101
|
Garner IM, Brown R. Is There a Role for Epigenetic Therapies in Modulating DNA Damage Repair Pathways to Enhance Chemotherapy and Overcome Drug Resistance? Cancers (Basel) 2022; 14:cancers14061533. [PMID: 35326684 PMCID: PMC8946236 DOI: 10.3390/cancers14061533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 02/01/2023] Open
Abstract
Epigenetic therapies describe drug molecules such as DNA methyltransferase, histone methyltransferase and histone acetylase/deacetylase inhibitors, which target epigenetic mechanisms such as DNA methylation and histone modifications. Many DNA damage response (DDR) genes are epigenetically regulated in cancer leading to transcriptional silencing and the loss of DNA repair capacity. Epigenetic marks at DDR genes, such as DNA methylation at gene promoters, have the potential to be used as stratification biomarkers, identifying which patients may benefit from particular chemotherapy treatments. For genes such as MGMT and BRCA1, promoter DNA methylation is associated with chemosensitivity to alkylating agents and platinum coordination complexes, respectively, and they have use as biomarkers directing patient treatment options. In contrast to epigenetic change leading to chemosensitivity, DNA methylation of DDR genes involved in engaging cell death responses, such as MLH1, are associated with chemoresistance. This contrasting functional effect of epigenetic modification on chemosensitivity raises challenges in using DNA-demethylating agents, and other epigenetic approaches, to sensitise tumours to DNA-damaging chemotherapies and molecularly targeted agents. Demethylation of MGMT/BRCA1 could lead to drug resistance whereas demethylation of MLH1 could sensitise cells to chemotherapy. Patient selection based on a solid understanding of the disease pathway will be one means to tackle these challenges. The role of epigenetic modification of DDR genes during tumour development, such as causing a mutator phenotype, has different selective pressures and outcomes compared to epigenetic adaptation during treatment. The prevention of epigenetic adaptation during the acquisition of drug resistance will be a potential strategy to improve the treatment of patients using epigenetic therapies.
Collapse
|
102
|
O’Sullivan Coyne G, Karlovich C, Wilsker D, Voth AR, Parchment RE, Chen AP, Doroshow JH. PARP Inhibitor Applicability: Detailed Assays for Homologous Recombination Repair Pathway Components. Onco Targets Ther 2022; 15:165-180. [PMID: 35237050 PMCID: PMC8885121 DOI: 10.2147/ott.s278092] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) have been in clinical use since 2014 for certain patients with germline BRCA1/2 mutations, but as evidence and approvals for their use in a wider range of patients grow, the question of how best to identify patients who would benefit from PARPi becomes ever more complex. Here, we discuss the development and current state of approved selection testing for PARPi therapy and the ongoing efforts to define a broader range of homologous recombination repair deficiencies that are susceptible to PARP inhibition.
Collapse
Affiliation(s)
- Geraldine O’Sullivan Coyne
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Karlovich
- Leidos Biomedical Research Inc, Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Wilsker
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E Parchment
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alice P Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
103
|
Collet L, Péron J, Penault-Llorca F, Pujol P, Lopez J, Freyer G, You B. PARP Inhibitors: A Major Therapeutic Option in Endocrine-Receptor Positive Breast Cancers. Cancers (Basel) 2022; 14:599. [PMID: 35158866 PMCID: PMC8833594 DOI: 10.3390/cancers14030599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/01/2023] Open
Abstract
Recently, OlympiAD and EMBRACA trials demonstrated the favorable efficacy/toxicity ratio of PARPi, compared to chemotherapy, in patients with HER2-negative metastatic breast cancers (mBC) carrying a germline BRCA mutation. PARPi have been largely adopted in triple-negative metastatic breast cancer, but their place has been less clearly defined in endocrine-receptor positive, HER2 negative (ER+/ HER2-) mBC. The present narrative review aims at addressing this question by identifying the patients that are more likely benefit from PARPi. Frequencies of BRCA pathogenic variant (PV) carriers among ER+/HER2- breast cancer patients have been underestimated, and many experts assume than 50% of all BRCA1/2 mutated breast cancers are of ER+/HER2- subtype. Patients with ER+/HER2- BRCA-mutated mBC seemed to have a higher risk of early disease progression while on CDK4/6 inhibitors and PARPi are effective especially when prescribed before exposure to chemotherapy. The OLYMPIA trial also highlighted the utility of PARPi in patients with early breast cancers at high risk of relapse and carrying PV of BRCA. PARPi might also be effective in patients with HRD diseases, representing up to 20% of ER+/HER2- breast cancers. Consequently, the future implementation of early genotyping strategies for identifying the patients with high-risk ER+/HER2- HRD breast cancers likely to benefit from PARPi is of high importance.
Collapse
Affiliation(s)
- Laetitia Collet
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Julien Péron
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
- Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, CNRS UMR 5558, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Frédérique Penault-Llorca
- Department of Pathology and Biopathology, Jean Perrin Comprehensive Cancer Center, UMR INSERM 1240, University Clermont Auvergne, 63011 Clermont-Ferrand, France;
| | - Pascal Pujol
- Department of Cancer Genetics, CHU Montpellier, UMR IRD 224-CNRS 5290, Université Montpellier, 34295 Montpellier, France;
- Centre de Recherches Écologiques et Évolutives sur le Cancer (CREEC), UMR 224 CNRS-5290, University of Montpellier, 34394 Montpellier, France
| | - Jonathan Lopez
- Biochemistry and Molecular Biology Department, Hopital Lyon Sud, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Gilles Freyer
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Benoît You
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, 69495 Lyon, France; (L.C.); (J.P.); (G.F.)
- Lyon-Sud Medicine School, University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| |
Collapse
|
104
|
Zong C, Zhu T, He J, Huang R, Jia R, Shen J. PARP mediated DNA damage response, genomic stability and immune responses. Int J Cancer 2021; 150:1745-1759. [PMID: 34952967 DOI: 10.1002/ijc.33918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) enzymes, especially PARP1, play important roles in the DNA damage response and in the maintenance of genome stability, which makes PARPis a classic synthetic lethal therapy for BRCA-deficient tumors. Conventional mechanisms suggest that PARPis exert their effects via catalytic inhibition and PARP-DNA trapping. Recently, PARP1 has been found to play a role in the immune modulation of tumors. The blockade of PARP1 is able to induce innate immunity through a series of molecular mechanisms, thus allowing the prediction of the feasibility of PARPis combined with immune agents in the treatment of tumors. PARPis combined with immunomodulators may have a stronger tumor suppressive effect on inhibiting tumor growth and blocking immune escape. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chunyan Zong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyu Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
105
|
PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Cancers (Basel) 2021; 13:cancers13246385. [PMID: 34945003 PMCID: PMC8699275 DOI: 10.3390/cancers13246385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerase (PARP) inhibitors, which are medications approved to treat various solid tumors, including breast, prostate, ovarian, and prostate cancers, are being examined in hematological malignancies. This review summarizes the potential role of PARP inhibitors in the treatment of myeloid diseases, particularly acute myeloid leukemia (AML). We review ongoing clinical studies investigating the safety and efficacy of PARP inhibitors in the treatment of AML, focusing on specific molecular and genetic AML subgroups that could be particularly sensitive to PARP inhibitor treatment. We also discuss reports describing an increased risk of treatment-related myeloid neoplasms in patients receiving PARP inhibitors for solid tumors. Abstract Despite recent discoveries and therapeutic advances in aggressive myeloid neoplasms, there remains a pressing need for improved therapies. For instance, in acute myeloid leukemia (AML), while most patients achieve a complete remission with conventional chemotherapy or the combination of a hypomethylating agent and venetoclax, de novo or acquired drug resistance often presents an insurmountable challenge, especially in older patients. Poly(ADP-ribose) polymerase (PARP) enzymes, PARP1 and PARP2, are involved in detecting DNA damage and repairing it through multiple pathways, including base excision repair, single-strand break repair, and double-strand break repair. In the context of AML, PARP inhibitors (PARPi) could potentially exploit the frequently dysfunctional DNA repair pathways that, similar to deficiencies in homologous recombination in BRCA-mutant disease, set the stage for cell killing. PARPi appear to be especially effective in AML with certain gene rearrangements and molecular characteristics (RUNX1-RUNX1T1 and PML-RARA fusions, FLT3- and IDH1-mutated). In addition, PARPi can enhance the efficacy of other agents, particularly alkylating agents, TOP1 poisons, and hypomethylating agents, that induce lesions ordinarily repaired via PARP1-dependent mechanisms. Conversely, emerging reports suggest that long-term treatment with PARPi for solid tumors is associated with an increased incidence of myelodysplastic syndrome (MDS) and AML. Here, we (i) review the pre-clinical and clinical data on the role of PARPi, specifically olaparib, talazoparib, and veliparib, in aggressive myeloid neoplasms and (ii) discuss the reported risk of MDS/AML with PARPi, especially as the indications for PARPi use expand to include patients with potentially curable cancer.
Collapse
|
106
|
van Wijk LM, Nilas AB, Vrieling H, Vreeswijk MPG. RAD51 as a functional biomarker for homologous recombination deficiency in cancer: a promising addition to the HRD toolbox? Expert Rev Mol Diagn 2021; 22:185-199. [PMID: 34913794 DOI: 10.1080/14737159.2022.2020102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Carcinomas with defects in the homologous recombination (HR) pathway are sensitive to PARP inhibitors (PARPi). A robust method to identify HR-deficient (HRD) carcinomas is therefore of utmost clinical importance. Currently available DNA-based HRD tests either scan HR-related genes such as BRCA1 and BRCA2 for the presence of pathogenic variants or identify HRD-related genomic scars or mutational signatures by using whole-exome or whole-genome sequencing data. As an alternative to DNA-based tests, functional HRD tests have been developed that assess the actual ability of tumors to accumulate RAD51 protein at DNA double strand breaks as a proxy for HR proficiency. AREAS COVERED This review presents an overview of currently available HRD tests and discuss the pros and cons of the different methodologies including their sensitivity for the identification of HRD tumors, their concordance with other HRD tests, and their capacity to predict therapy response. EXPERT OPINION With the increasing use of PARP inhibitors in the treatment of several cancers there is an urgent need to implement HRD testing in routine clinical practice. To this end, calibration of HRD thresholds and clinical validation of both DNA-based and RAD51-based HRD tests should have top-priority in the coming years.
Collapse
Affiliation(s)
- Lise M van Wijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Andreea B Nilas
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
107
|
Integrated, Integral, and Exploratory Biomarkers in the Development of Poly(ADP-Ribose) Polymerase Inhibitors. Cancer J 2021; 27:482-490. [PMID: 34904811 DOI: 10.1097/ppo.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT In this article, we highlight biomarkers for poly(ADP-ribose) polymerase inhibitor (PARPi) sensitivity and resistance and discuss their implications for the clinic. We review the predictive role of a range of DNA repair genes, genomic scars, mutational signatures, and functional assays available or in development. The biomarkers used for patient selection in the specific Food and Drug Administration-approved indications for breast, ovarian, prostate, and pancreatic cancer vary across tumor type and likely depend on disease-specific DNA repair deficiencies but also the specifics of the individual clinical trials that were conducted. Mutations in genes involved in homologous recombination and/or replication fork protection are synthetic lethal with PARPi. Cancers with homologous recombination deficiency exhibit high genomic instability, characterized by genome-wide loss of heterozygosity, among other genomic aberrations. Next-generation sequencing can identify multiple patterns of genomic changes including copy number variations, single-nucleotide variations, insertions/deletions, and structural variations rearrangements characteristic of homologous recombination deficiency. Clinical trial evidence supports the use of BRCA mutation testing for patient selection, and for ovarian cancer, there are 3 commercial assays available that additionally incorporate genomic instability for identifying subgroups of patients that derive different magnitudes of benefit from PARPi therapy. Finally, we summarize new strategies for extending the benefit of PARPi therapy toward broader populations of patients through the use of novel biomarkers. Ultimately, design of a composite biomarker test combining multiple mutational signatures or development of a dynamic assay for functional assessments of homologous recombination may help improve the test accuracy for future patient stratification.
Collapse
|
108
|
Yordanova M, Hubert A, Hassan S. Expanding the Use of PARP Inhibitors as Monotherapy and in Combination in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:1270. [PMID: 34959671 PMCID: PMC8709256 DOI: 10.3390/ph14121270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and is known to be associated with a poor prognosis and limited therapeutic options. Poly (ADP-ribose) polymerase inhibitors (PARPi) are targeted therapeutics that have demonstrated efficacy as monotherapy in metastatic BRCA-mutant (BRCAMUT) TNBC patients. Improved efficacy of PARPi has been demonstrated in BRCAMUT breast cancer patients who have either received fewer lines of chemotherapy or in chemotherapy-naïve patients in the metastatic, adjuvant, and neoadjuvant settings. Moreover, recent trials in smaller cohorts have identified anti-tumor activity of PARPi in TNBC patients, regardless of BRCA-mutation status. While there have been concerns regarding the efficacy and toxicity of the use of PARPi in combination with chemotherapy, these challenges can be mitigated with careful attention to PARPi dosing strategies. To better identify a patient subpopulation that will best respond to PARPi, several genomic biomarkers of homologous recombination deficiency have been tested. However, gene expression signatures associated with PARPi response can integrate different pathways in addition to homologous recombination deficiency and can be implemented in the clinic more readily. Taken together, PARPi have great potential for use in TNBC patients beyond BRCAMUT status, both as a single-agent and in combination.
Collapse
Affiliation(s)
- Mariya Yordanova
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Audrey Hubert
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada;
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada;
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada
- Division of Surgical Oncology, Department of Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0C1, Canada
| |
Collapse
|
109
|
Franz A, Coscia F, Shen C, Charaoui L, Mann M, Sander C. Molecular response to PARP1 inhibition in ovarian cancer cells as determined by mass spectrometry based proteomics. J Ovarian Res 2021; 14:140. [PMID: 34686201 PMCID: PMC8539835 DOI: 10.1186/s13048-021-00886-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Poly (ADP)-ribose polymerase (PARP) inhibitors have entered routine clinical practice for the treatment of high-grade serous ovarian cancer (HGSOC), yet the molecular mechanisms underlying treatment response to PARP1 inhibition (PARP1i) are not fully understood. METHODS Here, we used unbiased mass spectrometry based proteomics with data-driven protein network analysis to systematically characterize how HGSOC cells respond to PARP1i treatment. RESULTS We found that PARP1i leads to pronounced proteomic changes in a diverse set of cellular processes in HGSOC cancer cells, consistent with transcript changes in an independent perturbation dataset. We interpret decreases in the levels of the pro-proliferative transcription factors SP1 and β-catenin and in growth factor signaling as reflecting the anti-proliferative effect of PARP1i; and the strong activation of pro-survival processes NF-κB signaling and lipid metabolism as PARPi-induced adaptive resistance mechanisms. Based on these observations, we nominate several protein targets for therapeutic inhibition in combination with PARP1i. When tested experimentally, the combination of PARPi with an inhibitor of fatty acid synthase (TVB-2640) has a 3-fold synergistic effect and is therefore of particular pre-clinical interest. CONCLUSION Our study improves the current understanding of PARP1 function, highlights the potential that the anti-tumor efficacy of PARP1i may not only rely on DNA damage repair mechanisms and informs on the rational design of PARP1i combination therapies in ovarian cancer.
Collapse
Affiliation(s)
- Alexandra Franz
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Fabian Coscia
- Proteomics Program, NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ciyue Shen
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Lea Charaoui
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Mann
- Proteomics Program, NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Chris Sander
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
110
|
Shah PD, Wethington SL, Pagan C, Latif N, Tanyi J, Martin LP, Morgan M, Burger RA, Haggerty A, Zarrin H, Rodriguez D, Domchek S, Drapkin R, Shih IM, Smith SA, Dean E, Gaillard S, Armstrong D, Torigian DA, Hwang WT, Giuntoli R, Simpkins F. Combination ATR and PARP Inhibitor (CAPRI): A phase 2 study of ceralasertib plus olaparib in patients with recurrent, platinum-resistant epithelial ovarian cancer. Gynecol Oncol 2021; 163:246-253. [PMID: 34620496 DOI: 10.1016/j.ygyno.2021.08.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Platinum-resistant, high-grade serous ovarian cancer (HGSOC) has limited treatment options. Preclinical data suggest that poly(ADP-ribose) polymerase inhibitors (PARPi) and ataxia telangiectasia and Rad3-related kinase inhibitors (ATRi) are synergistic. CAPRI (NCT03462342) is an investigator-initiated study of olaparib plus ceralasertib in recurrent HGSOC. Herein, we present results from the platinum-resistant cohort. METHODS A Simon 2-stage design was utilized. Platinum-resistant HGSOC patients received ceralasertib 160 mg orally daily, days 1-7 and olaparib 300 mg orally twice daily, days 1-28 of a 28-day cycle until toxicity or progression. Primary endpoints were toxicity and efficacy including objective response rate (ORR) by RECIST. Secondary endpoint was progression-free survival (PFS). The null hypothesis (≤5% ORR) would be rejected if there were ≥ 1 responses in 12 patients. RESULTS Fourteen PARPi-naïve patients were evaluable for toxicity; 12 were evaluable for response. Three had BRCA1 mutations (1 germline, 2 somatic). Adverse events possibly related to treatment were primarily grade (G) 1/2. G3 toxicities included nausea (14.3%), fatigue (7.1%), anorexia (7.1%), and anemia (7.1%). No objective responses occurred. Best response was stable disease in 9 patients and progressive disease in three. Five patients had a ≥ 20% to <30% reduction in disease burden, including 3 with BRCA1 mutations. Three of 11 patients (27%; 2 with BRCA1 mutations) evaluable by Gynecologic Cancer Intergroup criteria had >50% CA-125 decline, including 2 with CA-125 normalization. Median PFS was 4.2 months overall (90% CI:3.5-8.2) and 8.2 months (3.6 months-not determined) for patients with BRCA1 mutations. CONCLUSIONS Olaparib plus ceralasertib is well-tolerated. No objective responses occurred, though a signal of activity was seen particularly in disease associated with BRCA1. Further evaluation of this combination should include alternate dosing strategies in genomically-selected populations.
Collapse
Affiliation(s)
- Payal D Shah
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, United States of America; Division of Medical Oncology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Stephanie L Wethington
- The Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, United States of America
| | - Cheyenne Pagan
- Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Nawar Latif
- Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Janos Tanyi
- Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Lainie P Martin
- Division of Medical Oncology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Mark Morgan
- Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Robert A Burger
- Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Ashley Haggerty
- Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Haley Zarrin
- Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Diego Rodriguez
- Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Susan Domchek
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, United States of America; Division of Medical Oncology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Ronny Drapkin
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, United States of America; Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Ie-Ming Shih
- The Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, United States of America
| | | | - Emma Dean
- AstraZeneca, R&D Oncology, Cambridge, UK
| | - Stéphanie Gaillard
- The Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, United States of America
| | - Deborah Armstrong
- The Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, United States of America
| | - Drew A Torigian
- Department of Radiology, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Wei-Ting Hwang
- Division of Biostatistics, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Robert Giuntoli
- Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America
| | - Fiona Simpkins
- Division of Gynecology Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine at the University of Pennsylvania, United States of America.
| |
Collapse
|
111
|
Biegała Ł, Gajek A, Marczak A, Rogalska A. PARP inhibitor resistance in ovarian cancer: Underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway. Biochim Biophys Acta Rev Cancer 2021; 1876:188633. [PMID: 34619333 DOI: 10.1016/j.bbcan.2021.188633] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Ovarian cancer (OC) constitutes the most common cause of gynecologic cancer-related death in women worldwide. Despite consistent developments in treatment strategies for OC, the management of advanced-stage disease remains a significant challenge. Recent improvements in targeted treatments based on poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) have provided invaluable benefits to patients with OC. Unfortunately, numerous patients do not respond to PARPi due to intrinsic resistance or acquisition of resistance. Here, we discuss mechanisms of resistance to PARPi that have specifically emerged in OC including increased drug efflux, restoration of HR repair, re-establishment of replication fork stability, reduced PARP1 trapping, abnormalities in PARP signaling, and less common pathways associated with alternative DNA sensing and repair pathways. Elucidation of the precise mechanisms is essential for the development of novel strategies to re-sensitize OC cells to PARPi agents. Additionally, novel potential concepts for preventing and combating resistance to PARPi under development and relevant clinical reports on treatment strategies have been reviewed, with emphasis on the exploitation of the ATR/CHK1 kinase pathway in sensitization to PARPi to overcome resistance-induced vulnerability in ovarian cancer.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
112
|
Swisher EM, Kristeleit RS, Oza AM, Tinker AV, Ray-Coquard I, Oaknin A, Coleman RL, Burris HA, Aghajanian C, O'Malley DM, Leary A, Welch S, Provencher D, Shapiro GI, Chen LM, Shapira-Frommer R, Kaufmann SH, Goble S, Maloney L, Kwan T, Lin KK, McNeish IA. Characterization of patients with long-term responses to rucaparib treatment in recurrent ovarian cancer. Gynecol Oncol 2021; 163:490-497. [PMID: 34602290 DOI: 10.1016/j.ygyno.2021.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To describe molecular and clinical characteristics of patients with high-grade recurrent ovarian carcinoma (HGOC) who had long-term responses to the poly(ADP-ribose) polymerase (PARP) inhibitor rucaparib. METHODS This post hoc analysis pooled patients from Study 10 (NCT01482715; Parts 2A and 2B; n = 54) and ARIEL2 (NCT01891344; Parts 1 and 2; n = 491). Patients with investigator-assessed complete or partial response per RECIST were classified based on duration of response (DOR): long (≥1 year), intermediate (6 months to <1 year), or short (<6 months). Next-generation sequencing was used to detect deleterious mutations and loss of heterozygosity (LOH) in tumors. RESULTS Overall, 25.3% (138/545) of enrolled patients were responders. Of these, 27.5% (38/138) had long-term responses; 28.3% (39/138) were intermediate- and 34.8% (48/138) were short-term responders. Most of the long-term responders harbored a BRCA1 or BRCA2 (BRCA) mutation (71.1%, 27/38), and BRCA structural variants were most frequent among long-term responders (14.8%; 4/27). Responders with HGOC harboring a BRCA structural variant (n = 5) had significantly longer DOR than patients with other mutation types (n = 81; median not reached vs 0.62 years; HR, 0.21; 95% CI, 0.10-0.43; unadjusted p = 0.014). Among responders with BRCA wild-type HGOC, most long- and intermediate-term responders had high genome-wide LOH: 81.8% (9/11) and 76.9% (10/13), respectively, including 7 with deleterious RAD51C, RAD51D, or CDK12 mutations. CONCLUSION Among patients who responded to rucaparib, a substantial proportion achieved responses lasting ≥1 year. These analyses demonstrate the relationship between DOR to PARP inhibitor treatment and molecular characteristics in HGOC, such as presence of reversion-resistant BRCA structural variants.
Collapse
Affiliation(s)
- Elizabeth M Swisher
- Division of Gynecologic Oncology, University of Washington, Seattle, WA, USA.
| | - Rebecca S Kristeleit
- Department of Oncology, University College London (UCL) Cancer Institute and UCL Hospitals, London, UK
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Isabelle Ray-Coquard
- Medical Oncology Department, Centre Léon Bérard and University Claude Bernard and Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Lyon, France
| | - Ana Oaknin
- Gynecologic Cancer Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Howard A Burris
- Sarah Cannon Research Institute at Tennessee Oncology, Nashville, TN, USA
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David M O'Malley
- Division of Gynecologic Oncology, The Ohio State University, James Cancer Center, Columbus, OH, USA
| | - Alexandra Leary
- Gynecological Unit, Gustave Roussy Cancer Center, INSERM U981, and Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Villejuif, France
| | - Stephen Welch
- Division of Medical Oncology, Western University, London, ON, Canada
| | - Diane Provencher
- Institut du Cancer de Montréal, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-May Chen
- Gynecologic Oncology Division, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Sandra Goble
- Biostatistics, Clovis Oncology, Inc., Boulder, CO, USA
| | - Lara Maloney
- Clinical Development, Clovis Oncology, Inc., Boulder, CO, USA
| | - Tanya Kwan
- Molecular Diagnostics, Clovis Oncology, Inc., Boulder, CO, USA
| | - Kevin K Lin
- Molecular Diagnostics, Clovis Oncology, Inc., Boulder, CO, USA
| | - Iain A McNeish
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
113
|
The role of the tumor primary chemosensitivity relative to the success of the medical-surgical management in patients with advanced ovarian carcinomas. Cancer Treat Rev 2021; 100:102294. [PMID: 34564042 DOI: 10.1016/j.ctrv.2021.102294] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/25/2022]
Abstract
In patients with advanced ovarian carcinomas, the first-line treatment has historically relied on debulking surgery and platinum-based chemotherapy. If the major therapeutic/prognostic role of the surgery part is well understood, and integrated in disease-management algorithms, the impact of chemotherapy efficacy has been insufficiently addressed. This review describes the main indicators of the chemosensitivity reported in the literature (pathological response score & biomarkers; genomic alterations; DNA scars; imaging; and circulating tumor markers), and investigates the respective roles of the debulking surgery and tumor primary chemosensitivity relative to the success of the comprehensive medical-surgical treatment. The tumor primary chemosensitivity exhibits a major independent prognostic impact on the feasibility of complete interval debulking surgery after neoadjuvant chemotherapy, risk of subsequent platinum-resistant relapse, efficacy of subsequent maintenance therapies with bevacizumab or PARP inhibitors, progression-free survival, overall and long-term survival. While both the completeness of the surgery and the tumor primary chemosensitivity are undoubtedly major prognostic factors, the impact of the surgery may differ according to the primary chemosensitivity. This assumption raises a potential new concept: in patients with advanced ovarian carcinomas, the maximum tumor debulking should ideally be both biological (induced by systemic treatments) and physical (induced by surgery) for maximizing patient survival. Besides BRCA and HRD biomarkers, future trials and algorithms may integrate indicator(s) of the tumor primary chemosensitivity for guiding more subtly the surgical and medical management in first-line setting. Moreover, such a parameter would help in the development of novel approaches meant to reverse the resistance to chemotherapy and PARP inhibitors.
Collapse
|
114
|
Wethington SL, Wahner-Hendrickson AE, Swisher EM, Kaufmann SH, Karlan BY, Fader AN, Dowdy SC. PARP inhibitor maintenance for primary ovarian cancer - A missed opportunity for precision medicine. Gynecol Oncol 2021; 163:11-13. [PMID: 34391577 DOI: 10.1016/j.ygyno.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Stephanie L Wethington
- Department of Gynecology and Obstetrics, The Kelly Gynecologic Oncology Service, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | | | - Elizabeth M Swisher
- Division of Gynecologic Oncology, University of Washington, Seattle, WA, USA
| | | | - Beth Y Karlan
- Women's Cancer Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Amanda Nickles Fader
- Department of Gynecology and Obstetrics, The Kelly Gynecologic Oncology Service, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Sean C Dowdy
- Division of Gynecologic Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
115
|
Dickson KA, Xie T, Evenhuis C, Ma Y, Marsh DJ. PARP Inhibitors Display Differential Efficacy in Models of BRCA Mutant High-Grade Serous Ovarian Cancer. Int J Mol Sci 2021; 22:8506. [PMID: 34445211 PMCID: PMC8395221 DOI: 10.3390/ijms22168506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Several poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors are now in clinical use for tumours with defects in BReast CAncer genes BRCA1 or BRCA2 that result in deficient homologous recombination repair (HRR). Use of olaparib, niraparib or rucaparib for the treatment of high-grade serous ovarian cancer, including in the maintenance setting, has extended both progression free and overall survival for women with this malignancy. While different PARP inhibitors (PARPis) are mechanistically similar, differences are apparent in their chemical structures, toxicity profiles, PARP trapping abilities and polypharmacological landscapes. We have treated ovarian cancer cell line models of known BRCA status, including the paired cell lines PEO1 and PEO4, and UWB1.289 and UWB1.289+BRCA1, with five PARPis (olaparib, niraparib, rucaparib, talazoparib and veliparib) and observed differences between PARPis in both cell viability and cell survival. A cell line model of acquired resistance to veliparib showed increased resistance to the other four PARPis tested, suggesting that acquired resistance to one PARPi may not be able to be rescued by another. Lastly, as a proof of principle, HRR proficient ovarian cancer cells were sensitised to PARPis by depletion of BRCA1. In the future, guidelines will need to emerge to assist clinicians in matching specific PARPis to specific patients and tumours.
Collapse
Affiliation(s)
- Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; (K.-A.D.); (T.X.); (Y.M.)
| | - Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; (K.-A.D.); (T.X.); (Y.M.)
| | - Christian Evenhuis
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; (K.-A.D.); (T.X.); (Y.M.)
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; (K.-A.D.); (T.X.); (Y.M.)
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
116
|
Vanacker H, Harter P, Labidi-Galy SI, Banerjee S, Oaknin A, Lorusso D, Ray-Coquard I. PARP-inhibitors in epithelial ovarian cancer: Actual positioning and future expectations. Cancer Treat Rev 2021; 99:102255. [PMID: 34332292 DOI: 10.1016/j.ctrv.2021.102255] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Poly-(ADP)-ribose polymerase inhibitors (PARPi) are a class of oral anticancer drugs first developed as "synthetically lethal" in cancers harboring BRCA1/BRCA2 inactivating mutations. In high-grade serous or endometrioid ovarian cancers (HGOC), PARPi demonstrated benefit as maintenance therapy in relapsing BRCA-mutated and non-mutated tumors. Recently, they extended their indications to frontline maintenance therapy. This review summarizes the current place of PARPi (i) as maintenance or single agent in recurrent disease and (ii) frontline maintenance with different settings. We reviewed the course of biomarker identification, the challenge of overcoming resistance to PARPi and future combinations with targeted therapies, including anti-angiogenic, immune checkpoint inhibitors and DNA damage response inhibitors.
Collapse
Affiliation(s)
- Hélène Vanacker
- Centre Léon Bérard, Lyon, France; University Claude Bernard Lyon 1, France.
| | - Philipp Harter
- Department of Gynecology & Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany.
| | - Sana Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux Universitaires de Genève, Switzerland; Faculty of Medicine, Swiss Cancer Center Leman, Geneva, Switzerland.
| | - Susana Banerjee
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom.
| | - Ana Oaknin
- Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | | | | |
Collapse
|
117
|
Hurley RM, McGehee CD, Nesic K, Correia C, Weiskittel TM, Kelly RL, Venkatachalam A, Hou X, Pathoulas NM, Meng XW, Kondrashova O, Radke MR, Schneider PA, Flatten KS, Peterson KL, Becker MA, Wong EM, Southey MS, Dobrovic A, Lin KK, Harding TC, McNeish I, Ross CA, Wagner JM, Wakefield MJ, Scott CL, Haluska P, Wahner Hendrickson AE, Karnitz LM, Swisher EM, Li H, Weroha SJ, Kaufmann SH. Characterization of a RAD51C-silenced high-grade serous ovarian cancer model during development of PARP inhibitor resistance. NAR Cancer 2021; 3:zcab028. [PMID: 34316715 PMCID: PMC8271218 DOI: 10.1093/narcan/zcab028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Acquired PARP inhibitor (PARPi) resistance in BRCA1- or BRCA2-mutant ovarian cancer often results from secondary mutations that restore expression of functional protein. RAD51C is a less commonly studied ovarian cancer susceptibility gene whose promoter is sometimes methylated, leading to homologous recombination (HR) deficiency and PARPi sensitivity. For this study, the PARPi-sensitive patient-derived ovarian cancer xenograft PH039, which lacks HR gene mutations but harbors RAD51C promoter methylation, was selected for PARPi resistance by cyclical niraparib treatment in vivo. PH039 acquired PARPi resistance by the third treatment cycle and grew through subsequent treatment with either niraparib or rucaparib. Transcriptional profiling throughout the course of resistance development showed widespread pathway level changes along with a marked increase in RAD51C mRNA, which reflected loss of RAD51C promoter methylation. Analysis of ovarian cancer samples from the ARIEL2 Part 1 clinical trial of rucaparib monotherapy likewise indicated an association between loss of RAD51C methylation prior to on-study biopsy and limited response. Interestingly, the PARPi resistant PH039 model remained platinum sensitive. Collectively, these results not only indicate that PARPi treatment pressure can reverse RAD51C methylation and restore RAD51C expression, but also provide a model for studying the clinical observation that PARPi and platinum sensitivity are sometimes dissociated.
Collapse
Affiliation(s)
- Rachel M Hurley
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Cordelia D McGehee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Taylor M Weiskittel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Rebecca L Kelly
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Annapoorna Venkatachalam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Xiaonan Hou
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - X Wei Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Olga Kondrashova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marc R Radke
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | | | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Marc A Becker
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Victoria 3800, Australia
| | - Melissa S Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Victoria 3800, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Hospital, Heidelberg, Victoria 3084, Australia
| | - Kevin K Lin
- Clovis Oncology, San Francisco, CA 94158, USA
| | | | - Iain McNeish
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0NN United Kingdom
| | - Christian A Ross
- Division of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill M Wagner
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Paul Haluska
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Elizabeth M Swisher
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - S John Weroha
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
118
|
Gonzalez-Martin A. Pursuing biomarkers research for a more efficient use of PARP inhibitors. Int J Gynecol Cancer 2021; 31:959-960. [PMID: 34103387 DOI: 10.1136/ijgc-2021-002787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Antonio Gonzalez-Martin
- Department of Medical Oncology and Program in Solid Tumors, Clinica Universidad de Navarra and Center for Applied Medical Research (CIMA), Madrid, Spain
| |
Collapse
|