101
|
Abstract
Cell death occurs when a pathogen invades a host organism or the organism is subjected to sterile injury. Thus, cell death is often closely associated with the induction of an immune response. Furthermore, cell death can occur as a consequence of the immune response and precedes the tissue renewal and repair responses that are initiated by innate immune cells during resolution of an immune response. Beyond immunity, cell death is required for development, morphogenesis and homeostasis. How can such a ubiquitous event as cell death trigger such a wide range of context-specific effector responses? Dying cells are sensed by innate immune cells using specialized receptors and phagocytosed through a process termed efferocytosis. Here, we outline a general principle whereby signals within the dead cell as well as the environment are integrated by specific efferocytes to define the appropriate effector response.
Collapse
|
102
|
Shi T, Denney L, An H, Ho LP, Zheng Y. Alveolar and lung interstitial macrophages: Definitions, functions, and roles in lung fibrosis. J Leukoc Biol 2020; 110:107-114. [PMID: 33155728 DOI: 10.1002/jlb.3ru0720-418r] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Mϕs are the main innate immune cells in the lung at homeostasis, with important roles in host defence and immune modulation. Alveolar Mϕs (AMs) and interstitial Mϕs (IMs) are the two lung Mϕ subsets, so called according to the sites they reside in. These subsets are also defined by their origins and immunological microenvironment, which endow these cells with distinct features and plasticity. This review summarizes the latest definitions and functions of lung Mϕs during homeostasis and provides exemplar of their divergent roles in lung fibrosis.
Collapse
Affiliation(s)
- Ting Shi
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Laura Denney
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Huazhang An
- Clinical Cancer Institute, Center of Translational Medicine, Second Military Medical University, Shanghai, China
| | - Ling-Pei Ho
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
103
|
Byrne AJ, Powell JE, O'Sullivan BJ, Ogger PP, Hoffland A, Cook J, Bonner KL, Hewitt RJ, Wolf S, Ghai P, Walker SA, Lukowski SW, Molyneaux PL, Saglani S, Chambers DC, Maher TM, Lloyd CM. Dynamics of human monocytes and airway macrophages during healthy aging and after transplant. J Exp Med 2020; 217:133575. [PMID: 31917836 PMCID: PMC7062517 DOI: 10.1084/jem.20191236] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/02/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
The ontogeny of airway macrophages (AMs) in human lung and their contribution to disease are poorly mapped out. In mice, aging is associated with an increasing proportion of peripherally, as opposed to perinatally derived AMs. We sought to understand AM ontogeny in human lung during healthy aging and after transplant. We characterized monocyte/macrophage populations from the peripheral blood and airways of healthy volunteers across infancy/childhood (2–12 yr), maturity (20–50 yr), and older adulthood (>50 yr). Single-cell RNA sequencing (scRNA-seq) was performed on airway inflammatory cells isolated from sex-mismatched lung transplant recipients. During healthy aging, the proportions of blood and bronchoalveolar lavage (BAL) classical monocytes peak in adulthood and decline in older adults. scRNA-seq of BAL cells from lung transplant recipients indicates that after transplant, the majority of AMs are recipient derived. These data show that during aging, the peripheral monocyte phenotype is consistent with that found in the airways and, furthermore, that the majority of human AMs after transplant are derived from circulating monocytes.
Collapse
Affiliation(s)
- Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia.,Cellular Genomics Futures Institute, University of New South Wales, Kensington, Sydney, Australia
| | - Brendan J O'Sullivan
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Patricia P Ogger
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ashley Hoffland
- National Heart and Lung Institute, Imperial College London, London, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - James Cook
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Katie L Bonner
- National Heart and Lung Institute, Imperial College London, London, UK.,National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Richard J Hewitt
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | | | - Poonam Ghai
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Simone A Walker
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Philip L Molyneaux
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Daniel C Chambers
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Toby M Maher
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Clare M Lloyd
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
104
|
Rajasinghe LD, Chauhan PS, Wierenga KA, Evered AO, Harris SN, Bates MA, Gavrilin MA, Pestka JJ. Omega-3 Docosahexaenoic Acid (DHA) Impedes Silica-Induced Macrophage Corpse Accumulation by Attenuating Cell Death and Potentiating Efferocytosis. Front Immunol 2020; 11:2179. [PMID: 33123123 PMCID: PMC7573148 DOI: 10.3389/fimmu.2020.02179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Airway exposure of lupus-prone NZBWF1 mice to crystalline silica (cSiO2), a known trigger of human autoimmune disease, elicits sterile inflammation and alveolar macrophage death in the lung that, in turn, induces early autoimmune onset and accelerates lupus progression to fatal glomerulonephritis. Dietary supplementation with docosahexaenoic acid (DHA), a marine ω-3 polyunsaturated fatty acid (PUFA), markedly ameliorates cSiO2-triggered pulmonary, systemic, and renal manifestations of lupus. Here, we tested the hypothesis that DHA influences both cSiO2-induced death and efferocytotic clearance of resultant cell corpses using three murine macrophage models: (i) primary alveolar macrophages (AM) isolated from NZBWF1 mice; (ii) self-renewing AM-like Max Planck Institute (MPI) cells isolated from fetuses of C57BL/6 mice, and (iii) RAW 264.7 murine macrophages, a virus-transformed cell line derived from BALB/c mice stably transfected with the inflammasome adaptor protein ASC (RAW-ASC). Incubation with cSiO2 at 25 and 50 μg/ml for 6 h was found to dose-dependently induce cell death (p < 0.05) in all three models as determined by both acridine orange/propidium iodide staining and release of lactate dehydrogenase into cell culture supernatant. Pre-incubation with DHA at a physiologically relevant concentration (25 μM) significantly reduced cSiO2-induced death (p < 0.05) in all three models. Cell death induction by cSiO2 alone and its suppression by DHA were primarily associated with caspase-3/7 activation, suggestive of apoptosis, in AM, MPI, and RAW-ASC cells. Fluorescence microscopy revealed that all three macrophage models were similarly capable of efferocytosing RAW-ASC target cell corpses. Furthermore, MPI effector cells could likewise engulf RAW-ASC target cell corpses elicited by treatment with staurosporine (apoptosis), LPS, and nigericin (pyroptosis), or cSiO2. Pre-incubation of RAW-ASC target cells with 25 μM DHA prior to death induced by these agents significantly enhanced their efferocytosis (p < 0.05) by MPI effector cells. In contrast, pre-incubating MPI effector cells with DHA did not affect engulfment of RAW-ASC target cells pre-incubated with vehicle. Taken together, these findings indicate that DHA at a physiologically relevant concentration was capable of attenuating macrophage death and could potentiate efferocytosis, with the net effect of reducing accumulation of cell corpses capable of eliciting autoimmunity.
Collapse
Affiliation(s)
- Lichchavi D Rajasinghe
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Preeti S Chauhan
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Kathryn A Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Augustus O Evered
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Shamya N Harris
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Melissa A Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Mikhail A Gavrilin
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University, Columbus, OH, United States
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
105
|
Kulikauskaite J, Wack A. Teaching Old Dogs New Tricks? The Plasticity of Lung Alveolar Macrophage Subsets. Trends Immunol 2020; 41:864-877. [PMID: 32896485 PMCID: PMC7472979 DOI: 10.1016/j.it.2020.08.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Alveolar macrophages (AMs) are highly abundant lung cells with important roles in homeostasis and immunity. Their function influences the outcome of lung infections, lung cancer, and chronic inflammatory disease. Recent findings reveal functional heterogeneity of AMs. Following lung insult, resident AMs can either remain unchanged, acquire new functionality, or be replaced by monocyte-derived AMs. Evidence from mouse models correlates AM function with their embryonic or monocyte origin. We hypothesize that resident AMs are terminally differentiated cells with low responsiveness and limited plasticity, while recruited, monocyte-derived AMs are initially highly immunoreactive but more plastic, able to change their function in response to environmental cues. Understanding cell-intrinsic and -extrinsic mechanisms determining AM function may provide opportunities for intervention in lung disease.
Collapse
Affiliation(s)
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
106
|
Woo YD, Koh J, Ko JS, Kim S, Jung KC, Jeon YK, Kim HY, Lee H, Lee CW, Chung DH. Ssu72 regulates alveolar macrophage development and allergic airway inflammation by fine-tuning of GM-CSF receptor signaling. J Allergy Clin Immunol 2020; 147:1242-1260. [PMID: 32910932 DOI: 10.1016/j.jaci.2020.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fine-tuning of immune receptor signaling is critical for the development and functioning of immune cells. Moreover, GM-CSF receptor (GM-CSFR) signaling plays an essential role in the development of certain myeloid lineage cells, including alveolar macrophages (AMs). However, the significance of fine-tuning of GM-CSFR signaling in AMs and its relevance in allergic inflammation have not been reported. OBJECTIVE Our aim was to explore whether phosphatase Ssu72, originally identified as a regulator of RNA polymerase II activity, regulates AM development and allergic airway inflammation by regulating GM-CSF signaling. METHODS To address these issues, we generated LysM-CreSsu72fl/fl and Cd11c-CreSsu72fl/fl mice and used ovalbumin- or house dust mite-induced allergic asthma models. RESULTS Following GM-CSF stimulation, Ssu72 directly bound to the GM-CSFR β-chain in AMs, preventing phosphorylation. Consistently, mature Ssu72-deficient AMs showed higher phosphorylation of the GM-CSFR β-chain and downstream molecules, which resulted in greater dysregulation of cell cycle, cell death, cell turnover, mitochondria-related metabolism, and LPS responsiveness in AMs than in mature wild-type AMs. The dysregulation was restored by using a Janus kinase 2 inhibitor, which reduced GM-CSFR β-chain phosphorylation. LysM-CreSsu72fl/fl mice exhibited deficits in development and maturation of AMs, which were also seen postnatally in Cd11c-CreSsu72fl/fl mice. Furthermore, LysM-CreSsu72fl/fl mice were less responsive to ovalbumin- or house dust mite-induced allergic asthma models than the control mice were; however, their responsiveness was restored by adoptive transfer of JAK2 inhibitor-pretreated mature Ssu72-deficient AMs. CONCLUSION Our results demonstrate that Ssu72 fine-tunes GM-CSFR signaling by both binding to and reducing phosphorylation of GM-CSFR β-chain, thereby regulating the development, maturation, and mitochondrial functions of AMs and allergic airway inflammation.
Collapse
Affiliation(s)
- Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Ko
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, Korea
| | - Chang Woo Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
107
|
Martinez FO, Combes TW, Orsenigo F, Gordon S. Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine 2020; 59:102964. [PMID: 32861199 PMCID: PMC7456455 DOI: 10.1016/j.ebiom.2020.102964] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mononuclear phagocytes are a widely distributed family of cells contributing to innate and adaptive immunity. Circulating monocytes and tissue macrophages participate in all stages of SARS COVID-19. They contribute to comorbidities predisposing to clinical infection, virus resistance and dissemination, and to host factors that determine disease severity, recovery and sequelae. Assays are available to detect viral infection and antibody responses, but no adequate tests have been developed to measure the activation level of monocytes and tissue macrophages, and the risk of progression to a fatal hyperinflammatory syndrome. Blood monocytes provide a window on the systemic immune response, from production to tissue recruitment, reflecting the impact of infection on the host. Ready availability of blood makes it possible to monitor severity and the risk of potentially lethal complications, by developing tests to assess the status of monocyte activation and its potential for further inflammatory dysregulation after recruitment to tissues and during recovery.
Collapse
Affiliation(s)
- Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Theo W Combes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Federica Orsenigo
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom; Università degli Studi di Milano-Bicocca. Department of Biotechnology and Biosciences. Milan, Italy
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
108
|
The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic-epigenetic reprogramming and resolves inflammatory injury. Nat Immunol 2020; 21:1430-1443. [PMID: 32839607 DOI: 10.1038/s41590-020-0764-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Macrophages demonstrate remarkable plasticity that is essential for host defense and tissue repair. The tissue niche imprints macrophage identity, phenotype and function. The role of vascular endothelial signals in tailoring the phenotype and function of tissue macrophages remains unknown. The lung is a highly vascularized organ and replete with a large population of resident macrophages. We found that, in response to inflammatory injury, lung endothelial cells release the Wnt signaling modulator Rspondin3, which activates β-catenin signaling in lung interstitial macrophages and increases mitochondrial respiration by glutaminolysis. The generated tricarboxylic acid cycle intermediate α-ketoglutarate, in turn, serves as the cofactor for the epigenetic regulator TET2 to catalyze DNA hydroxymethylation. Notably, endothelial-specific deletion of Rspondin3 prevented the formation of anti-inflammatory interstitial macrophages in endotoxemic mice and induced unchecked severe inflammatory injury. Thus, the angiocrine-metabolic-epigenetic signaling axis specified by the endothelium is essential for reprogramming interstitial macrophages and dampening inflammatory injury.
Collapse
|
109
|
Weerasinghe H, Traven A. Immunometabolism in fungal infections: the need to eat to compete. Curr Opin Microbiol 2020; 58:32-40. [PMID: 32781324 DOI: 10.1016/j.mib.2020.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/04/2023]
Abstract
Immune cells, including macrophages and monocytes, remodel their metabolism and have specific nutritional needs when dealing with microbial pathogens. While we are just beginning to understand immunometabolism in fungal infections, emerging themes include recognition of fungal cell surface molecule driving metabolic remodelling to increase glycolysis, the critical role of glycolysis in the production of antifungal cytokines and fungicidal effector molecules, and the need for maintaining host glucose homeostasis to defeat fungal infections. A crosstalk between host and pathogen metabolic pathways determines the fate of immune cells and fungi when they interact. Thus, immunometabolic interactions offer potential for innovation in antifungal treatments in the future. For this to become a reality, we must decipher the mechanisms by which diverse fungal pathogens activate and manipulate immunometabolism.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton (Melbourne), 3800 Victoria, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton (Melbourne), 3800 Victoria, Australia.
| |
Collapse
|
110
|
Pai S, Muruganandah V, Kupz A. What lies beneath the airway mucosal barrier? Throwing the spotlight on antigen-presenting cell function in the lower respiratory tract. Clin Transl Immunology 2020; 9:e1158. [PMID: 32714552 PMCID: PMC7376394 DOI: 10.1002/cti2.1158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of respiratory infectious and inflammatory diseases remains a major public health concern. Prevention and management strategies have not kept pace with the increasing incidence of these diseases. The airway mucosa is the most common portal of entry for infectious and inflammatory agents. Therefore, significant benefits would be derived from a detailed understanding of how immune responses regulate the filigree of the airways. Here, the role of different antigen‐presenting cells (APC) in the lower airways and the mechanisms used by pathogens to modulate APC function during infectious disease is reviewed. Features of APC that are unique to the airways and the influence they have on uptake and presentation of antigen to T cells directly in the airways are discussed. Current information on the crucial role that airway APC play in regulating respiratory infection is summarised. We examine the clinical implications of APC dysregulation in the airways on asthma and tuberculosis, two chronic diseases that are the major cause of illness and death in the developed and developing world. A brief overview of emerging therapies that specifically target APC function in the airways is provided.
Collapse
Affiliation(s)
- Saparna Pai
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Visai Muruganandah
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| |
Collapse
|
111
|
Altered iron metabolism in cystic fibrosis macrophages: the impact of CFTR modulators and implications for Pseudomonas aeruginosa survival. Sci Rep 2020; 10:10935. [PMID: 32616918 PMCID: PMC7331733 DOI: 10.1038/s41598-020-67729-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in chronic bacterial lung infections and tissue damage. CF macrophages exhibit reduced bacterial killing and increased inflammatory signaling. Iron is elevated in the CF lung and is a critical nutrient for bacteria, including the common CF pathogen Pseudomonas aeruginosa (Pa). While macrophages are a key regulatory component of extracellular iron, iron metabolism has yet to be characterized in human CF macrophages. Secreted and total protein levels were analyzed in non-CF and F508del/F508del CF monocyte derived macrophages (MDMs) with and without clinically approved CFTR modulators ivacaftor/lumacaftor. CF macrophage transferrin receptor 1 (TfR1) was reduced with ivacaftor/lumacaftor treatment. When activated with LPS, CF macrophage expressed reduced ferroportin (Fpn). After the addition of exogenous iron, total iron was elevated in conditioned media from CF MDMs and reduced in conditioned media from ivacaftor/lumacaftor treated CF MDMs. Pa biofilm formation and viability were elevated in conditioned media from CF MDMs and biofilm formation was reduced in the presence of conditioned media from ivacaftor/lumacaftor treated CF MDMs. Defects in iron metabolism observed in this study may inform host–pathogen interactions between CF macrophages and Pa.
Collapse
|
112
|
Ham S, Lima LG, Lek E, Möller A. The Impact of the Cancer Microenvironment on Macrophage Phenotypes. Front Immunol 2020; 11:1308. [PMID: 32655574 PMCID: PMC7324670 DOI: 10.3389/fimmu.2020.01308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Within the tumor microenvironment, there is an intricate communication happening between tumor and stromal cells. This information exchange, in the form of cytokines, growth factors, extracellular vesicles, danger molecules, cell debris, and other factors, is capable of modulating the function of immune cells. The triggering of specific responses, including phenotypic alterations, can ultimately result in either immune surveillance or tumor cell survival. Macrophages are a well-studied cell lineage illustrating the different cellular phenotypes possible, depending on the tumor microenvironmental context. While our understanding of macrophage responses is well documented in vitro, surprisingly, little work has been done to confirm these observations in the cancer microenvironment. In fact, there are examples of opposing reactions of macrophages to cytokines in cell culture and in vivo tumor settings. Additionally, it seems that different macrophage lineages, for example tissue-resident and monocyte-derived macrophages, respond differently to cytokines and other cancer-derived signals. In this review article, we will describe and discuss the diverging reports on how cancer cells influence monocyte-derived and tissue-resident macrophage traits in vivo.
Collapse
Affiliation(s)
- Sunyoung Ham
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luize G Lima
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Erica Lek
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
113
|
Branchett WJ, O'Garra A, Lloyd CM. Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease. Wellcome Open Res 2020; 5:101. [PMID: 32587903 PMCID: PMC7309452 DOI: 10.12688/wellcomeopenres.15875.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Airway macrophages (AMs) are the most abundant leukocytes in the healthy airway lumen and have a highly specialised but plastic phenotype that is governed by signals in the local microenvironment. AMs are thought to maintain immunological homeostasis in the steady state, but have also been implicated in the pathogenesis of allergic airway disease (AAD). In this study, we aimed to better understand these potentially contrasting AM functions using transcriptomic analysis. Methods: Bulk RNA sequencing was performed on AMs (CD11c + Siglec F + CD64 + CD45 + SSC hi) flow cytometry sorted from C57BL/6 mice during experimental AAD driven by repeated house dust mite inhalation (AMs HDM), compared to control AMs from non-allergic mice. Differentially expressed genes were further analysed by hierarchical clustering and biological pathway analysis. Results: AMs HDM showed increased expression of genes associated with antigen presentation, inflammatory cell recruitment and tissue repair, including several chemokine and matrix metalloproteinase genes. This was accompanied by increased expression of mitochondrial electron transport chain subunit genes and the retinoic acid biosynthetic enzyme gene Raldh2. Conversely, AMs HDM displayed decreased expression of a number of cell cycle genes, genes related to cytoskeletal functions and a subset of genes implicated in antimicrobial innate immunity, such as Tlr5, Il18 and Tnf. Differential gene expression in AMs HDM was consistent with upstream effects of the cytokines IL-4 and IFN-γ, both of which were present at increased concentrations in lung tissue after HDM treatment. Conclusions: These data highlight diverse gene expression changes in the total AM population in a clinically relevant mouse model of AAD, collectively suggestive of contributions to inflammation and tissue repair/remodelling, but with decreases in certain steady state cellular and immunological functions.
Collapse
Affiliation(s)
- William J. Branchett
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| | - Anne O'Garra
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, NW1 1AT, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| |
Collapse
|
114
|
Shaikh SB, Prabhakar Bhandary Y. Effect of curcumin on IL-17A mediated pulmonary AMPK kinase/cyclooxygenase-2 expressions via activation of NFκB in bleomycin-induced acute lung injury in vivo. Int Immunopharmacol 2020; 85:106676. [PMID: 32535538 DOI: 10.1016/j.intimp.2020.106676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
Acute lung injury (ALI) remains to be the major cause of mortality. Bleomycin (BLM) injury activates the pro-inflammatory cytokine Interleukin L-17A which regulates the expression of COX-2 and inhibits P-AMPKα in BLM/IL-17A exposed mice upon activation of NFκB and other inflammatory molecules the actual mechanism behind which remains unclear. The current investigation was carried out to assess the role of IL-17A with COX-2 and P- AMPKα and to highlight the important contribution of adjunctive use of curcumin as a promising preventive strategy for the BLM-induced ALI. Immunofluorescence analysis reveals that the natural spice curcumin blocks the expressions of COX-2, NF-κB-p65, fibronectin (FBN), and expresses P-AMPKα in vivo. Curcumin could also suppress the expressions of NF-κB-p105 in BLM/IL-17A exposed mice. mRNA expressions showed reduced expressions of PDGFA, PDGFB, CTGF, IGF1, NFκB1, NFκB2, MMP-3, MMP-9, and MMP-14 on curcumin treatment. Our study implicates a critical role of AMPKα/COX- 2 in the emergence of pulmonary fibrosis via exerting the potential role of curcumin as an adjuvant anti-inflammatory therapeutic for treating lung injury.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | | |
Collapse
|
115
|
Branchett WJ, O'Garra A, Lloyd CM. Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease. Wellcome Open Res 2020; 5:101. [PMID: 32587903 PMCID: PMC7309452 DOI: 10.12688/wellcomeopenres.15875.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 02/12/2024] Open
Abstract
Background: Airway macrophages (AMs) are the most abundant leukocytes in the healthy airway lumen and have a highly specialised but plastic phenotype that is governed by signals in the local microenvironment. AMs are thought to maintain immunological homeostasis in the steady state, but have also been implicated in the pathogenesis of allergic airway disease (AAD). In this study, we aimed to better understand these potentially contrasting AM functions using transcriptomic analysis. Methods: Bulk RNA sequencing was performed on AMs flow cytometry sorted from C57BL/6 mice during experimental AAD driven by repeated house dust mite inhalation (AMs HDM), compared to control AMs from non-allergic mice. Differentially expressed genes were further analysed by hierarchical clustering and biological pathway analysis. Results: AMs HDM showed increased expression of genes associated with antigen presentation, inflammatory cell recruitment and tissue repair, including several chemokine and matrix metalloproteinase genes. This was accompanied by increased expression of mitochondrial electron transport chain subunit genes and the retinoic acid biosynthetic enzyme gene Raldh2. Conversely, AMs HDM displayed decreased expression of a number of cell cycle genes, genes related to cytoskeletal functions and a subset of genes implicated in antimicrobial innate immunity, such as Tlr5, Il18 and Tnf. Differential gene expression in AMs HDM was consistent with upstream effects of the cytokines IL-4 and IFN-γ, both of which were present at increased concentrations in lung tissue after HDM treatment. Conclusions: These data highlight diverse gene expression changes in the total AM population in a clinically relevant mouse model of AAD, collectively suggestive of contributions to inflammation and tissue repair/remodelling, but with decreases in certain steady state cellular and immunological functions.
Collapse
Affiliation(s)
- William J. Branchett
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| | - Anne O'Garra
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, NW1 1AT, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| |
Collapse
|
116
|
Roquilly A, Jacqueline C, Davieau M, Mollé A, Sadek A, Fourgeux C, Rooze P, Broquet A, Misme-Aucouturier B, Chaumette T, Vourc'h M, Cinotti R, Marec N, Gauttier V, McWilliam HEG, Altare F, Poschmann J, Villadangos JA, Asehnoune K. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat Immunol 2020; 21:636-648. [PMID: 32424365 DOI: 10.1038/s41590-020-0673-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Sepsis and trauma cause inflammation and elevated susceptibility to hospital-acquired pneumonia. As phagocytosis by macrophages plays a critical role in the control of bacteria, we investigated the phagocytic activity of macrophages after resolution of inflammation. After resolution of primary pneumonia, murine alveolar macrophages (AMs) exhibited poor phagocytic capacity for several weeks. These paralyzed AMs developed from resident AMs that underwent an epigenetic program of tolerogenic training. Such adaptation was not induced by direct encounter of the pathogen but by secondary immunosuppressive signals established locally upon resolution of primary infection. Signal-regulatory protein α (SIRPα) played a critical role in the establishment of the microenvironment that induced tolerogenic training. In humans with systemic inflammation, AMs and also circulating monocytes still displayed alterations consistent with reprogramming six months after resolution of inflammation. Antibody blockade of SIRPα restored phagocytosis in monocytes of critically ill patients in vitro, which suggests a potential strategy to prevent hospital-acquired pneumonia.
Collapse
Affiliation(s)
- Antoine Roquilly
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France. .,Université de Nantes, CHU Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France. .,Department of Microbiology and Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia.
| | - Cedric Jacqueline
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Marion Davieau
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Alice Mollé
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR1064, ITUN, Nantes, France
| | - Abderrahmane Sadek
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR1064, ITUN, Nantes, France.,Department of Biology, Faculty of Science, Moulay Ismail University, Zitoune, Meknes, Morocco
| | - Cynthia Fourgeux
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR1064, ITUN, Nantes, France
| | - Paul Rooze
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France.,Université de Nantes, CHU Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Alexis Broquet
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Barbara Misme-Aucouturier
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Tanguy Chaumette
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France
| | - Mickael Vourc'h
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France.,Université de Nantes, CHU Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Raphael Cinotti
- Université de Nantes, CHU Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Nadege Marec
- Plateforme Cytocell, SFR François Bonamy, Nantes, France
| | - Vanessa Gauttier
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR1064, ITUN, Nantes, France
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Frederic Altare
- CRCINA, INSERM, Université de Nantes, CHU de Nantes, Nantes, France
| | - Jeremie Poschmann
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR1064, ITUN, Nantes, France.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia. .,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Karim Asehnoune
- Université de Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Nantes, France. .,Université de Nantes, CHU Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France.
| |
Collapse
|
117
|
Rückerl D, Cook PC. Macrophages assemble! But do they need IL-4R during schistosomiasis? Eur J Immunol 2020; 49:996-1000. [PMID: 31267552 PMCID: PMC6771897 DOI: 10.1002/eji.201948158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
Helminth infections are a global health burden in humans and livestock and are considered to be a major evolutionary driver of type 2 immunity (orchestrated by type 2 cytokines, e.g., IL‐4 and IL‐13). Upon infection, helminths cause substantial damage to mucosal tissues as they migrate within the host and elicit crucial protective immune mechanisms. Macrophages, essential innate cells, are known to adopt a specific activation status (termed M(IL‐4)) in type 2 cytokine environments. Yet, the role of these macrophages in mediating protective immune/wound healing responses to helminths is unclear. Furthermore, macrophage subsets can be very heterogenous (linked to their differing cellular origins) and the relative role of these subsets in the context of M(IL‐4) activation to helminth infection is unknown. An article by Rolot et al. in this issue of the European Journal of Immunology [Eur. J. Immunol. 2019. 49: 1067–1081] uses a variety of transgenic murine strains to revise our understanding of the complexity of how these subsets undergo M(IL‐4) activation and participate in wound healing responses in helminth infection. Here we highlight that consideration of different macrophage subsets in mucosal tissues is essential when evaluating the functional role of M(IL‐4) macrophages.
Collapse
Affiliation(s)
- Dominik Rückerl
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter C Cook
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
118
|
Coakley G, Harris NL. Interactions between macrophages and helminths. Parasite Immunol 2020; 42:e12717. [PMID: 32249432 DOI: 10.1111/pim.12717] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Macrophages, the major population of tissue-resident mononuclear phagocytes, contribute significantly to the immune response during helminth infection. Alternatively activated macrophages (AAM) are induced early in the anti-helminth response following tissue insult and parasite recognition, amplifying the early type 2 immune cascade initiated by epithelial cells and ILC2s, and subsequently driving parasite expulsion. AAM also contribute to functional alterations in tissues infiltrated with helminth larvae, mediating both tissue repair and inflammation. Their activation is amplified and occurs more rapidly following reinfection, where they can play a dual role in trapping tissue migratory larvae and preventing or resolving the associated inflammation and damage. In this review, we will address both the known and emerging roles of tissue macrophages during helminth infection, in addition to considering both outstanding research questions and new therapeutic strategies.
Collapse
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, The Alfred Centre The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Nicola Laraine Harris
- Department of Immunology and Pathology, Central Clinical School, The Alfred Centre The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
119
|
Li Y, Wang Y, Ding H, Zhang N, Ma A, Shi J, Niu N. Pathologic characteristics of spinal tuberculosis: analysis of 181 cases. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1253-1261. [PMID: 32509101 PMCID: PMC7270693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE This study aimed to provide a basis for the diagnosis of spinal TB by analyzing its pathologic characteristics. METHODS The data of 181 patients with spinal TB who underwent surgery from January 2013 to January 2019 at the General Hospital of Ningxia Medical University were retrospectively analyzed. The participants comprised 80 men and 101 women with an average age of 45.1 ± 16.5 (range: 14-78) years. Based on the assessment of tissue samples, five patients had cervical TB, 49 had thoracic TB, 86 had lumbar TB, 22 had thoracolumbar TB, and 19 had lumbosacral TB. Tuberculous granulation tissue, sclerotic bone, sequestrum, and intervertebral disc tissue were collected for hematoxylin and eosin staining. The proportion of patients with atypical and typical pathologic characteristics was identified and compared for statistical analysis. RESULTS The typical pathologic characteristics included tubercles, granulomas, caseous necrosis, multinuclear giant cells, infiltration of acute inflammatory cells, sequestration, and fibroblastic proliferation. A total of 119 patients had caseous necrosis, 95 had multinuclear giant cells, 68 had granulomatous inflammation, and 21 had tubercles. Moreover, 46 (25.4%) patients had at least three pathologic characteristics and only 12 (6.6%) exhibited all the pathologic characteristics. Of the 35 (19.3%) patients with atypical pathologic characteristics, 17 had lymphocyte infiltration, 10 had fibroblastic proliferation, 2 had hyaline changes, 1 had local hemorrhage, 1 chronic inflammatory change, 2 had sequestration, 1 had dilated and congested vessels, and 1 had acute suppurative inflammation. CONCLUSIONS The most common pathologic characteristics were caseous necrosis, multinuclear giant cells, granulomatous inflammation, and tubercles. Moreover, multiple pathologic characteristics were observed in patients with spinal TB and one type of these characteristics was dominant. However, atypical pathologic characteristics were also noted. Thus, both pathologic examination and clinical analysis must be performed to improve the diagnostic rate of spinal TB.
Collapse
Affiliation(s)
- Yongai Li
- Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Yingqi Wang
- Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Huiqiang Ding
- Department of Orthopedics, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Ning Zhang
- Department of Pathology, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Ailing Ma
- Department of Pathology, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Jiandang Shi
- Department of Orthopedics, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| | - Ningkui Niu
- Department of Orthopedics, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, China
| |
Collapse
|
120
|
Khaing P, Summer R. Maxed Out on Glycolysis: Alveolar Macrophages Rely on Oxidative Phosphorylation for Cytokine Production. Am J Respir Cell Mol Biol 2020; 62:139-140. [PMID: 31560565 PMCID: PMC6993550 DOI: 10.1165/rcmb.2019-0329ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Phue Khaing
- Jane and Leonard Korman Respiratory InstituteSidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphia, Pennsylvania
| | - Ross Summer
- Jane and Leonard Korman Respiratory InstituteSidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphia, Pennsylvania
| |
Collapse
|
121
|
Goldberg EL, Shaw AC, Montgomery RR. How Inflammation Blunts Innate Immunity in Aging. Interdiscip Top Gerontol Geriatr 2020; 43:1-17. [PMID: 32294641 PMCID: PMC8063508 DOI: 10.1159/000504480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
The collective loss of immune protection during aging leads to poor vaccine responses and an increased severity of infection for the elderly. Here, we review our current understanding of effects of aging on the cellular and molecular dysregulation of innate immune cells as well as the relevant tissue milieu which influences their functions. The innate immune system is composed of multiple cell types which provide distinct and essential roles in tissue surveillance and antigen presentation as well as early responses to infection or injury. Functional defects that arise during aging lead to a reduced dynamic range of responsiveness, altered cytokine dynamics, and impaired tissue repair. Heightened inflammation influences both the dysregulation of innate immune responses as well as surrounding tissue microenvironments which have a critical role in development of a functional immune response. In particular, age-related physical and inflammatory changes in the skin, lung, lymph nodes, and adipose tissue reflect disrupted architecture and spatial organization contributing to diminished immune responsiveness. Underlying mechanisms include altered transcriptional programming and dysregulation of critical innate immune signaling cascades. Further, we identify signaling functions of bioactive lipid mediators which address chronic inflammation and may contribute to the resolution of inflammation to improve innate immunity during aging.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert C Shaw
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
122
|
Hiremath J, Renu S, Tabynov K, Renukaradhya GJ. Pulmonary inflammatory response to influenza virus infection in pigs is regulated by DAP12 and macrophage M1 and M2 phenotypes. Cell Immunol 2020; 352:104078. [PMID: 32164997 DOI: 10.1016/j.cellimm.2020.104078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 01/07/2023]
Abstract
We delineated the expression of DAP12 (DNAX-Activating Protein) and its associated receptors, TREM-1, TREM-2 and MDL-1 in pig alveolar monocyte/macrophages (AMM) that have attained M1 or M2 phenotypes. Pig AMM stimulated in vitro with IFN-γ and IL-4 induced the expression of M1 (TNFα and iNOS) and M2 (ARG1 and no MMR) phenotypic markers, respectively. In influenza virus infected pigs at seven days post-infection, in addition to substantial modulations in the M1 and M2 markers expression, DAP12, TREM-1 and MDL-1 were downregulated in AMM. Thus, DAP12 signaling promoted the anti-inflammatory pathway in AMM of influenza virus infected pigs.
Collapse
Affiliation(s)
- Jagadish Hiremath
- Food Animal Health Research Program, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA; ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Sankar Renu
- Food Animal Health Research Program, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Kaissar Tabynov
- Kazakh National Agrarian University, Almaty 050010, Kazakhstan and Research Institute of Cardiology and Internal Medicine, Almaty 050000, Kazakhstan
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
123
|
|
124
|
|
125
|
Chenery AL, Alhallaf R, Agha Z, Ajendra J, Parkinson JE, Cooper MM, Chan BHK, Eichenberger RM, Dent LA, Robertson AAB, Kupz A, Brough D, Loukas A, Sutherland TE, Allen JE, Giacomin PR. Inflammasome-Independent Role for NLRP3 in Controlling Innate Antihelminth Immunity and Tissue Repair in the Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2724-2734. [PMID: 31586037 PMCID: PMC6826118 DOI: 10.4049/jimmunol.1900640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023]
Abstract
Alternatively activated macrophages are essential effector cells during type 2 immunity and tissue repair following helminth infections. We previously showed that Ym1, an alternative activation marker, can drive innate IL-1R-dependent neutrophil recruitment during infection with the lung-migrating nematode, Nippostrongylus brasiliensis, suggesting a potential role for the inflammasome in the IL-1-mediated innate response to infection. Although inflammasome proteins such as NLRP3 have important proinflammatory functions in macrophages, their role during type 2 responses and repair are less defined. We therefore infected Nlrp3 -/- mice with N. brasiliensis Unexpectedly, compared with wild-type (WT) mice, infected Nlrp3 -/- mice had increased neutrophilia and eosinophilia, correlating with enhanced worm killing but at the expense of increased tissue damage and delayed lung repair. Transcriptional profiling showed that infected Nlrp3 -/- mice exhibited elevated type 2 gene expression compared with WT mice. Notably, inflammasome activation was not evident early postinfection with N. brasiliensis, and in contrast to Nlrp3 -/- mice, antihelminth responses were unaffected in caspase-1/11-deficient or WT mice treated with the NLRP3-specific inhibitor MCC950. Together these data suggest that NLRP3 has a role in constraining lung neutrophilia, helminth killing, and type 2 immune responses in an inflammasome-independent manner.
Collapse
MESH Headings
- Animals
- Caspase 1/physiology
- Chemotaxis, Leukocyte
- Eosinophilia/etiology
- Eosinophilia/immunology
- Furans/pharmacology
- Heterocyclic Compounds, 4 or More Rings
- Immunity, Innate
- Indenes
- Inflammasomes/physiology
- Interleukin-4/pharmacology
- Lectins/biosynthesis
- Lectins/genetics
- Lung/pathology
- Lung/physiology
- Lung Diseases, Parasitic/complications
- Lung Diseases, Parasitic/immunology
- Lung Diseases, Parasitic/pathology
- Lung Diseases, Parasitic/physiopathology
- Macrophages, Alveolar/enzymology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/physiology
- Neutrophils/immunology
- Nippostrongylus/immunology
- Regeneration
- Strongylida Infections/complications
- Strongylida Infections/immunology
- Strongylida Infections/pathology
- Strongylida Infections/physiopathology
- Sulfonamides/pharmacology
- Sulfones
- Transcription, Genetic
- beta-N-Acetylhexosaminidases/biosynthesis
- beta-N-Acetylhexosaminidases/genetics
Collapse
Affiliation(s)
- Alistair L Chenery
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rafid Alhallaf
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Zainab Agha
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Jesuthas Ajendra
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - James E Parkinson
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Brian H K Chan
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ramon M Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Lindsay A Dent
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; and
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - David Brough
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia
| | - Tara E Sutherland
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom;
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland 4878, Australia;
| |
Collapse
|
126
|
Hodge MX, Reece SW, Madenspacher JH, Gowdy KM. In Vivo Assessment of Alveolar Macrophage Efferocytosis Following Ozone Exposure. J Vis Exp 2019. [PMID: 31710036 DOI: 10.3791/60109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ozone (O3) is a criteria air pollutant that exacerbates and increases the incidence of chronic pulmonary diseases. O3 exposure is known to induce pulmonary inflammation, but little is known regarding how exposure alters processes important to the resolution of inflammation. Efferocytosis is a resolution process, whereby macrophages phagocytize apoptotic cells. The purpose of this protocol is to measure alveolar macrophage efferocytosis following O3-induced lung injury and inflammation. Several methods have been described for measuring efferocytosis; however, most require ex vivo manipulations. Described in detail here is a protocol to measure in vivo alveolar macrophage efferocytosis 24 h after O3 exposure, which avoids ex vivo manipulation of macrophages and serves as a simple technique that can be used to accurately represent perturbations in this resolution process. The protocol is a technically non-intensive and relatively inexpensive method that involves whole-body O3 inhalation followed by oropharyngeal aspiration of apoptotic cells (i.e., Jurkat T cells) while under general anesthesia. Alveolar macrophage efferocytosis is then measured by light microscopy evaluation of macrophages collected from bronchoalveolar (BAL) lavage. Efferocytosis is finally measured by calculating an efferocytic index. Collectively, the outlined methods quantify efferocytic activity in the lung in vivo while also serving to analyze the negative health effects of O3 or other inhaled insults.
Collapse
Affiliation(s)
- Myles X Hodge
- Department of Pharmacology and Toxicology, East Carolina University
| | - Sky W Reece
- Department of Pharmacology and Toxicology, East Carolina University
| | | | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, East Carolina University;
| |
Collapse
|
127
|
de Goede KE, Van den Bossche J. Rewiring of immune-metabolic crosstalk in the liver after viral infection. J Mol Med (Berl) 2019; 97:1245-1246. [PMID: 31372670 DOI: 10.1007/s00109-019-01825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Kyra E de Goede
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
128
|
Caputa G, Castoldi A, Pearce EJ. Metabolic adaptations of tissue-resident immune cells. Nat Immunol 2019; 20:793-801. [DOI: 10.1038/s41590-019-0407-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022]
|
129
|
The major secreted protein of the whipworm parasite tethers to matrix and inhibits interleukin-13 function. Nat Commun 2019; 10:2344. [PMID: 31138806 PMCID: PMC6538607 DOI: 10.1038/s41467-019-09996-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
Infection by soil transmitted parasitic helminths, such as Trichuris spp, are ubiquitous in humans and animals but the mechanisms determining persistence of chronic infections are poorly understood. Here we show that p43, the single most abundant protein in T. muris excretions/secretions, is non-immunogenic during infection and has an unusual sequence and structure containing subdomain homology to thrombospondin type 1 and interleukin (IL)−13 receptor (R) α2. Binding of p43 to IL-13, the key effector cytokine responsible for T. muris expulsion, inhibits IL-13 function both in vitro and in vivo. Tethering of p43 to matrix proteoglycans presents a bound source of p43 to facilitate interaction with IL-13, which may underpin chronic intestinal infection. Our results suggest that exploiting the biology of p43 may open up new approaches to modulating IL-13 function and control of Trichuris infections. In the study, the authors identify a protein excreted by the parasite Trichuris muris, p43, which can modulate IL-13 function, a key cytokine involved in host protection. These data suggest that p43 may be a novel therapeutic target for both whipworm infections and IL13 mediated pathologies.
Collapse
|