocr Pathol 2015; 26:157-63. [PMID: 25771986 DOI: 10.1007/s12022-015-9363-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Some thyroid nodules such as follicular adenomas (FAs), follicular variant of papillary thyroid carcinomas (FVPTCs), and follicular thyroid carcinomas (FTCs) exhibit similar clinical presentations and gross morphologic appearances. The differential diagnosis of these lesions is sometimes difficult based on morphologic, cytologic, or clinical features alone. miR-146b-5p and miR-21 deregulation has been associated with progression and metastasis of thyroid cancers. However, the utility of in situ hybridization (ISH) to determine the cellular localization, diagnostic, and prognostic significance of miR-146b-5p and miR-21 expression in thyroid tumors has not been extensively analyzed. In order to examine the expression of miR-146b-5p and miR-21 in benign and malignant thyroid tissues and to determine if these microRNAs could be assigned to distinct histomorphological types of thyroid nodules, we analyzed miR-146b-5p and miR-21 expression in thyroid nodules on tissue microarrays (TMAs) with 193 thyroid specimens by ISH. miR-146b-5p and miR-21 expression in thyroid tissues was also analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). miR-146b-5p was highly expressed (89%) in papillary thyroid carcinomas (PTCs) and 41% of FVPTC. The expression of miR-146b-5p was not expressed in most FTCs, anaplastic thyroid carcinomas (ATCs), poorly differentiated thyroid carcinomas (PDTCs), or FAs (7, 8, 0, and 0%, respectively). MiR-21 was overexpressed in 83% of ATCs, 79 % of PTCs, 34% of FVPTCs, and 19% of PDTCs. The expression of miR-21 was not expressed in most FAs (9%) or FTCs (4%). Normal thyroid tissues and most benign goiters were negative for miR-146b-5p and miR-21. qRT-PCR analysis supported the ISH findings. PTC cases with positive expression of miR-146b-5p and miR-21 had significantly poorer disease-free survival rates. Immunohistochemical staining for HBME-1 showed positive staining in PTCs (100 %) and FVPTCs (92 %) with a subset of FTC (40%) staining positive, while all FAs were negative. Since miR-146b-5p was mainly expressed in PTC including FVPTC and was not expressed in most FTC, PDTC, or ATC, it may serve as a useful diagnostic marker for PTC. ISH is a useful method to analyze microRNA expression in formalin-fixed paraffin-embedded thyroid tissues.
Collapse
Affiliation(s)
- Zhenying Guo
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Echavarria R, Mayaki D, Neel JC, Harel S, Sanchez V, Hussain SNA. Angiopoietin-1 inhibits toll-like receptor 4 signalling in cultured endothelial cells: role of miR-146b-5p. Cardiovasc Res 2015; 106:465-77. [PMID: 25824148 DOI: 10.1093/cvr/cvv120] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/19/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS Bacterial lipopolysaccharides (LPS) induce innate immune inflammatory responses in endothelial cells by activating toll-like receptor 4 (TLR4) signalling. Here, we investigate the effects of angiopoietin-1 (Ang-1) on LPS-induced TLR4 signalling and the role of the miR-146 family of micro RNAs in the effects of Ang-1 on TRL4 signalling. METHODS AND RESULTS Leucocyte adhesion to human umbilical vein endothelial cells (HUVECs) was detected using fluorescence microscopy. Adhesion molecule, pro-inflammatory cytokine, miR-146a, and miR-146b-5p expressions in HUVECs were quantified using real-time PCR. TLR4 signalling protein levels were measured using immunoblotting. Exposure of HUVECs to LPS for 4-6 h induces robust inflammatory responses, including enhanced leucocyte adhesion, up-regulation of adhesion molecule expression (VCAM1, ICAM1, E-SELECTIN), enhanced cytokine production (TNFα, IL1β, IL6, and IL8), and increased NFκB luciferase reporter activity. Addition of Ang-1 to the culture medium for 24 h prior to LPS exposure significantly attenuates these responses. Prolonged Ang-1 exposure significantly decreases IRAK1 and TRAF6 protein levels but has no effect on TLR4, MYD88, IRAK4, or TAK1 expressions. Ang-1 triggers significant up-regulation of miR-146b-5p levels but has no effect on miR-146a or miR-146b-3p expressions. Transfection of HUVECs with a miR-146b-5p mimic significantly attenuates LPS-induced inflammatory responses and IRAK1 and TRAF6 expressions. In HUVECs transfected with a miR-146b-5p inhibitor, Ang-1 has no effect on LPS-induced inflammatory responses or IRAK1 and TRAF6 expressions. CONCLUSION Ang-1 disrupts TLR4 signalling, resulting in inhibition of LPS-induced inflammatory responses in endothelial cells. This inhibition occurs through selective targeting of IRAK1 and TRAF6 proteins by miR-146b-5p.
Collapse
Affiliation(s)
- Raquel Echavarria
- Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Dominique Mayaki
- Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Jean-Charles Neel
- Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sharon Harel
- Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Veronica Sanchez
- Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sabah N A Hussain
- Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
123
|
Lee JC, Zhao JT, Gundara J, Serpell J, Bach LA, Sidhu S. Papillary thyroid cancer-derived exosomes contain miRNA-146b and miRNA-222. J Surg Res 2015; 196:39-48. [PMID: 25819770 DOI: 10.1016/j.jss.2015.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/22/2015] [Accepted: 02/12/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND With the increasing diagnosis of indolent papillary thyroid cancer (PTC), the task of identifying those likely to suffer from recurrence is becoming ever more challenging. MicroRNA (miRNA/miR) in the circulation has been demonstrated as potential biomarkers of recurrence in PTC. This study aimed to investigate in vitro if extracellular miRNAs are contained in exosomes, and their potential effect on other cells. METHODS TPC-1 (PTC) and NTHY (normal thyroid follicular) cell lines were treated with exosome isolates and conditioned medium (CM), both containing miR-146b and miR-222. The changes in proliferation over a 72-h period of TPC-1 and NTHY were compared. Student t-test and analysis of variance were used for significance testing, and P < 0.05 was considered significant. RESULTS Exosomes derived from TPC-1 cells were demonstrated to contain miR-146b and miR-222 in relative abundance. These exosomes caused a negative proliferative effect on both TPC-1 and NTHY cells. Exosomes derived from NTHY cells did not exert a significant proliferative effect on either cell line. CM from both cell types caused an initial increase in TPC-1 proliferation at 24 h. No significant change in proliferation was seen with NTHY cells when treated with either of the CM. CONCLUSIONS The results showed that PTC cells overexpress miR-146b and miR-222 in exosomes; and that factors released by both normal thyroid and PTC cells alter proliferation of other cells in a complex manner. The intercellular interactions were likely conferred in part by exosomal miRNA, which can potentially be developed as biomarkers of PTC recurrence.
Collapse
Affiliation(s)
- James C Lee
- Monash University Endocrine Surgery Unit, The Alfred Hospital, Melbourne, Victoria, Australia; Department of Surgery, Monash University, Melbourne, Victoria, Australia; Department of Surgery, University of Sydney, New South Wales, Australia.
| | - Jing-Ting Zhao
- Department of Surgery, University of Sydney, New South Wales, Australia; Kolling Institute of Medical Research, Sydney, New South Wales, Australia
| | - Justin Gundara
- Department of Surgery, University of Sydney, New South Wales, Australia; Kolling Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jonathan Serpell
- Monash University Endocrine Surgery Unit, The Alfred Hospital, Melbourne, Victoria, Australia; Department of Surgery, Monash University, Melbourne, Victoria, Australia
| | - Leon A Bach
- Department of Endocrinology, Monash University, Melbourne, Victoria, Australia
| | - Stan Sidhu
- Department of Surgery, University of Sydney, New South Wales, Australia; Kolling Institute of Medical Research, Sydney, New South Wales, Australia; University of Sydney Endocrine Surgery Unit, Royal North Shore Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
124
|
Shen C, Yang H, Liu H, Wang X, Zhang Y, Xu R. Inhibitory effect and mechanisms of microRNA-146b-5p on the proliferation and metastatic potential of Caski human cervical cancer cells. Mol Med Rep 2015; 11:3955-61. [PMID: 25572123 DOI: 10.3892/mmr.2015.3151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 11/19/2014] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is a common cause of cancer‑associate mortality in females, and metastasis is strongly associated with failure of cervical cancer treatment. Previous studies have indicated that microRNA (miR)‑146b‑5p is involved in the inhibition of proliferation and metastasis of numerous human cancer types. The aim of the present study was to explore the inhibitory effect of miR‑156b‑5p on the proliferation and metastatic potential of Caski human cervical cancer cells, as well as to determine the mechanisms by which it proceeds. The results demonstrated that miR‑146b‑5p was able to inhibit the proliferative, invasive and adhesive potential and block the cell cycle progression of Caski human cervical cancer cells, as determined using MTS and transwell assays as well as flow cytometry. Furthermore, quantitative polymerase chain reaction and western blot analysis revealed that transfection with miR‑146b‑5p decreased the mRNA and protein expression levels of C‑X‑C chemokine receptor type 4, matrix metalloproteinase‑2 and ‑9, c‑Myc, cyclin D1 and human papilloma virus 16. In addition, the secretion levels of transforming growth factor‑β, monocyte chemoattractant protein‑1 and tumor necrosis factor‑α, the telomerase activity, the phosphorylation of c‑Jun N‑terminal protein kinase and protein kinase B and the transcriptional activities of nuclear factor‑κB, signal transducer and activator of transcription‑3 and ‑5 were reduced. However, increased levels of p27 and p53 were detected in the miR‑146b‑5p‑overexpressing Caski cells. These results indicate that miR‑146b‑5p may be a potential therapeutic strategy for the treatment of cervical cancer through regulation of cell chemotaxis and the cell cycle.
Collapse
Affiliation(s)
- Cuiping Shen
- Department of Gynecology and Obstetrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui Yang
- Department of Gynecology and Obstetrics, Rizhao People's Hospital, Rizhao, Shandong 276826, P.R. China
| | - Hong Liu
- Department of Gynecology and Obstetrics, Rizhao People's Hospital, Rizhao, Shandong 276826, P.R. China
| | - Xiuqin Wang
- Department of Gynecology and Obstetrics, Rizhao People's Hospital, Rizhao, Shandong 276826, P.R. China
| | - Youzhong Zhang
- Department of Gynecology and Obstetrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Rui Xu
- Department of Gynecology and Obstetrics, Rizhao People's Hospital, Rizhao, Shandong 276826, P.R. China
| |
Collapse
|
125
|
Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer. Adv Drug Deliv Rev 2015; 81:16-33. [PMID: 25453266 DOI: 10.1016/j.addr.2014.10.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/12/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023]
Abstract
Despite considerable progress being made in understanding pancreatic cancer (PC) pathogenesis, it still remains the 10th most often diagnosed malignancy in the world and 4th leading cause of cancer related deaths in the United States with a five year survival rate of only 6%. The aggressive nature, lack of early diagnostic and prognostic markers, late clinical presentation, and limited efficacy of existing treatment regimens make PC a lethal cancer with high mortality and poor prognosis. Therefore, novel reliable biomarkers and molecular targets are urgently needed to combat this deadly disease. MicroRNAs (miRNAs) are short (19-24 nucleotides) non-coding RNA molecules implicated in the regulation of gene expression at post-transcriptional level and play significant roles in various physiological and pathological conditions. Aberrant expression of miRNAs has been reported in several cancers including PC and is implicated in PC pathogenesis and progression, suggesting their utility in diagnosis, prognosis and therapy. In this review, we summarize the role of several miRNAs that regulate various oncogenes (KRAS) and tumor suppressor genes (p53, p16, SMAD4, etc.) involved in PC development, their prospective roles as diagnostic and prognostic markers and as a therapeutic targets.
Collapse
|
126
|
Abstract
Thyroid cancer is one of the most rapidly increasing malignancies. The reasons for this increase is not completely known, but increases in the diagnosis of papillary thyroid microcarcinomas and follicular variant of papillary thyroid carcinomas along with the enhanced detection of well-differentiated thyroid carcinomas are probably all contributing factors. Although most cases of well-differentiated thyroid carcinomas are associated with an excellent prognosis, a small percentage of patients with well-differentiated thyroid carcinomas as well as most patients with poorly differentiated and anaplastic thyroid carcinomas have recurrent and/or metastatic disease that is often fatal. The cancer stem-like cell (CSC) model suggests that a small number of cells within a cancer, known as CSCs, are responsible for resistance to chemotherapy and radiation therapy, as well as for recurrent and metastatic disease. This review discusses current studies about thyroid CSCs, the processes of epithelial-to-mesenchymal transition (EMT), and mesenchymal-to-epithelial transition that provide plasticity to CSC growth, in addition to the role of microRNAs in CSC development and regulation. Understanding the biology of CSCs, EMT and the metastatic cascade should lead to the design of more rational targeted therapies for highly aggressive and fatal thyroid cancers.
Collapse
Affiliation(s)
- Zhenying Guo
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health, Zhejiang, China
| | - Heather Hardin
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health, Zhejiang, China
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health, Zhejiang, China
| |
Collapse
|
127
|
Saito KC, Fuziwara CS, Kimura ET. Nucleic acid recovery from thyroid fine-needle cytology slides. ACTA ACUST UNITED AC 2014; 57:490-1. [PMID: 24030191 DOI: 10.1590/s0004-27302013000600013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
128
|
Huang CT, Oyang YJ, Huang HC, Juan HF. MicroRNA-mediated networks underlie immune response regulation in papillary thyroid carcinoma. Sci Rep 2014; 4:6495. [PMID: 25263162 PMCID: PMC4178297 DOI: 10.1038/srep06495] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is a common endocrine malignancy with low death rate but increased incidence and recurrence in recent years. MicroRNAs (miRNAs) are small non-coding RNAs with diverse regulatory capacities in eukaryotes and have been frequently implied in human cancer. Despite current progress, however, a panoramic overview concerning miRNA regulatory networks in PTC is still lacking. Here, we analyzed the expression datasets of PTC from The Cancer Genome Atlas (TCGA) Data Portal and demonstrate for the first time that immune responses are significantly enriched and under specific regulation in the direct miRNA--target network among distinctive PTC variants to different extents. Additionally, considering the unconventional properties of miRNAs, we explore the protein-coding competing endogenous RNA (ceRNA) and the modulatory networks in PTC and unexpectedly disclose concerted regulation of immune responses from these networks. Interestingly, miRNAs from these conventional and unconventional networks share general similarities and differences but tend to be disparate as regulatory activities increase, coordinately tuning the immune responses that in part account for PTC tumor biology. Together, our systematic results uncover the intensive regulation of immune responses underlain by miRNA-mediated networks in PTC, opening up new avenues in the management of thyroid cancer.
Collapse
Affiliation(s)
- Chen-Tsung Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yen-Jen Oyang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- 1] Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan [2] Department of Life Science, National Taiwan University, Taipei, Taiwan [3] Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
129
|
Al-Khalaf HH, Aboussekhra A. MicroRNA-141 and microRNA-146b-5p inhibit the prometastatic mesenchymal characteristics through the RNA-binding protein AUF1 targeting the transcription factor ZEB1 and the protein kinase AKT. J Biol Chem 2014; 289:31433-47. [PMID: 25261470 DOI: 10.1074/jbc.m114.593004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
miR-141 and miR-146b-5p are two important tumor suppressor microRNAs, which control several cancer-related genes and processes. In the present report, we have shown that these microRNAs bind specific sites at the 3'-untranslated region (UTR) of the mRNA-binding protein AUF1, leading to its down-regulation. This inverse correlation between the levels of these microRNAs and AUF1 has been identified in various osteosarcoma cell lines. Additionally, we present clear evidence that AUF1 promotes mesenchymal features in osteosarcoma cells and that miR-141 and miR-146b-5p suppress this prometastatic process through AUF1 repression. Indeed, both microRNAs suppressed the invasion/migration and proliferation abilities of osteosarcoma cells through inhibiting the AKT protein kinase in an AUF1-dependent manner. We have also shown that AUF1 binds to and stabilizes the mRNA of the AKT activator phosphoinositide-dependent kinase-1 (PDK1). Furthermore, miR-141 and miR-146b-5p positively regulate the epithelial markers (E-cadherin and Epcam) and repress the mesenchymal markers (N-cadherin, Vimentin, Twist2, and ZEB1). These effects were mediated via the repression of the epithelial-to-mesenchymal inducer ZEB1 through targeting AUF1, which binds the 3'-UTR of the ZEB1 mRNA and reduces its turnover. These results indicate that at least some tumor suppressor functions of miR-141 and miR-146b-5p are mediated through the repression of the oncogenic potentials of AUF1. Therefore, these 3'-UTR-directed post-transcriptional gene expression regulators constitute promising new targets for diagnostic and/or therapeutic interventions.
Collapse
Affiliation(s)
- Huda H Al-Khalaf
- From the Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia and the Joint Center for Genomics Research, King Abdulaziz City for Science and Technology, Riyadh 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- From the Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh 11211, Saudi Arabia and
| |
Collapse
|
130
|
Fuziwara CS, Kimura ET. MicroRNA Deregulation in Anaplastic Thyroid Cancer Biology. Int J Endocrinol 2014; 2014:743450. [PMID: 25202329 PMCID: PMC4151544 DOI: 10.1155/2014/743450] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is among the most lethal types of cancers, characterized as a fast-growing and highly invasive thyroid tumor that is unresponsive to surgery and radioiodine, blunting therapeutic efficacy. Classically, genetic alterations in tumor suppressor TP53 are frequent, and cumulative alterations in different signaling pathways, such as MAPK and PI3K, are detected in ATC. Recently, deregulation in microRNAs (miRNAs), a class of small endogenous RNAs that regulate protein expression, has been implicated in tumorigenesis and cancer progression. Deregulation of miRNA expression is detected in thyroid cancer. Upregulation of miRNAs, such as miR-146b, miR-221, and miR-222, is observed in ATC and also in differentiated thyroid cancer (papillary and follicular), indicating that these miRNAs' overexpression is essential in maintaining tumorigenesis. However, specific miRNAs are downregulated in ATC, such as those of the miR-200 and miR-30 families, which are important negative regulators of cell migration, invasion, and epithelial-to-mesenchymal transition (EMT), processes that are overactivated in ATC. Therefore, molecular interference to restore the expression of tumor suppressor miRNAs, or to blunt overexpressed oncogenic miRNAs, is a promising therapeutic approach to ameliorate the treatment of ATC. In this review, we will explore the importance of miRNA deregulation for ATC cell biology.
Collapse
Affiliation(s)
- Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Room 414, CEP, Butantã, 05508-000 São Paulo, SP, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Room 414, CEP, Butantã, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
131
|
Brace MD, Wang J, Petten M, Bullock MJ, Makki F, Trites J, Taylor SM, Hart RD. Differential expression of transforming growth factor-beta in benign vs. papillary thyroid cancer nodules; a potential diagnostic tool? J Otolaryngol Head Neck Surg 2014; 43:22. [PMID: 25927212 PMCID: PMC4115165 DOI: 10.1186/s40463-014-0022-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/27/2014] [Indexed: 01/05/2023] Open
Abstract
Background Thyroid nodules are common, but only 5% of nodules are found to be malignant. In North America, the incidence of thyroid cancer is increasing. Fine needle aspirate (FNA) biopsy is the diagnostic test of choice. Unfortunately, up to 20% of FNAs are non-diagnostic. A specific molecular marker for thyroid cancer is desirable. Evidence suggests that cell signaling through transforming growth factor beta (TGF- β) is important in the development of thyroid cancer. We sought to compare the expression of TGF- β in malignant and benign thyroid nodules. Methods From 2008-present, thyroid nodule tissue from thyroidectomy specimens was prospectively collected and stored at −80°C. RNA extraction and reverse transcription was performed on 47 samples (24 papillary thyroid cancer and 23 benign nodules). Quantitative PCR using SYBR green was performed to detect TGF-β-1 and −2. Resulting CT values were normalized against β-actin. Gene expression was calculated using the 2-ΔCT method. Results A significantly greater expression of TGF- β1 (p < 0.0001) was detected in the group of malignant thyroid nodules compared to benign nodules. There was no difference in the expression of TGF- β2 (p = 0.4735) between the two groups. Conclusions In this study, we demonstrated that expression of TGF- β1 but not TGF- β2 is significantly increased in papillary thyroid cancer compared to benign thyroid nodules. This may serve as a potential diagnostic marker for papillary thyroid cancer.
Collapse
Affiliation(s)
- Matthew D Brace
- Department of Otolaryngology - Head and Neck Surgery; 3rd Floor Dickson Building, Victoria General Site, QEII Health Sciences Centre, 5820 University Ave., Halifax, Nova Scotia, B3H 2Y9, Canada.
| | - Jun Wang
- Department of Microbiology & Immunology, Department of Pathology, Department of Pediatrics, Canadian Center for Vaccinology, IWK Health Centre, Dr. Richard B. Goldbloom Research and Clinical Care Pavilion, 3rd Floor West, 5850/5980 University Avenue, PO Box 9700, Halifax, Nova Scotia, NS B3K 6R8, Canada.
| | - Mark Petten
- Department of Microbiology & Immunology, Department of Pathology, Department of Pediatrics, Canadian Center for Vaccinology, IWK Health Centre, Dr. Richard B. Goldbloom Research and Clinical Care Pavilion, 3rd Floor West, 5850/5980 University Avenue, PO Box 9700, Halifax, Nova Scotia, NS B3K 6R8, Canada.
| | - Martin J Bullock
- Department of Pathology; Dr. D. J. Mackenzie Building, 5788 University Avenue, Halifax, Nova Scotia, B3H 2Y9, Canada.
| | - Fawaz Makki
- Department of Otolaryngology - Head and Neck Surgery; 3rd Floor Dickson Building, Victoria General Site, QEII Health Sciences Centre, 5820 University Ave., Halifax, Nova Scotia, B3H 2Y9, Canada.
| | - Jonathan Trites
- Department of Otolaryngology - Head and Neck Surgery; 3rd Floor Dickson Building, Victoria General Site, QEII Health Sciences Centre, 5820 University Ave., Halifax, Nova Scotia, B3H 2Y9, Canada.
| | - S Mark Taylor
- Department of Otolaryngology - Head and Neck Surgery; 3rd Floor Dickson Building, Victoria General Site, QEII Health Sciences Centre, 5820 University Ave., Halifax, Nova Scotia, B3H 2Y9, Canada.
| | - Robert D Hart
- Department of Otolaryngology - Head and Neck Surgery; 3rd Floor Dickson Building, Victoria General Site, QEII Health Sciences Centre, 5820 University Ave., Halifax, Nova Scotia, B3H 2Y9, Canada.
| |
Collapse
|
132
|
Khanna N, Ge Y, Chen J. MicroRNA-146b promotes myogenic differentiation and modulates multiple gene targets in muscle cells. PLoS One 2014; 9:e100657. [PMID: 24956113 PMCID: PMC4067360 DOI: 10.1371/journal.pone.0100657] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/26/2014] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs are established as crucial modulators of skeletal myogenesis, but our knowledge about their identity and targets remains limited. In this study, we have identified microRNA-146b (miR-146b) as a novel regulator of skeletal myoblast differentiation. Following up on a previous microRNA profiling study, we establish that the expression of miR-146b is up-regulated during myoblast differentiation in vitro and muscle regeneration in vivo. Inhibition of miR-146b led to reduced myoblast differentiation, whereas overexpression of miR-146b enhanced differentiation. Computational prediction combined with gene expression information has revealed candidates for miR-146b targets in muscles. Among them, the expression of Smad4, Notch1, and Hmga2 are significantly suppressed by miR-146b overexpression in myocytes. In addition, expression levels of Smad4, Notch1 and Hmga2 are decreased during myoblast differentiation and muscle regeneration, inversely correlating to the levels of miR-146b. Importantly, inhibition of endogenous miR-146b prevents the down-regulation of Smad4, Notch1 and Hmga2 during differentiation. Furthermore, miR-146b directly targets the microRNA response elements (MREs) in the 3'UTR of those genes as assessed by reporter assays. Reporters with the seed regions of MREs mutated are insensitive to miR-146b, further confirming the specificity of targeting. In conclusion, miR-146b is a positive regulator of myogenic differentiation, possibly acting through multiple targets.
Collapse
Affiliation(s)
- Nidhi Khanna
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yejing Ge
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
133
|
Hardin H, Guo Z, Shan W, Montemayor-Garcia C, Asioli S, Yu XM, Harrison AD, Chen H, Lloyd RV. The roles of the epithelial-mesenchymal transition marker PRRX1 and miR-146b-5p in papillary thyroid carcinoma progression. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2342-54. [PMID: 24946010 DOI: 10.1016/j.ajpath.2014.04.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/24/2014] [Accepted: 04/11/2014] [Indexed: 12/26/2022]
Abstract
Thyroid carcinoma is the most common endocrine malignancy, and papillary thyroid carcinoma represents the most common thyroid cancer. Papillary thyroid carcinomas that invade locally or metastasize are associated with a poor prognosis. We found that, during epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1), papillary thyroid carcinoma cells acquired increased cancer stem cell-like features and the transcription factor paired-related homeobox protein 1 (PRRX1; alias PRX-1), a newly identified EMT inducer, was markedly up-regulated. miR-146b-5p was also transiently up-regulated during EMT, and in siRNA experiments miR-146b-5p had an inhibitory role on cell proliferation and invasion during TGF-β1-induced EMT. We conclude that papillary thyroid carcinoma tumor cells exhibit increased cancer stem cell-like features during TGF-β1-induced EMT, that miR-146b-5p has a role in cell proliferation and invasion, and that PRRX1 plays an important role in papillary thyroid carcinoma EMT and disease progression.
Collapse
Affiliation(s)
- Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Zhenying Guo
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Weihua Shan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Celina Montemayor-Garcia
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sofia Asioli
- Department of Biomedical Sciences and Human Oncology, University of Turin, Turin, Italy
| | - Xiao-Min Yu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - April D Harrison
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Herbert Chen
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
134
|
Liu S, Yin F, Zhang J, Wicha MS, Chang AE, Fan W, Chen L, Fan M, Li Q. Regulatory Roles of miRNA in the Human Neural Stem Cell Transformation to Glioma Stem Cells. J Cell Biochem 2014; 115:1368-80. [PMID: 24519663 DOI: 10.1002/jcb.24786] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/30/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Shuang Liu
- Department of Neurosurgery; Navy General Hospital PLA; Beijing 100048 China
| | - Feng Yin
- Department of Neurosurgery; Navy General Hospital PLA; Beijing 100048 China
| | - Jianning Zhang
- Department of Neurosurgery; Navy General Hospital PLA; Beijing 100048 China
| | - Max S. Wicha
- University of Michigan Medical School; Ann Arbor; Michigan 48109 USA
| | - Alfred E. Chang
- University of Michigan Medical School; Ann Arbor; Michigan 48109 USA
| | - Wenhong Fan
- Department of Brain Protection & Plasticity Research; Beijing Institute of Basic Medical Sciences; Beijing 100850 China
| | - Ling Chen
- Department of Neurosurgery; Chinese PLA (People’s Liberation Army) General Hospital; Beijing 100853 China
| | - Ming Fan
- Department of Brain Protection & Plasticity Research; Beijing Institute of Basic Medical Sciences; Beijing 100850 China
| | - Qiao Li
- University of Michigan Medical School; Ann Arbor; Michigan 48109 USA
| |
Collapse
|
135
|
An update on molecular biology of thyroid cancers. Crit Rev Oncol Hematol 2014; 90:233-52. [DOI: 10.1016/j.critrevonc.2013.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/27/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022] Open
|
136
|
Kentwell J, Gundara JS, Sidhu SB. Noncoding RNAs in endocrine malignancy. Oncologist 2014; 19:483-91. [PMID: 24718512 PMCID: PMC4012972 DOI: 10.1634/theoncologist.2013-0458] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/05/2014] [Indexed: 01/22/2023] Open
Abstract
Only recently has it been uncovered that the mammalian transcriptome includes a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. Among numerous kinds of ncRNAs, short noncoding RNAs, such as microRNAs, have been extensively investigated with regard to their biogenesis, function, and importance in carcinogenesis. Long noncoding RNAs (lncRNAs) have only recently been implicated in playing a key regulatory role in cancer biology. The deregulation of ncRNAs has been demonstrated to have important roles in the regulation and progression of cancer development. In this review, we describe the roles of both short noncoding RNAs (including microRNAs, small nuclear RNAs, and piwi-interacting RNAs) and lncRNAs in carcinogenesis and outline the possible underlying genetic mechanisms, with particular emphasis on clinical applications. The focus of our review includes studies from the literature on ncRNAs in traditional endocrine-related cancers, including thyroid, parathyroid, adrenal gland, and gastrointestinal neuroendocrine malignancies. The current and potential future applications of ncRNAs in clinical cancer research is also discussed, with emphasis on diagnosis and future treatment.
Collapse
|
137
|
Wu PY, Zhang XD, Zhu J, Guo XY, Wang JF. Low expression of microRNA-146b-5p and microRNA-320d predicts poor outcome of large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone. Hum Pathol 2014; 45:1664-73. [PMID: 24931464 DOI: 10.1016/j.humpath.2014.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/29/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Although diffuse large B-cell lymphoma (DLBCL) encompasses a biologically and clinically diverse set of diseases, increasing evidence has pointed to an important role of microRNAs (miRs) in the pathogenesis of DLBCL. We report here that low expression of miR-146b-5p and miR-320d is associated with poor prognosis of DLBCL patients treated with the standard cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) regimen and that this is related to the inhibitory effect of these miRs on DLBCL cell proliferation. Analysis of a retrospective cohort of 106 primary nodal DLBCL samples from patients who were treated with CHOP showed that, when the median survival period (40.8 months) was used as the cutoff point, miR-146b-5p and miR-320d were expressed at lower levels in DLBCLs with poor prognosis. Indeed, whereas low expression of miR-146b-5p was correlated with reduced progression-free survival, low expression of miR-320d was associated with decreases in both progression-free survival and overall survival. Moreover, miR-146b-5p and miR-320d were expressed at significantly lower levels in DLBCLs with the MYC t(8;14) translocation. Functional studies demonstrated that overexpression of miR-146b-5p or miR-320d inhibited DLBCL cell proliferation, wheareas knockdown of miR-146b-5p or miR-320d promoted proliferation of DLBCL cells. Taken together, these results suggest that low expression of miR-146b-5p and miR-320d may be predictive of compromised responses of a subset of DLBCL patients to treatment with the CHOP regimen and that restoration of these miRs may be useful to improve the therapeutic efficacy of CHOP.
Collapse
Affiliation(s)
- Peng Yan Wu
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, PR China
| | - Xu Dong Zhang
- Priority Research Centre for Cancer Research, University of Newcastle, Newcastle, New South Wales 2300, Australia; Melanoma Research Laboratory, University of Newcastle, Newcastle, New South Wales 2300, Australia; Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, Shanxi 030013, PR China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai 200025, PR China
| | - Xiang Yun Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, Shanxi 030013, PR China
| | - Jin Fen Wang
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, PR China.
| |
Collapse
|
138
|
Yamashita AS, Baia GS, Ho JSY, Velarde E, Wong J, Gallia GL, Belzberg AJ, Kimura ET, Riggins GJ. Preclinical evaluation of the combination of mTOR and proteasome inhibitors with radiotherapy in malignant peripheral nerve sheath tumors. J Neurooncol 2014; 118:83-92. [PMID: 24668609 DOI: 10.1007/s11060-014-1422-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 03/10/2014] [Indexed: 12/18/2022]
Abstract
About one half of malignant peripheral nerve sheath tumors (MPNST) have Neurofibromin 1 (NF1) mutations. NF1 is a tumor suppressor gene essential for negative regulation of RAS signaling. Survival for MPNST patients is poor and we sought to identify an effective combination therapy. Starting with the mTOR inhibitors rapamycin and everolimus, we screened for synergy in 542 FDA approved compounds using MPNST cells with a native NF1 loss in both alleles. We further analyzed the cell cycle and signal transduction. In vivo growth effects of the drug combination with local radiation therapy (RT) were assessed in MPNST xenografts. The synergistic combination of mTOR inhibitors with bortezomib yielded a reduction in MPNST cell proliferation. The combination of mTOR inhibitors and bortezomib also enhanced the anti-proliferative effect of radiation in vitro. In vivo, the combination of mTOR inhibitor (everolimus) and bortezomib with RT decreased tumor growth and proliferation, and augmented apoptosis. The combination of approved mTOR and proteasome inhibitors with radiation showed a significant reduction of tumor growth in an animal model and should be investigated and optimized further for MPNST therapy.
Collapse
Affiliation(s)
- A S Yamashita
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Johns Hopkins University, Koch Building Rm. 257, 1550 Orleans Street, Baltimore, MD, 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Yuan ZM, Yang ZL, Zheng Q. Deregulation of microRNA expression in thyroid tumors. J Zhejiang Univ Sci B 2014; 15:212-24. [PMID: 24599686 PMCID: PMC3955909 DOI: 10.1631/jzus.b1300192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/11/2013] [Indexed: 11/11/2022]
Abstract
MicroRNAs (miRNAs or miRs) are endogenous non-coding RNAs that negatively regulate gene expression by binding to the 3' non-coding regions of target mRNAs, resulting in their cleavage or blocking their translation. miRNAs may have an impact on cell differentiation, proliferation, and survival, and their deregulation can be inclined to diseases and cancers, including thyroid tumors. The purpose of this review is to summarize the existing findings of deregulated miRNAs in different types of thyroid tumors and to exhibit their potential target genes, especially to demonstrate those involved in tumor invasion and metastasis. In addition, new findings of circulating miRNA expression profiles, single nucleotide polymorphism (SNP) in thyroid tumors, and the correlation of somatic mutations with deregulated miRNA expression in thyroid tumors were all included in this review.
Collapse
|
140
|
Fuziwara CS, Kimura ET. High iodine blocks a Notch/miR-19 loop activated by the BRAF(V600E) oncoprotein and restores the response to TGFβ in thyroid follicular cells. Thyroid 2014; 24:453-62. [PMID: 23998804 PMCID: PMC3949441 DOI: 10.1089/thy.2013.0398] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Excess iodine inhibits thyroid follicular cell proliferation associated with TGFβ pathway activation, although thyroid cancers are frequently refractory to TGFβ signaling. The TGFβ pathway is predicted to be regulated by miR-17-92 cluster microRNAs. MicroRNAs are small noncoding RNAs that inhibit target mRNA translation and have emerged as potent modulators of tumorigenesis. Although the BRAF(V600E) mutation is the most prevalent alteration in thyroid cancer, the impact of iodine intake on BRAF-mediated oncogenesis remains unclear. Therefore, the aim of this study was to investigate the influence of high iodine on miR-17-92 transcriptional regulation and expression in thyroid cells expressing activated BRAF. METHODS Rat thyroid follicular cells that conditionally express BRAF(V600E) under doxycycline stimulation (PC-BRAF(V600E)-6) were derived from the PCCl3 line. These cells were treated with doxycycline for two days, in the absence or presence of 10 μM sodium iodide. The thyroid cancer cell lines BCPAP and KTC2 were also analyzed. Expression of the miR-17-92 cluster and Notch1 was analyzed by quantitative polymerase chain reaction, and expression of these genes was modulated by anti-miR or anti-Notch1 siRNAs transfection. Protein expression was assessed by Western blot. Luciferase assays were used to quantify Smad4 3'-UTR/miR-19 interaction and Notch signaling activation. TGFβ responsiveness was evaluated by cell cycle analysis of TGFβ-treated cells. RESULTS High iodine blocked BRAF(V600E)-induced upregulation of miR-17-92, including miR-19a/b. miR-17-92 promoter region analysis revealed a putative binding site for Hes1, a transcription factor responsive to Notch signaling. Notch-1 overexpression resulted in miR-19 upregulation in normal thyroid cells, while Notch-1 knockdown blocked BRAF-induced miR-19 expression. Moreover, in anaplastic thyroid cancer cells, Notch-1 knockdown reduced miR-19. Expression of BRAF(V600E) decreased Smad4 protein in normal thyroid cells. Smad4 was validated as a miR-19 target by luciferase assays, which revealed reduced luminescence associated with miR-19 interaction in Smad4 3'-UTR. Iodine treatment restored Smad4 levels in BRAF-activated cells, resulting in enhanced G1-cell cycle arrest in response to TGFβ. Moreover, this effect was mimicked in papillary thyroid cancer cells treated with anti-miR-19. CONCLUSION High iodine abrogates BRAF(V600E)-induced activation of miR-19, a newly identified Smad4 regulator, through Notch pathway inhibition and restores responsiveness to TGFβ signaling. Our results indicate that iodine exerts protective effects in thyroid cells, attenuating acute BRAF oncogene-mediated microRNA deregulation.
Collapse
Affiliation(s)
- Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | | |
Collapse
|
141
|
Li J, Shan F, Xiong G, Wang JM, Wang WL, Xu X, Bai Y. Transcriptional regulation of miR-146b by C/EBPβ LAP2 in esophageal cancer cells. Biochem Biophys Res Commun 2014; 446:267-71. [PMID: 24589738 DOI: 10.1016/j.bbrc.2014.02.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/22/2014] [Indexed: 12/27/2022]
Abstract
Recent clinical study indicated that up-regulation of miR-146b was associated with poor overall survival of patients in esophageal squamous cell carcinoma. However, the underlying mechanism of miR-146b dysregulation remains to be explored. Here we report that miR-146b promotes cell proliferation and inhibits cell apoptosis in esophageal cancer cell lines. Mechanismly, two C/EBPβ binding motifs are located in the miR-146b promoter conserved region. Among the three isoforms of C/EBPβ, C/EBPβ LAP2 positively regulated miR-146b expression and increases miR-146b levels in a dose-dependent manner through transcription activation of miR-146b gene. Together, these results suggest a miR-146b regulatory mechanism involving C/EBPβ, which may contribute to the up-regulation of miR-146b in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Junxia Li
- Department of Medical Genetics, Third Military Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Xiong
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Lin Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Xueqing Xu
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | - Yun Bai
- Department of Medical Genetics, Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
142
|
Geraldo MV, Fuziwara CS, Friguglieti CUM, Costa RB, Kulcsar MAV, Yamashita AS, Kimura ET. MicroRNAs miR-146-5p and let-7f as prognostic tools for aggressive papillary thyroid carcinoma: a case report. ACTA ACUST UNITED AC 2013; 56:552-7. [PMID: 23295297 DOI: 10.1590/s0004-27302012000800015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/04/2012] [Indexed: 01/26/2023]
Abstract
Papillary thyroid cancer (PTC) is the most incident histotype of thyroid cancer. A certain fraction of PTC cases (5%) are irresponsive to conventional treatment, and refractory to radioiodine therapy. The current prognostic factors for aggressiveness are mainly based on tumor size, the presence of lymph node metastasis, extrathyroidal invasion and, more recently, the presence of the BRAFT1799A mutation. MicroRNAs (miRNAs) have been described as promising molecular markers for cancer as their deregulation is observed in a wide range of tumors. Recent studies indicate that the over-expression of miR-146b-5p is associated with aggressiveness and BRAFT1799A mutation. Furthermore, down-regulation of let-7f is observed in several types of tumors, including PTC. In this study, we evaluated the miR146b-5p and let-7f status in a young male patient with aggressive, BRAFT1799A-positive papillary thyroid carcinoma, with extensive lymph node metastases and short-time recurrence. The analysis of miR-146b-5p and let-7f expression revealed a distinct pattern from a cohort of PTC patients, suggesting caution in evaluating miRNA expression data as molecular markers of PTC diagnosis and prognosis.
Collapse
Affiliation(s)
- Murilo Vieira Geraldo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
143
|
Wu XQ, Huang C, He X, Tian YY, Zhou DX, He Y, Liu XH, Li J. Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer. Cell Signal 2013; 25:2462-8. [DOI: 10.1016/j.cellsig.2013.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/23/2013] [Indexed: 01/07/2023]
|
144
|
Hung PS, Liu CJ, Chou CS, Kao SY, Yang CC, Chang KW, Chiu TH, Lin SC. miR-146a enhances the oncogenicity of oral carcinoma by concomitant targeting of the IRAK1, TRAF6 and NUMB genes. PLoS One 2013; 8:e79926. [PMID: 24302991 PMCID: PMC3841223 DOI: 10.1371/journal.pone.0079926] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 09/30/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that regulate gene expression and are crucial to tumorigenesis. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy worldwide. Up-regulation of miR-146 has been identified in OSCC tissues. However, the roles of miR-146 in carcinogenesis are controversial as it is suppressive in many other malignancies. The present study investigated the pathogenic implications of miR-146a in oral carcinogenesis. Microdissected OSCC exhibits higher levels of miR-146a expression than matched adjacent mucosal cells. The plasma miR-146a levels of patients are significantly higher than those of control subjects; these levels decrease drastically after tumor resection. miR-146a levels in tumors and in patients' plasma can be used to classify OSCC and non-disease status (sensitivity: >0.72). Exogenous miR-146a expression is significantly increased in vitro oncogenic phenotypes as well as during xenograft tumorigenesis and OSCC metastasis. The plasma miR-146a levels of these mice parallel the xenograft tumor burdens of the mice. A miR-146a blocker abrogates the growth of xenograft tumors. miR-146a oncogenic activity is associated with down-regulation of IRAK1, TRAF6 and NUMB expression. Furthermore, miR-146a directly targets the 3'UTR of NUMB and a region within the NUMB coding sequence when suppressing NUMB expression. Exogenous NUMB expression attenuates OSCC oncogenicity. Double knockdown of IRAK1 and TRAF6, and of TRAF6 and NUMB, enhance the oncogenic phenotypes of OSCC cells. Oncogenic enhancement modulated by miR-146a expression is attenuated by exogenous IRAK1 or NUMB expression. This study shows that miR-146a expression contributes to oral carcinogenesis by targeting the IRAK1, TRAF6 and NUMB genes.
Collapse
Affiliation(s)
- Pei-Shi Hung
- Department of Surgery National Yang-Ming University Hospital, Yi-Lan, Taiwan
- Department of Medical Research, National Yang-Ming University Hospital, Yi-Lan, Taiwan
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Chung-Shan Chou
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Hui Chiu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
145
|
Kálmán S, Garbett KA, Vereczkei A, Shelton RC, Korade Z, Mirnics K. Metabolic stress-induced microRNA and mRNA expression profiles of human fibroblasts. Exp Cell Res 2013; 320:343-53. [PMID: 24246224 DOI: 10.1016/j.yexcr.2013.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/17/2013] [Accepted: 10/27/2013] [Indexed: 11/25/2022]
Abstract
Metabolic and oxidative stresses induce physiological adaptation processes, disrupting a finely tuned, coordinated network of gene expression. To better understand the interplay between the mRNA and miRNA transcriptomes, we examined how two distinct metabolic stressors alter the expression profile of human dermal fibroblasts. Primary fibroblast cultures were obtained from skin biopsies of 17 healthy subjects. Metabolic stress was evoked by growing subcultured cells in glucose deprived, galactose enriched (GAL) or lipid reduced, cholesterol deficient (RL) media, and compared to parallel-cultured fibroblasts grown in standard (STD) medium. This was followed by mRNA expression profiling and assessment of >1000 miRNAs levels across all three conditions. The miRNA expression levels were subsequently correlated to the mRNA expression profile. Metabolic stress by RL and GAL both produced significant, strongly correlated mRNA/miRNA changes. At the single gene level four miRNAs (miR-129-3p, miR-146b-5p, miR-543 and miR-550a) showed significant and comparable expression changes in both experimental conditions. These miRNAs appeared to have a significant physiological effect on the transcriptome, as nearly 10% of the predicted targets reported changes at mRNA level. The two distinct metabolic stressors induced comparable changes in the miRNome profile, suggesting a common defensive response of the fibroblasts to altered homeostasis. The differentially expressed miR-129-3p, miR-146b-5p, miR-543 and miR-550a regulated multiple genes (e.g. NGEF, NOVA1, PDE5A) with region- and age-specific transcription in the human brain, suggesting that deregulation of these miRNAs might have significant consequences on CNS function. The overall findings suggest that analysis of stress-induced responses of peripheral fibroblasts, obtained from patients with psychiatric disorders is a promising avenue for future research endeavors.
Collapse
Affiliation(s)
- Sára Kálmán
- Department of Psychiatry, University of Szeged, Szeged, Hungary
| | | | - Andrea Vereczkei
- Department of Psychiatry, University of Szeged, Szeged, Hungary; Institute for Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Richard C Shelton
- Department of Psychiatry, University of Alabama, Birmingham, AL, USA
| | - Zeljka Korade
- Department of Psychiatry, University of Szeged, Szeged, Hungary; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| | - Károly Mirnics
- Department of Psychiatry, University of Szeged, Szeged, Hungary; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
146
|
Choi E, Choi E, Hwang KC. MicroRNAs as novel regulators of stem cell fate. World J Stem Cells 2013; 5:172-187. [PMID: 24179605 PMCID: PMC3812521 DOI: 10.4252/wjsc.v5.i4.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/13/2013] [Accepted: 08/17/2013] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence in stem cell biology has shown that microRNAs (miRNAs) play a crucial role in cell fate specification, including stem cell self-renewal, lineage-specific differentiation, and somatic cell reprogramming. These functions are tightly regulated by specific gene expression patterns that involve miRNAs and transcription factors. To maintain stem cell pluripotency, specific miRNAs suppress transcription factors that promote differentiation, whereas to initiate differentiation, lineage-specific miRNAs are upregulated via the inhibition of transcription factors that promote self-renewal. Small molecules can be used in a similar manner as natural miRNAs, and a number of natural and synthetic small molecules have been isolated and developed to regulate stem cell fate. Using miRNAs as novel regulators of stem cell fate will provide insight into stem cell biology and aid in understanding the molecular mechanisms and crosstalk between miRNAs and stem cells. Ultimately, advances in the regulation of stem cell fate will contribute to the development of effective medical therapies for tissue repair and regeneration. This review summarizes the current insights into stem cell fate determination by miRNAs with a focus on stem cell self-renewal, differentiation, and reprogramming. Small molecules that control stem cell fate are also highlighted.
Collapse
|
147
|
YANG ZHILI, YUAN ZIMING, FAN YOUBEN, DENG XIANZHAO, ZHENG QI. Integrated analyses of microRNA and mRNA expression profiles in aggressive papillary thyroid carcinoma. Mol Med Rep 2013; 8:1353-8. [DOI: 10.3892/mmr.2013.1699] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/19/2013] [Indexed: 11/06/2022] Open
|
148
|
Ahn J, Lee H, Jung CH, Jeon TI, Ha TY. MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol Med 2013; 5:1602-12. [PMID: 24009212 PMCID: PMC3799582 DOI: 10.1002/emmm.201302647] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 01/14/2023] Open
Abstract
Sirtuin 1 (SIRT1) plays a critical role in the maintenance of metabolic homeostasis and promotes fat mobilization in white adipose tissue. However, regulation of SIRT1 during adipogenesis, particularly through microRNAs, remains unclear. We observed that miR-146b expression was markedly increased during adipogenesis in 3T3-L1 cells. Differentiation of 3T3-L1 was induced by overexpression of miR-146b. Conversely, inhibition of miR-146b decreased adipocyte differentiation. Bioinformatics-based studies suggested that SIRT1 is a target of miR-146b. Further analysis confirmed that SIRT1 was negatively regulated by miR-146b. We also observed that miR-146b bound directly to the 3'-untranslated region of SIRT1 and inhibited adipogenesis through SIRT1 downregulation. The miR-146b/SIRT1 axis mediates adipogenesis through increased acetylation of forkhead box O1 (FOXO1). Expression of miR-146b was increased and SIRT1 mRNA subsequently decreased in the adipose tissues of diet-induced and genetically obese mice. Furthermore, in vivo knockdown of miR-146b by a locked nucleic acid miR-146b antagomir significantly reduced body weight and fat volume in accordance with upregulation of SIRT1 and subsequent acetylation of FOXO1. Therefore, the miR-146b/SIRT1 pathway could be a potential target for obesity prevention and treatment.
Collapse
Affiliation(s)
- Jiyun Ahn
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Seongnam, Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | | | | | | | | |
Collapse
|
149
|
microRNA-148a suppresses human gastric cancer cell metastasis by reversing epithelial-to-mesenchymal transition. Tumour Biol 2013; 34:3705-12. [PMID: 23873106 DOI: 10.1007/s13277-013-0954-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/17/2013] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gastric cancer development and progression. miR-148a is one of the most frequently and highly downregulated miRNAs in gastric cancer and is associated with advanced clinical stage and poor prognosis. In this study, we investigated the role of miR-148a in gastric cancer metastasis. Levels of miR-148a were determined by qRT-PCR in 60 gastric cancer samples. Cell migration and invasion assays were performed in a stably expressing miRNA-148a gastric cancer cell line established using a lentivirus expression system. Epithelial-mesenchymal transition (EMT) was evaluated using qRT-PCR and Western Blots to detect epithelial marker E-cadherin and mesenchymal marker, vimentin. Luciferase reporter assays were used to identify downstream targets and biological function of miR-148a. Gastric cancer tissue had significantly lower expression of miR-148a compared to non-tumor tissue. Low miR-148a levels were associated with lymph node metastasis, N stage, and blood vessel invasion. miR-148a overexpression inhibited metastasis of gastric cancer cells. miR-148a overexpression also downregulated vimentin expression and upregulated E-cadherin expression, suggesting that miR-148a inhibited EMT. Finally, the SMAD2 gene was identified as the direct and functional target of miR-148a. MiR-148a suppresses gastric cancer metastasis and EMT, likely via SMAD2. Restoration of miR-148a expression could have important implications in gastric cancer therapy.
Collapse
|
150
|
miR-211 promotes the progression of head and neck carcinomas by targeting TGFβRII. Cancer Lett 2013; 337:115-24. [PMID: 23726841 DOI: 10.1016/j.canlet.2013.05.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 12/29/2022]
Abstract
miR-211 up-regulation and transforming growth factor-β type II receptor (TGFβRII) down-regulation are associated with poor prognosis of head and neck squamous cell carcinoma (HNSCC). miR-211 directly targets TGFβRII with the miR-211-TGFβRII-c-Myc axis promoting HNSCC progression. An inverse correlation of miR-211 and TGFβRII expression was found in metastatic HNSCC samples. After 4-nitroquinoline 1-oxide induction, more severe epithelial tumorigenesis was detected on K14-miR-211 transgenic mouse dorsal tongues. Human metastatic lesions and mouse tongue tumors showed increased nuclear c-Myc expression. A novel role for miR-211 in the regulation of TGFβRII and c-Myc during tumorigenesis being revealed should help to develop anti-HNSCC therapies.
Collapse
|