101
|
Adikesavalu H, Gopalaswamy R, Kumar A, Ranganathan UD, Shanmugam S. Autophagy Induction as a Host-Directed Therapeutic Strategy against Mycobacterium tuberculosis Infection. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:522. [PMID: 34070995 PMCID: PMC8224563 DOI: 10.3390/medicina57060522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB), a bacterialinfectious disease caused by Mycobacterium tuberculosis (M.tb), which causes significant mortality in humans worldwide. Current treatment regimen involve the administration of multiple antibiotics over the course of several months that contributes to patient non-compliance leading to relapse and the development of drug-resistant M.tb (MDR and XDR) strains. Together, these facts highlight the need for the development of shorter TB treatment regimens. Host-directed therapy (HDT) is a new and emerging concept that aims to augment host immune response using drugs/compounds with or without adjunct antibiotics against M.tb infection. Autophagy is a natural catabolic mechanism of the cell that involves delivering the cytosolic constituents to the lysosomes for degradation and recycling the components; thereby maintaining the cellular and energy homoeostasis of a cell. However, over the past decade, an improved understanding of the role of autophagy in immunity has led to autophagy activation by using drugs or agents. This autophagy manipulation may represent a promising host-directed therapeutic strategy for human TB. However, current clinical knowledge on implementing autophagy activation by drugs or agents, as a stand-alone HDT or as an adjunct with antibiotics to treat human TB is insufficient. In recent years, many reports on high-throughput drug screening and measurement of autophagic flux by fluorescence, high-content microscopy, flow cytometry, microplate reader and immunoblotting have been published for the discovery of drugs that modulate autophagy. In this review, we discuss the commonly used chemical screening approaches in mammalian cells for the discovery of autophagy activating drugs against M.tbinfection. We also summarize the various autophagy-activating agents, both pre-clinical candidates and compounds approved for advanced clinical investigation during mycobacterial infection. Finally, we discuss the opportunities and challenges in using autophagy activation as HDT strategy to improve TB outcome and shorten treatment regimen.
Collapse
Affiliation(s)
- Harresh Adikesavalu
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| | - Radha Gopalaswamy
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| | - Ashok Kumar
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| | - Uma Devi Ranganathan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India;
| | - Sivakumar Shanmugam
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| |
Collapse
|
102
|
Parveen S, Lun S, Urbanowski ME, Cardin M, Shen J, Murphy JR, Bishai WR. Effective host-directed therapy for tuberculosis by targeted depletion of myeloid-derived suppressor cells and related cells using a diphtheria toxin-based fusion protein. J Infect Dis 2021; 224:1962-1972. [PMID: 33955457 DOI: 10.1093/infdis/jiab235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are present in elevated numbers in TB patients and have been found to be permissive for Mycobacterium tuberculosis (Mtb) proliferation. To determine whether depletion of MDSCs may improve host control of TB, we used a novel diphtheria toxin-based fusion protein known as DABIL-4 that targets and depletes IL-4-receptor positive cells. We show that DABIL-4 depletes both PMN-MDSCs and M-MDSC, increases IFNγ + T-cells, and reduces the lung bacillary burden in the mouse TB model. These results indicate that MDSC-depleting therapies targeting the IL-4 receptor are beneficial in TB and offer an avenue towards host-directed TB therapy.
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Shichun Lun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Michael E Urbanowski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Mitchell Cardin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Jessica Shen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - John R Murphy
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - William R Bishai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| |
Collapse
|
103
|
Hayford FEA, Ozturk M, Dolman RC, Blaauw R, Nienaber A, Loots DT, Brombacher F, Smuts CM, Parihar SP, Malan L. Longer-Term Omega-3 LCPUFA More Effective Adjunct Therapy for Tuberculosis Than Ibuprofen in a C3HeB/FeJ Tuberculosis Mouse Model. Front Immunol 2021; 12:659943. [PMID: 33995381 PMCID: PMC8113969 DOI: 10.3389/fimmu.2021.659943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Advancement in the understanding of inflammation regulation during tuberculosis (TB) treatment has led to novel therapeutic approaches being proposed. The use of immune mediators like anti-inflammatory and pro-resolving molecules for such, merits attention. Drug repurposing is a widely used strategy that seeks to identify new targets to treat or manage diseases. The widely explored nonsteroidal anti-inflammatory drug (NSAID) ibuprofen and a more recently explored pharmaconutrition therapy using omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), have the potential to modulate the immune system and are thus considered potential repurposed drugs in this context. These approaches may be beneficial as supportive therapy to the already existing treatment regimen to improve clinical outcomes. Here, we applied adjunct ibuprofen and n-3 LCPUFA therapy, respectively, with standard anti-TB treatment, in a C3HeB/FeJ murine model of TB. Bacterial loads, lung pathology, lung cytokines/chemokines and lung lipid mediators were measured as outcomes. Lung bacterial load on day 14 post-treatment (PT) was lower in the n-3 LCPUFA, compared to the ibuprofen group (p = 0.039), but was higher in the ibuprofen group than the treated control group (p = 0.0315). Treated control and ibuprofen groups had more free alveolar space initially as compared to the n-3 LCPUFA group (4 days PT, p= 0.0114 and p= 0.002, respectively); however, significantly more alveolar space was present in the n-3 LCPUFA group as compared to the ibuprofen group by end of treatment (14 days PT, p = 0.035). Interleukin 6 (IL-6) was lower in the ibuprofen group as compared to the treated control, EPA/DHA and untreated control groups at 4 days PT (p = 0.019, p = 0.019 and p = 0.002, respectively). Importantly, pro-resolving EPA derived 9-HEPE, 11-HEPE, 12-HEPE and 18-HEPE lipid mediators (LMs) were significantly higher in the EPA/DHA group as compared to the ibuprofen and treated control groups. This suggests that n-3 LCPUFAs do improve pro-resolving and anti-inflammatory properties in TB, and it may be safe and effective to co-administer as adjunct therapy with standard TB treatment, particularly longer-term. Also, our results show host benefits upon short-term co-administration of ibuprofen, but not throughout the entire TB treatment course.
Collapse
Affiliation(s)
- Frank E. A. Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Robin C. Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Renee Blaauw
- Division of Human Nutrition, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Laboratory of Infectious Disease Metabolomics, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
104
|
Krug S, Parveen S, Bishai WR. Host-Directed Therapies: Modulating Inflammation to Treat Tuberculosis. Front Immunol 2021; 12:660916. [PMID: 33953722 PMCID: PMC8089478 DOI: 10.3389/fimmu.2021.660916] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Following infection with Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), most human hosts are able to contain the infection and avoid progression to active TB disease through expression of a balanced, homeostatic immune response. Proinflammatory mechanisms aiming to kill, slow and sequester the pathogen are key to a successful host response. However, an excessive or inappropriate pro-inflammatory response may lead to granuloma enlargement and tissue damage, which may prolong the TB treatment duration and permanently diminish the lung function of TB survivors. The host also expresses certain anti-inflammatory mediators which may play either beneficial or detrimental roles depending on the timing of their deployment. The balance between the timing and expression levels of pro- and anti-inflammatory responses plays an important role in the fate of infection. Interestingly, M. tuberculosis appears to manipulate both sides of the human immune response to remodel the host environment for its own benefit. Consequently, therapies which modulate either end of this spectrum of immune responses at the appropriate time may have the potential to improve the treatment of TB or to reduce the formation of permanent lung damage after microbiological cure. Here, we highlight host-directed TB therapies targeting pro- or anti-inflammatory processes that have been evaluated in pre-clinical models. The repurposing of already available drugs known to modulate these responses may improve the future of TB therapy.
Collapse
Affiliation(s)
| | | | - William R. Bishai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
105
|
Chauhan A, Kumar M, Kumar A, Kanchan K. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life Sci 2021; 274:119301. [PMID: 33675895 DOI: 10.1016/j.lfs.2021.119301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Tuberculosis is one of the deadliest infectious diseases existing in the world since ancient times and still possesses serious threat across the globe. Each year the number of cases increases due to high drug resistance shown by Mycobacterium tuberculosis (Mtb). Available antimycobacterial drugs have been classified as First line, Second line and Third line antibiotics depending on the time of their discoveries and their effectiveness in the treatment. These antibiotics have a broad range of targets ranging from cell wall to metabolic processes and their non-judicious and uncontrolled usage in the treatment for years has created a significant problem called multi-drug resistant (MDR) tuberculosis. In this review, we have summarized the mechanism of action of all the classified antibiotics currently in use along with the resistance mechanisms acquired by Mtb. We have focused on the new drug candidates/repurposed drugs, and drug in combinations, which are in clinical trials for either treating the MDR tuberculosis more effectively or involved in reducing the time required for the chemotherapy of drug sensitive TB. This information is not discussed very adequately on a single platform. Additionally, we have discussed the recent technologies that are being used to discover novel resistance mechanisms acquired by Mtb and for exploring novel drugs. The story of intrinsic resistance mechanisms and evolution in Mtb is far from complete. Therefore, we have also discussed intrinsic resistance mechanisms of Mtb and their evolution with time, emphasizing the hope for the development of novel antimycobacterial drugs for effective therapy of tuberculosis.
Collapse
Affiliation(s)
- Aditi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India
| | - Manoj Kumar
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Awanish Kumar
- Department of Bio Technology, National Institute of Technology, Raipur, India
| | - Kajal Kanchan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
106
|
Adeleke OA, Fisher L, Moore IN, Nardone GA, Sher A. A Long-Acting Thermoresponsive Injectable Formulation of Tin Protoporphyrin Sustains Antitubercular Efficacy in a Murine Infection Model. ACS Pharmacol Transl Sci 2021; 4:276-287. [PMID: 33615179 PMCID: PMC7887855 DOI: 10.1021/acsptsci.0c00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 11/29/2022]
Abstract
Tuberculosis is the leading cause of death from a single infectious agent, ranking above the human immunodeficiency virus (HIV). Effective treatment using antibiotics is achievable, but poor patient compliance constitutes a major challenge impeding successful pharmacotherapeutic outcomes. This is often due to the prolonged treatment periods required and contributes significantly to the rising incidence of drug resistance, which is a major cause of tuberculosis mortality. Thus, innovative interventions capable of encouraging compliance and decreasing lengthy and frequent dosing are needed. Previously, aqueous tin protoporphyrin IX (SnPPIX), a heme oxygenase-1 inhibitor, administered as multiple daily intraperitoneal (IP) injections, showed considerable antitubercular efficacy and treatment shortening capabilities as a host-directed therapy in infected mice. Since daily IP injection is a clinically impractical administration approach, this proof-of-concept study aims to develop a novel, sustained action injectable formulation of SnPPIX for safe intramuscular (IM) administration. Herein, a SnPPIX-loaded poloxamer-poly(acrylic acid)-based thermoresponsive injectable formulation (SnPPIX-TIF) is designed for effective IM delivery. Results show SnPPIX-TIF is microparticulate, syringeable, injectable, and exhibits complete in vitro/in vivo gelation. Administered once weekly, SnPPIX-TIF significantly prolonged absorption and antimicrobial efficacy in infected mice. In addition, SnPPIX-TIF is well-tolerated in vivo; results from treated animals show no significant histopathologic alterations and were indistinguishable from the untreated control group, thus supporting its biocompatibility and preclinical safety. Overall, the IM delivery of the thermoresponsive injectable formulation safely sustains antitubercular effect in an infected murine model and decreases the number of injections required, signifying a potentially practical approach for future clinical translation.
Collapse
Affiliation(s)
- Oluwatoyin A. Adeleke
- Immunobiology Section, Laboratory of Parasitic
Diseases, National Institute of Allergy and Infectious Diseases, National
Institutes of Health, US Department of Health and Human Services,
Bethesda, Maryland 20892, United States
- Division of Pharmaceutical Sciences, School of
Pharmacy, Sefako Makgatho Health Science University, Pretoria
0208, South Africa
| | - Logan Fisher
- Immunobiology Section, Laboratory of Parasitic
Diseases, National Institute of Allergy and Infectious Diseases, National
Institutes of Health, US Department of Health and Human Services,
Bethesda, Maryland 20892, United States
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section (IDPS),
Comparative Medicine Branch, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, US Department of Health and Human
Services, Rockville, Maryland 20852, United
States
| | - Glenn A. Nardone
- Protein Chemistry Section, Research Technologies
Branch, National Institute of Allergy and Infectious Diseases, National
Institutes of Health, US Department of Health and Human Services,
Rockville, Maryland 20852, United States
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic
Diseases, National Institute of Allergy and Infectious Diseases, National
Institutes of Health, US Department of Health and Human Services,
Bethesda, Maryland 20892, United States
| |
Collapse
|
107
|
Minias A, Żukowska L, Lechowicz E, Gąsior F, Knast A, Podlewska S, Zygała D, Dziadek J. Early Drug Development and Evaluation of Putative Antitubercular Compounds in the -Omics Era. Front Microbiol 2021; 11:618168. [PMID: 33603720 PMCID: PMC7884339 DOI: 10.3389/fmicb.2020.618168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. According to the WHO, the disease is one of the top 10 causes of death of people worldwide. Mycobacterium tuberculosis is an intracellular pathogen with an unusually thick, waxy cell wall and a complex life cycle. These factors, combined with M. tuberculosis ability to enter prolonged periods of latency, make the bacterium very difficult to eradicate. The standard treatment of TB requires 6-20months, depending on the drug susceptibility of the infecting strain. The need to take cocktails of antibiotics to treat tuberculosis effectively and the emergence of drug-resistant strains prompts the need to search for new antitubercular compounds. This review provides a perspective on how modern -omic technologies facilitate the drug discovery process for tuberculosis treatment. We discuss how methods of DNA and RNA sequencing, proteomics, and genetic manipulation of organisms increase our understanding of mechanisms of action of antibiotics and allow the evaluation of drugs. We explore the utility of mathematical modeling and modern computational analysis for the drug discovery process. Finally, we summarize how -omic technologies contribute to our understanding of the emergence of drug resistance.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Lidia Żukowska
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and the Institutes of the Polish Academy of Sciences in Lodz, Lodz, Poland
| | - Ewelina Lechowicz
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Filip Gąsior
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and the Institutes of the Polish Academy of Sciences in Lodz, Lodz, Poland
| | - Agnieszka Knast
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Krakow, Poland
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Daria Zygała
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
108
|
Lee C, Bhakta S. The Prospect of Repurposing Immunomodulatory Drugs for Adjunctive Chemotherapy against Tuberculosis: A Critical Review. Antibiotics (Basel) 2021; 10:91. [PMID: 33477812 PMCID: PMC7832907 DOI: 10.3390/antibiotics10010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 01/16/2023] Open
Abstract
Tuberculosis (TB) remains a global health emergency, with an estimated 2 billion people infected across the world, and 1.4 million people dying to this disease every year. Many aspects of the causative agent, Mycobacterium tuberculosis, make this disease difficult for healthcare and laboratory researchers to fight against, such as unique pathophysiology, latent infection and long and complex treatment regimens, thus causing patient non-compliance with the treatment. Development of new drugs is critical for tackling these problems. Repurposing drugs is a promising strategy for generating an effective drug treatment whilst circumventing many of the challenges of conventional drug development. In this regard, the incorporation of immunomodulatory drugs into the standard regimen to potentiate frontline drugs is found to be highly appealing. Drugs of diverse chemical classes and drug categories are increasingly being evidenced to possess antitubercular activity, both in vitro and in vivo. This article explores and discusses the molecular entities that have shown promise in being repurposed for use in anti-TB adjunctive therapy and aims to provide the most up-to-date picture of their progress.
Collapse
Affiliation(s)
- Chiyun Lee
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK;
- Mycobacteria Research Laboratory, Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
109
|
Immunological Characterization of Proteins Expressed by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions Encoding the ESAT6-like Proteins. Vaccines (Basel) 2021; 9:vaccines9010027. [PMID: 33430286 PMCID: PMC7825740 DOI: 10.3390/vaccines9010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
The 6 kDa early secreted antigen target (ESAT6) is a low molecular weight and highly immunogenic protein of Mycobacterium tuberculosis with relevance in the diagnosis of tuberculosis and subunit vaccine development. The gene encoding the ESAT6 protein is located in the M. tuberculosis-specific genomic region known as the region of difference (RD)1. There are 11 M. tuberculosis-specific RDs absent in all of the vaccine strains of BCG, and three of them (RD1, RD7, and RD9) encode immunodominant proteins. Each of these RDs has genes for a pair of ESAT6-like proteins. The immunological characterizations of all the possible proteins encoded by genes in RD1, RD7 and RD9 have shown that, besides ESAT-6 like proteins, several other proteins are major antigens useful for the development of subunit vaccines to substitute or supplement BCG. Furthermore, some of these proteins may replace the purified protein derivative of M. tuberculosis in the specific diagnosis of tuberculosis by using interferon-gamma release assays and/or tuberculin-type skin tests. At least three subunit vaccine candidates containing ESAT6-like proteins as antigen components of multimeric proteins have shown efficacy in phase 1 and phase II clinical trials in humans.
Collapse
|
110
|
Muefong CN, Owolabi O, Donkor S, Charalambous S, Mendy J, Sey ICM, Bakuli A, Rachow A, Geldmacher C, Sutherland JS. Major Neutrophil-Derived Soluble Mediators Associate With Baseline Lung Pathology and Post-Treatment Recovery in Tuberculosis Patients. Front Immunol 2021; 12:740933. [PMID: 34887853 PMCID: PMC8650718 DOI: 10.3389/fimmu.2021.740933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Background The inflammatory response to Mycobacterium tuberculosis results in variable degrees of lung pathology during active TB (ATB) with central involvement of neutrophils. Little is known about neutrophil-derived mediators and their role in disease severity at baseline and recovery upon TB treatment initiation. Methods 107 adults with confirmed pulmonary TB were categorised based on lung pathology at baseline and following successful therapy using chest X-ray scores (Ralph scores) and GeneXpert bacterial load (Ct values). Plasma, sputum, and antigen-stimulated levels of MMP1, MMP3, MMP8, MMP9, MPO, S100A8/9, IL8, IL10, IL12/23(p40), GM-CSF, IFNγ, and TNF were analysed using multiplex cytokine arrays. Results At baseline, neutrophil counts correlated with plasma levels of MMP8 (rho = 0.45, p = 2.80E-06), S100A8 (rho = 0.52, p = 3.00E-08) and GM-CSF (rho = 0.43, p = 7.90E-06). Levels of MMP8 (p = 3.00E-03), MMP1 (p = 1.40E-02), S100A8 (p = 1.80E-02) and IL12/23(p40) (p = 1.00E-02) were associated with severe lung damage, while sputum MPO levels were directly linked to lung damage (p = 1.80E-03), Mtb load (p = 2.10E-02) and lung recovery (p = 2.40E-02). Six months of TB therapy significantly decreased levels of major neutrophil-derived pro-inflammatory mediators: MMP1 (p = 4.90E-12 and p = 2.20E-07), MMP8 (p = 3.40E-14 and p = 1.30E-05) and MMP9 (p = 1.60E-04 and p = 1.50E-03) in plasma and sputum, respectively. Interestingly, following H37Rv whole cell lysate stimulation, S100A8 (p = 2.80E-02), MMP9 (p = 3.60E-02) and MPO (p = 9.10E-03) levels at month 6 were significantly higher compared to baseline. Sputum MMP1 (p = 1.50E-03), MMP3 (p = 7.58E-04), MMP9 (p = 2.60E-02) and TNF (p = 3.80E-02) levels were lower at month 6 compared to baseline in patients with good lung recovery. Conclusion In this study, patients with severe lung pathology at baseline and persistent lung damage after treatment were associated with higher plasma and sputum levels of major pro-inflammatory neutrophil-derived mediators. Interestingly, low sputum MPO levels were associated with severe lung damage, higher Mtb burden and low recovery. Our data suggest that therapeutic agents which target these mediators should be considered for future studies on biomarkers and host-directed therapeutic approaches against TB-related lung pathology and/or lung recovery.
Collapse
Affiliation(s)
- Caleb Nwongbouwoh Muefong
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia.,Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Olumuyiwa Owolabi
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Simon Donkor
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | | | - Joseph Mendy
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Isatou C M Sey
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Abhishek Bakuli
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany.,International Clinical Trials Unit, German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany.,International Clinical Trials Unit, German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany.,International Clinical Trials Unit, German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| |
Collapse
|
111
|
Costa DL, Amaral EP, Namasivayam S, Mittereder LR, Fisher L, Bonfim CC, Sardinha-Silva A, Thompson RW, Hieny SE, Andrade BB, Sher A. Heme oxygenase-1 inhibition promotes IFNγ- and NOS2-mediated control of Mycobacterium tuberculosis infection. Mucosal Immunol 2021; 14:253-266. [PMID: 32862202 PMCID: PMC7796944 DOI: 10.1038/s41385-020-00342-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/17/2020] [Accepted: 08/12/2020] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infection induces pulmonary expression of the heme-degrading enzyme heme oxygenase-1 (HO-1). We have previously shown that pharmacological inhibition of HO-1 activity in experimental tuberculosis results in decreased bacterial loads and unexpectedly that this outcome depends on the presence of T lymphocytes. Here, we extend these findings by demonstrating that IFNγ production by T lymphocytes and NOS2 expression underlie this T-cell requirement and that HO-1 inhibition potentiates IFNγ-induced NOS2-dependent control of Mtb by macrophages in vitro. Among the products of heme degradation by HO-1 (biliverdin, carbon monoxide, and iron), only iron supplementation reverted the HO-1 inhibition-induced enhancement of bacterial control and this reversal was associated with decreased NOS2 expression and NO production. In addition, we found that HO-1 inhibition results in decreased labile iron levels in Mtb-infected macrophages in vitro and diminished iron accumulation in Mtb-infected lungs in vivo. Together these results suggest that the T-lymphocyte dependence of the therapeutic outcome of HO-1 inhibition on Mtb infection reflects the role of the enzyme in generating iron that suppresses T-cell-mediated IFNγ/NOS2-dependent bacterial control. In broader terms, our findings highlight the importance of the crosstalk between iron metabolism and adaptive immunity in determining the outcome of infection.
Collapse
Affiliation(s)
- Diego L Costa
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,* Diego L Costa current affiliation: Departmento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lara R Mittereder
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Logan Fisher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Caio C Bonfim
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aline Sardinha-Silva
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert W Thompson
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara E Hieny
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
112
|
Davis AG, Donovan J, Bremer M, Van Toorn R, Schoeman J, Dadabhoy A, Lai RP, Cresswell FV, Boulware DR, Wilkinson RJ, Thuong NTT, Thwaites GE, Bahr NC. Host Directed Therapies for Tuberculous Meningitis. Wellcome Open Res 2020; 5:292. [PMID: 35118196 PMCID: PMC8792876 DOI: 10.12688/wellcomeopenres.16474.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
A dysregulated host immune response significantly contributes to morbidity and mortality in tuberculous meningitis (TBM). Effective host directed therapies (HDTs) are critical to improve survival and clinical outcomes. Currently only one HDT, dexamethasone, is proven to improve mortality. However, there is no evidence dexamethasone reduces morbidity, how it reduces mortality is uncertain, and it has no proven benefit in HIV co-infected individuals. Further research on these aspects of its use, as well as alternative HDTs such as aspirin, thalidomide and other immunomodulatory drugs is needed. Based on new knowledge from pathogenesis studies, repurposed therapeutics which act upon small molecule drug targets may also have a role in TBM. Here we review existing literature investigating HDTs in TBM, and propose new rationale for the use of novel and repurposed drugs. We also discuss host variable responses and evidence to support a personalised approach to HDTs in TBM.
Collapse
Affiliation(s)
- Angharad G. Davis
- University College London, Gower Street, London, WC1E 6BT, UK
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Ronald Van Toorn
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Johan Schoeman
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Ariba Dadabhoy
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | - Rachel P.J. Lai
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Fiona V Cresswell
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Wilkinson
- University College London, Gower Street, London, WC1E 6BT, UK
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | - Tuberculous Meningitis International Research Consortium
- University College London, Gower Street, London, WC1E 6BT, UK
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
113
|
Alghamdi S, Rehman SU, Shesha NT, Faidah H, Khurram M, Rehman SU. Promising Lead Compounds in the Development of Potential Clinical Drug Candidate for Drug-Resistant Tuberculosis. Molecules 2020; 25:molecules25235685. [PMID: 33276545 PMCID: PMC7729780 DOI: 10.3390/molecules25235685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
According to WHO report, globally about 10 million active tuberculosis cases, resulting in about 1.6 million deaths, further aggravated by drug-resistant tuberculosis and/or comorbidities with HIV and diabetes are present. Incomplete therapeutic regimen, meager dosing, and the capability of the latent and/or active state tubercular bacilli to abide and do survive against contemporary first-line and second line antitubercular drugs escalate the prevalence of drug-resistant tuberculosis. As a better understanding of tuberculosis, microanatomy has discovered an extended range of new promising antitubercular targets and diagnostic biomarkers. However, there are still no new approved antitubercular drugs of routine therapy for several decades, except for bedaquiline, delamanid, and pretomanid approved tentatively. Despite this, innovative methods are also urgently needed to find potential new antitubercular drug candidates, which potentially decimate both latent state and active state mycobacterium tuberculosis. To explore and identify the most potential antitubercular drug candidate among various reported compounds, we focused to highlight the promising lead derivatives of isoniazid, coumarin, griselimycin, and the antimicrobial peptides. The aim of the present review is to fascinate significant lead compounds in the development of potential clinical drug candidates that might be more precise and effective against drug-resistant tuberculosis, the world research looking for a long time.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca 24321, Saudi Arabia;
| | - Shaheed Ur Rehman
- Department of Pharmacy, Abasyn University Peshawar, Khyber Pakhtunkhwa 25000, Pakistan;
- Correspondence: (S.U.R.); (M.K.); Tel.: +923459832402 (S.U.R.)
| | - Nashwa Talaat Shesha
- Regional Laboratory, Directorate of Health Affairs Makkah, Mecca 24321, Saudi Arabia;
| | - Hani Faidah
- Microbiology Department, Faculty of Medicine, Umm Al-Qura University, Mecca 24321, Saudi Arabia;
| | - Muhammad Khurram
- Department of Pharmacy, Abasyn University Peshawar, Khyber Pakhtunkhwa 25000, Pakistan;
- Correspondence: (S.U.R.); (M.K.); Tel.: +923459832402 (S.U.R.)
| | - Sabi Ur Rehman
- Department of Pharmacy, Abasyn University Peshawar, Khyber Pakhtunkhwa 25000, Pakistan;
| |
Collapse
|
114
|
Costa DL, Amaral EP, Andrade BB, Sher A. Modulation of Inflammation and Immune Responses by Heme Oxygenase-1: Implications for Infection with Intracellular Pathogens. Antioxidants (Basel) 2020; 9:antiox9121205. [PMID: 33266044 PMCID: PMC7761188 DOI: 10.3390/antiox9121205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme molecules releasing equimolar amounts of biliverdin, iron and carbon monoxide. Its expression is induced in response to stress signals such as reactive oxygen species and inflammatory mediators with antioxidant, anti-inflammatory and immunosuppressive consequences for the host. Interestingly, several intracellular pathogens responsible for major human diseases have been shown to be powerful inducers of HO-1 expression in both host cells and in vivo. Studies have shown that this HO-1 response can be either host detrimental by impairing pathogen control or host beneficial by limiting infection induced inflammation and tissue pathology. These properties make HO-1 an attractive target for host-directed therapy (HDT) of the diseases in question, many of which have been difficult to control using conventional antibiotic approaches. Here we review the mechanisms by which HO-1 expression is induced and how the enzyme regulates inflammatory and immune responses during infection with a number of different intracellular bacterial and protozoan pathogens highlighting mechanistic commonalities and differences with the goal of identifying targets for disease intervention.
Collapse
Affiliation(s)
- Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3315-3061
| | - Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (E.P.A.); (A.S.)
| | - Bruno B. Andrade
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa;
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (UniFTC), Salvador 41741-590, Bahia, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Laureate International Universities, Salvador 41770-235, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-000, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (E.P.A.); (A.S.)
| |
Collapse
|
115
|
Barbosa Bomfim CC, Pinheiro Amaral E, Santiago-Carvalho I, Almeida Santos G, Machado Salles É, Hastreiter AA, Silva do Nascimento R, Almeida FM, Lopes Biá Ventura Simão T, Linhares Rezende A, Hiroyuki Hirata M, Ambrósio Fock R, Álvarez JM, Lasunskaia EB, D'Império Lima MR. Harmful Effects of Granulocytic Myeloid-Derived Suppressor Cells on Tuberculosis Caused by Hypervirulent Mycobacteria. J Infect Dis 2020; 223:494-507. [PMID: 33206171 DOI: 10.1093/infdis/jiaa708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of myeloid-derived suppressor cells (MDSCs) in patients with severe tuberculosis who suffer from uncontrolled pulmonary inflammation caused by hypervirulent mycobacterial infection remains unclear. METHODS This issue was addressed using C57BL/6 mice infected with highly virulent Mycobacterium bovis strain MP287/03. RESULTS CD11b+GR1int population increased in the bone marrow, blood and lungs during advanced disease. Pulmonary CD11b+GR1int (Ly6GintLy6Cint) cells showed granularity similar to neutrophils and expressed immature myeloid cell markers. These immature neutrophils harbored intracellular bacilli and were preferentially located in the alveoli. T-cell suppression occurred concomitantly with CD11b+GR1int cell accumulation in the lungs. Furthermore, lung and bone marrow GR1+ cells suppressed both T-cell proliferation and interferon γ production in vitro. Anti-GR1 therapy given when MDSCs infiltrated the lungs prevented expansion and fusion of primary pulmonary lesions and the development of intragranulomatous caseous necrosis, along with increased mouse survival and partial recovery of T-cell function. Lung bacterial load was reduced by anti-GR1 treatment, but mycobacteria released from the depleted cells proliferated extracellularly in the alveoli, forming cords and clumps. CONCLUSIONS Granulocytic MDSCs massively infiltrate the lungs during infection with hypervirulent mycobacteria, promoting bacterial growth and the development of inflammatory and necrotic lesions, and are promising targets for host-directed therapies.
Collapse
Affiliation(s)
- Caio César Barbosa Bomfim
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Pinheiro Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Igor Santiago-Carvalho
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Gislane Almeida Santos
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érika Machado Salles
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Araceli Aparecida Hastreiter
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Fabrício M Almeida
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Thatiana Lopes Biá Ventura Simão
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Andreza Linhares Rezende
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Mario Hiroyuki Hirata
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - José Maria Álvarez
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Elena B Lasunskaia
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | |
Collapse
|
116
|
Naz F, Arish M. GPCRs as an emerging host-directed therapeutic target against mycobacterial infection: From notion to reality. Br J Pharmacol 2020; 179:4899-4909. [PMID: 33150959 DOI: 10.1111/bph.15315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) is one of the successful pathogens and claim millions of deaths across the globe. The emergence of drug resistance in M. tb has created new hurdles in the tuberculosis elimination programme worldwide. Hence, there is an unmet medical need for alternative therapy, which could be achieved by targeting the host's critical signalling pathways that are compromised during M. tb infection. In this review, we have summarized some of the findings involving the modulation of host GPCRs in the regulation of the mycobacterial infection. Understanding the role of these GPCRs not only unravels signalling pathways during infection but also provides clues for targeting critical signalling intermediates for the development of GPCR-based host-directive therapy.
Collapse
Affiliation(s)
- Farha Naz
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Arish
- JH-Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.,Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
117
|
Böhme J, Martinez N, Li S, Lee A, Marzuki M, Tizazu AM, Ackart D, Frenkel JH, Todd A, Lachmandas E, Lum J, Shihui F, Ng TP, Lee B, Larbi A, Netea MG, Basaraba R, van Crevel R, Newell E, Kornfeld H, Singhal A. Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nat Commun 2020; 11:5225. [PMID: 33067434 PMCID: PMC7567856 DOI: 10.1038/s41467-020-19095-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with type 2 diabetes (T2D) have a lower risk of Mycobacterium tuberculosis infection, progression from infection to tuberculosis (TB) disease, TB morality and TB recurrence, when being treated with metformin. However, a detailed mechanistic understanding of these protective effects is lacking. Here, we use mass cytometry to show that metformin treatment expands a population of memory-like antigen-inexperienced CD8+CXCR3+ T cells in naive mice, and in healthy individuals and patients with T2D. Metformin-educated CD8+ T cells have increased (i) mitochondrial mass, oxidative phosphorylation, and fatty acid oxidation; (ii) survival capacity; and (iii) anti-mycobacterial properties. CD8+ T cells from Cxcr3-/- mice do not exhibit this metformin-mediated metabolic programming. In BCG-vaccinated mice and guinea pigs, metformin enhances immunogenicity and protective efficacy against M. tuberculosis challenge. Collectively, these results demonstrate an important function of CD8+ T cells in metformin-derived host metabolic-fitness towards M. tuberculosis infection.
Collapse
Affiliation(s)
- Julia Böhme
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Shamin Li
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Andrea Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Mardiana Marzuki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Anteneh Mehari Tizazu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - David Ackart
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Jessica Haugen Frenkel
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Alexandra Todd
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Ekta Lachmandas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Foo Shihui
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Tze Pin Ng
- Gerontology Research Programme, Yong Loo Lin School of Medicine, Department of Psychological Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Randall Basaraba
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80525-1601, USA
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Evan Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Amit Singhal
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
- Infectious Disease Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore.
| |
Collapse
|
118
|
Seddon JA, Johnson S, Palmer M, van der Zalm MM, Lopez-Varela E, Hughes J, Schaaf HS. Multidrug-resistant tuberculosis in children and adolescents: current strategies for prevention and treatment. Expert Rev Respir Med 2020; 15:221-237. [PMID: 32965141 DOI: 10.1080/17476348.2021.1828069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION An estimated 30,000 children develop multidrug-resistant (MDR) tuberculosis (TB) each year, with only a small proportion diagnosed and treated. This field has historically been neglected due to the perception that children with MDR-TB are challenging to diagnose and treat. Diagnostic and therapeutic developments in adults have improved pediatric management, yet further pediatric-specific research and wider implementation of evidence-based practices are required. AREAS COVERED This review combines the most recent data with expert opinion to highlight best practice in the evaluation, diagnosis, treatment, and support of children and adolescents with MDR-TB disease. A literature search of PubMed was carried out on topics related to MDR-TB in children. This review provides practical advice on MDR-TB prevention and gives updates on new regimens and novel treatments. The review also addresses host-directed therapy, comorbid conditions, special populations, psychosocial support, and post-TB morbidity, as well as identifying outstanding research questions. EXPERT OPINION Increased availability of molecular diagnostics has the potential to aid with the diagnosis of MDR-TB in children. Shorter MDR-TB disease treatment regimens have made therapy safer and shorter and further developments with novel agents and repurposed drugs should lead to additional improvements. The evidence base for MDR-TB preventive therapy is increasing.
Collapse
Affiliation(s)
- James A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University , Stellenbosch, South Africa.,Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London , London, UK
| | - Sarah Johnson
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University , Stellenbosch, South Africa.,Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London , London, UK
| | - Megan Palmer
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University , Stellenbosch, South Africa
| | - Marieke M van der Zalm
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University , Stellenbosch, South Africa
| | - Elisa Lopez-Varela
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University , Stellenbosch, South Africa.,ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat De Barcelona , Barcelona, Spain
| | - Jennifer Hughes
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University , Stellenbosch, South Africa
| | - H Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University , Stellenbosch, South Africa
| |
Collapse
|
119
|
Cumming BM, Pacl HT, Steyn AJC. Relevance of the Warburg Effect in Tuberculosis for Host-Directed Therapy. Front Cell Infect Microbiol 2020; 10:576596. [PMID: 33072629 PMCID: PMC7531540 DOI: 10.3389/fcimb.2020.576596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) was responsible for more deaths in 2019 than any other infectious agent. This epidemic is exacerbated by the ongoing development of multi-drug resistance and HIV co-infection. Recent studies have therefore focused on identifying host-directed therapies (HDTs) that can be used in combination with anti-mycobacterial drugs to shorten the duration of TB treatment and improve TB outcomes. In searching for effective HDTs for TB, studies have looked toward immunometabolism, the study of the role of metabolism in host immunity and, in particular, the Warburg effect. Across a variety of experimental paradigms ranging from in vitro systems to the clinic, studies on the role of the Warburg effect in TB have produced seemingly conflicting results and contradictory conclusions. To reconcile this literature, we take a historical approach to revisit the definition of the Warburg effect, re-examine the foundational papers on the Warburg effect in the cancer field and explore its application to immunometabolism. With a firm context established, we assess the literature investigating metabolism and immunometabolism in TB for sufficient evidence to support the role of the Warburg effect in TB immunity. The effects of the differences between animal models, species of origin of the macrophages, duration of infection and Mycobacterium tuberculosis strains used for these studies are highlighted. In addition, the shortcomings of using 2-deoxyglucose as an inhibitor of glycolysis are discussed. We conclude by proposing experimental criteria that are essential for future studies on the Warburg effect in TB to assist with the research for HDTs to combat TB.
Collapse
Affiliation(s)
| | - Hayden T Pacl
- Department of Microbiology, University of Alabama, Birmingham, AL, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama, Birmingham, AL, United States.,Centers for Free Radical Biology (CFRB) and AIDS Research (CFAR), University of Alabama, Birmingham, AL, United States
| |
Collapse
|
120
|
Afkhami S, Villela AD, D’Agostino MR, Jeyanathan M, Gillgrass A, Xing Z. Advancing Immunotherapeutic Vaccine Strategies Against Pulmonary Tuberculosis. Front Immunol 2020; 11:557809. [PMID: 33013927 PMCID: PMC7509172 DOI: 10.3389/fimmu.2020.557809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Chemotherapeutic intervention remains the primary strategy in treating and controlling tuberculosis (TB). However, a complex interplay between therapeutic and patient-related factors leads to poor treatment adherence. This in turn continues to give rise to unacceptably high rates of disease relapse and the growing emergence of drug-resistant forms of TB. As such, there is considerable interest in strategies that simultaneously improve treatment outcome and shorten chemotherapy duration. Therapeutic vaccines represent one such approach which aims to accomplish this through boosting and/or priming novel anti-TB immune responses to accelerate disease resolution, shorten treatment duration, and enhance treatment success rates. Numerous therapeutic vaccine candidates are currently undergoing pre-clinical and clinical assessment, showing varying degrees of efficacy. By dissecting the underlying mechanisms/correlates of their successes and/or shortcomings, strategies can be identified to improve existing and future vaccine candidates. This mini-review will discuss the current understanding of therapeutic TB vaccine candidates, and discuss major strategies that can be implemented in advancing their development.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Anne Drumond Villela
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michael R. D’Agostino
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Amy Gillgrass
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Zhou Xing
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
121
|
La Manna MP, Orlando V, Tamburini B, Badami GD, Dieli F, Caccamo N. Harnessing Unconventional T Cells for Immunotherapy of Tuberculosis. Front Immunol 2020; 11:2107. [PMID: 33013888 PMCID: PMC7497315 DOI: 10.3389/fimmu.2020.02107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Even if the incidence of tuberculosis (TB) has been decreasing over the last years, the number of patients with TB is increasing worldwide. The emergence of multidrug-resistant and extensively drug-resistant TB is making control of TB more difficult. Mycobacterium bovis bacillus Calmette–Guérin vaccine fails to prevent pulmonary TB in adults, and there is an urgent need for a vaccine that is also effective in patients with human immunodeficiency virus (HIV) coinfection. Therefore, TB control may benefit on novel therapeutic options beyond antimicrobial treatment. Host-directed immunotherapies could offer therapeutic strategies for patients with drug-resistant TB or with HIV and TB coinfection. In the last years, the use of donor lymphocytes after hematopoietic stem cell transplantation has emerged as a new strategy in the cure of hematologic malignancies in order to induce graft-versus leukemia and graft-versus-infection effects. Moreover, adoptive therapy has proven to be effective in controlling cytomegalovirus and Epstein-Barr virus reactivation in immunocompromised patients with ex vivo expanded viral antigen-specific T cells. Unconventional T cells are a heterogeneous group of T lymphocytes with limited diversity. One of their characteristics is that antigen recognition is not restricted by the classical major histocompatibility complex (MHC). They include CD1 (cluster of differentiation 1)–restricted T cells, MHC-related protein-1–restricted mucosal-associated invariant T (MAIT) cells, MHC class Ib–reactive T cells, and γδ T cells. Because these T cells are genotype-independent, they are also termed “donor unrestricted” T cells. The combined features of low donor diversity and the lack of genetic restriction make these cells suitable candidates for T cell–based immunotherapy of TB.
Collapse
Affiliation(s)
- Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giusto D Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
122
|
Redox homeostasis as a target for new antimycobacterial agents. Int J Antimicrob Agents 2020; 56:106148. [PMID: 32853674 DOI: 10.1016/j.ijantimicag.2020.106148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/19/2020] [Indexed: 11/20/2022]
Abstract
Despite early treatment with antimycobacterial combination therapy, drug resistance continues to emerge. Maintenance of redox homeostasis is essential for Mycobacterium avium (M. avium) survival and growth. The aim of the present study was to investigate the antimycobacterial activity of two pro-glutathione (pro-GSH) drugs that are able to induce redox stress in M. avium and to modulate cytokine production by macrophages. Hence, we investigated two molecules shown to possess antiviral and immunomodulatory properties: C4-GSH, an N-butanoyl GSH derivative; and I-152, a prodrug of N-acetyl-cysteine (NAC) and β-mercaptoethylamine (MEA). Both molecules showed activity against replicating M. avium, both in the cell-free model and inside macrophages. Moreover, they were even more effective in reducing the viability of bacteria that had been kept in water for 7 days, proving to be active both against replicating and non-replicating bacteria. By regulating the macrophage redox state, I-152 modulated cytokine production. In particular, higher levels of interferon-gamma (IFN-γ), interleukin 1 beta (IL-1β), IL-18 and IL-12, which are known to be crucial for the control of intracellular pathogens, were found after I-152 treatment. Our results show that C4-GSH and I-152, by inducing perturbation of redox equilibrium, exert bacteriostatic and bactericidal activity against M. avium. Moreover, I-152 can boost the host response by inducing the production of cytokines that serve as key regulators of the Th1 response.
Collapse
|
123
|
Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections - a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci 2020; 27:74. [PMID: 32552732 PMCID: PMC7297667 DOI: 10.1186/s12929-020-00667-6] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary diseases due to mycobacteria cause significant morbidity and mortality to human health. In addition to tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), recent epidemiological studies have shown the emergence of non-tuberculous mycobacteria (NTM) species in causing lung diseases in humans. Although more than 170 NTM species are present in various environmental niches, only a handful, primarily Mycobacterium avium complex and M. abscessus, have been implicated in pulmonary disease. While TB is transmitted through inhalation of aerosol droplets containing Mtb, generated by patients with symptomatic disease, NTM disease is mostly disseminated through aerosols originated from the environment. However, following inhalation, both Mtb and NTM are phagocytosed by alveolar macrophages in the lungs. Subsequently, various immune cells are recruited from the circulation to the site of infection, which leads to granuloma formation. Although the pathophysiology of TB and NTM diseases share several fundamental cellular and molecular events, the host-susceptibility to Mtb and NTM infections are different. Striking differences also exist in the disease presentation between TB and NTM cases. While NTM disease is primarily associated with bronchiectasis, this condition is rarely a predisposing factor for TB. Similarly, in Human Immunodeficiency Virus (HIV)-infected individuals, NTM disease presents as disseminated, extrapulmonary form rather than as a miliary, pulmonary disease, which is seen in Mtb infection. The diagnostic modalities for TB, including molecular diagnosis and drug-susceptibility testing (DST), are more advanced and possess a higher rate of sensitivity and specificity, compared to the tools available for NTM infections. In general, drug-sensitive TB is effectively treated with a standard multi-drug regimen containing well-defined first- and second-line antibiotics. However, the treatment of drug-resistant TB requires the additional, newer class of antibiotics in combination with or without the first and second-line drugs. In contrast, the NTM species display significant heterogeneity in their susceptibility to standard anti-TB drugs. Thus, the treatment for NTM diseases usually involves the use of macrolides and injectable aminoglycosides. Although well-established international guidelines are available, treatment of NTM disease is mostly empirical and not entirely successful. In general, the treatment duration is much longer for NTM diseases, compared to TB, and resection surgery of affected organ(s) is part of treatment for patients with NTM diseases that do not respond to the antibiotics treatment. Here, we discuss the epidemiology, diagnosis, and treatment modalities available for TB and NTM diseases of humans.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Sivakumar Shanmugam
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Rajesh Mondal
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States.
| |
Collapse
|
124
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
125
|
Muefong CN, Sutherland JS. Neutrophils in Tuberculosis-Associated Inflammation and Lung Pathology. Front Immunol 2020; 11:962. [PMID: 32536917 PMCID: PMC7266980 DOI: 10.3389/fimmu.2020.00962] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Protective immunity to Mycobacterium tuberculosis (Mtb)—the causative agent of tuberculosis (TB)—is not fully understood but involves immune responses within the pulmonary airways which can lead to exacerbated inflammation and immune pathology. In humans, this inflammation results in lung damage; the extent of which depends on specific host pro-inflammatory processes. Neutrophils, though increasingly linked to the development of inflammatory disorders, have been less well studied in relation to TB-induced lung pathology. Neutrophils mode of action and their specialized functions can be directly linked to TB-specific lung tissue damage observed on patient chest X-rays at diagnosis and contribute to long-term pulmonary sequelae. This review discusses aspects of neutrophil activity associated with active TB, including the resulting inflammation and pulmonary impairment. It highlights the significance of neutrophil function on TB disease outcome and underlines the necessity of monitoring neutrophil function for better assessment of the immune response and severity of lung pathology associated with TB. Finally, we propose that some MMPs, ROS, MPO, S100A8/A9 and Glutathione are neutrophil-related inflammatory mediators with promising potential as targets for developing host-directed therapies for TB.
Collapse
Affiliation(s)
- Caleb N Muefong
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
126
|
Leukes V, Walzl G, du Plessis N. Myeloid-Derived Suppressor Cells as Target of Phosphodiesterase-5 Inhibitors in Host-Directed Therapeutics for Tuberculosis. Front Immunol 2020; 11:451. [PMID: 32269568 PMCID: PMC7109258 DOI: 10.3389/fimmu.2020.00451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/27/2020] [Indexed: 01/11/2023] Open
Abstract
Resistance toward current and new classes of anti-tuberculosis (anti-TB) antibiotics are rapidly emerging; thus, innovative therapies focused on host processes, termed host-directed therapies (HDTs), are promising novel approaches for shortening therapy regimens without inducing drug resistance. Development of new TB drugs is lengthy and expensive, and success is not guaranteed; thus, alternatives are needed. Repurposed drugs have already passed Food and Drug Administration (FDA) as well as European Medicines Agency (EMA) safety requirements and may only need to prove efficacy against Mycobacterium tuberculosis (M.tb). Phosphodiesterases (PDEs) hydrolyze the catalytic breakdown of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) to their inactive mononucleotides. Advances in molecular pharmacology have identified 11 PDE families; and the success of sildenafil, a PDE-5 selective inhibitor (PDE-5i), in treating pulmonary hypertension and erectile dysfunction has invigorated research into the therapeutic potential of selective PDE inhibitors in other conditions. Myeloid-derived suppressor cells (MDSCs) suppress anti-TB T-cell responses, likely contributing to TB disease progression. PDE-5i increases cGMP within MDSC resulting in the downregulation of arginase-1 (ARG1) and nitric oxide synthase 2 (NOS2), reducing MDSC's suppressive potential. The effect of this reduction decreases MDSC-induced T-cell-suppressive mechanisms. This review highlights the possibility of HDT targeting of MDSC, using a PDE-5i in combination with the current TB regimen, resulting in improved TB treatment efficacy.
Collapse
Affiliation(s)
- Vinzeigh Leukes
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
127
|
Tsenova L, Singhal A. Effects of host-directed therapies on the pathology of tuberculosis. J Pathol 2020; 250:636-646. [PMID: 32108337 DOI: 10.1002/path.5407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has co-evolved with the human immune system and utilizes multiple strategies to persist within infected cells, to hijack several immune mechanisms, and to cause severe pathology and tissue damage in the host. This delays the efficacy of current antibiotic therapy and contributes to the evolution of multi-drug-resistant strains. These challenges led to the development of the novel approach in TB treatment that involves therapeutic targeting of host immune response to control disease pathogenesis and pathogen growth, namely, host-directed therapies (HDTs). Such HDT approaches can (1) enhance the effect of antibiotics, (2) shorten treatment duration for any clinical form of TB, (3) promote development of immunological memory that could protect against relapse, and (4) ameliorate the immunopathology including matrix destruction and fibrosis associated with TB. In this review we discuss TB-HDT candidates shown to be of clinical relevance that thus could be developed to reduce pathology, tissue damage, and subsequent impairment of pulmonary function. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liana Tsenova
- Department of Biological Sciences, New York City College of Technology, Brooklyn, NY, USA
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Vaccine and Infectious Disease Research Centre (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|