101
|
Atasoy S, Vohryzek J, Deco G, Carhart-Harris RL, Kringelbach ML. Common neural signatures of psychedelics: Frequency-specific energy changes and repertoire expansion revealed using connectome-harmonic decomposition. PROGRESS IN BRAIN RESEARCH 2018; 242:97-120. [PMID: 30471684 DOI: 10.1016/bs.pbr.2018.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The search for the universal laws of human brain function is still on-going but progress is being made. Here we describe the novel concepts of connectome harmonics and connectome-harmonic decomposition, which can be used to characterize the brain activity associated with any mental state. We use this new frequency-specific language to describe the brain activity elicited by psilocybin and LSD and find remarkably similar effects in terms of increases in total energy and power, as well as frequency-specific energy changes and repertoire expansion. In addition, we find enhanced signatures of criticality suggesting that the brain dynamics tune toward criticality in both psychedelic elicited states. Overall, our findings provide new evidence for the remarkable ability of psychedelics to change the spatiotemporal dynamics of the human brain.
Collapse
Affiliation(s)
- Selen Atasoy
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Australia
| | | | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Center for Music in the Brain, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
102
|
Deco G, Cruzat J, Cabral J, Knudsen GM, Carhart-Harris RL, Whybrow PC, Logothetis NK, Kringelbach ML. Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD. Curr Biol 2018; 28:3065-3074.e6. [PMID: 30270185 DOI: 10.1016/j.cub.2018.07.083] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/21/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
Understanding the underlying mechanisms of the human brain in health and disease will require models with necessary and sufficient details to explain how function emerges from the underlying anatomy and is shaped by neuromodulation. Here, we provide such a detailed causal explanation using a whole-brain model integrating multimodal imaging in healthy human participants undergoing manipulation of the serotonin system. Specifically, we combined anatomical data from diffusion magnetic resonance imaging (dMRI) and functional magnetic resonance imaging (fMRI) with neurotransmitter data obtained with positron emission tomography (PET) of the detailed serotonin 2A receptor (5-HT2AR) density map. This allowed us to model the resting state (with and without concurrent music listening) and mechanistically explain the functional effects of 5-HT2AR stimulation with lysergic acid diethylamide (LSD) on healthy participants. The whole-brain model used a dynamical mean-field quantitative description of populations of excitatory and inhibitory neurons as well as the associated synaptic dynamics, where the neuronal gain function of the model is modulated by the 5-HT2AR density. The model identified the causative mechanisms for the non-linear interactions between the neuronal and neurotransmitter system, which are uniquely linked to (1) the underlying anatomical connectivity, (2) the modulation by the specific brainwide distribution of neurotransmitter receptor density, and (3) the non-linear interactions between the two. Taking neuromodulatory activity into account when modeling global brain dynamics will lead to novel insights into human brain function in health and disease and opens exciting possibilities for drug discovery and design in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton VIC 3800, Australia.
| | - Josephine Cruzat
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain
| | - Joana Cabral
- Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, Copenhagen University, DK-2100 Copenhagen, Denmark
| | - Robin L Carhart-Harris
- Psychedelic Research Group, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - Peter C Whybrow
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nikos K Logothetis
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany; Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; Institut d'études avancées de Paris, Paris, France.
| |
Collapse
|
103
|
Millière R, Carhart-Harris RL, Roseman L, Trautwein FM, Berkovich-Ohana A. Psychedelics, Meditation, and Self-Consciousness. Front Psychol 2018; 9:1475. [PMID: 30245648 PMCID: PMC6137697 DOI: 10.3389/fpsyg.2018.01475] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
In recent years, the scientific study of meditation and psychedelic drugs has seen remarkable developments. The increased focus on meditation in cognitive neuroscience has led to a cross-cultural classification of standard meditation styles validated by functional and structural neuroanatomical data. Meanwhile, the renaissance of psychedelic research has shed light on the neurophysiology of altered states of consciousness induced by classical psychedelics, such as psilocybin and LSD, whose effects are mainly mediated by agonism of serotonin receptors. Few attempts have been made at bridging these two domains of inquiry, despite intriguing evidence of overlap between the phenomenology and neurophysiology of meditation practice and psychedelic states. In particular, many contemplative traditions explicitly aim at dissolving the sense of self by eliciting altered states of consciousness through meditation, while classical psychedelics are known to produce significant disruptions of self-consciousness, a phenomenon known as drug-induced ego dissolution. In this article, we discuss available evidence regarding convergences and differences between phenomenological and neurophysiological data on meditation practice and psychedelic drug-induced states, with a particular emphasis on alterations of self-experience. While both meditation and psychedelics may disrupt self-consciousness and underlying neural processes, we emphasize that neither meditation nor psychedelic states can be conceived as simple, uniform categories. Moreover, we suggest that there are important phenomenological differences even between conscious states described as experiences of self-loss. As a result, we propose that self-consciousness may be best construed as a multidimensional construct, and that "self-loss," far from being an unequivocal phenomenon, can take several forms. Indeed, various aspects of self-consciousness, including narrative aspects linked to autobiographical memory, self-related thoughts and mental time travel, and embodied aspects rooted in multisensory processes, may be differently affected by psychedelics and meditation practices. Finally, we consider long-term outcomes of experiences of self-loss induced by meditation and psychedelics on individual traits and prosocial behavior. We call for caution regarding the problematic conflation of temporary states of self-loss with "selflessness" as a behavioral or social trait, although there is preliminary evidence that correlations between short-term experiences of self-loss and long-term trait alterations may exist.
Collapse
Affiliation(s)
- Raphaël Millière
- Faculty of Philosophy, University of Oxford, Oxford, United Kingdom
| | - Robin L. Carhart-Harris
- Psychedelic Research Group, Psychopharmacology Unit, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - Leor Roseman
- Psychedelic Research Group, Psychopharmacology Unit, Department of Medicine, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - Fynn-Mathis Trautwein
- Department of Social Neuroscience, Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig, Germany
| | - Aviva Berkovich-Ohana
- Faculty of Education, Edmond Safra Brain Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
104
|
Timmermann C, Roseman L, Williams L, Erritzoe D, Martial C, Cassol H, Laureys S, Nutt D, Carhart-Harris R. DMT Models the Near-Death Experience. Front Psychol 2018; 9:1424. [PMID: 30174629 PMCID: PMC6107838 DOI: 10.3389/fpsyg.2018.01424] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
Near-death experiences (NDEs) are complex subjective experiences, which have been previously associated with the psychedelic experience and more specifically with the experience induced by the potent serotonergic, N,N-Dimethyltryptamine (DMT). Potential similarities between both subjective states have been noted previously, including the subjective feeling of transcending one's body and entering an alternative realm, perceiving and communicating with sentient 'entities' and themes related to death and dying. In this within-subjects placebo-controled study we aimed to test the similarities between the DMT state and NDEs, by administering DMT and placebo to 13 healthy participants, who then completed a validated and widely used measure of NDEs. Results revealed significant increases in phenomenological features associated with the NDE, following DMT administration compared to placebo. Also, we found significant relationships between the NDE scores and DMT-induced ego-dissolution and mystical-type experiences, as well as a significant association between NDE scores and baseline trait 'absorption' and delusional ideation measured at baseline. Furthermore, we found a significant overlap in nearly all of the NDE phenomenological features when comparing DMT-induced NDEs with a matched group of 'actual' NDE experiencers. These results reveal a striking similarity between these states that warrants further investigation.
Collapse
Affiliation(s)
- Christopher Timmermann
- Psychedelic Research Group, Centre for Psychiatry, Department of Medicine, Imperial College London, London, United Kingdom.,The Computational, Cognitive & Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Leor Roseman
- Psychedelic Research Group, Centre for Psychiatry, Department of Medicine, Imperial College London, London, United Kingdom.,The Computational, Cognitive & Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Luke Williams
- Psychedelic Research Group, Centre for Psychiatry, Department of Medicine, Imperial College London, London, United Kingdom
| | - David Erritzoe
- Psychedelic Research Group, Centre for Psychiatry, Department of Medicine, Imperial College London, London, United Kingdom
| | - Charlotte Martial
- GIGA-Consciousness and Neurology Department, Coma Science Group, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Héléna Cassol
- GIGA-Consciousness and Neurology Department, Coma Science Group, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- GIGA-Consciousness and Neurology Department, Coma Science Group, University of Liège and University Hospital of Liège, Liège, Belgium
| | - David Nutt
- Psychedelic Research Group, Centre for Psychiatry, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robin Carhart-Harris
- Psychedelic Research Group, Centre for Psychiatry, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
105
|
Abstract
How do psychedelic drugs produce their characteristic range of acute effects in perception, emotion, cognition, and sense of self? How do these effects relate to the clinical efficacy of psychedelic-assisted therapies? Efforts to understand psychedelic phenomena date back more than a century in Western science. In this article I review theories of psychedelic drug effects and highlight key concepts which have endured over the last 125 years of psychedelic science. First, I describe the subjective phenomenology of acute psychedelic effects using the best available data. Next, I review late 19th-century and early 20th-century theories-model psychoses theory, filtration theory, and psychoanalytic theory-and highlight their shared features. I then briefly review recent findings on the neuropharmacology and neurophysiology of psychedelic drugs in humans. Finally, I describe recent theories of psychedelic drug effects which leverage 21st-century cognitive neuroscience frameworks-entropic brain theory, integrated information theory, and predictive processing-and point out key shared features that link back to earlier theories. I identify an abstract principle which cuts across many theories past and present: psychedelic drugs perturb universal brain processes that normally serve to constrain neural systems central to perception, emotion, cognition, and sense of self. I conclude that making an explicit effort to investigate the principles and mechanisms of psychedelic drug effects is a uniquely powerful way to iteratively develop and test unifying theories of brain function.
Collapse
Affiliation(s)
- Link R. Swanson
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, United States
- Department of Philosophy, University of Minnesota, Minneapolis, MN, United States
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
106
|
Roseman L, Nutt DJ, Carhart-Harris RL. Quality of Acute Psychedelic Experience Predicts Therapeutic Efficacy of Psilocybin for Treatment-Resistant Depression. Front Pharmacol 2018; 8:974. [PMID: 29387009 PMCID: PMC5776504 DOI: 10.3389/fphar.2017.00974] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Introduction: It is a basic principle of the “psychedelic” treatment model that the quality of the acute experience mediates long-term improvements in mental health. In the present paper we sought to test this using data from a clinical trial assessing psilocybin for treatment-resistant depression (TRD). In line with previous reports, we hypothesized that the occurrence and magnitude of Oceanic Boundlessness (OBN) (sharing features with mystical-type experience) and Dread of Ego Dissolution (DED) (similar to anxiety) would predict long-term positive outcomes, whereas sensory perceptual effects would have negligible predictive value. Materials and Methods: Twenty patients with treatment resistant depression underwent treatment with psilocybin (two separate sessions: 10 and 25 mg psilocybin). The Altered States of Consciousness (ASC) questionnaire was used to assess the quality of experiences in the 25 mg psilocybin session. From the ASC, the dimensions OBN and DED were used to measure the mystical-type and challenging experiences, respectively. The Self-Reported Quick Inventory of Depressive Symptoms (QIDS-SR) at 5 weeks served as the endpoint clinical outcome measure, as in later time points some of the subjects had gone on to receive new treatments, thus confounding inferences. In a repeated measure ANOVA, Time was the within-subject factor (independent variable), with QIDS-SR as the within-subject dependent variable in baseline, 1-day, 1-week, 5-weeks. OBN and DED were independent variables. OBN-by-Time and DED-by-Time interactions were the primary outcomes of interest. Results: For the interaction of OBN and DED with Time (QIDS-SR as dependent variable), the main effect and the effects at each time point compared to baseline were all significant (p = 0.002 and p = 0.003, respectively, for main effects), confirming our main hypothesis. Furthermore, Pearson's correlation of OBN with QIDS-SR (5 weeks) was specific compared to perceptual dimensions of the ASC (p < 0.05). Discussion: This report further bolsters the view that the quality of the acute psychedelic experience is a key mediator of long-term changes in mental health. Future therapeutic work with psychedelics should recognize the essential importance of quality of experience in determining treatment efficacy and consider ways of enhancing mystical-type experiences and reducing anxiety. Trial Registration: ISRCTN, number ISRCTN14426797, http://www.isrctn.com/ISRCTN14426797
Collapse
Affiliation(s)
- Leor Roseman
- Psychedelic Research Group, Department of Medicine, Imperial College London, London, United Kingdom
| | - David J Nutt
- Psychedelic Research Group, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robin L Carhart-Harris
- Psychedelic Research Group, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|