101
|
Bleomycin-enhanced alternative splicing of fibroblast growth factor receptor 2 induces epithelial to mesenchymal transition in lung fibrosis. Biosci Rep 2018; 38:BSR20180445. [PMID: 30049844 PMCID: PMC6239266 DOI: 10.1042/bsr20180445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an important public health problem, and it has few treatment options given its poorly understood etiology; however, epithelial to mesenchymal transition (EMT) of pneumocytes has been implicated as a factor. Herein, we aimed to explore the underlying mechanisms of lung fibrosis mediated by EMT, with a focus on the alternative splicing of fibroblast growth factor receptor 2 (FGFR2), using bleomycin (BLM)-induced lung fibrotic and transgenic mouse models. We employed BLM-induced and surfactant protein C (SPC)-Cre and LacZ double transgenic mouse models. The results showed that EMT occurred during lung fibrosis. BLM inhibited the expression of epithelial splicing regulatory protein 1 (ESRP1), resulting in enhanced alternative splicing of FGFR2 to the mesenchymal isoform IIIc. BLM-induced lung fibrosis was also associated with the activation of TGF-β/Smad signaling. These findings have implications for rationally targetted strategies to therapeutically address IPF.
Collapse
|
102
|
Musavi Shenas MH, Eghbal-Fard S, Mehrisofiani V, Abd Yazdani N, Rahbar Farzam O, Marofi F, Yousefi M. MicroRNAs and signaling networks involved in epithelial-mesenchymal transition. J Cell Physiol 2018; 234:5775-5785. [PMID: 30417364 DOI: 10.1002/jcp.27489] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a phenomenon in which epithelial cells lose their cell-to-cell connection and are detached from the base membrane. EMT is fundamental for many biological processes such as embryonic development and neurogenesis. It also plays a significant role in cancer progression and metastasis. EMT regulation occurs through a sophisticated network of transcription regulations that include many signaling pathways. The exact mechanism of cancer gene regulation has not been understood yet. However, it is interesting to study the role of microRNAs and epigenetics mechanism in the cancer development. In this review, the transcription regulation of EMT and the analysis of possible overlap between microRNAs and their targets which are involved in the cancer development are scrutinized.
Collapse
Affiliation(s)
| | - Shadi Eghbal-Fard
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Mehrisofiani
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Abd Yazdani
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
103
|
Zeng Z, Yang H, Xiao S. ACTL6A expression promotes invasion, metastasis and epithelial mesenchymal transition of colon cancer. BMC Cancer 2018; 18:1020. [PMID: 30348114 PMCID: PMC6198485 DOI: 10.1186/s12885-018-4931-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Metastasis is the main cause of death in patients with advanced stage colon cancer. Epithelial mesenchymal transition (EMT) plays an important role in invasion and metastasis. Actin-like 6A (ACTL6A) is vital for embryogenesis and differentiation and is also critical for metastasis and EMT in hepatocellular carcinoma, as observed in our previous study. In the present study, we further explored the role of ACTL6A in colon cancer metastasis. METHODS ACTL6A expression levels were analyzed in normal colon, colon adenoma and colon cancer specimens using public databases and tissue samples. ACTL6A expression and its association with clinicopathologic features of colon cancer patients were also analyzed. ACTL6A-overexpression and ACTL6A-knockdown colon cancer cells were used to perform cytological experiments to explore the potential biological function of ACTL6A in metastasis and EMT in colon cancer. RESULTS The data from both the Gene Expression Omnibus (GEO) and Oncomine databases showed that ACTL6A expression levels in colon adenoma and cancer were higher than those in normal colon samples. The ACTL6A expression level in fresh colon cancer specimens was also higher than that in the corresponding adjacent normal colon specimens. Patients with high ACTL6A expression directly correlated with advanced pT status, distant metastasis, poor differentiation and microvascular/perineural invasion. ACTL6A overexpression promoted migration and invasion of colon cancer cells, whereas ACTL6A knockdown exhibited the opposite effect in vitro. Moreover, we demonstrated that ACTL6A promoted EMT in colon cancer cells in vitro. CONCLUSIONS Our findings indicate that ACTL6A exhibits pro-tumor function and acts as an EMT activator in colon cancer. ACTL6A may serve as a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Zhijun Zeng
- Department of Geratic Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, People's Republic of China
| | - Hao Yang
- Department of Geratic Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, People's Republic of China
| | - Shuai Xiao
- Department of Geratic Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
104
|
Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene 2018; 38:656-670. [PMID: 30171258 PMCID: PMC6358506 DOI: 10.1038/s41388-018-0482-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 11/08/2022]
Abstract
Patients with EGFR-mutant non-small-cell lung cancer (NSCLC) have significantly benefited from the use of EGFR tyrosine kinase inhibitors (TKIs). However, long-term efficacy of these therapies is limited due to de novo resistance (~30%) as well as acquired resistance. Epithelial-mesenchymal transition transcription factors (EMT-TFs), have been identified as drivers of EMT-mediated resistance to EGFR TKIs, however, strategies to target EMT-TFs are lacking. As the third generation EGFR TKI, osimertinib, has now been adopted in the first-line setting, the frequency of T790M mutations will significantly decrease in the acquired resistance setting. Previously less common mechanisms of acquired resistance to first generation EGFR TKIs including EMT are now being observed at an increased frequency after osimertinib. Importantly, there are no other FDA approved targeted therapies after progression on osimertinib. Here, we investigated a novel strategy to overcome EGFR TKI resistance through targeting the EMT-TF, TWIST1, in EGFR-mutant NSCLC. We demonstrated that genetic silencing of TWIST1 or treatment with the TWIST1 inhibitor, harmine, resulted in growth inhibition and apoptosis in EGFR-mutant NSCLC. TWIST1 overexpression resulted in erlotinib and osimertinib resistance in EGFR-mutant NSCLC cells. Conversely, genetic and pharmacological inhibition of TWIST1 in EGFR TKI-resistant EGFR-mutant cells increased sensitivity to EGFR TKIs. TWIST1-mediated EGFR TKI resistance was due in part to TWIST1 suppression of transcription of the pro-apoptotic BH3-only gene, BCL2L11 (BIM), by directly binding to BCL2L11 intronic regions and promoter. As such, pan-BCL2 inhibitor treatment overcame TWIST1-mediated EGFR TKI resistance and were more effective in the setting of TWIST1 overexpression. Finally, in a mouse model of autochthonous EGFR-mutant lung cancer, Twist1 overexpression resulted in erlotinib resistance and suppression of erlotinib-induced apoptosis. These studies establish TWIST1 as a driver of resistance to EGFR TKIs and provide rationale for use of TWIST1 inhibitors or BCL2 inhibitors as means to overcome EMT-mediated resistance to EGFR TKIs.
Collapse
|
105
|
Mitra P, Kalailingam P, Tan HB, Thanabalu T. Overexpression of GRB2 Enhances Epithelial to Mesenchymal Transition of A549 Cells by Upregulating SNAIL Expression. Cells 2018; 7:cells7080097. [PMID: 30087284 PMCID: PMC6116178 DOI: 10.3390/cells7080097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023] Open
Abstract
GRB2 is an adaptor protein which interacts with phosphorylated TGF-β receptor and is critical for mammary tumour growth. We found that TGF-β1-induced EMT increased GRB2 expression in A549 cells (non-small cell lung cancer). Overexpression of GRB2 (A549GRB2) enhanced cell invasion while knocking down GRB2 (A549GRB2KD) reduced cell migration and invasion, probably due to increased vinculin and reduced Paxillin patches in A549GRB2KD cell. TGF-β1-induced EMT was more pronounced in A549GRB2 cells and attenuated in A549GRB2KD cells. This could be due to the reduced expression of E-cadherin in A549GRB2 and increased expression of E-cadherin in A549GRB2KD cells, even before TGF-β1 stimulation. Expression of SNAIL was elevated in A549GRB2 cells and was further enhanced by TGF-β1 stimulation, suggesting that GRB2 down-regulates E-cadherin by enhancing the expression of SNAIL. The N-SH3 domain of GRB2 was critical for suppressing E-cadherin expression, while the C-SH3 domain of GRB2 mediating interaction with proteins such as N-WASP was critical for promoting invasion, and the SH2 domain was critical for suppressing E-cadherin expression and invasion. Thus, our data suggests that GRB2 enhances EMT by suppressing E-cadherin expression and promoting invasion probably through N-WASP to promote metastasis.
Collapse
Affiliation(s)
- Payal Mitra
- Department of Molecular Medicine, STRF, University of Texas Health San Antonio, 8403 Floyd Curl Dr, San Antonio, TX 78229, USA.
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | | | - Hui Bing Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
- National University Health System (NUHS), 119228 Singapore, Singapore.
| | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
106
|
Overexpression of PEAK1 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer through modulating ERK1/2 and JAK2 signaling. Cell Death Dis 2018; 9:802. [PMID: 30038287 PMCID: PMC6056550 DOI: 10.1038/s41419-018-0817-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023]
Abstract
Pseudopodium-enriched atypical kinase 1 (PEAK1), a novel non-receptor tyrosine kinase, has been demonstrated to act as an oncogenic regulator in breast and pancreatic cancers. However, the role of PEAK1 in the progression and metastasis of lung cancer is still unknown. Here, we observed that ectopic PEAK1 expression promoted lung cancer cell migration and invasion, while PEAK1 knockout resulted in suppressed cell migration and invasion. Interestingly, cell proliferation did not significantly increase or decrease in either the PEAK1 overexpression or knockout groups compared with the corresponding control cells. In addition, PEAK1 overexpression could induce epithelial-to-mesenchymal transition (EMT) and the expression of matrix metalloproteinase-2 (MMP2) and MMP9 both in vitro and in vivo, whereas PEAK1 knockout had the opposite effects. Then, we had confirmed that PEAK1 was significantly upregulated in lung cancer tissues, and correlated with a higher tumor node metastasis stage. Moreover, PEAK1 upregulation markedly enhanced the activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and Janus kinase-2 (JAK2) signaling in lung cancer cells. Further work demonstrated that the combination of PD98059 with AZD1480 could reverse the effects of PEAK1-induced EMT, cell migration and invasion. Our findings highlight a newer mechanism for PEAK1 in regulating EMT and metastasis in lung cancer, which might serve as a therapeutic target for lung cancer patients.
Collapse
|
107
|
Bhattacharya A, Kumar J, Hermanson K, Sun Y, Qureshi H, Perley D, Scheidegger A, Singh BB, Dhasarathy A. The calcium channel proteins ORAI3 and STIM1 mediate TGF-β induced Snai1 expression. Oncotarget 2018; 9:29468-29483. [PMID: 30034631 PMCID: PMC6047677 DOI: 10.18632/oncotarget.25672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/09/2018] [Indexed: 12/11/2022] Open
Abstract
Calcium influx into cells via plasma membrane protein channels is tightly regulated to maintain cellular homeostasis. Calcium channel proteins in the plasma membrane and endoplasmic reticulum have been linked to cancer, specifically during the epithelial-mesenchymal transition (EMT), a cell state transition process implicated in both cancer cell migration and drug resistance. The transcription factor SNAI1 (SNAIL) is upregulated during EMT and is responsible for gene expression changes associated with EMT, but the calcium channels required for Snai1 expression remain unknown. In this study, we show that blocking store-operated calcium entry (SOCE) with 2-aminoethoxydiphenylborane (2APB) reduces cell migration but, paradoxically, increases the level of TGF-β dependent Snai1 gene activation. We determined that this increased Snai1 transcription involves signaling through the AKT pathway and subsequent binding of NF-κB (p65) at the Snai1 promoter in response to TGF-β. We also demonstrated that the calcium channel protein ORAI3 and the stromal interaction molecule 1 (STIM1) are required for TGF-β dependent Snai1 transcription. These results suggest that calcium channels differentially regulate cell migration and Snai1 transcription, indicating that each of these steps could be targeted to ensure complete blockade of cancer progression.
Collapse
Affiliation(s)
- Atrayee Bhattacharya
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Janani Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
- Present address: MD Anderson Cancer Center, Mitchell Basic Sciences Research Building, TX, USA
| | - Kole Hermanson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Yuyang Sun
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
- Present address: UT Health Science Center, San Antonio, San Antonio, TX, USA
| | - Humaira Qureshi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
- Present address: Habib University, University Avenue, Gulistan-e-Jauhar, Karachi, Pakistan
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Adam Scheidegger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Brij B. Singh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
- Present address: UT Health Science Center, San Antonio, San Antonio, TX, USA
| | - Archana Dhasarathy
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
108
|
Alidadiani N, Ghaderi S, Dilaver N, Bakhshamin S, Bayat M. Epithelial mesenchymal transition Transcription Factor (TF): The structure, function and microRNA feedback loop. Gene 2018; 674:115-120. [PMID: 29936265 DOI: 10.1016/j.gene.2018.06.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/26/2018] [Accepted: 06/15/2018] [Indexed: 01/03/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a phenomenon in which epithelial cells lose their cell to cell adhesion and detach from the base of the membrane. EMT is a fundamental process which occurs during tumor progression and metastasis. Cancer genomics is a complex network which involves a variety of factors such as transcription factors (TFs), coding genes and microRNAs (miRs). Both TFs and miRs are trans-regulatory elements that crosstalk. Due to a wide range of targets, TF-miR interaction provides a feedback or feedforward loop and cross-gene regulation consequently. In this review, we focused on the structure and function of two TF families involved in EMT, zinc finger and β helix loop helix and p53. Subsequently we analyzed recent findings on TF-miR interaction in EMT.
Collapse
Affiliation(s)
- Neda Alidadiani
- Department of system physiology, Rhur University Bochum, Bochum, Germany
| | - Shahrooz Ghaderi
- Department of system physiology, Rhur University Bochum, Bochum, Germany.
| | - Nafi Dilaver
- Swansea University, College of Medicine, Swansea, United Kingdom
| | - Saina Bakhshamin
- Young Researchers and Elite Club, Islamic Azad University, Tehran, Iran
| | - Mansour Bayat
- Department of Mycology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
109
|
Brown CY, Dayan S, Wong SW, Kaczmarek A, Hope CM, Pederson SM, Arnet V, Goodall GJ, Russell D, Sadlon TJ, Barry SC. FOXP3 and miR-155 cooperate to control the invasive potential of human breast cancer cells by down regulating ZEB2 independently of ZEB1. Oncotarget 2018; 9:27708-27727. [PMID: 29963231 PMCID: PMC6021232 DOI: 10.18632/oncotarget.25523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Control of oncogenes, including ZEB1 and ZEB2, is a major checkpoint for preventing cancer, and loss of this control contributes to many cancers, including breast cancer. Thus tumour suppressors, such as FOXP3, which is mutated or lost in many cancer tissues, play an important role in maintaining normal tissue homeostasis. Here we show for the first time that ZEB2 is selectively down regulated by FOXP3 and also by the FOXP3 induced microRNA, miR-155. Interestingly, neither FOXP3 nor miR-155 directly altered the expression of ZEB1. In breast cancer cells repression of ZEB2, independently of ZEB1, resulted in reduced expression of a mesenchymal marker, Vimentin and reduced invasion. However, there was no de-repression of E-cadherin and migration was enhanced. Small interfering RNAs targeting ZEB2 suggest that this was a direct effect of ZEB2 and not FOXP3/miR-155. In normal human mammary epithelial cells, depletion of endogenous FOXP3 resulted in de-repression of ZEB2, accompanied by upregulated expression of vimentin, increased E-cadherin expression and cell morphological changes. We suggest that FOXP3 may help maintain normal breast epithelial characteristics through regulation of ZEB2, and loss of FOXP3 in breast cancer cells results in deregulation of ZEB2.
Collapse
Affiliation(s)
- Cheryl Y. Brown
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Sonia Dayan
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Soon Wei Wong
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Adrian Kaczmarek
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christopher M. Hope
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
| | - Stephen M. Pederson
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Victoria Arnet
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Gregory J. Goodall
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Darryl Russell
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Timothy J. Sadlon
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Simon C. Barry
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| |
Collapse
|
110
|
The EBV-Encoded Oncoprotein, LMP1, Induces an Epithelial-to-Mesenchymal Transition (EMT) via Its CTAR1 Domain through Integrin-Mediated ERK-MAPK Signalling. Cancers (Basel) 2018; 10:cancers10050130. [PMID: 29723998 PMCID: PMC5977103 DOI: 10.3390/cancers10050130] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
The Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) oncogene can induce profound effects on epithelial growth and differentiation including many of the features of the epithelial-to-mesenchymal transition (EMT). To better characterise these effects, we used the well-defined Madin Darby Canine Kidney (MDCK) epithelial cell model and found that LMP1 expression in these cells induces EMT as defined by characteristic morphological changes accompanied by loss of E-cadherin, desmosomal cadherin and tight junction protein expression. The induction of the EMT phenotype required a functional CTAR1 domain of LMP1 and studies using pharmacological inhibitors revealed contributions from signalling pathways commonly induced by integrin–ligand interactions: extracellular signal-regulated kinases/mitogen-activated protein kinases (ERK-MAPK), PI3-Kinase and tyrosine kinases, but not transforming growth factor beta (TGFβ). More detailed analysis implicated the CTAR1-mediated induction of Slug and Twist in LMP1-induced EMT. A key role for β1 integrin signalling in LMP1-mediated ERK-MAPK and focal adhesion kianse (FAK) phosphorylation was observed, and β1 integrin activation was found to enhance LMP1-induced cell viability and survival. These findings support an important role for LMP1 in disease pathogenesis through transcriptional reprogramming that enhances tumour cell survival and leads to a more invasive, metastatic phenotype.
Collapse
|
111
|
Xiu G, Sui X, Wang Y, Zhang Z. FOXM1 regulates radiosensitivity of lung cancer cell partly by upregulating KIF20A. Eur J Pharmacol 2018; 833:79-85. [PMID: 29704495 DOI: 10.1016/j.ejphar.2018.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/25/2022]
Abstract
Forkhead box protein M1 (FOXM1), an important regulator of tumorigenesis in various human tumors, has recently been reported to play a role in the modulation of radiosensitivity in glioma and breast cancer cells. The present study aimed to investigate the effects of FOXM1 on radiotherapy resistance in human lung cancer and to explore the related molecular mechanisms. The results revealed that FOXM1 expression was upregulated in A549 and H1299 cells after IR (Ionizing radiation). FOXM1 inhibition impeded survival fractions, impeded proliferation, and triggered apoptosis after IR. Moreover, the silencing of FOXM1 dampened cell migration, invasion, and EMT (epithelial-mesenchyman transition) in A549 and H1299 cells treated by IR. In addition, KIF20A was also highly expressed in IR-treated A549 cells and downregulated by FOXM1 inhibition. Knockdown of KIF20A inhibited the survival fraction. Reintroduction of KIF20A partly reversed the effects of FOXM1 on the proliferation, apoptosis, and metastasis of A549 cells. Taken together, these results indicated that FOXM1 might enhance radioresistance partly through the induction of KIF20A expression.
Collapse
Affiliation(s)
- Guanghong Xiu
- No.1 Radiotherapy Department, Yantaishan Hospital, Yantai City, China.
| | - Xiujie Sui
- No.1 Radiotherapy Department, Yantaishan Hospital, Yantai City, China
| | - Yirong Wang
- No.1 Radiotherapy Department, Yantaishan Hospital, Yantai City, China
| | - Ze Zhang
- No.1 Radiotherapy Department, Yantaishan Hospital, Yantai City, China
| |
Collapse
|
112
|
Li GY, Wang W, Sun JY, Xin B, Zhang X, Wang T, Zhang QF, Yao LB, Han H, Fan DM, Yang AG, Jia LT, Wang L. Long non-coding RNAs AC026904.1 and UCA1: a "one-two punch" for TGF-β-induced SNAI2 activation and epithelial-mesenchymal transition in breast cancer. Am J Cancer Res 2018; 8:2846-2861. [PMID: 29774079 PMCID: PMC5957013 DOI: 10.7150/thno.23463] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor-β (TGF-β) has received much attention as a major inducer of epithelial-mesenchymal transition (EMT) during cancer progression, mainly by activating a set of pleiotropic transcription factors including SNAI2/Slug. However, the involvement of long non-coding RNAs (lncRNAs) in TGF-β-induced Slug activation and EMT remains largely unknown. Methods: In this study, we used microarray analysis to compare lncRNA expression profiles between TGF-β treated and untreated breast cancer cells. Then, the clinical significance of lncRNAs in breast cancer was investigated by qPCR and Kaplan-Meier survival analysis. The molecular mechanisms and EMT-promoting effects in vitro were analyzed by confocal laser microscopy, Western blotting, chromosome conformation capture (3C), chromatin isolation by RNA purification (ChIRP), ChIP, luciferase reporter assay and transwell migration assay. Lastly, the pro-metastatic effects in vivo were evaluated by bioluminescent imaging and hematoxylin and eosin (H&E) staining. Results: We observed that TGF-β induced genome-wide changes in lncRNA levels in breast cancer cells, among which AC026904.1 and UCA1 were highly expressed in metastatic breast cancer and closely associated with poor prognosis. Mechanistic study revealed that AC026904.1 and UCA1 were upregulated by non-canonical and canonical TGF-β pathways, respectively. Further analysis showed that AC026904.1 functions as an enhancer RNA in the nucleus, whereas UCA1 exerts a competitive endogenous RNA (ceRNA) activity in the cytoplasm. In addition, the biological functions of these two lncRNAs converged on the activation and maintenance of Slug, constituting a one-two punch in promoting EMT and tumor metastasis. Conclusion: These findings uncover for the first time that AC026904.1 and UCA1 could cooperatively upregulate Slug expression at both transcriptional and post-transcriptional levels, exerting critical roles in TGF-β-induced EMT. The present work provides new evidence that lncRNAs function as key regulators of EMT and hold great promise to be used as novel biomarkers and therapeutic targets for metastatic breast cancer.
Collapse
|
113
|
Yeh HW, Hsu EC, Lee SS, Lang YD, Lin YC, Chang CY, Lee SY, Gu DL, Shih JH, Ho CM, Chen CF, Chen CT, Tu PH, Cheng CF, Chen RH, Yang RB, Jou YS. PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis. Nat Cell Biol 2018; 20:479-491. [PMID: 29593326 DOI: 10.1038/s41556-018-0062-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Activation of metastatic reprogramming is critical for tumour metastasis. However, more detailed knowledge of the underlying mechanism is needed to enable targeted intervention. Here, we show that paraspeckle component 1 (PSPC1), identified in an aberrant 13q12.11 locus, is upregulated and associated with poor survival in patients with cancer. PSPC1 promotes tumorigenesis, epithelial-to-mesenchymal transition (EMT), stemness and metastasis in multiple cell types and in spontaneous mouse cancer models. PSPC1 is the master activator for transcription factors of EMT and stemness and accompanies c-Myc activation to facilitate tumour growth. PSPC1 increases transforming growth factor-β1 (TGF-β1) secretion through an interaction with phosphorylated and nuclear Smad2/3 to potentiate TGF-β1 autocrine signalling. Moreover, PSPC1 acts as a contextual determinant of the TGF-β1 pro-metastatic switch to alter Smad2/3 binding preference from tumour-suppressor to pro-metastatic genes. Having validated the PSPC1-Smads-TGF-β1 axis in various cancers, we conclude that PSPC1 is a master activator of pro-metastatic switches and a potential target for anti-metastasis drugs.
Collapse
Affiliation(s)
- Hsi-Wen Yeh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - En-Chi Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Szu-Shuo Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chieh-Yu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Suz-Yi Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - De-Leung Gu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jou-Ho Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Chun-Ming Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pang-Hsien Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Feng Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Pediatrics, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh-Shan Jou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan. .,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan. .,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan. .,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
114
|
Xu Y, Ren H, Jiang J, Wang Q, Wudu M, Zhang Q, Su H, Wang C, Jiang L, Qiu X. KIAA0247 inhibits growth, migration, invasion of non-small-cell lung cancer through regulating the Notch pathway. Cancer Sci 2018; 109:1055-1065. [PMID: 29451718 PMCID: PMC5891195 DOI: 10.1111/cas.13539] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 12/11/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. Previous studies have shown that the novel KIAA0247 gene potentially targeted by the tumor suppressor p53 may inhibit the development of several cancers. However, the exact function of KIAA0247 in non-small-cell lung cancer (NSCLC) is unknown. The purpose of the present study was to clarify the role of KIAA0247 in NSCLC. KIAA0247 expression was evaluated in tumors and adjacent normal tissues of 197 NSCLC patients by immunohistochemistry and real-time PCR and analyzed for association with clinicopathological parameters. Results indicated that KIAA0247 levels positively correlated with cell differentiation (P < .001) and patient survival (P < .0001) and negatively correlated with lymph node metastasis (P < .001) and advanced p-TNM stage (P < .001). In cultured NSCLC cell lines, KIAA0247 overexpression inhibited cell migration, invasion, and proliferation and downregulated the expression of Jagged1, Notch1 intracellular domain (NICD), Snail, cyclin D1, RhoA, RhoC, and MMP9, while upregulating that of E-cadherin and p21. The Notch inhibitor DAPT reduced the biological effects of KIAA0247 knockdown, suggesting that KIAA0247 decreased the carcinogenic activity of NSCLC cells through downregulation of Notch signaling. Our results indicate that KIAA0247 inhibits NSCLC progression by reducing the metastatic potential of cancer cells through downregulation of the Notch pathway, which may underlie the association of KIAA0247 expression with favorable clinicopathological characteristics of NSCLC patients. These findings suggest that KIAA0247 is a candidate prognostic biomarker and potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yitong Xu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hongjiu Ren
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jun Jiang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qiongzi Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Muli Wudu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qingfu Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hongbo Su
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chenglong Wang
- Department of Pain Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Lihong Jiang
- Department of Pathology, The General Hospital of Liaohe Oil Field, Panjin, China
| | - Xueshan Qiu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
115
|
Jose CC, Jagannathan L, Tanwar VS, Zhang X, Zang C, Cuddapah S. Nickel exposure induces persistent mesenchymal phenotype in human lung epithelial cells through epigenetic activation of ZEB1. Mol Carcinog 2018. [PMID: 29528143 DOI: 10.1002/mc.22802] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nickel (Ni) is an environmental and occupational carcinogen, and exposure to Ni is associated with lung and nasal cancers in humans. Furthermore, Ni exposure is implicated in several lung diseases including chronic inflammatory airway diseases, asthma, and fibrosis. However, the mutagenic potential of Ni is low and does not correlate with its potent toxicity and carcinogenicity. Therefore, mechanisms underlying Ni exposure-associated diseases remain poorly understood. Since the health risks of environmental exposures often continue post exposure, understanding the exposure effects that persist after the termination of exposure could provide mechanistic insights into diseases. By examining the persistent effects of Ni exposure, we report that Ni induces epithelial-mesenchymal transition (EMT) and that the mesenchymal phenotype remains irreversible even after the termination of exposure. Ni-induced EMT was dependent on the irreversible upregulation of ZEB1, an EMT master regulator, via resolution of its promoter bivalency. ZEB1, upon activation, downregulated its repressors as well as the cell-cell adhesion molecule, E-cadherin, resulting in the cells undergoing EMT and switching to persistent mesenchymal status. ZEB1 depletion in cells exposed to Ni attenuated Ni-induced EMT. Moreover, Ni exposure did not induce EMT in ZEB1-depleted cells. Activation of EMT, during which the epithelial cells lose cell-cell adhesion and become migratory and invasive, plays a major role in asthma, fibrosis, and cancer and metastasis, lung diseases associated with Ni exposure. Therefore, our finding of irreversible epigenetic activation of ZEB1 by Ni exposure and the acquisition of persistent mesenchymal phenotype would have important implications in understanding Ni-induced diseases.
Collapse
Affiliation(s)
- Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Lakshmanan Jagannathan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Vinay S Tanwar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Chongzhi Zang
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| |
Collapse
|
116
|
Sannino G, Armbruster N, Bodenhöfer M, Haerle U, Behrens D, Buchholz M, Rothbauer U, Sipos B, Schmees C. Role of BCL9L in transforming growth factor-β (TGF-β)-induced epithelial-to-mesenchymal-transition (EMT) and metastasis of pancreatic cancer. Oncotarget 2018; 7:73725-73738. [PMID: 27713160 PMCID: PMC5342010 DOI: 10.18632/oncotarget.12455] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/24/2016] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a low overall survival rate, which is approximately 20% during the first year and decreases to less than 6% within five years of the disease. This is due to premature dissemination accompanied by a lack of disease-specific symptoms during the initial stages. Additionally, to date there are no biomarkers for an early prognosis available.A growing number of studies indicate that epithelial to mesenchymal transition (EMT), triggered by WNT-, TGF-β- and other signaling pathways is crucial for the initiation of the metastatic process in PDAC. Here we show, that BCL9L is up-regulated in PDAC cell lines and patient tissue compared to non-cancer controls. RNAi-induced BCL9L knockdown negatively affected proliferation, migration and invasion of pancreatic cancer cells. On a molecular basis, BCL9L depletion provoked an increment of E-cadherin protein levels, with concomitant increase of β-catenin retention at the plasma membrane. This is linked to the induction of a strong epithelial phenotype in pancreatic cancer cells upon BCL9L knockdown even in the presence of the EMT-inducer TGF-β. Finally, xenograft mouse models of pancreatic cancer revealed a highly significant reduction in the number of liver metastases upon BCL9L knockdown. Taken together, our findings underline the key importance of BCL9L for EMT and thus progression and metastasis of pancreatic cancer cells. Direct targeting of this protein might be a valuable approach to effectively antagonize invasion and metastasis of PDAC.
Collapse
Affiliation(s)
- Giuseppina Sannino
- Natural and Medical Sciences Institute (NMI) at the University of Tuebingen, Tumor Biology Group, Reutlingen, Germany.,Current address: Institute of Pathology, Laboratory of Pediatric Sarcoma Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Nicole Armbruster
- Natural and Medical Sciences Institute (NMI) at the University of Tuebingen, Tumor Biology Group, Reutlingen, Germany.,Current address: Department of Internal Medicine II, University of Tuebingen, Tuebingen, Germany
| | - Mona Bodenhöfer
- Natural and Medical Sciences Institute (NMI) at the University of Tuebingen, Tumor Biology Group, Reutlingen, Germany
| | - Ursula Haerle
- Natural and Medical Sciences Institute (NMI) at the University of Tuebingen, Tumor Biology Group, Reutlingen, Germany
| | - Diana Behrens
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Malte Buchholz
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Bence Sipos
- Institute of Pathology, University of Tuebingen, Tuebingen, Germany
| | - Christian Schmees
- Natural and Medical Sciences Institute (NMI) at the University of Tuebingen, Tumor Biology Group, Reutlingen, Germany
| |
Collapse
|
117
|
The role of curcumae rhizoma-sparganii rhizoma medicated serum in epithelial-mesenchymal transition in the triple negative breast cancer. Biomed Pharmacother 2018; 99:340-345. [DOI: 10.1016/j.biopha.2017.11.139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
|
118
|
Lee Y, Ko D, Min HJ, Kim SB, Ahn HM, Lee Y, Kim S. TMPRSS4 induces invasion and proliferation of prostate cancer cells through induction of Slug and cyclin D1. Oncotarget 2018; 7:50315-50332. [PMID: 27385093 PMCID: PMC5226585 DOI: 10.18632/oncotarget.10382] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
TMPRSS4 is a novel type II transmembrane serine protease found at the cell surface that is highly expressed in pancreatic, colon, and other cancer tissues. Previously, we demonstrated that TMPRSS4 mediates tumor cell invasion, migration, and metastasis. We also found that TMPRSS4 activates the transcription factor activating protein-1 (AP-1) to induce cancer cell invasion. Here, we explored TMPRSS4-mediated cellular functions and the underlying mechanisms. TMPRSS4 induced Slug, an epithelial-mesenchymal transition (EMT)-inducing transcription factor, and cyclin D1 through activation of AP-1, composed of c-Jun and activating transcription factor (ATF)-2, which resulted in enhanced invasion and proliferation of PC3 prostate cancer cells. In PC3 cells, not only c-Jun but also Slug was required for TMPRSS4-mediated proliferation and invasion. Interestingly, Slug induced phosphorylation of c-Jun and ATF-2 to activate AP-1 through upregulation of Axl, establishing a positive feedback loop between Slug and AP-1, and thus induced cyclin D1, leading to enhanced proliferation. Using data from The Cancer Genome Atlas, we found that Slug expression positively correlated with that of c-Jun and cyclin D1 in human prostate cancers. Expression of Slug was positively correlated with that of cyclin D1 in various cancer cell lines, whereas expression of other EMT-inducing transcription factors was not. This study demonstrates that TMPRSS4 modulates both invasion and proliferation via Slug and cyclin D1, which is a previously unrecognized pathway that may regulate metastasis and cancer progression.
Collapse
Affiliation(s)
- Yunhee Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea.,Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Dongjoon Ko
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| | - Hye-Jin Min
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Sol Bi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| | - Hye-Mi Ahn
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| |
Collapse
|
119
|
Hu J, Su P, Jiao M, Bai X, Qi M, Liu H, Wu Z, Sun J, Zhou G, Han B. TRPS1 Suppresses Breast Cancer Epithelial-mesenchymal Transition Program as a Negative Regulator of SUZ12. Transl Oncol 2018; 11:416-425. [PMID: 29471243 PMCID: PMC5884189 DOI: 10.1016/j.tranon.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is among the most common malignant diseases and metastasis is the handcuff of treatment. Cancer metastasis is a multistep process associated with the epithelial-mesenchymal transition (EMT) program. Several studies have demonstrated that transcriptional repressor GATA binding 1 (TRPS1) played important roles in development and progression of primary BC. In this study we sought to identify the mechanisms responsible for this function of TRPS1 in the continuum of the metastatic cascade. Here we described that TRPS1 was significantly associated with BC metastasis using public assessable datasets. Clinically, loss of TRPS1 expression in BC was related to higher histological grade. In vitro functional study and bioinformatics analysis revealed that TRPS1 inhibited cell migration and EMT in BC. Importantly, we identified SUZ12 as a novel target of TRPS1 related to EMT program. ChIP assay demonstrated TRPS1 directly inhibited SUZ12 transcription by binding to the SUZ12 promoter. Loss of TRPS1 resulted in increased SUZ12 binding and H3K27 tri-methylation at the CDH1 promoter and repression of E-cadherin. In all, our data indicated that TRPS1 maintained the expression of E-cadherin by inhibiting SUZ12, which might provide novel insight into how loss of TRPS1 contributed to BC progression.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Meng Jiao
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Xinnuo Bai
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Hui Liu
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Zhen Wu
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Jingtian Sun
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Gengyin Zhou
- Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Bo Han
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China; Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China.
| |
Collapse
|
120
|
Wesseling M, Sakkers TR, de Jager SCA, Pasterkamp G, Goumans MJ. The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis. Vascul Pharmacol 2018; 106:1-8. [PMID: 29471141 DOI: 10.1016/j.vph.2018.02.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 12/26/2022]
Abstract
Cell transdifferentiation occurs during cardiovascular development or remodeling either as a pathologic feature in the progression of disease or as a response to injury. Endothelial-to-Mesenchymal Transition (EndMT) is a process that is classified as a specialized form of Epithelial-to-Mesenchymal Transition (EMT), in which epithelial cells lose their epithelial characteristics and gain a mesenchymal phenotype. During transdifferentiation, cells lose both cell-cell contacts and their attachment to the basement membrane. Subsequently, the shape of the cells changes from a cuboidal to an elongated shape. A rearrangement of actin filaments facilitates the cells to become motile and prime their migration into the underlying tissue. EMT is a key process during embryonic development, wound healing and tissue regeneration, but has also been implicated in pathophysiological processes, such organ fibrosis and tumor metastases. EndMT has been associated with additional pathophysiological processes in cardiovascular related diseases, including atherosclerosis. Recent studies prove a significant role for EndMT in the progression and destabilization of atherosclerotic plaques, as a consequence of EndMT-derived fibroblast infiltration and the increased secretion of matrix metalloproteinase respectively. In this review we will discuss the essential molecular and morphological mechanisms of EMT and EndMT, along with their common denominators and key differences. Finally, we will discuss the role of EMT/EndMT in developmental and pathophysiological processes, focusing on the potential role of EndMT in atherosclerosis in more depth.
Collapse
Affiliation(s)
- M Wesseling
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Clinical Chemistry and Histology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - T R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S C A de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Pasterkamp
- Laboratory of Clinical Chemistry and Histology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J Goumans
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
121
|
Kwon M, Kim JH, Rybak Y, Luna A, Choi CH, Chung JY, Hewitt SM, Adem A, Tubridy E, Lin J, Libutti SK. Reduced expression of FILIP1L, a novel WNT pathway inhibitor, is associated with poor survival, progression and chemoresistance in ovarian cancer. Oncotarget 2018; 7:77052-77070. [PMID: 27776341 PMCID: PMC5340232 DOI: 10.18632/oncotarget.12784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022] Open
Abstract
Filamin A interacting protein 1-like (FILIP1L) is an inhibitor of the canonical WNT pathway. WNT/β-catenin signaling and its downstream pathway, epithelial-to-mesenchymal transition (EMT), play a key role in ovarian cancer metastasis and chemoresistance. To study the clinical implications of FILIP1L in regulating the WNT/β-catenin pathway, the expression of FILIP1L, β-catenin, SNAIL and SLUG was analyzed by immunohistochemistry on tissue microarrays of 369 ovarian samples ranging from normal to metastatic. In addition, the results were validated in mouse model and in vitro cell culture. In the present study, we demonstrated that FILIP1L expression was inversely correlated with poor prognosis, stage and chemoresistance in ovarian cancer. Notably, low FILIP1L expression was independent negative prognostic factor with respect to overall and disease-free survival. FILIP1L inhibited peritoneal metastases in orthotopic mouse model. FILIP1L knockdown induced chemoresistance in ovarian cancer cells and this phenotype was rescued by simultaneous knockdown of FILIP1L and SLUG, an EMT activator. We also demonstrated that FILIP1L regulates β-catenin degradation. FILIP1L co-localizes with phospho-β-catenin and increases phospho-β-catenin at the centrosomes, destined for proteosomal degradation. Finally, we showed that FILIP1L regulates EMT. Overall, these findings suggest that FILIP1L promotes β-catenin degradation and suppresses EMT, thereby inhibiting metastases and chemoresistance. Our study provides the first clinical relevance of FILIP1L in human cancer, and suggests that FILIP1L may be a novel prognostic marker for chemotherapy in ovarian cancer patients. Further, the modulation of FILIP1L expression may have the potential to be a target for cancer therapy.
Collapse
Affiliation(s)
- Mijung Kwon
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 135-720, Korea
| | - Yevangelina Rybak
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex Luna
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea.,Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asha Adem
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elizabeth Tubridy
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Juan Lin
- Division of Biostatistics, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven K Libutti
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
122
|
Howley BV, Howe PH. TGF-beta signaling in cancer: post-transcriptional regulation of EMT via hnRNP E1. Cytokine 2018; 118:19-26. [PMID: 29396052 DOI: 10.1016/j.cyto.2017.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
The TGFβ signaling pathway is a critical regulator of cancer progression in part through induction of the epithelial to mesenchymal transition (EMT). This process is aberrantly activated in cancer cells, facilitating invasion of the basement membrane, survival in the circulatory system, and dissemination to distant organs. The mechanisms through which epithelial cells transition to a mesenchymal state involve coordinated transcriptional and post-transcriptional control of gene expression. One such mechanism of control is through the RNA binding protein hnRNP E1, which regulates splicing and translation of a cohort of EMT and stemness-associated transcripts. A growing body of evidence indicates a major role for hnRNP E1 in the control of epithelial cell plasticity, especially in the context of carcinoma progression. Here, we review the multiple mechanisms through which hnRNP E1 functions to control EMT and metastatic progression.
Collapse
Affiliation(s)
- Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
123
|
Regulation of Tumor Progression by Programmed Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3537471. [PMID: 29636841 PMCID: PMC5831895 DOI: 10.1155/2018/3537471] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.
Collapse
|
124
|
Miyazaki H, Takahashi RU, Prieto-Vila M, Kawamura Y, Kondo S, Shirota T, Ochiya T. CD44 exerts a functional role during EMT induction in cisplatin-resistant head and neck cancer cells. Oncotarget 2018. [PMID: 29515788 PMCID: PMC5839369 DOI: 10.18632/oncotarget.24252] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A number of studies report that epithelial to mesenchymal transition (EMT) supports the generation and maintenance of cancer stem cells (CSCs), which show tumor seeding ability and drug resistance; however, the molecular mechanisms underlying induction of EMT-associated tumor malignancy remain unclear. The present study reports that oral cancer cells switch from expressing the CD44 variant form (CD44v) to expressing the standard form (CD44s) during acquisition of cisplatin-resistance, which resulted in EMT induction. CD44s induced an EMT phenotype in cisplatin resistant cells by up-regulating ZEB1, a transcriptional repressor of E-cadherin. More importantly, CD44s up-regulated ZEB1 by suppressing microRNA-200c, which is a non-coding RNA that directly represses the ZEB1 gene. These results demonstrate the importance of the association between platinum resistance and CD44s during EMT induction in oral cancer cells.
Collapse
Affiliation(s)
- Hiroaki Miyazaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Ryou-U Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yumi Kawamura
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba 1-1-1 Tennodai, Ibaraki 305-8577, Japan
| | - Seiji Kondo
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
125
|
Liu L, Chen J, Sun L, Xu Y. RhoJ promotes hypoxia induced endothelial‐to‐mesenchymal transition by activating WDR5 expression. J Cell Biochem 2018; 119:3384-3393. [DOI: 10.1002/jcb.26505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Li Liu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine,Department of PathophysiologyNanjing Medical UniversityNanjingChina
| | - Junliang Chen
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine,Department of PathophysiologyNanjing Medical UniversityNanjingChina
- Department of Pathophysiology, Wuxi College of MedicineJiangnan UniversityJiangsuChina
| | - Lina Sun
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine,Department of PathophysiologyNanjing Medical UniversityNanjingChina
- Department of Pathology and PathophysiologySoochow UniversityJiangsuChina
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine,Department of PathophysiologyNanjing Medical UniversityNanjingChina
| |
Collapse
|
126
|
Ko D, Kim S. Cooperation between ZEB2 and Sp1 promotes cancer cell survival and angiogenesis during metastasis through induction of survivin and VEGF. Oncotarget 2017; 9:726-742. [PMID: 29416649 PMCID: PMC5787504 DOI: 10.18632/oncotarget.23139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/14/2017] [Indexed: 01/11/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process implicated in tumor invasion and metastasis. During EMT, epithelial cells undergo molecular changes to acquire mesenchymal phenotypes, which are mediated by EMT-inducing transcription factors. Previously, we showed that ZEB2 cooperates with the transcription factor Sp1 to function as a transcriptional activator of vimentin, integrin α5, and cadherin-11, which promotes cancer cell invasion. We hypothesized that ZEB2, through cooperation with Sp1, would mediate diverse cellular functions beyond EMT and invasion during metastasis. ZEB2 upregulated the expression of Sp1-regulated genes such as survivin, bcl-2, cyclin D1, and vascular endothelial growth factor in an Sp1-dependent manner, resulting in increased cancer cell survival and proliferation and endothelial cell activation in vitro, and increased circulating tumor cell survival and tumor angiogenesis in vivo. In addition, Sp1 enhanced ZEB2 stability, suggesting the presence of a positive feedback loop between ZEB2 and Sp1. Clinical data showed that ZEB2 expression was positively associated with Sp1 expression, and that the expression of both of these factors had prognostic significance for predicting survival in cancer patients. This study suggests that invasion is linked to cancer cell survival and angiogenesis by ZEB2 during cancer progression, and increases our understanding of the pathways via which EMT-inducing transcription factors regulate the complex process of metastasis.
Collapse
Affiliation(s)
- Dongjoon Ko
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon, Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon, Korea
| |
Collapse
|
127
|
Monteiro AR, Hill R, Pilkington GJ, Madureira PA. The Role of Hypoxia in Glioblastoma Invasion. Cells 2017; 6:E45. [PMID: 29165393 PMCID: PMC5755503 DOI: 10.3390/cells6040045] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), a grade IV astrocytoma, is the most common and deadly type of primary malignant brain tumor, with a patient's median survival rate ranging from 15 to 17 months. The current treatment for GBM involves tumor resection surgery based on MRI image analysis, followed by radiotherapy and treatment with temozolomide. However, the gradual development of tumor resistance to temozolomide is frequent in GBM patients leading to subsequent tumor regrowth/relapse. For this reason, the development of more effective therapeutic approaches for GBM is of critical importance. Low tumor oxygenation, also known as hypoxia, constitutes a major concern for GBM patients, since it promotes cancer cell spreading (invasion) into the healthy brain tissue in order to evade this adverse microenvironment. Tumor invasion not only constitutes a major obstacle to surgery, radiotherapy, and chemotherapy, but it is also the main cause of death in GBM patients. Understanding how hypoxia triggers the GBM cells to become invasive is paramount to developing novel and more effective therapies against this devastating disease. In this review, we will present a comprehensive examination of the available literature focused on investigating how GBM hypoxia triggers an invasive cancer cell phenotype and the role of these invasive proteins in GBM progression.
Collapse
Affiliation(s)
- Ana Rita Monteiro
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Building 8, Room 3.4, 8005-139 Faro, Portugal.
| | - Richard Hill
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Patrícia A Madureira
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Building 8, Room 3.4, 8005-139 Faro, Portugal.
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
128
|
Astrocyte elevated gene-1 promotes tumour growth and invasion by inducing EMT in oral squamous cell carcinoma. Sci Rep 2017; 7:15447. [PMID: 29133850 PMCID: PMC5684276 DOI: 10.1038/s41598-017-15805-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common human malignancy with a high incidence rate and poor prognosis. Although astrocyte elevated gene 1 (AEG-1) expression is up-regulated in various human cancers and plays an important role in carcinogenesis and tumour progression, the impact of AEG-1 on the development and progression of OSCC remains unclear. Accordingly, this study aims to clarify the biological significance of AEG-1 in OSCC. We found AEG-1 to be overexpressed in OSCC tissues compared to normal oral mucosa. Knockdown or overexpression of AEG-1 in OSCC cell lines showed that AEG-1 is important for tumour growth, apoptosis, drug tolerance, and maintaining epithelial-mesenchymal transition (EMT)-mediated cell migration and invasion in vitro. Moreover, in a xenograft-mouse model generated by AEG-1-overexpressing SCC15 cells, we found that higher expression of AEG-1 promoted tumour growth, angiogenesis, and EMT in vivo. These findings provide mechanistic insight into the role of AEG-1 in regulating OSCC tumour growth, apoptosis, drug tolerance, and invasion, as well as AEG-1-induced activation of p38 and NF-κB signalling, suggesting that AEG-1 is an important prognostic factor and therapeutic target for OSCC.
Collapse
|
129
|
Drago-García D, Espinal-Enríquez J, Hernández-Lemus E. Network analysis of EMT and MET micro-RNA regulation in breast cancer. Sci Rep 2017; 7:13534. [PMID: 29051564 PMCID: PMC5648819 DOI: 10.1038/s41598-017-13903-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 09/27/2017] [Indexed: 12/13/2022] Open
Abstract
Over the last years, microRNAs (miRs) have shown to be crucial for breast tumour establishment and progression. To understand the influence that miRs have over transcriptional regulation in breast cancer, we constructed mutual information networks from 86 TCGA matched breast invasive carcinoma and control tissue RNA-Seq and miRNA-Seq sequencing data. We show that miRs are determinant for tumour and control data network structure. In tumour data network, miR-200, miR-199 and neighbour miRs seem to cooperate on the regulation of the acquisition of epithelial and mesenchymal traits by the biological processes: Epithelial-Mesenchymal Transition (EMT) and Mesenchymal to Epithelial Transition (MET). Despite structural differences between tumour and control networks, we found a conserved set of associations between miR-200 family members and genes such as VIM, ZEB-1/2 and TWIST-1/2. Further, a large number of miRs observed in tumour network mapped to a specific chromosomal location in DLK1-DIO3 (Chr14q32); some of those miRs have also been associated with EMT and MET regulation. Pathways related to EMT and TGF-beta reinforce the relevance of miR-200, miR-199 and DLK1-DIO3 cluster in breast cancer. With this approach, we stress that miR inclusion in gene regulatory network construction improves our understanding of the regulatory mechanisms underlying breast cancer biology.
Collapse
Affiliation(s)
- Diana Drago-García
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, 14610, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, 14610, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico, 04510, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, 14610, Mexico.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico, 04510, Mexico.
| |
Collapse
|
130
|
Zou J, Li H, Huang Q, Liu X, Qi X, Wang Y, Lu L, Liu Z. Dopamine-induced SULT1A3/4 promotes EMT and cancer stemness in hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317719272. [PMID: 29025375 DOI: 10.1177/1010428317719272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hepatocellular carcinoma has the second highest incidence rate among malignant cancers in China. Hepatocellular carcinoma development is complex because of the metabolism disequilibrium involving SULT1A3/4, a predominant sulfotransferase that metabolizes sulfonic xenobiotics and endogenous catecholamines. However, the correlation between SULT1A3/4 and hepatocellular carcinoma progression is unclear. By utilizing immunofluorescence and immunohistochemical analysis, we found that in nine hepatocellular carcinoma clinical specimens, SULT1A3/4 was abundantly expressed in tumor tissues compared to that in the adjacent tissues. Moreover, liver cancer cells (HepG2, MHCC97-L, and MHCC97-H) had higher basal expression of SULT1A3/4 than immortalized liver cells (L02 and Chang liver). Ultra-high-pressure liquid chromatography-tandem mass spectrometry assay results further revealed that the concentration of dopamine (a substrate of SULT1A3/4) was negatively correlated with SULT1A3/4 protein expression. As a transcriptional regulator of SULT1A3/4 in turn, dopamine was used to induce SULT1A3/4 in vitro. Interestingly, dopamine significantly induced SULT1A3/4 expression in liver cancer HepG2 cells, while decreased that in L02 cells. More importantly, the expression levels of epithelial-mesenchymal transition biomarkers (N-cadherin and vimentin) and cell stemness biomarkers (nanog, sox2, and oct3/4) considerably increased in HepG2 with dopamine-induced SULT1A3/4, whereas in L02, epithelial-mesenchymal transition and cancer stem cell-associated proteins were contrarily decreased. Furthermore, invasion and migration assays further revealed that dopamine-induced SULT1A3/4 dramatically stimulated the metastatic capacity of HepG2 cells. Our results implied that SULT1A3/4 exhibited bidirectional effect on tumor and normal hepatocytes and may thus provide a novel strategy for hepatocellular carcinoma clinical targeting. In addition, SULT1A3/4 re-expression could serve as a biomarker for hepatocellular carcinoma prognosis.
Collapse
Affiliation(s)
- Juan Zou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianling Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomin Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
131
|
Chang Y, Yan W, Sun C, Liu Q, Wang J, Wang M. miR-145-5p inhibits epithelial-mesenchymal transition via the JNK signaling pathway by targeting MAP3K1 in non-small cell lung cancer cells. Oncol Lett 2017; 14:6923-6928. [PMID: 29344125 DOI: 10.3892/ol.2017.7092] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/03/2017] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is one of the most common types of tumors and the leading cause of cancer-associated mortality in the world. Additionally, non-small cell lung cancer (NSCLC) accounts for ~80% of all lung cancer cases. Epithelial-mesenchymal transition (EMT) is an important cell biological process, which is associated with cancer migration, metastasis, asthma and fibrosis in the lung. In the present study, it was revealed that miR-145-5p was able to suppress EMT by inactivating the c-Jun N-terminal kinase (JNK) signaling pathway in NSCLC cells. Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) was predicted and confirmed to be a novel target of miR-145-5p. Overexpression of MAP3K1 was able to reverse the inhibition of EMT induced by miR-145-5p via the JNK signaling pathway. Overall, the results revealed that miR-145-5p inhibits EMT via the JNK signaling pathway by targeting MAP3K1 in NSCLC cells.
Collapse
Affiliation(s)
- Yongmei Chang
- Department of Respiratory Medicine, Guangdong No. 2 Provincial People Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Wensen Yan
- Department of Respiratory Medicine, Guangdong No. 2 Provincial People Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Cong Sun
- Department of Respiratory Medicine, Guangdong No. 2 Provincial People Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Qingfeng Liu
- Department of Respiratory Medicine, Guangdong No. 2 Provincial People Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Jun Wang
- Department of Respiratory Medicine, Guangdong No. 2 Provincial People Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Mingzhi Wang
- Department of Cardiothoracic Surgery, Guangdong No. 2 Provincial People Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
132
|
Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochem J 2017; 474:3269-3306. [PMID: 28931648 DOI: 10.1042/bcj20160782] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
The concept of epithelial-mesenchymal plasticity (EMP), which describes the dynamic flux within the spectrum of phenotypic states that invasive carcinoma cells may reside, is being increasingly recognised for its role in cancer progression and therapy resistance. The myriad of events that are able to induce EMP, as well as the more recently characterised control loops, results in dynamic transitions of cancerous epithelial cells to more mesenchymal-like phenotypes through an epithelial-mesenchymal transition (EMT), as well as the reverse transition from mesenchymal phenotypes to an epithelial one. The significance of EMP, in its ability to drive local invasion, generate cancer stem cells and facilitate metastasis by the dissemination of circulating tumour cells (CTCs), highlights its importance as a targetable programme to combat cancer morbidity and mortality. The focus of this review is to consolidate the existing knowledge on the strategies currently in development to combat cancer progression via inhibition of specific facets of EMP. The prevalence of relapse due to therapy resistance and metastatic propensity that EMP endows should be considered when designing therapy regimes, and such therapies should synergise with existing chemotherapeutics to benefit efficacy. To further improve upon EMP-targeted therapies, it is imperative to devise monitoring strategies to assess the impact of such treatments on EMP-related phenomenon such as CTC burden, chemosensitivity/-resistance and micrometastasis in patients.
Collapse
|
133
|
Novel chimeric transcript RRM2-c2orf48 promotes metastasis in nasopharyngeal carcinoma. Cell Death Dis 2017; 8:e3047. [PMID: 28906488 PMCID: PMC5636969 DOI: 10.1038/cddis.2017.402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022]
Abstract
Recently, chimeric transcripts have been found to be associated with the pathogenesis and poor prognosis of malignant tumors. Through our preliminary experiment, a novel chimeric transcript called chimeric transcript RRM2-c2orf48 was detected in C666-1, a classical cell line of human nasopharyngeal carcinoma (NPC). Therefore, the objective of this study was to demonstrate the existence and expression of novel chimeric transcript RRM2-c2orf48 and to explore the main functions and mechanisms of RRM2-c2orf48 in NPC. In this study, the expression of RRM2-c2orf48 was evaluated in NPC cells and specimens. Effects of RRM2-c2orf48 on migration and invasive capacities were detected invivo and vitro. Moreover, ways in which RRM2-c2orf48 increases the invasive capacities of NPC were explored. As a result, the presence of novel chimeric transcript RRM2-c2orf48 was confirmed in C666-1 by RT-PCR and sequencing, and it was a read-through between RRM2 and c2orf48 through the transcription of interchromosome. Higher expressions of novel RRM2-c2orf48 were detected in NPC cell lines and NPC tissue specimens relative to the controls and its expression was be statistically relevant to TNM staging. High level of RRM2-c2orf48 could increase the migration and invasive capacities of NPC cells, potentially as a result of NPC cell epithelial–mesenchymal transition. RRM2-c2orf48 could also enhance resistance of chemotherapy. In vivo, RRM2-c2orf48 could enhance lung and lymph node metastasis in nude mice. These results demonstrate that high levels of RRM2-c2orf48 expression may be a useful predictor of NPC patients of metastatic potency, presenting potential implications for NPC diagnosis and therapy.
Collapse
|
134
|
Zhao L, Zhang P, Su XJ, Zhang B. The ubiquitin ligase TRIM56 inhibits ovarian cancer progression by targeting vimentin. J Cell Physiol 2017; 233:2420-2425. [PMID: 28771721 DOI: 10.1002/jcp.26114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023]
Abstract
Tumor metastasis is responsible for 90% of all cancer-related deaths. Epithelial to mesenchymal transition (EMT) is an important prerequisite for tumor metastasis. One of the important mediators of EMT and cancer progression in ovarian cancer is the vimentin protein. The objective of the current study was to evaluate the molecular mechanism that regulates vimentin expression in ovarian cancer cells. Vimentin was robustly induced in the ovarian cancer cell line SKOV-3 compared to normal ovarian epithelial cell line Moody and the induction was not due to transcriptional upregulation. Treatment with the proteasomal inhibitor MG-132 revealed that vimentin is actively degraded by the proteasome in Moody cells and stabilized in the SKOV-3 cell line. Mass spectrometric analysis of vimentin immunoprecipitate of MG-132 treated Moody cells revealed candidate ubiquitin ligases associated with vimentin. RNAi mediated silencing of the candidate ubiquitin in Moody cells and concurrent overexpression of the candidate ubiquitin ligases in SKOV-3 confirmed that TRIM56 is the ubiquitin ligase that is degrading vimentin in Moody cells. RNAi mediated silencing of TRIM56 in Moody cells and ectopic overexpression of TRIM56 in SKOV-3 cells, respectively, significantly up- and down-regulated in vitro migration and invasion in these cells. Analysis of TRIM56 transcript level and vimentin protein expression in 25 patients with ovarian carcinoma confirmed an inverse correlation between TRIM56 and vimentin expression. Cumulatively, our data reveals for the first time a novel post-translational regulatory mechanism of regulating vimentin expression, EMT, and metastatic progression in ovarian cancer cells.
Collapse
Affiliation(s)
- Lei Zhao
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang, China
| | - Ping Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang, China
| | - Xiao-Jie Su
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang, China
| | - Bing Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang, China
| |
Collapse
|
135
|
Chen Y, Zhao Z, Chen Y, Lv Z, Ding X, Wang R, Xiao H, Hou C, Shen B, Feng J, Guo R, Li Y, Peng H, Han G, Chen G. An epithelial-to-mesenchymal transition-inducing potential of granulocyte macrophage colony-stimulating factor in colon cancer. Sci Rep 2017; 7:8265. [PMID: 28811578 PMCID: PMC5557751 DOI: 10.1038/s41598-017-08047-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/19/2017] [Indexed: 11/18/2022] Open
Abstract
Growing evidence shows that granulocyte macrophage colony-stimulating factor (GM-CSF) has progression-promoting potentials in certain solid tumors, which is largely attributed to the immunomodulatory function of this cytokine in tumor niches. However, little is known about the effect of GM-CSF on cancer cells. Herein, we show that chronic exposure of colon cancer cells to GM-CSF, which harbor its receptor, leads to occurrence of epithelial to mesenchymal transition (EMT), in time and dose-dependent manners. These GM-CSF-educated cancer cells exhibit enhanced ability of motility in vitro and in vivo. Furthermore, GM-CSF stimulation renders colon cancer cells more resistant to cytotoxic agents. Mechanistic investigation reveals that MAPK/ERK signaling and EMT-inducing transcription factor ZEB1 are critical to mediate these effects of GM-CSF. In specimen of CRC patients, high-level expression of GM-CSF positively correlates with local metastases in lymph nodes. Moreover, the co-expression of GM-CSF and its receptors as well as phosphorylated ERK1/2 are observed. Thus, our study for the first time identifies a progression-promoting function of GM-CSF in colon cancer by inducing EMT.
Collapse
Affiliation(s)
- Yaqiong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.,College of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Zhi Zhao
- Department of Pathology, Yihe Hospital, Henan University, Zhengzhou, 450000, P.R. China
| | - Yu Chen
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P.R. China
| | - Zhonglin Lv
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Xin Ding
- Graduate School, Anhui Medical University, Hefei, 230032, P.R. China
| | - Renxi Wang
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - He Xiao
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Chunmei Hou
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Beifen Shen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Jiannan Feng
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Renfeng Guo
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yan Li
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China
| | - Hui Peng
- College of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China. .,Department of Environment and Pharmacy, Institute of Health and Environmental Medicine, Tianjin, 300050, P.R. China.
| | - Gencheng Han
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| | - Guojiang Chen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, P.R. China.
| |
Collapse
|
136
|
Shi J, Wang Y, Jia Z, Gao Y, Zhao C, Yao Y. Curcumin inhibits bladder cancer progression via regulation of β-catenin expression. Tumour Biol 2017; 39:1010428317702548. [PMID: 28705118 DOI: 10.1177/1010428317702548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer has a considerable morbidity and mortality impact with particularly poor prognosis. Curcumin has been recently noticed as a polyphenolic compound separated from turmeric to regulate tumor progression. However, the precise molecular mechanism by which curcumin inhibits the invasion and metastasis of bladder cancer cells is not fully elucidated. In this study, we investigate the effect of curcumin on the bladder cancer as well as possible mechanisms of curcumin. The expression of β-catenin was detected by quantitative real-time polymerase chain reaction and immunohistochemical analysis in a series of bladder cancer tissues. In addition, bladder cancer cell lines T24 and 5637 cells were treated with different concentrations of curcumin. The cytotoxic effect of curcumin on cell proliferation of T24 and 5637 cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The migration and invasion capacity of T24 and 5637 cells were measured by transwell assay. The effects of curcumin on expression levels of β-catenin and epithelial-mesenchymal transition marker were determined by western blotting. The β-catenin expression was significantly upregulated in bladder cancer tissues when compared with corresponding peri-tumor tissues. Furthermore, curcumin inhibited the cell proliferation of T24 and 5637 cells, and curcumin reduced the migration and invasive ability of T24 and 5637 cells via regulating β-catenin expression and reversing epithelial-mesenchymal transition. Curcumin may be a new drug for bladder cancer.
Collapse
Affiliation(s)
- Jing Shi
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yunpeng Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Zhuomin Jia
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yu Gao
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Chaofei Zhao
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yuanxin Yao
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
137
|
Hernandez JL, Davda D, Majmudar JD, Won SJ, Prakash A, Choi AI, Martin BR. Correlated S-palmitoylation profiling of Snail-induced epithelial to mesenchymal transition. MOLECULAR BIOSYSTEMS 2017; 12:1799-808. [PMID: 27030425 DOI: 10.1039/c6mb00019c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epithelial cells form spatially-organized adhesion complexes that establish polarity gradients, regulate cell proliferation, and direct wound healing. As cells accumulate oncogenic mutations, these key tumor suppression mechanisms are disrupted, eliminating many adhesion complexes and bypassing contact inhibition. The transcription factor Snail is often expressed in malignant cancers, where it promotes transcriptional reprogramming to drive epithelial-mesenchymal transition (EMT) and establishes a more invasive state. S-Palmitoylation describes the fatty-acyl post-translational modification of cysteine residues in proteins, and is required for membrane anchoring, trafficking, localization and function of hundreds of proteins involved in cell growth, polarity, and signaling. Since Snail-expression disrupts apico-basolateral cell polarity, we asked if Snail-dependent transformation induces proteome-wide changes in S-palmitoylation. MCF10A breast cancer cells were retrovirally transduced with Snail and correlated proteome-wide changes in protein abundance and S-palmitoylation were profiled by using stable isotope labeling in cell culture with amino acid (SILAC) mass spectrometry. This analysis identified increased levels of proteins involved in migration, glycolysis, and cell junction remodeling, and decreased levels of proteins involved in cell adhesion. Overall, protein S-palmitoylation is highly correlated with protein abundance, yet for a subset of proteins, this correlation is uncoupled. These findings suggest that Snail-overexpression affects the S-palmitoylation cycle of some proteins, which may participate in cell polarity and tumor suppression.
Collapse
Affiliation(s)
- Jeannie L Hernandez
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA.
| | - Dahvid Davda
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA. and Program in Chemical Biology, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | - Jaimeen D Majmudar
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA.
| | - Sang Joon Won
- Program in Chemical Biology, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | - Ashesh Prakash
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA.
| | - Alexandria I Choi
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA.
| | - Brent R Martin
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA. and Program in Chemical Biology, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
138
|
Frisch SM, Farris JC, Pifer PM. Roles of Grainyhead-like transcription factors in cancer. Oncogene 2017; 36:6067-6073. [PMID: 28714958 DOI: 10.1038/onc.2017.178] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
The mammalian homologs of the D. melanogaster Grainyhead gene, Grainyhead-like 1-3 (GRHL1, GRHL2 and GRHL3), are transcription factors implicated in wound healing, tubulogenesis and cancer. Their induced target genes encode diverse epithelial cell adhesion molecules, while mesenchymal genes involved in cell migration and invasion are repressed. Moreover, GRHL2 suppresses the oncogenic epithelial-mesencyhmal transition, thereby acting as a tumor suppressor. Mechanisms, some involving established cancer-related signaling/transcription factor pathways (for example, Wnt, TGF-β, mir200, ZEB1, OVOL2, p63 and p300) and translational implications of the Grainyhead proteins in cancer are discussed in this review article.
Collapse
Affiliation(s)
- S M Frisch
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - J C Farris
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - P M Pifer
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
139
|
Hu WW, Chen PC, Chen JM, Wu YM, Liu PY, Lu CH, Lin YF, Tang CH, Chao CC. Periostin promotes epithelial-mesenchymal transition via the MAPK/miR-381 axis in lung cancer. Oncotarget 2017; 8:62248-62260. [PMID: 28977942 PMCID: PMC5617502 DOI: 10.18632/oncotarget.19273] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/29/2017] [Indexed: 01/28/2023] Open
Abstract
Periostin (POSTN, PN, or osteoblast-specific factor OSF-2) is a multifunctional cytokine that signals between the cell and the extracellular matrix. Periostin plays an important role in tumor development and is involved in carcinoma cell epithelial-mesenchymal transition (EMT), whereby mature epithelial cells undergo phenotypic morphological changes and become invasive, motile cells. Here, we discuss the molecular mechanisms involved in periostin-induced promotion of EMT in lung cancer cells. Online TCGA datasets demonstrate the prognostic relevance of periostin in lung cancer; a higher periostin level correlates with poor overall survival. Similarly, our IHC results show that high periostin expression is positively correlated with the EMT markers Snail and Twist, as well as stage of lung cancer. We found that recombinant periostin induces the EMT phenotype in lung cancer cells through the p38/ERK pathway, while pretreatment with chemical inhibitors prevented periostin-induced EMT induction. Moreover, we found that periostin regulates EMT by repressing microRNA-381 (miR-381) expression, which targets both Snail and Twist. Using the miR-381 mimic, we dramatically reversed periostin-induced Snail and Twist expression. Furthermore, periostin knockdown dramatically affected EMT markers and cell migration potential. The role of periostin in lung cancer progression is elucidated by the in vivo mouse model. Our findings indicate that changes in periostin expression in lung cancer may serve as a therapeutic target for the treatment of lung cancer metastasis.
Collapse
Affiliation(s)
- Wei-Wei Hu
- Department of Thoracic Surgery, Dongyang People's Hospital, Dongyang, China
| | - Po-Chun Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Jun-Ming Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yue-Ming Wu
- Department of Thoracic Surgery, Dongyang People's Hospital, Dongyang, China
| | - Po-Yi Liu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Department of Thoracic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Hao Lu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yu-Feng Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Chia Chao
- Department of Respiratory Therapy, Fu-Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
140
|
Xu M, Qin S, Cao F, Ding S, Li M. MicroRNA-379 inhibits metastasis and epithelial-mesenchymal transition via targeting FAK/AKT signaling in gastric cancer. Int J Oncol 2017; 51:867-876. [DOI: 10.3892/ijo.2017.4072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/04/2017] [Indexed: 11/05/2022] Open
|
141
|
Huang R, Zong X. Aberrant cancer metabolism in epithelial–mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Crit Rev Oncol Hematol 2017; 115:13-22. [DOI: 10.1016/j.critrevonc.2017.04.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 01/27/2023] Open
|
142
|
Kim JH, Shim JW, Eum DY, Kim SD, Choi SH, Yang K, Heo K, Park MT. Downregulation of UHRF1 increases tumor malignancy by activating the CXCR4/AKT-JNK/IL-6/Snail signaling axis in hepatocellular carcinoma cells. Sci Rep 2017; 7:2798. [PMID: 28584306 PMCID: PMC5459852 DOI: 10.1038/s41598-017-02935-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
UHRF1 (ubiquitin-like, with PHD and RING finger domains 1) plays a crucial role in DNA methylation, chromatin remodeling and gene expression and is aberrantly upregulated in various types of human cancers. However, the precise role of UHRF1 in cancer remains controversial. In this study, we observed that hypoxia-induced downregulation of UHRF1 contributes to the induction of the epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma cells. By negatively modulating UHRF1 expression, we further showed that UHRF1 deficiency in itself is sufficient to increase the migratory and invasive properties of cells via inducing EMT, increasing the tumorigenic capacity of cells and leading to the expansion of cancer stem-like cells. Epigenetic changes caused by UHRF1 deficiency triggered the upregulation of CXCR4, thereby activating AKT and JNK to increase the expression and secretion of IL-6. In addition, IL-6 readily activated the JAK/STAT3/Snail signaling axis, which subsequently contributed to UHRF1 deficiency-induced EMT. Our results collectively demonstrate that UHRF1 deficiency may play a pivotal role in the malignant alteration of cancer cells.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Jae-Woong Shim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Da-Young Eum
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Sung Dae Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea.
| | - Moon-Taek Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea.
| |
Collapse
|
143
|
Feldkoren B, Hutchinson R, Rapoport Y, Mahajan A, Margulis V. Integrin signaling potentiates transforming growth factor-beta 1 (TGF-β1) dependent down-regulation of E-Cadherin expression – Important implications for epithelial to mesenchymal transition (EMT) in renal cell carcinoma. Exp Cell Res 2017; 355:57-66. [DOI: 10.1016/j.yexcr.2017.03.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
|
144
|
Lu C, Shan Z, Hong J, Yang L. MicroRNA-92a promotes epithelial-mesenchymal transition through activation of PTEN/PI3K/AKT signaling pathway in non-small cell lung cancer metastasis. Int J Oncol 2017; 51:235-244. [DOI: 10.3892/ijo.2017.3999] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/18/2017] [Indexed: 11/05/2022] Open
|
145
|
Hu B, Xie S, Hu Y, Chen W, Chen X, Zheng Y, Wu X. Hepatitis C virus NS4B protein induces epithelial-mesenchymal transition by upregulation of Snail. Virol J 2017; 14:83. [PMID: 28431572 PMCID: PMC5399819 DOI: 10.1186/s12985-017-0737-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Chronic hepatitis C virus (HCV) infection is an important cause of hepatocellular carcinoma (HCC). Epithelial to mesenchymal transition (EMT) is a key process associated with tumor metastasis and poor prognosis. HCV infection, HCV core and NS5A protein could induce EMT process, but the role of NS4B on EMT remains poorly understood. Methods We overexpressed HCV NS4B protein in HepG2 cells or Huh7.5.1 cells infected by HCVcc, the E-cadherin expression, N-cadherin expression and the EMT-associated transcriptional factor Snail were determined. The migration and invasion capabilities of the transfected cells were evaluated using wound-healing assay. Additionally, we used Snail siRNA interference to confirm the relation of HCV NS4B and Snail on EMT promotion. Results HCV NS4B increased the expression of EMT related markers and promoted cell migration and invasion. Snail knock-down almost completely eliminated the function of NS4B protein in EMT changes and reversed cell migration capacity to lower level. HCV NS4B protein could reduce the expression of Scribble and Hippo signal pathway were subsequently inactivated, resulting in the activation of PI3K/AKT pathway, which may be the reason for the up-regulation of Snail. Conclusions This study demonstrates that HCV NS4B protein induces EMT progression via the upregulation of Snail in HCC, which may be a novel underlying mechanism for HCV-associated HCC development, invasion and metastasis.
Collapse
Affiliation(s)
- Bicheng Hu
- Institute of Virology, School of Basic Medical Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shenggao Xie
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Yuqian Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Wen Chen
- Institute of Virology, School of Basic Medical Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaofan Chen
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Yi Zheng
- The Central Laboratory, Guangming New District People's Hospital, Shenzhen, 518106, Guangdong, China.
| | - Xinxing Wu
- Institute of Virology, School of Basic Medical Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
146
|
Zhao Z, Wang S, Lin Y, Miao Y, Zeng Y, Nie Y, Guo P, Jiang G, Wu J. Epithelial-mesenchymal transition in cancer: Role of the IL-8/IL-8R axis. Oncol Lett 2017; 13:4577-4584. [PMID: 28599458 DOI: 10.3892/ol.2017.6034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that is associated with cancer metastasis and invasion. In cancer, EMT promotes cell motility, invasion and distant metastasis. Interleukin (IL)-8 is highly expressed in tumors and may induce EMT. The IL-8/IL-8R axis has a vital role in EMT in carcinoma, which is regulated by several signaling pathways, including the transforming growth factor β-spleen associated tyrosine kinase/Src-AKT/extracellular signal-regulated kinase, p38/Jun N-terminal kinase-activating transcription factor-2, phosphoinositide 3-kinase/AKT, nuclear factor-κB and Wnt signaling pathways. Blocking the IL-8/IL-8R signaling pathway may be a novel strategy to reduce metastasis and improve patient survival rates. This review will cover IL-8-IL-8R signaling pathway in tumor epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhiwei Zhao
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shichao Wang
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, Cancer Centre Karolinska, SE-171 76 Stockholm, Sweden
| | - Yali Miao
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ye Zeng
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongmei Nie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Peng Guo
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guangyao Jiang
- Outpatient Building, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
147
|
Wang J, Wang Y, Sun D, Ren F, Pang S, Xu S. CUTL1 induces epithelial-mesenchymal transition in non-small cell lung cancer. Oncol Rep 2017; 37:3068-3074. [PMID: 28405678 DOI: 10.3892/or.2017.5571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/07/2017] [Indexed: 11/06/2022] Open
Abstract
The homeobox transcription factor CUTL1 has been associated with cellular proliferation and cell cycle progression, and CUTL1 functions as an oncogene. The aim of the present study was to investigate whether CUTL1 participates in epithelial-mesenchymal transition (EMT). The expression levels of CUTL1, E-cadherin, N-cadherin and Snail were determined by immunohistochemistry assay, immunofluorescence assay or real-time quantitative reverse transcription PCR. Their roles in non-small cell lung cancer (NSCLC) were assessed by functional analyses. Protein expression was detected by western blot analysis. The CUTL1 expression levels are higher in non-small cell lung cancer (NSCLC) tissues. High CUTL1 expression in NSCLC is associated with the mesenchymal-like phenotype. Mechanistically, CUTL1 upregulates transforming growth factor β receptor I (TβR-I) expression, and the TβR-I inhibitor SB431542 abolishes EMT elicited by ectopic CUTL1 expression. Transforming growth factor β (TGF-β) signaling is essential for CUTL1-induced EMT in NSCLC cells. CUTL1 is downstream of TGF-β signaling and CUTL1 is involved in the expression of the TβR-I. This study indicates that CUTL1 may be a potential target for anti-lung cancer therapy.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yanbo Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Dawei Sun
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Fenghai Ren
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Sainan Pang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Shidong Xu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
148
|
Malek R, Wang H, Taparra K, Tran PT. Therapeutic Targeting of Epithelial Plasticity Programs: Focus on the Epithelial-Mesenchymal Transition. Cells Tissues Organs 2017; 203:114-127. [PMID: 28214899 DOI: 10.1159/000447238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 12/14/2022] Open
Abstract
Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into 3 groups: (1) extracellular inducers of EMT, (2) the transcription factors that orchestrate the EMT transcriptome, and (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT, such as the signal transduction pathways TGFβ, EFGR, and Axl-Gas6. We emphasize in more detail pathways that we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways, and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only 1 EMT-related process will be unsuccessful or only transiently successful. We suggest that with greater understanding of epithelial plasticity regulation, such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes.
Collapse
Affiliation(s)
- Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
149
|
Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, Singh P, Chi YI, Wang C, Dong C, Li W, Tao M, Napier D, Shi Q, Deng J, Mark Evers B, Zhou BP. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun 2017; 8:14228. [PMID: 28198361 PMCID: PMC5316870 DOI: 10.1038/ncomms14228] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/30/2016] [Indexed: 12/27/2022] Open
Abstract
Snail1, a key transcription factor of epithelial-mesenchymal transition (EMT), is subjected to ubiquitination and degradation, but the mechanism by which Snail1 is stabilized in tumours remains unclear. We identify Dub3 as a bona fide Snail1 deubiquitinase, which interacts with and stabilizes Snail1. Dub3 is overexpressed in breast cancer; knockdown of Dub3 resulted in Snail1 destabilization, suppressed EMT and decreased tumour cell migration, invasion, and metastasis. These effects are rescued by ectopic Snail1 expression. IL-6 also stabilizes Snail1 by inducing Dub3 expression, the specific inhibitor WP1130 binds to Dub3 and inhibits the Dub3-mediating Snail1 stabilization in vitro and in vivo. Our study reveals a critical Dub3-Snail1 signalling axis in EMT and metastasis, and provides an effective therapeutic approach against breast cancer.
Collapse
Affiliation(s)
- Yadi Wu
- Department of Pharmacology & Nutritional Sciences, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Yu Wang
- Department of Pharmacology & Nutritional Sciences, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Yiwei Lin
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Yajuan Liu
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Yifan Wang
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Jianhang Jia
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Puja Singh
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Young-In Chi
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Chi Wang
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Biostatistics, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215006, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215006, China
| | - Dana Napier
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Pathology, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Qiuying Shi
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Pathology, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - B Mark Evers
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Surgery, the University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Binhua P. Zhou
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
150
|
Rodríguez-Mateo C, Torres B, Gutiérrez G, Pintor-Toro JA. Downregulation of Lnc-Spry1 mediates TGF-β-induced epithelial-mesenchymal transition by transcriptional and posttranscriptional regulatory mechanisms. Cell Death Differ 2017; 24:785-797. [PMID: 28186499 DOI: 10.1038/cdd.2017.9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/16/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of regulatory genes that participate in a wide range of biological processes, including proliferation, differentiation and development, as well as in a broad spectrum of diseases. Although the role of lncRNAs in TGF-β-induced epithelial-to-mesenchymal transition (EMT) has been well established, little is known about the role of lncRNAs as immediate-early regulators of EMT. Here lnc-Spry1 is identified as an immediate-early regulator of EMT that is downregulated by TGF-β. It is also found that knockdown of lnc-Spry1 promotes a mesenchymal-like phenotype and results in increased cell migration and invasion. In addition, it is shown that lnc-Spry1 depletion preferentially affects the expression of TGF-β-regulated gene targets. Moreover, lnc-Spry1 associates with U2AF65 splicing factor, suggesting a role in alternative splicing. Depletion of lnc-Spry1 induces, as TGF-β, isoform switching of fibroblast growth factor receptors, resulting in FGF-2-sensitive cells. Taken together, these results show that lnc-Spry1 could act as an early mediator of TGF-β signaling and reveal different roles for a lncRNA in modulating transcriptional and posttranscriptional gene expression.
Collapse
Affiliation(s)
- Cristina Rodríguez-Mateo
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), Avda Américo Vespucio s/n, Seville 41092, Spain
| | - Belén Torres
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), Avda Américo Vespucio s/n, Seville 41092, Spain
| | | | - José A Pintor-Toro
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), Avda Américo Vespucio s/n, Seville 41092, Spain
| |
Collapse
|