101
|
Galaj E, Kipp BT, Floresco SB, Savage LM. Persistent Alterations of Accumbal Cholinergic Interneurons and Cognitive Dysfunction after Adolescent Intermittent Ethanol Exposure. Neuroscience 2019; 404:153-164. [PMID: 30742967 PMCID: PMC6450752 DOI: 10.1016/j.neuroscience.2019.01.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/08/2023]
Abstract
Adolescent binge drinking renders young drinkers vulnerable to alcohol use disorders in adulthood; therefore, understanding alcohol-induced brain damage and associated cognitive dysfunctions is of paramount importance. Here we investigated the effects of binge-like adolescent intermittent ethanol (AIE) exposure on nonspatial working memory, behavioral flexibility and cholinergic alterations in the nucleus accumbens (NAc) in male and female rats. On postnatal days P25-57 rats were intubated with water or ethanol (at a dose of 5 g/kg) on a 2-day-on/2-day-off cycle and were then tested in adulthood on social recognition and probabilistic reversal learning tasks. During the social recognition task AIE-treated rats spent similar amounts of time interacting with familiar and novel juveniles, indicating an impaired ability to sustain memory of the familiar juvenile. During probabilistic reversal learning, AIE-treated male and female rats showed behavioral inflexibility as indicated by a higher number of trials needed to complete three reversals within a session, longer response latencies for lever selection, and for males, a higher number of errors as compared to water-treated rats. AIE exposure also reduced the number of cholinergic interneurons in the NAc in males and females. These findings indicate AIE-related pathologies of accumbal cholinergic interneurons and long lasting cognitive-behavioral deficits, which may be associated with cortico-striatal hypofunction.
Collapse
Affiliation(s)
- E Galaj
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - B T Kipp
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - S B Floresco
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - L M Savage
- Department of Psychology, Binghamton University of the State University of New York, New York, USA.
| |
Collapse
|
102
|
Lagström O, Danielsson K, Söderpalm B, Ericson M, Adermark L. Voluntary Ethanol Intake Produces Subregion-Specific Neuroadaptations in Striatal and Cortical Areas of Wistar Rats. Alcohol Clin Exp Res 2019; 43:803-811. [PMID: 30860600 DOI: 10.1111/acer.14014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Addiction has been conceptualized as a shift from controlled recreational use toward compulsive and habitual drug-taking behavior. Although the brain reward system is vital for alcohol reward and reinforcement, other neuronal circuits may be involved in controlling long-term alcohol-seeking and drug-taking behaviors. The aim of this study was to outline alcohol-induced neuroplasticity in defined cortical and striatal subregions, previously implicated in alcohol use disorder. METHODS Male Wistar rats were allowed to voluntarily consume ethanol (EtOH) in an intermittent manner for 2 months, after which ex vivo electrophysiological recordings were performed and data compared with isolated water controls housed in parallel. RESULTS Field potential recordings revealed an increase in field excitatory postsynaptic potentials (fEPSPs) in the dorsomedial striatum (DMS) of rats consuming EtOH, while a depression of evoked potentials was detected in the dorsolateral striatum (DLS). Mean activity in cortical (medial prefrontal cortex, lateral orbitofrontal cortex [OFC]), and accumbal regions (nucleus accumbens [nAc] core/shell) was not significantly altered as compared to water-drinking controls, but a correlation between the amount of alcohol consumed and evoked potentials could be found in both dorsal striatal subregions, OFC, and nAc core. Removal of EtOH for 1 to 2 days was sufficient to restore neurotransmission in the DLS, while the increase in fEPSP amplitude sustained in the DMS. CONCLUSIONS These preclinical findings are in line with clinical observations indicating that alcohol produces neurophysiological transformations in dorsal striatal circuits, which in turn may lead to disruptions in decision-making processes that could further promote alcohol misuse.
Collapse
Affiliation(s)
- Oona Lagström
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
103
|
An Adenosine A 2A Receptor Antagonist Improves Multiple Symptoms of Repeated Quinpirole-Induced Psychosis. eNeuro 2019; 6:eN-NWR-0366-18. [PMID: 30834304 PMCID: PMC6397953 DOI: 10.1523/eneuro.0366-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/15/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by the repeated rise of concerns (obsessions) and repetitive unwanted behavior (compulsions). Although selective serotonin reuptake inhibitors (SSRIs) is the first-choice drug, response rates to SSRI treatment vary between symptom dimensions. In this study, to find a therapeutic target for SSRI-resilient OCD symptoms, we evaluated treatment responses of quinpirole (QNP) sensitization-induced OCD-related behaviors in mice. SSRI administration rescued the cognitive inflexibility, as well as hyperactivity in the lateral orbitofrontal cortex (lOFC), while no improvement was observed for the repetitive behavior. D2 receptor signaling in the central striatum (CS) was involved in SSRI-resistant repetitive behavior. An adenosine A2A antagonist, istradefylline, which rescued abnormal excitatory synaptic function in the CS indirect pathway medium spiny neurons (MSNs) of sensitized mice, alleviated both of the QNP-induced abnormal behaviors with only short-term administration. These results provide a new insight into therapeutic strategies for SSRI-resistant OCD symptoms and indicate the potential of A2A antagonists as a rapid-acting anti-OCD drug.
Collapse
|
104
|
Gianessi CA, Groman SM, Taylor JR. Bi-directional modulation of food habit expression by the endocannabinoid system. Eur J Neurosci 2019; 49:1610-1622. [PMID: 30589475 DOI: 10.1111/ejn.14330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
The compulsive, habitual behaviors that have been observed in individuals diagnosed with substance use disorders may be due to disruptions in the neural circuits that mediate goal-directed actions. The endocannabinoid system has been shown to play a critical role in habit learning, but the role of this neuromodulatory system in habit expression is unclear. Here, we investigated the role of the endocannabinoid system in established habitual actions using contingency degradation in male C57BL/6 mice. We found that administration of the endocannabinoid transport inhibitor AM404 reduced habitual responding for food and that antagonism of cannabinoid receptor type 1 (CB1), but not transient receptor potential cation subfamily V (TRPV1), receptors produced a similar reduction in habitual responding. Moreover, pharmacological stimulation of CB1 receptors increased habitual responding for food. Co-administration of an enzyme inhibitor that selectively increases the endocannabinoid 2-arachidonoyl glycerol (2-AG) with AM404 partially restored habitual responding for food. Together, these findings demonstrate an important role for the endocannabinoid system in the expression of habits and provide novel insights into potential pharmacological strategies for reducing habitual behaviors in mental disorders.
Collapse
Affiliation(s)
- Carol A Gianessi
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Interdepartmental Neuroscience Program, Yale University Graduate School of Arts and Sciences, New Haven, Connecticut
| | - Stephanie M Groman
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jane R Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Interdepartmental Neuroscience Program, Yale University Graduate School of Arts and Sciences, New Haven, Connecticut.,Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
105
|
Sharpe MJ, Stalnaker T, Schuck NW, Killcross S, Schoenbaum G, Niv Y. An Integrated Model of Action Selection: Distinct Modes of Cortical Control of Striatal Decision Making. Annu Rev Psychol 2019; 70:53-76. [PMID: 30260745 PMCID: PMC9333553 DOI: 10.1146/annurev-psych-010418-102824] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Making decisions in environments with few choice options is easy. We select the action that results in the most valued outcome. Making decisions in more complex environments, where the same action can produce different outcomes in different conditions, is much harder. In such circumstances, we propose that accurate action selection relies on top-down control from the prelimbic and orbitofrontal cortices over striatal activity through distinct thalamostriatal circuits. We suggest that the prelimbic cortex exerts direct influence over medium spiny neurons in the dorsomedial striatum to represent the state space relevant to the current environment. Conversely, the orbitofrontal cortex is argued to track a subject's position within that state space, likely through modulation of cholinergic interneurons.
Collapse
Affiliation(s)
- Melissa J Sharpe
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, USA; ,
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA; ,
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia;
| | - Thomas Stalnaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, USA; ,
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195 Berlin, Germany;
| | - Simon Killcross
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia;
| | - Geoffrey Schoenbaum
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, USA; ,
- Departments of Anatomy & Neurobiology and Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Yael Niv
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA; ,
- Psychology Department, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
106
|
Bariselli S, Fobbs WC, Creed MC, Kravitz AV. A competitive model for striatal action selection. Brain Res 2018; 1713:70-79. [PMID: 30300636 DOI: 10.1016/j.brainres.2018.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
The direct and indirect pathway striatal medium spiny neurons (dMSNs and iMSNs) have long been linked to action selection, but the precise roles of these neurons in this process remain unclear. Here, we review different models of striatal pathway function, focusing on the classic "go/no-go" model which posits that dMSNs facilitate movement while iMSNs inhibit movement, and the "complementary" model, which argues that dMSNs facilitate the selection of specific actions while iMSNs inhibit potentially conflicting actions. We discuss the merits and shortcomings of these models and propose a "competitive" model to explain the contribution of these two pathways to behavior. The "competitive" model argues that rather than inhibiting conflicting actions, iMSNs are tuned to the same actions that dMSNs facilitate, and the two populations "compete" to determine the animal's behavioral response. This model provides a theoretical explanation for how these pathways work together to select actions. In addition, it provides a link between action selection and behavioral reinforcement, via modulating synaptic strength at inputs onto dMSNs and iMSNs. Finally, this model makes predictions about how imbalances in the activity of these pathways may underlie behavioral traits associated with psychiatric disorders. Understanding the roles of these striatal pathways in action selection may help to clarify the neuronal mechanisms of decision-making under normal and pathological conditions.
Collapse
Affiliation(s)
- S Bariselli
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - W C Fobbs
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M C Creed
- Washington University in St Louis, Department of Anesthesiology, St Louis, MO, United States
| | - A V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States; National Institute on Drug Abuse, Baltimore, MD, United States.
| |
Collapse
|
107
|
Lovinger DM, Abrahao KP. Synaptic plasticity mechanisms common to learning and alcohol use disorder. ACTA ACUST UNITED AC 2018; 25:425-434. [PMID: 30115764 PMCID: PMC6097767 DOI: 10.1101/lm.046722.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/21/2018] [Indexed: 11/24/2022]
Abstract
Alcohol use disorders include drinking problems that span a range from binge drinking to alcohol abuse and dependence. Plastic changes in synaptic efficacy, such as long-term depression and long-term potentiation are widely recognized as mechanisms involved in learning and memory, responses to drugs of abuse, and addiction. In this review, we focus on the effects of chronic ethanol (EtOH) exposure on the induction of synaptic plasticity in different brain regions. We also review findings indicating that synaptic plasticity occurs in vivo during EtOH exposure, with a focus on ex vivo electrophysiological indices of plasticity. Evidence for effects of EtOH-induced or altered synaptic plasticity on learning and memory and EtOH-related behaviors is also reviewed. As this review indicates, there is much work needed to provide more information about the molecular, cellular, circuit, and behavioral consequences of EtOH interactions with synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA
| | - Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA
| |
Collapse
|