101
|
Liu L, Guo KX, Tian Y, Yang CJ, Gu QS, Li ZL, Ye L, Liu XY. Copper-Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp 3 )-H/C(sp)-H Cross-Coupling with Rationally Designed Oxazoline-Derived N,N,P(O)-Ligands. Angew Chem Int Ed Engl 2021; 60:26710-26717. [PMID: 34606167 DOI: 10.1002/anie.202110233] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Indexed: 12/14/2022]
Abstract
The intermolecular asymmetric radical oxidative C(sp3 )-C(sp) cross-coupling of C(sp3 )-H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3 )-C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper-catalyzed asymmetric C(sp3 )-C(sp) cross-coupling of (hetero)benzylic and (cyclic)allylic C-H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline-derived N,N,P(O)-ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4-enynes, high site-selectivity among similar C(sp3 )-H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.
Collapse
Affiliation(s)
- Lin Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai-Xin Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang-Jiang Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
102
|
A general strategy for C(sp 3)-H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor. Nat Commun 2021; 12:6950. [PMID: 34845207 PMCID: PMC8630022 DOI: 10.1038/s41467-021-27165-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
Photoredox catalysis has provided many approaches to C(sp3)-H functionalization that enable selective oxidation and C(sp3)-C bond formation via the intermediacy of a carbon-centered radical. While highly enabling, functionalization of the carbon-centered radical is largely mediated by electrophilic reagents. Notably, nucleophilic reagents represent an abundant and practical reagent class, motivating the interest in developing a general C(sp3)-H functionalization strategy with nucleophiles. Here we describe a strategy that transforms C(sp3)-H bonds into carbocations via sequential hydrogen atom transfer (HAT) and oxidative radical-polar crossover. The resulting carbocation is functionalized by a variety of nucleophiles-including halides, water, alcohols, thiols, an electron-rich arene, and an azide-to effect diverse bond formations. Mechanistic studies indicate that HAT is mediated by methyl radical-a previously unexplored HAT agent with differing polarity to many of those used in photoredox catalysis-enabling new site-selectivity for late-stage C(sp3)-H functionalization.
Collapse
|
103
|
Shen Y, Funez-Ardoiz I, Schoenebeck F, Rovis T. Site-Selective α-C-H Functionalization of Trialkylamines via Reversible Hydrogen Atom Transfer Catalysis. J Am Chem Soc 2021; 143:18952-18959. [PMID: 34738467 DOI: 10.1021/jacs.1c07144] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trialkylamines are widely found in naturally occurring alkaloids, synthetic agrochemicals, biological probes, and especially pharmaceuticals agents and preclinical candidates. Despite the recent breakthrough of catalytic alkylation of dialkylamines, the selective α-C(sp3)-H bond functionalization of widely available trialkylamine scaffolds holds promise to streamline complex trialkylamine synthesis, accelerate drug discovery, and execute late-stage pharmaceutical modification with complementary reactivity. However, the canonical methods always result in functionalization at the less-crowded site. Herein, we describe a solution to switch the reaction site through fundamentally overcoming the steric control that dominates such processes. By rapidly establishing an equilibrium between α-amino C(sp3)-H bonds and a highly electrophilic thiol radical via reversible hydrogen atom transfer, we leverage a slower radical-trapping step with electron-deficient olefins to selectively forge a C(sp3)-C(sp3) bond with the more-crowded α-amino radical, with the overall selectivity guided by the Curtin-Hammett principle. This subtle reaction profile has unlocked a new strategic concept in direct C-H functionalization arena for forging C-C bonds from a diverse set of trialkylamines with high levels of site selectivity and preparative utility. Simple correlation of site selectivity and 13C NMR shift serves as a qualitative predictive guide. The broad consequences of this dynamic system, together with the ability to forge N-substituted quaternary carbon centers and implement late-stage functionalization techniques, hold potential to streamline complex trialkylamine synthesis and accelerate small-molecule drug discovery.
Collapse
Affiliation(s)
- Yangyang Shen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | | | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
104
|
Li J, Zhou J, Wang Y, Yu Y, Liu Q, Yang T, Chen H, Cao H. Mechanistic insight into the synergistic Cu/Pd-catalyzed carbonylation of aryl iodides using alcohols and dioxygen as the carbonyl source. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
105
|
Berntsen LN, Solvi TN, Sørnes K, Wragg DS, Sandtorv AH. Cu-catalyzed C(sp 2)-N-bond coupling of boronic acids and cyclic imides. Chem Commun (Camb) 2021; 57:11851-11854. [PMID: 34698731 DOI: 10.1039/d1cc04356k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A general Cu-catalyzed strategy for coupling cyclic imides and alkenylboronic acids by forming C(sp2)-N-bonds is reported. The method enables the practical and mild preparation of (E)-enimides. A large range of cyclic imides are allowed, and di- and tri-substituted alkenylboronic acids can be used. Full retention was observed in the configuration of the alkene double bond in the coupled products. The method is also applicable for preparing N-arylimides, using arylboronic acids as coupling partners. The usefulness of this strategy is exemplified by the convenient derivatization of the chemotherapy medication 5-flurouracil, the nucleoside uridine and the anti-epileptic drug phenytoin.
Collapse
Affiliation(s)
| | | | - Kristian Sørnes
- Department of Chemistry, University of Oslo, Oslo N-0315, Norway.
| | - David S Wragg
- Department of Chemistry, University of Oslo, Oslo N-0315, Norway.
| | | |
Collapse
|
106
|
Wang PZ, Wu X, Cheng Y, Jiang M, Xiao WJ, Chen JR. Photoinduced Copper-Catalyzed Asymmetric Three-Component Coupling of 1,3-Dienes: An Alternative to Kharasch-Sosnovsky Reaction. Angew Chem Int Ed Engl 2021; 60:22956-22962. [PMID: 34405935 DOI: 10.1002/anie.202110084] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/10/2022]
Abstract
Kharasch-Sosnovsky reaction is one of the most powerful methods for allylic oxidation of alkenes. However, the inherent radical mechanism and use of peroxides as both oxidants and oxygen nucleophiles render dearth of universal catalytic systems for highly enantioselective variants and limited scope. Herein, an alternative to the asymmetric Kharasch-Sosnovsky reaction that utilized a chiral copper catalyst and purple-LED irradiation to enable the three-component coupling of 1,3-dienes, oxime esters, and carboxylic acids is reported. This protocol features mild conditions, remarkable scope and functional group tolerance as evidenced by >80 examples and utility in the late-stage modification of pharmaceuticals and natural products. Detailed mechanistic studies provide evidences for the radical-based reaction pathway.
Collapse
Affiliation(s)
- Peng-Zi Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xue Wu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
107
|
Chang L, An Q, Duan L, Feng K, Zuo Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem Rev 2021; 122:2429-2486. [PMID: 34613698 DOI: 10.1021/acs.chemrev.1c00256] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alkoxy radicals are highly reactive species that have long been recognized as versatile intermediates in organic synthesis. However, their development has long been impeded due to a lack of convenient methods for their generation. Thanks to advances in photoredox catalysis, enabling facile access to alkoxy radicals from bench-stable precursors and free alcohols under mild conditions, research interest in this field has been renewed. This review comprehensively summarizes the recent progress in alkoxy radical-mediated transformations under visible light irradiation. Elementary steps for alkoxy radical generation from either radical precursors or free alcohols are central to reaction development; thus, each section is categorized and discussed accordingly. Throughout this review, we have focused on the different mechanisms of alkoxy radical generation as well as their impact on synthetic utilizations. Notably, the catalytic generation of alkoxy radicals from abundant alcohols is still in the early stage, providing intriguing opportunities to exploit alkoxy radicals for diverse synthetic paradigms.
Collapse
Affiliation(s)
- Liang Chang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China.,School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
108
|
Ide T, Feng K, Dixon CF, Teng D, Clark JR, Han W, Wendell CI, Koch V, White MC. Late-Stage Intermolecular Allylic C-H Amination. J Am Chem Soc 2021; 143:14969-14975. [PMID: 34514799 PMCID: PMC8961995 DOI: 10.1021/jacs.1c06335] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allylic amination enables late-stage functionalization of natural products where allylic C-H bonds are abundant and introduction of nitrogen may alter biological profiles. Despite advances, intermolecular allylic amination remains a challenging problem due to reactivity and selectivity issues that often mandate excess substrate, furnish product mixtures, and render important classes of olefins (for example, functionalized cyclic) not viable substrates. Here we report that a sustainable manganese perchlorophthalocyanine catalyst, [MnIII(ClPc)], achieves selective, preparative intermolecular allylic C-H amination of 32 cyclic and linear compounds, including ones housing basic amines and competing sites for allylic, ethereal, and benzylic amination. Mechanistic studies support that the high selectivity of [MnIII(ClPc)] may be attributed to its electrophilic, bulky nature and stepwise amination mechanism. Late-stage amination is demonstrated on five distinct classes of natural products, generally with >20:1 site-, regio-, and diastereoselectivity.
Collapse
Affiliation(s)
- Takafumi Ide
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kaibo Feng
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Charlie F Dixon
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Dawei Teng
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joseph R Clark
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wei Han
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Chloe I Wendell
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Vanessa Koch
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - M Christina White
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
109
|
Lu R, Yang T, Chen X, Fan W, Chen P, Lin Z, Liu G. Enantioselective Copper-Catalyzed Radical Cyanation of Propargylic C-H Bonds: Easy Access to Chiral Allenyl Nitriles. J Am Chem Soc 2021; 143:14451-14457. [PMID: 34477365 DOI: 10.1021/jacs.1c07190] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first enantioselective copper-catalyzed cyanation of propargylic C-H bonds via radical relay was established using novel BoxOTMS ligands, providing an efficient and straightforward tool for the construction of structurally diverse chiral allenyl nitriles in good yields with excellent enantioselectivities. This reaction features high functional group tolerance and mild conditions. In addition, the chiral allene products can be readily converted to other chiral compounds via axis-to-center chirality transfer.
Collapse
Affiliation(s)
- Ronghua Lu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Chen
- Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenzheng Fan
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
110
|
Wang P, Wu X, Cheng Y, Jiang M, Xiao W, Chen J. Photoinduced Copper‐Catalyzed Asymmetric Three‐Component Coupling of 1,3‐Dienes: An Alternative to Kharasch–Sosnovsky Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng‐Zi Wang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Xue Wu
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Min Jiang
- College of Materials Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 310036 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Jia‐Rong Chen
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
111
|
Chen Y, Wang J, Lu Y. Decarboxylative 1,4-carbocyanation of 1,3-enynes to access tetra-substituted allenes via copper/photoredox dual catalysis. Chem Sci 2021; 12:11316-11321. [PMID: 34667542 PMCID: PMC8447876 DOI: 10.1039/d1sc02896k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
We disclose herein the first example of merging photoredox catalysis and copper catalysis for radical 1,4-carbocyanations of 1,3-enynes. Alkyl N-hydroxyphthalimide esters are utilized as radical precursors, and the reported mild and redox-neutral protocol has broad substrate scope and remarkable functional group tolerance. This strategy allows for the synthesis of diverse multi-substituted allenes with high chemo- and regio-selectivities, also permitting late stage allenylation of natural products and drug molecules.
Collapse
Affiliation(s)
- Ya Chen
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Junjie Wang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
| | - Yixin Lu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
| |
Collapse
|
112
|
Cheng X, Li T, Liu Y, Lu Z. Stereo- and Enantioselective Benzylic C–H Alkenylation via Photoredox/Nickel Dual Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02851] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaokai Cheng
- Department of Chemistry, Zhejiang University, 866 Yuhangtang road, Hangzhou 310058, China
| | - Tongtong Li
- Department of Chemistry, Zhejiang University, 866 Yuhangtang road, Hangzhou 310058, China
| | - Yuting Liu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang road, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang road, Hangzhou 310058, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
113
|
Wang K, Lin X, Liu Y, Li C. Palladium-Catalyzed Asymmetric Allylic C–H Functionalization for the Synthesis of Hydroquinolines through Intermolecular [4+2] Cycloadditions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kai Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangfeng Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
114
|
Chen J, Liang YJ, Wang PZ, Li GQ, Zhang B, Qian H, Huan XD, Guan W, Xiao WJ, Chen JR. Photoinduced Copper-Catalyzed Asymmetric C-O Cross-Coupling. J Am Chem Soc 2021; 143:13382-13392. [PMID: 34376050 DOI: 10.1021/jacs.1c06535] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The construction of carbon-heteroatom bonds is one of the most active areas of research in organic chemistry because the function of organic molecules is often derived from the presence of heteroatoms. Although considerable advances have recently been achieved in radical-involved catalytic asymmetric C-N bond formation, there has been little progress in the corresponding C-O bond-forming processes. Here, we describe a photoinduced copper-catalyzed cross-coupling of readily available oxime esters and 1,3-dienes to generate diversely substituted allylic esters with high regio- and enantioselectivity (>75 examples; up to 95% ee). The reaction proceeds at room temperature under excitation by purple light-emitting diodes (LEDs) and features the use of a single, earth-abundant copper-based chiral catalyst as both the photoredox catalyst for radical generation and the source of asymmetric induction in C-O coupling. Combined experimental and density functional theory (DFT) computational studies suggest the formation of π-allylcopper complexes from redox-active oxime esters as bifunctional reagents and 1,3-dienes through a radical-polar crossover process.
Collapse
Affiliation(s)
- Jun Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Yu-Jie Liang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Peng-Zi Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Guo-Qing Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Bin Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Hao Qian
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Xiao-Die Huan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
115
|
Martin T, Galeotti M, Salamone M, Liu F, Yu Y, Duan M, Houk KN, Bietti M. Deciphering Reactivity and Selectivity Patterns in Aliphatic C-H Bond Oxygenation of Cyclopentane and Cyclohexane Derivatives. J Org Chem 2021; 86:9925-9937. [PMID: 34115516 DOI: 10.1021/acs.joc.1c00902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A kinetic, product, and computational study on the reactions of the cumyloxyl radical with monosubstituted cyclopentanes and cyclohexanes has been carried out. HAT rates, site-selectivities for C-H bond oxidation, and DFT computations provide quantitative information and theoretical models to explain the observed patterns. Cyclopentanes functionalize predominantly at C-1, and tertiary C-H bond activation barriers decrease on going from methyl- and tert-butylcyclopentane to phenylcyclopentane, in line with the computed C-H BDEs. With cyclohexanes, the relative importance of HAT from C-1 decreases on going from methyl- and phenylcyclohexane to ethyl-, isopropyl-, and tert-butylcyclohexane. Deactivation is also observed at C-2 with site-selectivity that progressively shifts to C-3 and C-4 with increasing substituent steric bulk. The site-selectivities observed in the corresponding oxidations promoted by ethyl(trifluoromethyl)dioxirane support this mechanistic picture. Comparison of these results with those obtained previously for C-H bond azidation and functionalizations promoted by the PINO radical of phenyl and tert-butylcyclohexane, together with new calculations, provides a mechanistic framework for understanding C-H bond functionalization of cycloalkanes. The nature of the HAT reagent, C-H bond strengths, and torsional effects are important determinants of site-selectivity, with the latter effects that play a major role in the reactions of oxygen-centered HAT reagents with monosubstituted cyclohexanes.
Collapse
Affiliation(s)
- Teo Martin
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Fengjiao Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yanmin Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
116
|
Qi R, Wang C, Huo Y, Chai H, Wang H, Ma Z, Liu L, Wang R, Xu Z. Visible Light Induced Cu-Catalyzed Asymmetric C(sp 3)-H Alkylation. J Am Chem Soc 2021; 143:12777-12783. [PMID: 34351761 DOI: 10.1021/jacs.1c05890] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The asymmetric functionalization of C-H is one of the most attractive strategies in asymmetric synthesis. In the past decades, catalytic enantioselective C(sp3)-H functionalization has been intensively studied and successfully applied in various asymmetric bond formations, whereas asymmetric C(sp3)-H alkylation was not well developed. Photoredox catalysis has recently emerged as an efficient way to synthesize organic compounds under mild conditions. Despite many photoinduced stereoselective reactions that have been achieved, the related enantioselective C(sp3)-C(sp3) coupling is challenging, especially of the photocatalytic asymmetric C(sp3)-H radical alkylation. Here, we report a visible light induced Cu catalyzed asymmetric sp3 C-H alkylation, which is effective for coupling with unbiased primary, secondary, and tertiary alkyl fragments in high enantioselectivities. This reaction would provide a new approach for the synthesis of important molecules such as unnatural α-amino acids and late-stage functionalization of bioactive compounds, and will be useful for modern peptide synthesis and drug discovery.
Collapse
Affiliation(s)
- Rupeng Qi
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yumei Huo
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongli Chai
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongying Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zijian Ma
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Liangyu Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rui Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Zhaoqing Xu
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| |
Collapse
|
117
|
Salamone M, Galeotti M, Romero-Montalvo E, van Santen JA, Groff BD, Mayer JM, DiLabio GA, Bietti M. Bimodal Evans-Polanyi Relationships in Hydrogen Atom Transfer from C(sp 3)-H Bonds to the Cumyloxyl Radical. A Combined Time-Resolved Kinetic and Computational Study. J Am Chem Soc 2021; 143:11759-11776. [PMID: 34309387 PMCID: PMC8343544 DOI: 10.1021/jacs.1c05566] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/11/2022]
Abstract
The applicability of the Evans-Polanyi (EP) relationship to HAT reactions from C(sp3)-H bonds to the cumyloxyl radical (CumO•) has been investigated. A consistent set of rate constants, kH, for HAT from the C-H bonds of 56 substrates to CumO•, spanning a range of more than 4 orders of magnitude, has been measured under identical experimental conditions. A corresponding set of consistent gas-phase C-H bond dissociation enthalpies (BDEs) spanning 27 kcal mol-1 has been calculated using the (RO)CBS-QB3 method. The log kH' vs C-H BDE plot shows two distinct EP relationships, one for substrates bearing benzylic and allylic C-H bonds (unsaturated group) and the other one, with a steeper slope, for saturated hydrocarbons, alcohols, ethers, diols, amines, and carbamates (saturated group), in line with the bimodal behavior observed previously in theoretical studies of reactions promoted by other HAT reagents. The parallel use of BDFEs instead of BDEs allows the transformation of this correlation into a linear free energy relationship, analyzed within the framework of the Marcus theory. The ΔG⧧HAT vs ΔG°HAT plot shows again distinct behaviors for the two groups. A good fit to the Marcus equation is observed only for the saturated group, with λ = 58 kcal mol-1, indicating that with the unsaturated group λ must increase with increasing driving force. Taken together these results provide a qualitative connection between Bernasconi's principle of nonperfect synchronization and Marcus theory and suggest that the observed bimodal behavior is a general feature in the reactions of oxygen-based HAT reagents with C(sp3)-H donors.
Collapse
Affiliation(s)
- Michela Salamone
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Eduardo Romero-Montalvo
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Jeffrey A. van Santen
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Benjamin D. Groff
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - James M. Mayer
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Gino A. DiLabio
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
118
|
Martin JS, Zeng X, Chen X, Miller C, Han C, Lin Y, Yamamoto N, Wang X, Yazdi S, Yan Y, Beard MC, Yan Y. A Nanocrystal Catalyst Incorporating a Surface Bound Transition Metal to Induce Photocatalytic Sequential Electron Transfer Events. J Am Chem Soc 2021; 143:11361-11369. [PMID: 34286970 DOI: 10.1021/jacs.1c00503] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heterogeneous photocatalysis is less common but can provide unique avenues for inducing novel chemical transformations and can also be utilized for energy transductions, i.e., the energy in the photons can be captured in chemical bonds. Here, we developed a novel heterogeneous photocatalytic system that employs a lead-halide perovskite nanocrystal (NC) to capture photons and direct photogenerated holes to a surface bound transition metal Cu-site, resulting in a N-N heterocyclization reaction. The reaction starts from surface coordinated diamine substrates and requires two subsequent photo-oxidation events per reaction cycle. We establish a photocatalytic pathway that incorporates sequential inner sphere electron transfer events, photons absorbed by the NC generate holes that are sequentially funneled to the Cu-surface site to perform the reaction. The photocatalyst is readily prepared via a controlled cation-exchange reaction and provides new opportunities in photodriven heterogeneous catalysis.
Collapse
Affiliation(s)
- Jovan San Martin
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Xianghua Zeng
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States.,College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xihan Chen
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Collin Miller
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Chuang Han
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Yixiong Lin
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Xiaoming Wang
- Department of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, Ohio 43606, United States
| | - Sadegh Yazdi
- Renewable & Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yanfa Yan
- Department of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, Ohio 43606, United States
| | - Matthew C Beard
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
119
|
Zhang C, Wang DS, Lee WCC, McKillop AM, Zhang XP. Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures. J Am Chem Soc 2021; 143:11130-11140. [PMID: 34260202 PMCID: PMC8399859 DOI: 10.1021/jacs.1c04719] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical cascade cyclization reactions are highly attractive synthetic tools for the construction of polycyclic molecules in organic synthesis. While it has been successfully implemented in diastereoselective synthesis of natural products and other complex compounds, radical cascade cyclization faces a major challenge of controlling enantioselectivity. As the first application of metalloradical catalysis (MRC) for controlling enantioselectivity as well as diastereoselectivity in radical cascade cyclization, we herein report the development of a Co(II)-based catalytic system for asymmetric radical bicyclization of 1,6-enynes with diazo compounds. Through the fine-tuning of D2-symmetric chiral amidoporphyrins as the supporting ligands, the Co(II)-catalyzed radical cascade process, which proceeds in a single operation under mild conditions, enables asymmetric construction of multisubstituted cyclopropane-fused tetrahydrofurans bearing three contiguous stereogenic centers, including two all-carbon quaternary centers, in high yields with excellent stereoselectivities. Combined computational and experimental studies have shed light on the underlying stepwise radical mechanism for this new Co(II)-based cascade bicyclization that involves the relay of several Co-supported C-centered radical intermediates, including α-, β-, γ-, and ε-metalloalkyl radicals. The resulting enantioenriched cyclopropane-fused tetrahydrofurans that contain a trisubstituted vinyl group at the bridgehead, as showcased in several stereospecific transformations, may serve as useful intermediates for stereoselective organic synthesis. The successful demonstration of this new asymmetric radical process via Co(II)-MRC points out a potentially general approach for controlling enantioselectivity as well as diastereoselectivity in synthetically attractive radical cascade reactions.
Collapse
Affiliation(s)
- Congzhe Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander M McKillop
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
120
|
Yang D, Chen J, Huang Y, Pan H, Shi J, Zhang Y, Wang F, Li Z. Room-temperature Formal Aza-Wacker Cyclization through Synergistic Copper/TEMPO-catalyzed Radical Relay. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dong Yang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yanping Huang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
- Engineering Experimental Teaching Centre, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Huiquan Pan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jingqi Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yingyue Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Fang Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
121
|
Kim K, Lee S, Hong SH. Direct C(sp 3)-H Cyanation Enabled by a Highly Active Decatungstate Photocatalyst. Org Lett 2021; 23:5501-5505. [PMID: 34228456 DOI: 10.1021/acs.orglett.1c01846] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly efficient, direct C(sp3)-H cyanation was developed under mild photocatalytic conditions. The method enabled the direct cyanation of various C(sp3)-H substrates with excellent functional group tolerance. Notably, complex natural products and bioactive compounds were efficiently cyanated.
Collapse
Affiliation(s)
- Kunsoon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seulchan Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
122
|
Chang Z, Huang J, Wang S, Chen G, Zhao H, Wang R, Zhao D. Copper catalyzed late-stage C(sp 3)-H functionalization of nitrogen heterocycles. Nat Commun 2021; 12:4342. [PMID: 34267229 PMCID: PMC8282657 DOI: 10.1038/s41467-021-24671-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Nitrogen heterocycle represents a ubiquitous skeleton in natural products and drugs. Late-stage C(sp3)-H bond functionalization of N-heterocycles with broad substrate scope remains a challenge and of particular significance to modern chemical synthesis and pharmaceutical chemistry. Here, we demonstrate copper-catalysed late-stage C(sp3)-H functionalizaion of N-heterocycles using commercially available catalysts under mild reaction conditions. We have investigated 8 types of N-heterocycles which are usually found as medicinally important skeletons. The scope and utility of this approach are demonstrated by late-stage C(sp3)-H modification of these heterocycles including a number of pharmaceuticals with a broad range of nucleophiles, e.g. methylation, arylation, azidination, mono-deuteration and glycoconjugation etc. Preliminary mechanistic studies reveal that the reaction undergoes a C-H fluorination process which is followed by a nucleophilic substitution.
Collapse
Affiliation(s)
- Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jialin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Geshuyi Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
123
|
Stereodefined rhodium-catalysed 1,4-H/D delivery for modular syntheses and deuterium integration. Nat Catal 2021. [DOI: 10.1038/s41929-021-00643-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
124
|
Murugesan V, Ganguly A, Karthika A, Rasappan R. C-H Alkylation of Aldehydes by Merging TBADT Hydrogen Atom Transfer with Nickel Catalysis. Org Lett 2021; 23:5389-5393. [PMID: 34170145 DOI: 10.1021/acs.orglett.1c01716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalyst controlled site-selective C-H functionalization is a challenging but powerful tool in organic synthesis. Polarity-matched and sterically controlled hydrogen atom transfer (HAT) provides an excellent opportunity for site-selective functionalization. As such, the dual Ni/photoredox system was successfully employed to generate acyl radicals from aldehydes via selective formyl C-H activation and subsequently cross-coupled to generate ketones, a ubiquitous structural motif present in the vast majority of natural and bioactive molecules. However, only a handful of examples that are constrained to the use of aryl halides are developed. Given the wide availability of amines, we developed a cross-coupling reaction via C-N bond cleavage using the economic nickel and TBADT catalyst for the first time. A range of alkyl and aryl aldehydes were cross-coupled with benzylic and allylic pyridinium salts to afford ketones with a broad spectrum of functional group tolerance. High regioselectivity toward formyl C-H bonds even in the presence of α-methylene carbonyl or α-amino/oxy methylene was obtained.
Collapse
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anirban Ganguly
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ardra Karthika
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
125
|
Zhou H, Li ZL, Gu QS, Liu XY. Ligand-Enabled Copper(I)-Catalyzed Asymmetric Radical C(sp 3)–C Cross-Coupling Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huan Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
126
|
Wang T, Hoffmann M, Dreuw A, Hasagić E, Hu C, Stein PM, Witzel S, Shi H, Yang Y, Rudolph M, Stuck F, Rominger F, Kerscher M, Comba P, Hashmi ASK. A Metal‐Free Direct Arene C−H Amination. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tao Wang
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marvin Hoffmann
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 A D-69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 A D-69120 Heidelberg Germany
| | - Edina Hasagić
- Chemistry Department Faculty of Natural Science Sarajevo University Zmaja od Bosne 33-35 71000 Sarajevo Bosnia and Herzegovina
| | - Chao Hu
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Philipp M. Stein
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sina Witzel
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hongwei Shi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Yangyang Yang
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Fabian Stuck
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marion Kerscher
- Anorganisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department Faculty of Science King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| |
Collapse
|
127
|
Mn-corrolazine-based 2D-nanocatalytic material with single Mn atoms for catalytic oxidation of alkane to alcohol. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63707-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
128
|
Huang C, Ci RN, Qiao J, Wang XZ, Feng K, Chen B, Tung CH, Wu LZ. Direct Allylic C(sp 3 )-H and Vinylic C(sp 2 )-H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. Angew Chem Int Ed Engl 2021; 60:11779-11783. [PMID: 33660909 DOI: 10.1002/anie.202101947] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 01/14/2023]
Abstract
Direct allylic C-H thiolation is straightforward for allylic C(sp3 )-S bond formation. However, strong interactions between thiol and transition metal catalysts lead to deactivation of the catalytic cycle or oxidation of sulfur atom under oxidative condition. Thus, direct allylic C(sp3 )-H thiolation has proved difficult. Represented herein is an exceptional for direct, efficient, atom- and step-economic thiolation of allylic C(sp3 )-H and thiol S-H under visible light irradiation. Radical trapping experiments and electron paramagnetic resonance (EPR) spectroscopy identified the allylic radical and thiyl radical generated on the surface of photocatalyst quantum dots (QDs). The C-S bond formation does not require external oxidants and radical initiators, and hydrogen (H2 ) is produced as byproduct. When vinylic C(sp2 )-H was used instead of allylic C(sp3 )-H bond, the radical-radical cross-coupling of C(sp2 )-H and S-H was achieved with liberation of H2 . Such a unique transformation opens up a door toward direct C-H and S-H coupling for valuable organosulfur chemistry.
Collapse
Affiliation(s)
- Cheng Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui-Nan Ci
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu-Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
129
|
Zhou L, Wei S, Lei Z, Zhu G, Zhang Z. Transition-Metal-Free α Csp 3 -H Cyanation of Sulfonamides. Chemistry 2021; 27:7103-7107. [PMID: 33769613 DOI: 10.1002/chem.202100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 12/18/2022]
Abstract
This report describes the site-selective α-functionalization of sulfonylamide derivatives through the in-situ generation of imine intermediates. The N-F sulfonylamides, which could facilitate the elimination to generate imines, are coupled with TBACN to efficiently and mildly afford α-amino cyanides. Comparing with Strecker reaction, this transformation offers a complementary strategy to efficiently construct α-amino cyanides from direct α C-H functionalization of sulfonylamindes. The reaction is also characterized by broad substrate scope and flash chromatography column free workup. More importantly, the new two-electron pathway to generate imines through manipulation of the leaving group allows us to achieve excellent α site-selectivity.
Collapse
Affiliation(s)
- Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Siqi Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Ziran Lei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
130
|
Pal S, Cotard M, Gérardin B, Hoarau C, Schneider C. Cu-Catalyzed Oxidative Allylic C-H Arylation of Inexpensive Alkenes with (Hetero)Aryl Boronic Acids. Org Lett 2021; 23:3130-3135. [PMID: 33765389 DOI: 10.1021/acs.orglett.1c00812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present a regioselective Cu-catalyzed oxidative allylic C(sp3)-H arylation by radical relay using a broad range of heteroaryl boronic acids with inexpensive and readily available unactivated terminal and internal olefins. This C(sp2)-C(sp3) allyl coupling has the advantage of using cheap, abundant, and nontoxic Cu2O without the need to use prefunctionalized alkenes, thus offering an alternative method to allylic arylation reactions that employ more traditional coupling partners with preinstalled leaving groups (LGs) at the allylic position.
Collapse
Affiliation(s)
- Suman Pal
- Normandy University, University of Rouen, INSA Rouen, CNRS, COBRA UMR 6014, 1 rue Tesnière, 76821 Mont-Saint Aignan Cedex, France
| | - Marine Cotard
- Normandy University, University of Rouen, INSA Rouen, CNRS, COBRA UMR 6014, 1 rue Tesnière, 76821 Mont-Saint Aignan Cedex, France
| | - Baptiste Gérardin
- Normandy University, University of Rouen, INSA Rouen, CNRS, COBRA UMR 6014, 1 rue Tesnière, 76821 Mont-Saint Aignan Cedex, France
| | - Christophe Hoarau
- Normandy University, University of Rouen, INSA Rouen, CNRS, COBRA UMR 6014, 1 rue Tesnière, 76821 Mont-Saint Aignan Cedex, France
| | - Cédric Schneider
- Normandy University, University of Rouen, INSA Rouen, CNRS, COBRA UMR 6014, 1 rue Tesnière, 76821 Mont-Saint Aignan Cedex, France
| |
Collapse
|
131
|
Huang C, Ci R, Qiao J, Wang X, Feng K, Chen B, Tung C, Wu L. Direct Allylic C(sp
3
)−H and Vinylic C(sp
2
)−H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Cheng Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Rui‐Nan Ci
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xu‐Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
132
|
Ren X, Shen C, Wang G, Shi Z, Tian X, Dong K. Access to α-Cyano Carbonyls Bearing a Quaternary Carbon Center by Reductive Cyanation. Org Lett 2021; 23:2527-2532. [PMID: 33760622 DOI: 10.1021/acs.orglett.1c00465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reductive cyanation of tertiary alkyl bromides using electrophilic cyanating reagent and zinc reductant was developed, providing various α-cyano ketones, esters, and carboxamides containing a nitrile-bearing all-carbon quaternary center in good to excellent yields under mild reaction conditions. The corresponding reaction mechanism involving in situ generated organozinc reagent and reactivity distinction was elucidated by density functional theory computation.
Collapse
Affiliation(s)
- Xinyi Ren
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chaoren Shen
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Guangzhu Wang
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhanglin Shi
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
133
|
Lu FD, Lu LQ, He GF, Bai JC, Xiao WJ. Enantioselective Radical Carbocyanation of 1,3-Dienes via Photocatalytic Generation of Allylcopper Complexes. J Am Chem Soc 2021; 143:4168-4173. [DOI: 10.1021/jacs.1c01260] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fu-Dong Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Gui-Feng He
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jun-Chuan Bai
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
134
|
Chen N, Xu HC. Electrochemical generation of nitrogen-centered radicals for organic synthesis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
135
|
Wang H, He M, Li Y, Zhang H, Yang D, Nagasaka M, Lv Z, Guan Z, Cao Y, Gong F, Zhou Z, Zhu J, Samanta S, Chowdhury AD, Lei A. Electrochemical Oxidation Enables Regioselective and Scalable α-C(sp3)-H Acyloxylation of Sulfides. J Am Chem Soc 2021; 143:3628-3637. [DOI: 10.1021/jacs.1c00288] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Huamin Wang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Meng He
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yongli Li
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dali Yang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Masanari Nagasaka
- Institute for Molecular Science and SOKENDAI (Graduate University for Advanced Studies), Myodaiji, Okazaki 444-8585, Japan
| | - Zongchao Lv
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zhipeng Guan
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yangmin Cao
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University, Nanchang 330022, Jiangxi People’s Republic of China
| | - Fengping Gong
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University, Nanchang 330022, Jiangxi People’s Republic of China
| | - Zhilin Zhou
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University, Nanchang 330022, Jiangxi People’s Republic of China
| | - Jingyun Zhu
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University, Nanchang 330022, Jiangxi People’s Republic of China
| | - Supravat Samanta
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University, Nanchang 330022, Jiangxi People’s Republic of China
| |
Collapse
|
136
|
Wu L, Zhang Z, Wu D, Wang F, Chen P, Lin Z, Liu G. Anionic Bisoxazoline Ligands Enable Copper‐Catalyzed Asymmetric Radical Azidation of Acrylamides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lianqian Wu
- State Key Laboratory of Organometallic Chemistry Shanghai Hong Kong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zhihan Zhang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Dunqi Wu
- Chang-Kung Chuang Institute East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Fei Wang
- State Key Laboratory of Organometallic Chemistry Shanghai Hong Kong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry Shanghai Hong Kong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zhenyang Lin
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry Shanghai Hong Kong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Chang-Kung Chuang Institute East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
137
|
Wu L, Zhang Z, Wu D, Wang F, Chen P, Lin Z, Liu G. Anionic Bisoxazoline Ligands Enable Copper‐Catalyzed Asymmetric Radical Azidation of Acrylamides. Angew Chem Int Ed Engl 2021; 60:6997-7001. [DOI: 10.1002/anie.202015083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Lianqian Wu
- State Key Laboratory of Organometallic Chemistry Shanghai Hong Kong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zhihan Zhang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Dunqi Wu
- Chang-Kung Chuang Institute East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Fei Wang
- State Key Laboratory of Organometallic Chemistry Shanghai Hong Kong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry Shanghai Hong Kong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zhenyang Lin
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry Shanghai Hong Kong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Chang-Kung Chuang Institute East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
138
|
Dongbang S, Ellman JA. Synthesis of Nitrile Bearing Acyclic Quaternary Centers through Co(III)-Catalyzed Sequential C-H Bond Addition to Dienes and N-Cyanosuccinimide. Angew Chem Int Ed Engl 2021; 60:2135-2139. [PMID: 33017508 DOI: 10.1002/anie.202010735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Herein we disclose a three-component strategy to access quaternary centers bearing nitriles by cobalt-catalyzed C-H bond activation and sequential addition to internally substituted 1,3-dienes and an electrophilic cyanating reagent with high regio and stereocontrol. 2-Aryl and alkyl monosubstituted dienes provide α-aryl and α-alkyl α-methyl-substituted nitriles, respectively. An even wider variety of functionality can be installed at the quaternary carbon by using 1,2-disubstituted dienes. The synthetic utility of the nitrile products was successfully demonstrated by various transformations, including conversions to γ-lactones and tetrazoles. The observed connectivity in the products along with studies with deuterium labeled reactants provide insight into the mechanism. Formation of a 7-membered cobaltacycle by C-H activation and migratory insertion of the diene is followed by β-hydride elimination and hydride reinsertion to give a 6-membered cobaltacycle that then reacts with the cyanating agent.
Collapse
Affiliation(s)
- Sun Dongbang
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT, 06520, USA
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT, 06520, USA
| |
Collapse
|
139
|
Karlinskii BY, Ananikov VP. Catalytic C-H Functionalization of Unreactive Furan Cores in Bio-Derived Platform Chemicals. CHEMSUSCHEM 2021; 14:558-568. [PMID: 33207076 DOI: 10.1002/cssc.202002397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/17/2020] [Indexed: 06/11/2023]
Abstract
C-H functionalization is one of the most convenient and powerful tools in the arsenal of modern chemistry, deservedly nominated as the "Holy Grail" of organic synthesis. A frequent disadvantage of this method is the need for harsh reaction conditions to carry out transformations of inert C-H bonds, which limits the possibility of its use for modifying less stable substrates. Biomass-derived furan platform chemicals, which have a relatively unstable aromatic furan core and highly reactive side chain substituents, are extremely promising and valuable organic molecules that are currently widely used in a variety of research and industrial fields. The high sensitivity of furan derivatives to acids, strong oxidants, and high temperatures significantly limits the use of classical methods of C-H functionalization for their modification. New methods of catalytic functionalization of non-reactive furan cores are urgently required to obtain a new generation of materials with controlled properties and potentially bioactive substances.
Collapse
Affiliation(s)
- Bogdan Y Karlinskii
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| |
Collapse
|
140
|
Tang ZL, Ouyang XH, Song RJ, Li JH. Decarboxylative C(sp3)–N Cross-Coupling of Diacyl Peroxides with Nitrogen Nucleophiles. Org Lett 2021; 23:1000-1004. [DOI: 10.1021/acs.orglett.0c04203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zi-Liang Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
141
|
Zhang C, Li ZL, Gu QS, Liu XY. Catalytic enantioselective C(sp 3)-H functionalization involving radical intermediates. Nat Commun 2021; 12:475. [PMID: 33473126 PMCID: PMC7817665 DOI: 10.1038/s41467-020-20770-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/18/2020] [Indexed: 11/08/2022] Open
Abstract
Recently, with the boosted development of radical chemistry, enantioselective functionalization of C(sp3)-H bonds via a radical pathway has witnessed a renaissance. In principle, two distinct catalytic modes, distinguished by the steps in which the stereochemistry is determined (the radical formation step or the radical functionalization step), can be devised. This Perspective discusses the state-of-the-art in the area of catalytic enantioselective C(sp3)-H functionalization involving radical intermediates as well as future challenges and opportunities.
Collapse
Affiliation(s)
- Chi Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
142
|
Sheng H, Huang X, Chen Z, Zhao Z, Liu H. Low-Temperature Hypergolic Ignition of 1-Octene with Low Ignition Delay Time. J Phys Chem A 2021; 125:423-434. [PMID: 33377778 DOI: 10.1021/acs.jpca.0c08999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The attainment of the efficient ignition of traditional liquid hydrocarbons of scramjet combustors at low flight Mach numbers is a challenging task. In this study, a novel chemical strategy to improve the reliable ignition and efficient combustion of hydrocarbon fuels was proposed. A directional hydroboration reaction was used to convert hydrocarbon fuel into highly active alkylborane, thereby leading to changes in the combustion reaction pathway of hydrocarbon fuel. A directional reaction to achieve the hypergolic ignition of 1-octene was designed and developed by using Gaussian simulation. Borane dimethyl sulfide (BDMS), a high-energy additive, was allowed to react spontaneously with 1-octene to achieve the hypergolic ignition of liquid hydrocarbon fuel at -15 °C. Compared with the ignition delay time of pure 1-octene (565 °C), the ignition delay time of 1-octene/BDMS (9:1.2) decreased by 3850% at 50 °C. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry confirmed the directional reaction of the hypergolic ignition reaction pathway of 1-octene and BDMS. Moreover, optical measurements showed the development trend of hydroxyl radicals (OH·) in the lower temperature hypergolic ignition and combustion of 1-octene. Finally, this study indicates that the enhancement of the low-temperature ignition performance of 1-octene by hydroboration in the presence of BDMS is feasible and promising for jet propellant design with tremendous future applications.
Collapse
Affiliation(s)
- Haoqiang Sheng
- Shanghai Jiao Tong University School of Aeronautics and Astronautics, Shanghai 200240, China
| | - Xiaobin Huang
- Shanghai Jiao Tong University School of Aeronautics and Astronautics, Shanghai 200240, China
| | - Zhijia Chen
- Shanghai Jiao Tong University School of Aeronautics and Astronautics, Shanghai 200240, China
| | - Zhengchuang Zhao
- Shanghai Jiao Tong University School of Aeronautics and Astronautics, Shanghai 200240, China
| | - Hong Liu
- Shanghai Jiao Tong University School of Aeronautics and Astronautics, Shanghai 200240, China
| |
Collapse
|
143
|
Huang Y, Chen Q. Recent Advances in C(sp 3)—H Phosphorylation Based on Secondary Phosphine Oxides and Phosphite Esters. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
144
|
Muñoz-Molina JM, Belderrain TR, Pérez PJ. Recent Advances in Copper-Catalyzed Radical C–H Bond Activation Using N–F Reagents. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1707234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This Short Review is aimed at giving an update in the area of copper-catalyzed C–H functionalization involving nitrogen-centered radicals generated from substrates containing N–F bonds. These processes include intermolecular Csp3–H bond functionalization, remote Csp3–H bond functionalization via intramolecular hydrogen atom transfer (HAT), and Csp2–H bond functionalization, which might be of potential use in industrial applications in the future.1 Introduction2 Intermolecular Csp3–H Functionalization3 Remote Csp3–H Functionalization4 Csp2–H Functionalization5 Conclusion
Collapse
Affiliation(s)
| | | | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva
| |
Collapse
|
145
|
Yuan PF, Huang T, He J, Huang XT, Jin XL, Sun C, Wu LZ, Liu Q. Controllable Z/ E-selective synthesis of α-amino-ketoximes from N-nitrososulfonamides and aryl alkenes under neutral conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo01101d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An amidoximation of alkenes with N-nitrososulfonamides enabled by triplet energy transfer under neutral conditions is presented. Both (Z)- and (E)-α-amino-ketoximes are selectively accessible depending on the triplet energy of the photosensitizer.
Collapse
Affiliation(s)
- Pan-Feng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tao Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jian He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xie-Tian Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
146
|
Guo X, Wu L. Enantioselective Carbocyanation of 1,3-Dienes by Dual Visible-Light Photoredox and Copper Catalysis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202100041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
147
|
Li T, Liang K, Tang J, Ding Y, Tong X, Xia C. A photoexcited halogen-bonded EDA complex of the thiophenolate anion with iodobenzene for C(sp 3)–H activation and thiolation. Chem Sci 2021; 12:15655-15661. [PMID: 35003596 PMCID: PMC8654056 DOI: 10.1039/d1sc03667j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/23/2021] [Accepted: 10/20/2021] [Indexed: 01/26/2023] Open
Abstract
A direct photochemical thiolation of C(sp3)–H bond-containing substrates with thiophenol was developed. A halogen bonding-type EDA complex was found to trigger the downstream single electron transfer and hydrogen atom transfer process.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jiaying Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
148
|
Hu Z, Fu L, Chen P, Cao W, Liu G. Enantioselective Intermolecular Aminoalkynylation of Styrenes via Copper-Catalyzed Radical Relay. Org Lett 2020; 23:129-134. [DOI: 10.1021/acs.orglett.0c03826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhoumi Hu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Liang Fu
- State Key Laboratory of Organometallic Chemistry and Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Weiguo Cao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
149
|
Zhuang W, Chen P, Liu G. Enantioselective Arylcyanation of Styrenes
via
Copper‐Catalyzed
Radical Relay
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Weiwen Zhuang
- Key Laboratory of Organometallic Chemistry and Shanghai‐Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Pinhong Chen
- Key Laboratory of Organometallic Chemistry and Shanghai‐Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Guosheng Liu
- Key Laboratory of Organometallic Chemistry and Shanghai‐Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
- Chang‐Kung Chuang Institute, East China Normal University Shanghai 200062 China
| |
Collapse
|
150
|
Lang K, Li C, Kim I, Zhang XP. Enantioconvergent Amination of Racemic Tertiary C-H Bonds. J Am Chem Soc 2020; 142:20902-20911. [PMID: 33249845 DOI: 10.1021/jacs.0c11103] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Racemization is considered to be an intrinsic stereochemical feature of free radical chemistry as can be seen in traditional radical halogenation reactions of optically active tertiary C-H bonds. If the facile process of radical racemization could be effectively combined with an ensuing step of bond formation in an enantioselective fashion, then it would give rise to deracemizative functionalization of racemic tertiary C-H bonds for stereoselective construction of chiral molecules bearing quaternary stereocenters. As a demonstration of this unique potential in radical chemistry, we herein report that metalloradical catalysis can be successfully applied to devise Co(II)-based catalytic system for enantioconvergent radical amination of racemic tertiary C(sp3)-H bonds. The key to the success of the radical process is the development of Co(II)-based metalloradical catalyst with fitting steric, electronic, and chiral environments of the D2-symmetric chiral amidoporphyrin as the supporting ligand. The existence of optimal reaction temperature is recognized as an important factor in the realization of the enantioconvergent radical process. Supported by an optimized chiral ligand, the Co(II)-based metalloradical system can effectively catalyze the enantioconvergent 1,6-amination of racemic tertiary C(sp3)-H bonds at the optimal temperature, affording chiral α-tertiary amines in excellent yields with high enantiocontrol of the newly created quaternary stereocenters. Systematic studies, including experiments utilizing optically active deuterium-labeled C-H substrates as a model system, shed light on the underlying mechanistic details of this new catalytic process for enantioconvergent radical C-H amination. The remarkable power to create quaternary stereocenters bearing multiple functionalities from ubiquitous C-H bonds, as showcased with stereoselective construction of bicyclic N-heterocycles, opens the door for future synthetic applications of this new radical technology.
Collapse
Affiliation(s)
- Kai Lang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chaoqun Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Isaac Kim
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|