101
|
Ding Y, Weng S, Zhu N, Mi M, Xu Z, Zhong L, Yuan Y. Immunotherapy combined with local therapy in the late-line treatment of repair-proficient (pMMR)/microsatellite stable (MSS) metastatic colorectal cancer. Heliyon 2023; 9:e22092. [PMID: 38058653 PMCID: PMC10695980 DOI: 10.1016/j.heliyon.2023.e22092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies, and at the initial visit, most patients are diagnosed with metastatic CRC (mCRC). However, immunotherapy is only and highly effective in a very small proportion of patients with mCRC having mismatch repair defect (dMMR)/high microsatellite instability, and the majority of the patients with mCRC having mismatch repair proficient (pMMR)/microsatellite stability (MSS) cannot benefit from it. At present, many clinical studies of immunotherapy combined with tyrosine kinase inhibitors (TKIs) are trying to regulate the immune microenvironment of pMMR/MSS mCRC, transforming a "cold tumor" into a "hot tumor," which has not only surprising effects but also certain limitations, i.e., the response could not be specific to metastasis. Therefore, regarding the bottleneck encountered by immunotherapy in patients with patients pMMR/MSS mCRC, this study summarized current research and possible mechanisms of immunotherapy combined with local therapy for metastasis, including radiotherapy, ablation, and transcatheter arterial chemoembolization.
Collapse
Affiliation(s)
- Yuwei Ding
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China
| | - Shanshan Weng
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ning Zhu
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China
| | - Mi Mi
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China
| | - Ziheng Xu
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China
| | - Liping Zhong
- Department of Oncology, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang Province, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310052, China
| |
Collapse
|
102
|
Das S, Acharya D. Immunological Assessment of Recent Immunotherapy for Colorectal Cancer. Immunol Invest 2023; 52:1065-1095. [PMID: 37812224 DOI: 10.1080/08820139.2023.2264906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy with increased incidence and mortality rates worldwide. Traditional treatment approaches have attempted to efficiently target CRC; however, they have failed in most cases, owing to the cytotoxicity and non-specificity of these therapies. Therefore, it is essential to develop an effective alternative therapy to improve the clinical outcomes in heterogeneous CRC cases. Immunotherapy has transformed cancer treatment with remarkable efficacy and overcomes the limitations of traditional treatments. With an understanding of the cancer-immunity cycle and tumor microenvironment evolution, current immunotherapy approaches have elicited enhanced antitumor immune responses. In this comprehensive review, we outline the latest advances in immunotherapy targeting CRC and provide insights into antitumor immune responses reported in landmark clinical studies. We focused on highlighting the combination approaches that synergistically induce immune responses and eliminate immunosuppression. This review aimed to understand the limitations and potential of recent immunotherapy clinical studies conducted in the last five years (2019-2023) and to transform this knowledge into a rational design of clinical trials intended for effective antitumor immune responses in CRC.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biotechnology, GIET University, Gunupur, India
| | | |
Collapse
|
103
|
Yu W, Li M, Xia J. Identification of immunogenic cell death‑related prognostic signatures in pancreatic cancer. Oncol Lett 2023; 26:473. [PMID: 37809045 PMCID: PMC10551861 DOI: 10.3892/ol.2023.14061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Targeting immunogenic cell death (ICD) may enable the response of pancreatic cancer to immune checkpoint inhibitors (ICIs). The aim of the present study was to elucidate the role of ICD-related genes in pancreatic cancer. Utilizing the k-means method, consensus clustering was employed to effectively group patients with pancreatic cancer. Subsequently, a set of differentially expressed genes was identified between the two subtypes related to ICD, facilitating the execution of a comprehensive enrichment analysis. Furthermore, the construction of an ICD-related prognostic signature (IRPS) was accomplished through LASSO Cox regression, thereby enabling the assessment of responses to both chemotherapy and immunotherapy. In addition, the biological functionality of 5'-nucleotidase ecto (NT5E) was elucidated through experimental investigations. Patients characterized as the ICD high subtype experienced a comparatively shorter overall survival. This subtype exhibited a noteworthy correlation with HLA families and immune checkpoint molecules, underscoring its immunological significance. Subsequently, patients with elevated IRPS risk scores displayed resistance towards immunotherapy interventions. Of note, synergistic downregulation of NT5E in combination with Gemcitabine was observed to significantly induce tumor cell apoptosis, emphasizing its potential therapeutic value. Leveraging ICD-related genes, a novel classification system was meticulously devised to comprehensively evaluate both the clinical outcomes and therapeutic responses of patients diagnosed with pancreatic cancer.
Collapse
Affiliation(s)
- Wenjing Yu
- Department of Laboratory Medicine, The 13th People's Hospital of Chongqing, Chongqing 400053, P.R. China
| | - Mei Li
- Department of Laboratory Medicine, The 13th People's Hospital of Chongqing, Chongqing 400053, P.R. China
| | - Jing Xia
- Department of Laboratory Medicine, The 13th People's Hospital of Chongqing, Chongqing 400053, P.R. China
| |
Collapse
|
104
|
Zlotnik O, Krzywon L, Bloom J, Kalil J, Altubi I, Lazaris A, Metrakos P. Targeting Liver Metastases to Potentiate Immunotherapy in MS-Stable Colorectal Cancer-A Review of the Literature. Cancers (Basel) 2023; 15:5210. [PMID: 37958384 PMCID: PMC10649257 DOI: 10.3390/cancers15215210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of several cancers, including melanoma and lung cancer. However, for colorectal cancer, it is ineffective for 95% of patients with microsatellite-stable disease. Recent evidence suggests that the liver's immune microenvironment plays a pivotal role in limiting the effectiveness of immunotherapy. There is also evidence to show that targeting liver metastases with locoregional therapies, such as surgery or irradiation, could potentiate immunotherapy for these patients. This review presents evidence from preclinical studies regarding the underlying mechanisms and from clinical studies that support this approach. Furthermore, we outline potential directions for future clinical trials. This innovative strategy could potentially establish immunotherapy as an effective treatment for MS-stable colorectal cancer patients, which are currently considered resistant.
Collapse
Affiliation(s)
- Oran Zlotnik
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
- Division of General Surgery, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Lucyna Krzywon
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
| | - Jessica Bloom
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
| | - Jennifer Kalil
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
- Division of General Surgery, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Ikhtiyar Altubi
- Division of General Surgery, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Anthoula Lazaris
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
| | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (O.Z.); (L.K.); (J.B.); (J.K.); (A.L.)
- Division of General Surgery, McGill University, Montreal, QC H4A 3J1, Canada;
| |
Collapse
|
105
|
Matteucci L, Bittoni A, Gallo G, Ridolfi L, Passardi A. Immunocheckpoint Inhibitors in Microsatellite-Stable or Proficient Mismatch Repair Metastatic Colorectal Cancer: Are We Entering a New Era? Cancers (Basel) 2023; 15:5189. [PMID: 37958363 PMCID: PMC10648369 DOI: 10.3390/cancers15215189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause of cancer-related deaths in Europe. About 5% of metastatic CRC (mCRC) are characterized by high microsatellite instability (MSI) due to a deficient DNA mismatch repair (dMMR), and this condition has been related to a high sensitivity to immunotherapy, in particular to the Immune Checkpoint Inhibitors (ICIs). In fact, in MSI-H or dMMR mCRC, treatment with ICIs induced remarkable response rates and prolonged survival. However, the majority of mCRC cases are mismatch-repair-proficient (pMMR) and microsatellite-stable (MSS), and unfortunately these conditions involve resistance to ICIs. This review aims to provide an overview of the strategies implemented to overcome ICI resistance and/or define subgroups of patients with MSS or dMMR mCRC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Laura Matteucci
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Bittoni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Graziana Gallo
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, “Maurizio Bufalini” Hospital, 47521 Cesena, Italy
| | - Laura Ridolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
106
|
Foote MB, Argilés G, Rousseau B, Segal NH. Facts and Hopes in Colorectal Cancer Immunotherapy. Clin Cancer Res 2023; 29:4032-4039. [PMID: 37326624 DOI: 10.1158/1078-0432.ccr-22-2176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Although a minority of colorectal cancers exhibit mismatch repair deficiency and associated sensitivity to immune checkpoint inhibitors (ICI), the vast majority of colorectal cancers arise in a tolerogenic microenvironment with mismatch repair proficiency, low tumor-intrinsic immunogenicity, and negligible immunotherapy responsiveness. Treatment strategies to augment tumor immunity with combination ICIs and chemotherapy have broadly failed in mismatch repair-proficient tumors. Similarly, although several small single-arm studies have shown that checkpoint blockade plus radiation or select tyrosine kinase inhibition may show improved outcomes compared with historical controls, this finding has not been clearly validated in randomized trials. An evolving next generation of intelligently engineered checkpoint inhibitors, bispecific T-cell engagers, and emerging CAR-T cell therapies may improve immunorecognition of colorectal tumors. Across these modalities, ongoing translational efforts to better define patient populations and biomarkers associated with immune response, as well as combine biologically sound and mutually amplifying therapies, show promise for a new era of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Guillem Argilés
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neil H Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
107
|
Wang K, Chen Y, Zhang Z, Wu R, Zhou M, Yang W, Wan J, Shen L, Zhang H, Wang Y, Han X, Wang J, Zhang Z, Xia F. RIFLE: a Phase II trial of stereotactic ablative radiotherapy combined with fruquintinib and tislelizumab in metastatic colorectal cancer. Gastroenterol Rep (Oxf) 2023; 11:goad063. [PMID: 37842200 PMCID: PMC10568524 DOI: 10.1093/gastro/goad063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Background Currently, the prognosis for metastatic colorectal cancer (mCRC) still remains poor. The management of mCRC has become manifold because of the varied advances in the systemic and topical treatment approaches. For patients with limited number of metastases, radical local therapy plus systemic therapy can be a good choice to achieve long-term tumor control. In this study, we aimed to explore the efficacy and safety of the combination of fruquintinib, tislelizumab, and stereotactic ablative radiotherapy (SABR) in mCRC (RIFLE study). Methods RIFLE was designed as a single-center, single-arm, prospective Phase II clinical trial. A total of 68 mCRC patients who have failed the first-line standard treatment will be recruited in the safety run-in phase (n = 6) and the expansion phase (n = 62), respectively. Eligible patients will receive SABR followed by fruquintinib (5 mg, d1-14, once every day) and tislelizumab (200 mg, d1, once every 3 weeks) within 2 weeks from completion of radiation. The expansion phase starts when the safety of the treatment is determined (dose limiting toxicity occur in no more than one-sixth of patients in the run-in phase). The primary end point is the objective response rate. The secondary end points include the disease control rate, duration of response, 3-year progression-free survival rate, 3-year overall survival rate, and toxicity. Conclusions The results of this trial will provide a novel insight into SABR in combination with PD-1 antibody and vascular endothelial growth factor receptor inhibitor in the systematic treatment of metastatic colorectal cancer, which is expected to provide new therapeutic strategies and improve the prognosis for mCRC patients. Trial registration NCT04948034 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Kun Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Yajie Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Zhiyuan Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Ruiyan Wu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Menglong Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Wang Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Juefeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Yan Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Xu Han
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, P. R. China
| |
Collapse
|
108
|
Cui C, Huo Q, Xiong X, Li K, Fishel ML, Li B, Yokota H. Anticancer Peptides Derived from Aldolase A and Induced Tumor-Suppressing Cells Inhibit Pancreatic Ductal Adenocarcinoma Cells. Pharmaceutics 2023; 15:2447. [PMID: 37896207 PMCID: PMC10610494 DOI: 10.3390/pharmaceutics15102447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
PDAC (pancreatic ductal adenocarcinoma) is a highly aggressive malignant tumor. We have previously developed induced tumor-suppressing cells (iTSCs) that secrete a group of tumor-suppressing proteins. Here, we examined a unique procedure to identify anticancer peptides (ACPs), using trypsin-digested iTSCs-derived protein fragments. Among the 10 ACP candidates, P04 (IGEHTPSALAIMENANVLAR) presented the most efficient anti-PDAC activities. P04 was derived from aldolase A (ALDOA), a glycolytic enzyme. Extracellular ALDOA, as well as P04, was predicted to interact with epidermal growth factor receptor (EGFR), and P04 downregulated oncoproteins such as Snail and Src. Importantly, P04 has no inhibitory effect on mesenchymal stem cells (MSCs). We also generated iTSCs by overexpressing ALDOA in MSCs and peripheral blood mononuclear cells (PBMCs). iTSC-derived conditioned medium (CM) inhibited the progression of PDAC cells as well as PDAC tissue fragments. The inhibitory effect of P04 was additive to that of CM and chemotherapeutic drugs such as 5-Flu and gemcitabine. Notably, applying mechanical vibration to PBMCs elevated ALDOA and converted PBMCs into iTSCs. Collectively, this study presented a unique procedure for selecting anticancer P04 from ALDOA in an iTSCs-derived proteome for the treatment of PDAC.
Collapse
Affiliation(s)
- Changpeng Cui
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Xue Xiong
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Melissa L. Fishel
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Baiyan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.); (K.L.)
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
109
|
Zhou S, Wang C, Shen L, Wang Y, Zhang H, Wu R, Wang Y, Chen Y, Xuan Y, Xia F, Zhang Z, Wan J. Regorafenib alone or in combination with high/low-dose radiotherapy plus toripalimab as third-line treatment in patients with metastatic colorectal cancer: protocol for a prospective, randomized, controlled phase II clinical trial (SLOT). Front Oncol 2023; 13:1274487. [PMID: 37869085 PMCID: PMC10586789 DOI: 10.3389/fonc.2023.1274487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Combination strategies to improve immunotherapy response in microsatellite stable metastatic colorectal cancer (MSS mCRC) remain an unmet need. Several single-arm clinical trials have shown promising synergistic effects between regorafenib and ICIs; however, some contradictory results have also been reported. Randomized controlled trials are needed to further validate the combination of regorafenib with ICIs. In addition, low-dose radiotherapy has been demonstrated to induce local immune responses by reprogramming the tumor microenvironment when combined with high-dose radiotherapy and ICIs. In this study, we designed a prospective, randomized, controlled phase II trial to investigate the efficacy and safety of regorafenib in combination with high/low-dose radiotherapy plus toripalimab in MSS mCRC compared to regorafenib alone. Patients with MSS metastatic adenocarcinoma of the colon or rectum will be enrolled and randomly assigned into two arms: a control arm and an experimental arm. Patients in the control arm will receive regorafenib monotherapy (120 mg once daily on days 1-21 of each 28 days cycle). Patients in the experimental arm will first receive one cycle of regorafenib (80 mg once daily on days 1-21 of each 28 days cycle) and toripalimab (240mg, q3w), followed by high-dose (4-8 fractions of 8-12Gy) and low-dose (1-10Gy at 0.5-2Gy/fraction) radiotherapy, and then continue regorafenib and toripalimab treatment. The primary endpoint is the objective response rate, and the secondary endpoints are disease control rate, duration of remission, median progress-free survival, median overall survival, and adverse events. Recruitment started in August 2023 and is ongoing. Clinical Trial Registration https://clinicaltrials.gov/study/NCT05963490?cond=NCT05963490&rank=1, identifier NCT05963490.
Collapse
Affiliation(s)
- Shujuan Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chenchen Wang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yan Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ruiyan Wu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yaqi Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yajie Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yan Xuan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Juefeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
110
|
Tran LC, Özdemir BC, Berger MD. The Role of Immune Checkpoint Inhibitors in Metastatic Pancreatic Cancer: Current State and Outlook. Pharmaceuticals (Basel) 2023; 16:1411. [PMID: 37895882 PMCID: PMC10609661 DOI: 10.3390/ph16101411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, characterized by its aggressive tumor biology and poor prognosis. While immune checkpoint inhibitors (ICIs) play a major part in the treatment algorithm of various solid tumors, there is still no evidence of clinical benefit from ICI in patients with metastatic PDAC (mPDAC). This might be due to several reasons, such as the inherent low immunogenicity of pancreatic cancer, the dense stroma-rich tumor microenvironment that precludes an efficient migration of antitumoral effector T cells to the cancer cells, and the increased proportion of immunosuppressive immune cells, such as regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and myeloid-derived suppressor cells (MDSCs), facilitating tumor growth and invasion. In this review, we provide an overview of the current state of ICIs in mPDAC, report on the biological rationale to implement ICIs into the treatment strategy of pancreatic cancer, and discuss preclinical studies and clinical trials in this field. Additionally, we shed light on the challenges of implementing ICIs into the treatment strategy of PDAC and discuss potential future directions.
Collapse
Affiliation(s)
| | | | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
111
|
Thomas EM, Wright JA, Blake SJ, Page AJ, Worthley DL, Woods SL. Advancing translational research for colorectal immuno-oncology. Br J Cancer 2023; 129:1442-1450. [PMID: 37563222 PMCID: PMC10628092 DOI: 10.1038/s41416-023-02392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Colorectal cancer (CRC) is a common and deadly disease. Unfortunately, immune checkpoint inhibitors (ICIs) fail to elicit effective anti-tumour responses in the vast majority of CRC patients. Patients that are most likely to respond are those with DNA mismatch repair deficient (dMMR) and microsatellite instability (MSI) disease. However, reliable predictors of ICI response are lacking, even within the dMMR/MSI subtype. This, together with identification of novel mechanisms to increase response rates and prevent resistance, are ongoing and vitally important unmet needs. To address the current challenges with translation of early research findings into effective therapeutic strategies, this review summarises the present state of preclinical testing used to inform the development of immuno-regulatory treatment strategies for CRC. The shortfalls and advantages of commonly utilised mouse models of CRC, including chemically induced, transplant and transgenic approaches are highlighted. Appropriate use of existing models, incorporation of patient-derived data and development of cutting-edge models that recapitulate important features of human disease will be key to accelerating clinically relevant research in this area.
Collapse
Affiliation(s)
- Elaine M Thomas
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Josephine A Wright
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J Page
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Daniel L Worthley
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Susan L Woods
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
112
|
Cornista AM, Giolito MV, Baker K, Hazime H, Dufait I, Datta J, Khumukcham SS, De Ridder M, Roper J, Abreu MT, Breckpot K, Van der Jeught K. Colorectal Cancer Immunotherapy: State of the Art and Future Directions. GASTRO HEP ADVANCES 2023; 2:1103-1119. [PMID: 38098742 PMCID: PMC10721132 DOI: 10.1016/j.gastha.2023.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.
Collapse
Affiliation(s)
- Alyssa Mauri Cornista
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Maria Virginia Giolito
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Hajar Hazime
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Saratchandra Singh Khumukcham
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Maria T. Abreu
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Karine Breckpot
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kevin Van der Jeught
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
113
|
Wu Q, Wang Z, Luo Y, Xie X. Efficacy and safety of immune checkpoint inhibitors in Proficient Mismatch Repair (pMMR)/ Non-Microsatellite Instability-High (non-MSI-H) metastatic colorectal cancer: a study based on 39 cohorts incorporating 1723 patients. BMC Immunol 2023; 24:27. [PMID: 37658314 PMCID: PMC10472580 DOI: 10.1186/s12865-023-00564-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
PURPOSE This study was designed to investigate the efficacy and safety of immune checkpoint inhibitors (ICIs)-based therapy in proficient mismatch repair (pMMR)/non-microsatellite instability-high (non-MSI-H) metastatic colorectal cancer (mCRC). METHODS Electronic databases were screened to identify relevant trials. The primary endpoints were pooled objective response rate (ORR) and disease control rate (DCR). Stratified analysis was accomplished on ICIs-based regimens, treatment lines and RAS status. RESULTS Totally, 1723 mCRC patients from 39 cohorts were included. The pooled ORR, DCR, 12-month overall survival (OS) rate and 6-month progression-free survival (PFS) rate of ICIs-based therapy in pMMR/non-MSI-H mCRC were 8.5% (95% CI: 4.4%-13.5%), 48.2% (95% CI: 37.8%-58.6%), 52.3% (95% CI: 46.4%-58.1%) and 32.8% (95% CI: 23.5%-42.7%) respectively. As a whole, no significantly differences were shown between ICIs-based and non-ICIs-based therapy for pMMR/non-MSI-H mCRC in terms of both PFS (HR = 1.0, 95% CI: 0.9-1.1, P = 0.91) and OS (HR = 1.0, 95% CI: 0.9-1.2, P = 0.51). It was worth noting that the addition of ICIs to anti-vascular endothelial growth factor (VEGF) agent plus chemotherapy displayed excellent efficacy in pMMR/non-MSI-H mCRC (ORR = 42.4%, 95% CI: 10.0%-78.6%; DCR = 92.0%, 95% CI: 68.3%-100.0%; 12-month OS rate = 71.4%, 95% CI: 50.0%-89.1%; 6-month PFS rate = 55.2%, 95% CI: 24.8%-83.8%; and PFS (compared with non-ICIs-based therapy): HR = 0.9, 95% CI: 0.8-1.0, P = 0.02), especially served as first-line therapy (ORR = 74.2%, 95% CI: 61.4%-85.4%; DCR = 98.7%, 95% CI: 92.0%-100.0%); and without additional treatment related adverse events (TRAEs) were observed. CONCLUSIONS ICIs-based combination therapy, especially the addition of ICIs to first-line anti-VEGF agent plus chemotherapy, is promising in pMMR/non-MSI-H mCRC with good efficacy and controllable toxicity.
Collapse
Affiliation(s)
- Qing Wu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ziming Wang
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yang Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
114
|
Wang A, Sun Y, Wang X, Yan Z, Wang D, Zeng L, Lu Q. m 6A methyltransferase METTL16 mediates immune evasion of colorectal cancer cells via epigenetically regulating PD-L1 expression. Aging (Albany NY) 2023; 15:8444-8457. [PMID: 37647025 PMCID: PMC10496997 DOI: 10.18632/aging.204980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The immune checkpoint inhibitors (ICIs) has dramatically changed the therapeutic area of cancers. A great number of patients with CRC exhibit poor response rate to ICI treatment. N6-methyl adenosine (m6A) is closely correlated with the initiation and progression of cancers. To explore the role of methyltransferase-like 16 (METTL16) in CRC treatment. METHODS Clinical samples and different CRC cell lines were collected. The expression of METTL16 and PD-L1 was determined by qPCR, IHC. Ectopic expression of METTL16 was performed in CRC cells. A co-culture system was established using CRC cells and T cells to measure the immune evasion. Cell viability, apoptosis, migration, and invasion were examined by CCK-8, colony formation, flow cytometry, Transwell, and wound healing assay, respectively. The N6-methyl adenosine (m6A) modification of PD-L1 by METTL16 was investigated by methylated RIP (MeRIP) and RNA stability experiment. In vivo xenograft model was established to measure the effects of METTL16 on CRC growth. RESULTS METTL16 was decreased and PD-L1 was increased in CRC tissues and cell lines. METTL16 enhanced cell proliferation, migration, and invasion, and promoted CRC tumor growth in vivo. METTL16 induced m6A modification and decreased the stability of METTL16 RNA, leading to the suppression of METTL16 level. METTL16 overexpression in CRC cells induced decreased portion of PD-1 positive T cells. Overexpression of METTL16 and inhibition of PD-1 synergistically suppressed in vivo growth of CRC cells. CONCLUSIONS Our work identified the METTL16/PD-L1/PD-1 regulatory axis in CRC development and immune evasion, which represented a promising target for CRC treatment.
Collapse
Affiliation(s)
- Ailei Wang
- Department of Anorectal, Tangshan Traditional Chinese Medicine Hospital, Tangshan, China
| | - Yingjie Sun
- Department of Anorectal, Tangshan Traditional Chinese Medicine Hospital, Tangshan, China
| | - Xince Wang
- Department of Anorectal, Tangshan Traditional Chinese Medicine Hospital, Tangshan, China
| | - Zhaofei Yan
- Department of Anorectal, Tangshan Traditional Chinese Medicine Hospital, Tangshan, China
| | - Dongsheng Wang
- Department of Anorectal, Tangshan Traditional Chinese Medicine Hospital, Tangshan, China
| | - Li Zeng
- Department of Anorectal, Tangshan Traditional Chinese Medicine Hospital, Tangshan, China
| | - Qingge Lu
- Tangshan Traditional Chinese Medicine Hospital, Tangshan, China
| |
Collapse
|
115
|
Li S, Zhang N, Zhang H, Zhou R, Li Z, Yang X, Wu W, Li H, Luo P, Wang Z, Dai Z, Liang X, Wen J, Zhang X, Zhang B, Cheng Q, Zhang Q, Yang Z. Artificial intelligence learning landscape of triple-negative breast cancer uncovers new opportunities for enhancing outcomes and immunotherapy responses. JOURNAL OF BIG DATA 2023; 10:132. [DOI: 10.1186/s40537-023-00809-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/07/2023] [Indexed: 01/12/2025]
Abstract
AbstractTriple-negative breast cancer (TNBC) is a relatively aggressive breast cancer subtype due to tumor relapse, drug resistance, and multi-organ metastatic properties. Identifying reliable biomarkers to predict prognosis and precisely guide TNBC immunotherapy is still an unmet clinical need. To address this issue, we successfully constructed a novel 25 machine learning (ML) algorithms-based immune infiltrating cell (IIC) associated signature of TNBC (MLIIC), achieved by multiple transcriptome data of purified immune cells, TNBC cell lines, and TNBC entities. The TSI index was employed to determine IIC-RNAs that were accompanied by an expression pattern of upregulation in immune cells and downregulation in TNBC cells. LassoLR, Boruta, Xgboost, SVM, RF, and Pamr were utilized for further obtaining the optimal IIC-RNAs. Following univariate Cox regression analysis, LassoCox, CoxBoost, and RSF were utilized for the dimensionality reduction of IIC-RNAs from a prognostic perspective. RSF, Ranger, ObliqueRSF, Rpart, CoxPH, SurvivalSVM, CoxBoost, GlmBoost, SuperPC, StepwiseCox, Enet, LassoCox, CForest, Akritas, BlackBoost, PlsRcox, SurvReg, GBM, and CTree were used for determining the most potent MLIIC signature. Consequently, this MLIIC signature was correlated significantly with survival status validated by four independent TNBC cohorts. Also, the MLIIC signature had a superior predictive capability for TNBC prognosis, compared with 148 previously reported signatures. In addition, MLIIC signature scores developed by immunofluorescent staining of tissue arrays from TNBC patients showed a substantial prognostic value. In TNBC immunotherapy, the low MLIIC profile demonstrated significant immune-responsive efficacy in a dataset of multiple cancer types. MLIIC signature could also predict m6A epigenetic regulation which controls T cell homeostasis. Therefore, this well-established MLIIC signature is a robust predictive indicator for TNBC prognosis and the benefit of immunotherapy, thus providing an efficient tool for combating TNBC.
Collapse
|
116
|
Zhang Y, Lv N, Li M, Liu M, Wu C. Cancer-associated fibroblasts: tumor defenders in radiation therapy. Cell Death Dis 2023; 14:541. [PMID: 37607935 PMCID: PMC10444767 DOI: 10.1038/s41419-023-06060-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that are involved in multiple aspects of cancer progression and considered contributors to tumor immune escape. CAFs exhibit a unique radiation resistance phenotype, and can survive clinical radiation doses; however, ionizing radiation can induce changes in their secretions and influence tumor progression by acting on tumor and immune cells. In this review, we describe current knowledge of the effects of radiation therapies on CAFs, as well as summarizing understanding of crosstalk among CAFs, tumor cells, and immune cells. We highlight the important role of CAFs in radiotherapy resistance, and discuss current and future radiotherapy strategies for targeting CAFs.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Na Lv
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Manshi Li
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ming Liu
- Department of Clinical Epidemiology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| | - Chunli Wu
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| |
Collapse
|
117
|
Zhang Y, Hu J, Ji K, Jiang S, Dong Y, Sun L, Wang J, Hu G, Chen D, Chen K, Tao Z. CD39 inhibition and VISTA blockade may overcome radiotherapy resistance by targeting exhausted CD8+ T cells and immunosuppressive myeloid cells. Cell Rep Med 2023; 4:101151. [PMID: 37567173 PMCID: PMC10439278 DOI: 10.1016/j.xcrm.2023.101151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023]
Abstract
Although radiotherapy (RT) has achieved great success in the treatment of non-small cell lung cancer (NSCLC), local relapses still occur and abscopal effects are rarely seen even when it is combined with immune checkpoint blockers (ICBs). Here, we characterize the dynamic changes of tumor-infiltrating immune cells after RT in a therapy-resistant murine tumor model using single-cell transcriptomes and T cell receptor sequencing. At the early stage, the innate and adaptive immune systems are activated. At the late stage, however, the tumor immune microenvironment (TIME) shifts into immunosuppressive properties. Our study reveals that inhibition of CD39 combined with RT preferentially decreases the percentage of exhausted CD8+ T cells. Moreover, we find that the combination of V-domain immunoglobulin suppressor of T cell activation (VISTA) blockade and RT synergistically reduces immunosuppressive myeloid cells. Clinically, high VISTA expression is associated with poor prognosis in patients with NSCLC. Altogether, our data provide deep insight into acquired resistance to RT from an immune perspective and present rational combination strategies.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Ji
- Department of Pain Relief, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shengpeng Jiang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yang Dong
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lin Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Department of Radiation Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Department of Radiation Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China; Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
118
|
Thibaudin M, Fumet JD, Chibaudel B, Bennouna J, Borg C, Martin-Babau J, Cohen R, Fonck M, Taieb J, Limagne E, Blanc J, Ballot E, Hampe L, Bon M, Daumoine S, Peroz M, Mananet H, Derangère V, Boidot R, Michaud HA, Laheurte C, Adotevi O, Bertaut A, Truntzer C, Ghiringhelli F. First-line durvalumab and tremelimumab with chemotherapy in RAS-mutated metastatic colorectal cancer: a phase 1b/2 trial. Nat Med 2023; 29:2087-2098. [PMID: 37563240 PMCID: PMC10427431 DOI: 10.1038/s41591-023-02497-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Although patients with microsatellite instable metastatic colorectal cancer (CRC) benefit from immune checkpoint blockade, chemotherapy with targeted therapies remains the only therapeutic option for microsatellite stable (MSS) tumors. The single-arm, phase 1b/2 MEDITREME trial evaluated the safety and efficacy of durvalumab plus tremelimumab combined with mFOLFOX6 chemotherapy in first line, in 57 patients with RAS-mutant unresectable metastatic CRC. Safety was the primary objective of phase Ib; no safety issue was observed. The phase 2 primary objective of efficacy in terms of 3-month progression-free survival (PFS) in patients with MSS tumors was met, with 3-month PFS of 90.7% (95% confidence interval (CI): 79.2-96%). For secondary objectives, response rate was 64.5%; median PFS was 8.2 months (95% CI: 5.9-8.6); and overall survival was not reached in patients with MSS tumors. We observed higher tumor mutational burden and lower genomic instability in responders. Integrated transcriptomic analysis underlined that high immune signature and low epithelial-mesenchymal transition were associated with better outcome. Immunomonitoring showed induction of neoantigen and NY-ESO1 and TERT blood tumor-specific T cell response associated with better PFS. The combination of durvalumab-tremelimumab with mFOLFOX6 was tolerable with promising clinical activity in MSS mCRC. Clinicaltrials.gov identifier: NCT03202758 .
Collapse
Affiliation(s)
- Marion Thibaudin
- Université Bourgogne Franche-Comté, Dijon, France.
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
| | - Jean-David Fumet
- Université Bourgogne Franche-Comté, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | - Benoist Chibaudel
- Department of Medical Oncology, Hôpital Franco-Britannique - Fondation Cognacq-Jay, Levallois-Perret, France
| | | | | | | | - Romain Cohen
- Department of Medical Oncology, Saint Antoine, Hospital, Paris, France
| | - Marianne Fonck
- Department of Medical Oncology, Institut Bergonie, Bordeaux, France
| | - Julien Taieb
- Department of Gastroenterology, Pompidou Hospital, Paris, France
| | - Emeric Limagne
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Julie Blanc
- Department of Statistics, Centre Georges-François Leclerc, Dijon, France
| | - Elise Ballot
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Léa Hampe
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Marjorie Bon
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Susy Daumoine
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Morgane Peroz
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Hugo Mananet
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Valentin Derangère
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
| | - Henri-Alexandre Michaud
- Plateforme de Cytométrie et d'Imagerie de Masse, IRCM, University of Montpellier, ICM, Inserm Montpellier, Montpellier, France
| | - Caroline Laheurte
- INSERM EFS UMR1098 RIGHT Interactions Hôte-Greffon-Tumeur - Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Adotevi
- Department of Medical Oncology, CHU, Besançon, France
- INSERM EFS UMR1098 RIGHT Interactions Hôte-Greffon-Tumeur - Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Aurélie Bertaut
- Department of Statistics, Centre Georges-François Leclerc, Dijon, France
| | - Caroline Truntzer
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | - François Ghiringhelli
- Université Bourgogne Franche-Comté, Dijon, France.
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France.
- Genetic and Immunology Medical Institute, Dijon, France.
| |
Collapse
|
119
|
Herpels M, Ishihara J, Sadanandam A. The clinical terrain of immunotherapies in heterogeneous pancreatic cancer: unravelling challenges and opportunities. J Pathol 2023; 260:533-550. [PMID: 37550956 DOI: 10.1002/path.6171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer and has abysmal survival rates. In the past two decades, immunotherapeutic agents with success in other cancer types have gradually been trialled against PDACs at different stages of cancer progression, either as a monotherapy or in combination with chemotherapy. Unfortunately, to this day, chemotherapy still prolongs the survival rates the most and is prescribed in clinics despite the severe side effects in other cancer types. The low success rates of immunotherapy against PDAC have been attributed most frequently to its complex and multi-faceted tumour microenvironment (TME) and low mutational burden. In this review, we give a comprehensive overview of the immunotherapies tested in PDAC clinical trials thus far, their limitations, and potential explanations for their failure. We also discuss the existing classification of heterogenous PDACs into cancer, cancer-associated fibroblast, and immune subtypes and their potential opportunity in patient selection as a form of personalisation of PDAC immunotherapy. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Melanie Herpels
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Global Oncology, Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Translational Immunotherapy, Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| |
Collapse
|
120
|
Ashekyan O, Shahbazyan N, Bareghamyan Y, Kudryavzeva A, Mandel D, Schmidt M, Loeffler-Wirth H, Uduman M, Chand D, Underwood D, Armen G, Arakelyan A, Nersisyan L, Binder H. Transcriptomic Maps of Colorectal Liver Metastasis: Machine Learning of Gene Activation Patterns and Epigenetic Trajectories in Support of Precision Medicine. Cancers (Basel) 2023; 15:3835. [PMID: 37568651 PMCID: PMC10417131 DOI: 10.3390/cancers15153835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The molecular mechanisms of the liver metastasis of colorectal cancer (CRLM) remain poorly understood. Here, we applied machine learning and bioinformatics trajectory inference to analyze a gene expression dataset of CRLM. We studied the co-regulation patterns at the gene level, the potential paths of tumor development, their functional context, and their prognostic relevance. Our analysis confirmed the subtyping of five liver metastasis subtypes (LMS). We provide gene-marker signatures for each LMS, and a comprehensive functional characterization that considers both the hallmarks of cancer and the tumor microenvironment. The ordering of CRLMs along a pseudotime-tree revealed a continuous shift in expression programs, suggesting a developmental relationship between the subtypes. Notably, trajectory inference and personalized analysis discovered a range of epigenetic states that shape and guide metastasis progression. By constructing prognostic maps that divided the expression landscape into regions associated with favorable and unfavorable prognoses, we derived a prognostic expression score. This was associated with critical processes such as epithelial-mesenchymal transition, treatment resistance, and immune evasion. These factors were associated with responses to neoadjuvant treatment and the formation of an immuno-suppressive, mesenchymal state. Our machine learning-based molecular profiling provides an in-depth characterization of CRLM heterogeneity with possible implications for treatment and personalized diagnostics.
Collapse
Affiliation(s)
- Ohanes Ashekyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Nerses Shahbazyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Yeva Bareghamyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Anna Kudryavzeva
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Daria Mandel
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Maria Schmidt
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany; (M.S.); (H.L.-W.)
| | - Henry Loeffler-Wirth
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany; (M.S.); (H.L.-W.)
| | - Mohamed Uduman
- Agenus Inc., 3 Forbes Road, Lexington, MA 7305, USA; (M.U.); (D.C.); (D.U.); (G.A.)
| | - Dhan Chand
- Agenus Inc., 3 Forbes Road, Lexington, MA 7305, USA; (M.U.); (D.C.); (D.U.); (G.A.)
| | - Dennis Underwood
- Agenus Inc., 3 Forbes Road, Lexington, MA 7305, USA; (M.U.); (D.C.); (D.U.); (G.A.)
| | - Garo Armen
- Agenus Inc., 3 Forbes Road, Lexington, MA 7305, USA; (M.U.); (D.C.); (D.U.); (G.A.)
| | - Arsen Arakelyan
- Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia, 7 Has-Ratyan Str., Yerevan 0014, Armenia;
| | - Lilit Nersisyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
| | - Hans Binder
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia; (O.A.); (N.S.); (Y.B.); (A.K.); (D.M.); (L.N.)
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany; (M.S.); (H.L.-W.)
| |
Collapse
|
121
|
Irianto T, Gaipl US, Rückert M. Immune modulation during anti-cancer radio(immuno)therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:239-277. [PMID: 38225105 DOI: 10.1016/bs.ircmb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cancer can affect all human organs and tissues and ranks as a prominent cause of death as well as an obstruction to increasing life expectancy. A notable breakthrough in oncology has been the inclusion of the immune system in fighting cancer, potentially prolonging life and providing long-term benefits. The concept of "immunotherapy" has been discussed from the 19th and early 20th centuries by Wilhelm Busch, William B. Coley and Paul Ehrlich. This involves distinct approaches, including vaccines, non-specific cytokines and adoptive cell therapies. However, despite the advances made in recent years, questions on how to select the best therapeutic options or how to select the best combinations to improve clinical outcomes are still relevant for scientists and clinicians. More than half of cancer patients receive radiotherapy (RT) as part of their treatment. With the advances in RT and immunotherapy approaches, it is reasonable to consider how to enhance immunotherapy with radiation and vice versa, and to investigate whether combinations of these therapies would be beneficial. In this chapter, we will discuss how the immune system responds to cancer cells and different cancer therapies with a focus on combination of RT and immunotherapy (radioimmunotherapy, RIT).
Collapse
Affiliation(s)
- Teresa Irianto
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
122
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
123
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
124
|
Esfahani SA, De Aguiar Ferreira C, Summer P, Mahmood U, Heidari P. Addition of Peptide Receptor Radiotherapy to Immune Checkpoint Inhibition Therapy Improves Outcomes in Neuroendocrine Tumors. J Nucl Med 2023; 64:1056-1061. [PMID: 37024303 PMCID: PMC11937725 DOI: 10.2967/jnumed.123.265391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Neuroendocrine tumors (NETs) are often diagnosed in advanced stages. Despite the advances in treatment approaches, including somatostatin analogs and peptide receptor radionuclide therapy (PRRT), these patients have no curative treatment option. Moreover, immunotherapy often yields modest results in NETs. We investigated whether combining PRRT using [177Lu]DOTATATE and immune checkpoint inhibition therapy improves treatment response in NETs. Methods: A gastroenteropancreatic NET model was generated by subcutaneous implantation of human QGP-1 cells in immune-reconstituted NOD.Cg-Prkdcscid Il2rgtm1Wjl /SzJ mice engrafted with human peripheral blood mononuclear cells (n = 96). Mice were randomly assigned to receive pembrolizumab (anti-PD1), [177Lu]DOTATATE (PRRT), simultaneous anti-PD1 and PRRT (S-PRRT), anti-PD1 on day 0 followed by PRRT on day 3 (delayed PRRT [D-PRRT]), PRRT on day 0 followed by anti-PD1 (early PRRT [E-PRRT]), or vehicle as control (n = 12/group). Human granzyme-B-specific [68Ga]NOTA-hGZP PET/MRI was performed before and 6 d after treatment initiation, as an indicator of T-cell activation. Response to treatment was based on tumor growth over 21 d and on histologic analyses of extracted tissues on flow cytometry for T cells, hematoxylin and eosin staining, and immunohistochemical staining. Results: [68Ga]NOTA-hGZP PET/MRI showed significantly increased uptake in tumors treated with E-PRRT, S-PRRT, and anti-PD1 on day 6 compared with baseline (SUVmax: 3.36 ± 0.42 vs. 0.73 ± 0.23; 2.36 ± 0.45 vs. 0.76 ± 0.30; 2.20 ± 0.20 vs. 0.72 ± 0.28, respectively; P < 0.001), whereas no significant change was seen in PET parameters in the D-PRRT, PRRT, or vehicle groups (P > 0.05). Ex vivo analyses confirmed the PET results showing the highest granzyme-B levels and T cells (specifically CD8-positive effector T cells) in the E-PRRT group, followed by the S-PRRT and anti-PD1 groups. Tumor growth follow-up showed the most significant tumor size reduction in the E-PRRT group (baseline to day 21, 205.00 ± 30.70 mm3 vs. 78.00 ± 11.75 mm3; P = 0.0074). Tumors showed less growth reduction in the PRRT, D-PRRT, and S-PRRT groups than in the E-PRRT group (P < 0.0001). The vehicle- and anti-PD-1-treated tumors showed continued growth. Conclusion: Combination of PRRT and anti-PD1 shows the most robust inflammatory response to NETs and a better overall outcome than immune checkpoint inhibition or PRRT alone. The most effective regimen is PRRT preceding anti-PD1 administration by several days.
Collapse
Affiliation(s)
- Shadi A Esfahani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts; and
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Carolina De Aguiar Ferreira
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Priska Summer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Umar Mahmood
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Pedram Heidari
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts;
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
125
|
Hino C, Lee EW, Yang GY. Harnessing the abscopal effect for gastrointestinal malignancies in the era of immunotherapy. J Gastrointest Oncol 2023; 14:1613-1625. [PMID: 37435204 PMCID: PMC10331744 DOI: 10.21037/jgo-23-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the leading causes of cancer-related mortality and have traditionally been treated using a combination of surgical resection and chemoradiotherapy (CRT). While the introduction of immunotherapies over the last decade have dramatically changed the treatment landscape for some GI malignancies, including esophageal, gastric, and colorectal cancer, treatment resistance remains a major unaddressed obstacle for many patients. There has thus been emerging interest in determining the optimal treatment strategy for the delivery of immunotherapy in combination with traditional therapies. In this regard, a growing number of preclinical and clinical studies have suggested that combining radiation therapy (RT) with immunotherapy may work synergistically to improve treatment response through amplification of the abscopal effect. In this review, we discuss the rationale for RT in combination with immunotherapy. We further discuss how this knowledge may lead to a paradigm shift in the application of RT and highlight remaining issues pertaining to the delivery of combination therapy.
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Edward W. Lee
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Gary Y. Yang
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
126
|
Gregucci F, Spada S, Barcellos-Hoff MH, Bhardwaj N, Chan Wah Hak C, Fiorentino A, Guha C, Guzman ML, Harrington K, Herrera FG, Honeychurch J, Hong T, Iturri L, Jaffee E, Karam SD, Knott SR, Koumenis C, Lyden D, Marciscano AE, Melcher A, Mondini M, Mondino A, Morris ZS, Pitroda S, Quezada SA, Santambrogio L, Shiao S, Stagg J, Telarovic I, Timmerman R, Vozenin MC, Weichselbaum R, Welsh J, Wilkins A, Xu C, Zappasodi R, Zou W, Bobard A, Demaria S, Galluzzi L, Deutsch E, Formenti SC. Updates on radiotherapy-immunotherapy combinations: Proceedings of 6 th annual ImmunoRad conference. Oncoimmunology 2023; 12:2222560. [PMID: 37363104 PMCID: PMC10286673 DOI: 10.1080/2162402x.2023.2222560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California, San Francisco, CA, USA
| | - Nina Bhardwaj
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica L. Guzman
- Division of Hematology/Oncology, Department of Medicine, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Harrington
- The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust, National Institute for Health Research Biomedical Research Centre, London, UK
| | - Fernanda G. Herrera
- Centre Hospitalier Universitaire Vaudois, University of Lausanne and Ludwig Institute for Cancer Research at the Agora Cancer Research Center, Lausanne, Switzerland
| | - Jamie Honeychurch
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Theodore Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Elisabeth Jaffee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
| | - Simon R.V. Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Michele Mondini
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Sergio A. Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Stephen Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Universite de Montreal, Faculty of Pharmacy, Montreal, Canada
| | - Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Timmerman
- Departments of Radiation Oncology and Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastases Research, University of Chicago, IL, USA
| | - James Welsh
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, Royal Marsden Hospital, Sutton, UK
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
127
|
Wang J, Ge H, Tian Z. Immunotherapy Plus Radiotherapy for the Treatment of Sarcomas: Is There a Potential for Synergism? Onco Targets Ther 2023; 16:385-397. [PMID: 37313391 PMCID: PMC10258041 DOI: 10.2147/ott.s410693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Soft tissue sarcoma (STS) is a highly heterogeneous malignant tumor derived from mesenchymal tissue. Advanced STS has a poor response to the current anti-cancer therapeutic options, with a median overall survival of less than two years. Thus, new and more effective treatment methods for STS are needed. Increasing evidence has shown that immunotherapy and radiotherapy have synergistic therapeutic effects against malignant tumors. In addition, immunoradiotherapy has yielded positive results in clinical trials for various cancers. In this review, we discuss the synergistic mechanism of immunoradiotherapy in cancer treatment and the application of this combined regimen for the treatment of several cancers. In addition, we summarize the existing evidence on the use of immunoradiotherapy for the treatment of STS and the relevant clinical trials that are currently ongoing. Furthermore, we identify challenges in the use of immunoradiotherapy for the treatment of sarcomas and propose methods and precautions for overcoming these challenges. Lastly, we propose clinical research strategies and future research directions to help in the research and treatment of STS.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Bone and Soft Tissue, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| | - Hong Ge
- Department of Radiotherapy, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| | - Zhichao Tian
- Department of Bone and Soft Tissue, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| |
Collapse
|
128
|
Zheng X, Du Y, Liu M, Wang C. ITGA3 acts as a purity-independent biomarker of both immunotherapy and chemotherapy resistance in pancreatic cancer: bioinformatics and experimental analysis. Funct Integr Genomics 2023; 23:196. [PMID: 37270717 PMCID: PMC10239741 DOI: 10.1007/s10142-023-01122-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Contribution of integrin superfamily genes to treatment resistance remains uncertain. Genome patterns of thirty integrin superfamily genes were analyzed of using bulk and single-cell RNA sequencing, mutation, copy number, methylation, clinical information, immune cell infiltration, and drug sensitivity data. To select the integrins that are most strongly associated with treatment resistance in pancreatic cancer, a purity-independent RNA regulation network including integrins were constructed using machine learning. The integrin superfamily genes exhibit extensive dysregulated expression, genome alterations, epigenetic modifications, immune cell infiltration, and drug sensitivity, as evidenced by multi-omics data. However, their heterogeneity varies among different cancers. After constructing a three-gene (TMEM80, EIF4EBP1, and ITGA3) purity-independent Cox regression model using machine learning, ITGA3 was identified as a critical integrin subunit gene in pancreatic cancer. ITGA3 is involved in the molecular transformation from the classical to the basal subtype in pancreatic cancer. Elevated ITGA3 expression correlated with a malignant phenotype characterized by higher PD-L1 expression and reduced CD8+ T cell infiltration, resulting in unfavorable outcomes in patients receiving either chemotherapy or immunotherapy. Our findings suggest that ITGA3 is an important integrin in pancreatic cancer, contributing to chemotherapy resistance and immune checkpoint blockade therapy resistance.
Collapse
Affiliation(s)
- Xiaohao Zheng
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mingyang Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chengfeng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of General Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
129
|
Shi J, Sun Z, Gao Z, Huang D, Hong H, Gu J. Radioimmunotherapy in colorectal cancer treatment: present and future. Front Immunol 2023; 14:1105180. [PMID: 37234164 PMCID: PMC10206275 DOI: 10.3389/fimmu.2023.1105180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer (CRC) is a deadly form of cancer worldwide. Patients with locally advanced rectal cancer and metastatic CRC have a poor long-term prognosis, and rational and effective treatment remains a major challenge. Common treatments include multi-modal combinations of surgery, radiotherapy, and chemotherapy; however, recurrence and metastasis rates remain high. The combination of radiotherapy and immunotherapy (radioimmunotherapy [RIT]) may offer new solutions to this problem, but its prospects remain uncertain. This review aimed to summarize the current applications of radiotherapy and immunotherapy, elaborate on the underlying mechanisms, and systematically review the preliminary results of RIT-related clinical trials for CRC. Studies have identified several key predictors of RIT efficacy. Summarily, rational RIT regimens can improve the outcomes of some patients with CRC, but current study designs have limitations. Further studies on RIT should focus on including larger sample sizes and optimizing the combination therapy regimen based on underlying influencing factors.
Collapse
Affiliation(s)
- Jingyi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhuang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Dandan Huang
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| | - Haopeng Hong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Peking Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing, China
| |
Collapse
|
130
|
Baz Y, Rassam M, Rhayem E, Zouein J, Gharios J, Kourie HR. The use of dostarlimab, a safe and efficient monotherapy in MSI-H rectal cancer patients, an alternative to surgery. Immunotherapy 2023. [PMID: 37139962 DOI: 10.2217/imt-2022-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Affiliation(s)
- Yara Baz
- Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Maria Rassam
- Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Elsa Rhayem
- Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Joseph Zouein
- Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Joseph Gharios
- Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | | |
Collapse
|
131
|
Ye J, Gavras NW, Keeley DC, Hughson AL, Hannon G, Vrooman TG, Lesch ML, Johnston CJ, Lord EM, Belt BA, Linehan DC, Eyles J, Gerber SA. CD73 and PD-L1 dual blockade amplifies antitumor efficacy of SBRT in murine PDAC models. J Immunother Cancer 2023; 11:e006842. [PMID: 37142292 PMCID: PMC10163599 DOI: 10.1136/jitc-2023-006842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) induces immunogenic cell death, leading to subsequent antitumor immune response that is in part counterbalanced by activation of immune evasive processes, for example, upregulation of programmed cell death-ligand 1 (PD-L1) and adenosine generating enzyme, CD73. CD73 is upregulated in pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissue and high expression of CD73 in PDACs is associated with increased tumor size, advanced stage, lymph node involvement, metastasis, PD-L1 expression and poor prognosis. Therefore, we hypothesized that blockade of both CD73 and PD-L1 in combination with SBRT might improve antitumor efficacy in an orthotopic murine PDAC model. METHODS We assessed the combination of systemic blockade of CD73/PD-L1 and local SBRT on tumor growth in primary pancreatic tumors, and investigated systemic antitumor immunity using a metastatic murine model bearing both orthotopic primary pancreatic tumor and distal hepatic metastases. Immune response was quantified by flow cytometric and Luminex analyses. RESULTS We demonstrated that blockade of both CD73 and PD-L1 significantly amplified the antitumor effect of SBRT, leading to superior survival. The triple therapy (SBRT+anti-CD73+anti-PD-L1) modulated tumor-infiltrating immune cells with increases of interferon-γ+CD8+ T cells. Additionally, triple therapy reprogramed the profile of cytokines/chemokines in the tumor microenvironment toward a more immunostimulatory phenotype. The beneficial effects of triple therapy are completely abrogated by depletion of CD8+ T cells, and partially reversed by depletion of CD4+ T cells. Triple therapy promoted systemic antitumor responses illustrated by: (1) potent long-term antitumor memory and (2) enhanced both primary and liver metastases control along with prolonged survival.
Collapse
Affiliation(s)
- Jian Ye
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nicholas W Gavras
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Keeley
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Angela L Hughson
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Gary Hannon
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Tara G Vrooman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Maggie L Lesch
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Carl J Johnston
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Edith M Lord
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian A Belt
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Linehan
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Jim Eyles
- Oncology R&D, Research and Early Development, AstraZeneca R&D, Cambridge, UK
| | - Scott A Gerber
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
132
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
133
|
Saxena A. Combining radiation therapy with immune checkpoint blockade for the treatment of small cell lung cancer. Semin Cancer Biol 2023; 90:45-56. [PMID: 36787870 DOI: 10.1016/j.semcancer.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Abstract
The addition of immune checkpoint blockade (ICB) therapy to standard chemotherapy has been shown to improve survival in patients with metastatic small cell lung cancer. However, the benefit is modest and there remains an unmet need for novel therapeutic approaches to enhance the effectiveness of immunotherapy in this disease, both in the early and late stages. Ionizing radiation, which is a standard treatment for small cell lung cancer, is known to trigger immunogenic cell death in tumor cells, making it an attractive partner for ICB therapies in multiple solid tumor types. However, the optimal radiation dosage and fractionation scheme, target sites for radiation, and sequencing of radiation in relation to ICB treatment are still unclear. In this review we discuss the molecular biology underlying radiation-induced tumor immunity as well as pre-clinical and clinical studies combining radiation with ICB treatments, with a focus on translational and clinical trials in small cell lung cancer.
Collapse
Affiliation(s)
- Ashish Saxena
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, 1305 York Ave, 7th Floor, New York, NY 10021, USA.
| |
Collapse
|
134
|
Ding JT, Yang KP, Zhou HN, Huang YF, Li H, Zong Z. Landscapes and mechanisms of CD8 + T cell exhaustion in gastrointestinal cancer. Front Immunol 2023; 14:1149622. [PMID: 37180158 PMCID: PMC10166832 DOI: 10.3389/fimmu.2023.1149622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
CD8+ T cells, a cytotoxic T lymphocyte, are a key component of the tumor immune system, but they enter a hyporeactive T cell state in long-term chronic inflammation, and how to rescue this depleted state is a key direction of research. Current studies on CD8+ T cell exhaustion have found that the mechanisms responsible for their heterogeneity and differential kinetics may be closely related to transcription factors and epigenetic regulation, which may serve as biomarkers and potential immunotherapeutic targets to guide treatment. Although the importance of T cell exhaustion in tumor immunotherapy cannot be overstated, studies have pointed out that gastric cancer tissues have a better anti-tumor T cell composition compared to other cancer tissues, which may indicate that gastrointestinal cancers have more promising prospects for the development of precision-targeted immunotherapy. Therefore, the present study will focus on the mechanisms involved in the development of CD8+ T cell exhaustion, and then review the landscapes and mechanisms of T cell exhaustion in gastrointestinal cancer as well as clinical applications, which will provide a clear vision for the development of future immunotherapies.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hao-Nan Zhou
- Queen Mary School, Nanchang University, Nanchang, China
| | - Ying-Feng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
135
|
Ng KW, Boumelha J, Enfield KSS, Almagro J, Cha H, Pich O, Karasaki T, Moore DA, Salgado R, Sivakumar M, Young G, Molina-Arcas M, de Carné Trécesson S, Anastasiou P, Fendler A, Au L, Shepherd STC, Martínez-Ruiz C, Puttick C, Black JRM, Watkins TBK, Kim H, Shim S, Faulkner N, Attig J, Veeriah S, Magno N, Ward S, Frankell AM, Al Bakir M, Lim EL, Hill MS, Wilson GA, Cook DE, Birkbak NJ, Behrens A, Yousaf N, Popat S, Hackshaw A, Hiley CT, Litchfield K, McGranahan N, Jamal-Hanjani M, Larkin J, Lee SH, Turajlic S, Swanton C, Downward J, Kassiotis G. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. Nature 2023; 616:563-573. [PMID: 37046094 PMCID: PMC10115647 DOI: 10.1038/s41586-023-05771-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/30/2023] [Indexed: 04/14/2023]
Abstract
B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Katey S S Enfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Hongui Cha
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Takahiro Karasaki
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - David A Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Queensland, Australia
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - George Young
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, UK
| | | | | | | | - Annika Fendler
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Lewis Au
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
| | - Scott T C Shepherd
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Hyemin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seohee Shim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Nikhil Faulkner
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jan Attig
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Neil Magno
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Sophia Ward
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Alexander M Frankell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Emilia L Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nicolai J Birkbak
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK
- CRUK Convergence Science Centre, Imperial College, London, UK
| | - Nadia Yousaf
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
- Lung Unit, The Royal Marsden Hospital, London, UK
| | - Sanjay Popat
- Lung Unit, The Royal Marsden Hospital, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Allan Hackshaw
- Cancer Research UK and University College London Cancer Trials Centre, London, UK
| | - Crispin T Hiley
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden Hospital, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK.
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK.
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
136
|
Zhang N, Zhang H, Liu Z, Dai Z, Wu W, Zhou R, Li S, Wang Z, Liang X, Wen J, Zhang X, Zhang B, Ouyang S, Zhang J, Luo P, Li X, Cheng Q. An artificial intelligence network-guided signature for predicting outcome and immunotherapy response in lung adenocarcinoma patients based on 26 machine learning algorithms. Cell Prolif 2023; 56:e13409. [PMID: 36822595 PMCID: PMC10068958 DOI: 10.1111/cpr.13409] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 02/25/2023] Open
Abstract
The immune cells play an increasingly vital role in influencing the proliferation, progression, and metastasis of lung adenocarcinoma (LUAD) cells. However, the potential of immune cells' specific genes-based model remains largely unknown. In the current study, by analysing single-cell RNA sequencing (scRNA-seq) data and bulk RNA sequencing data, the tumour-infiltrating immune cell (TIIC) associated signature was developed based on a total of 26 machine learning (ML) algorithms. As a result, the TIIC signature score could predict survival outcomes of LUAD patients across five independent datasets. The TIIC signature score showed superior performance to 168 previously established signatures in LUAD. Moreover, the TIIC signature score developed by the immunofluorescence staining of the tissue array of LUAD patients showed a prognostic value. Our research revealed a solid connection between TIIC signature score and tumour immunity as well as metabolism. Additionally, it has been discovered that the TIIC signature score can forecast genomic change, chemotherapeutic drug susceptibility, and-most significantly-immunotherapeutic response. As a newly demonstrated biomarker, the TIIC signature score facilitated the selection of the LUAD population who would benefit from future clinical stratification.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wantao Wu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ran Zhou
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji HospitalTongji Medical College of Huazhong University of Science and TechnologyWuhanChina
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xun Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Bo Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Sirui Ouyang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jian Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xizhe Li
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & TreatmentChangshaChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
137
|
Balsano R, Zanuso V, Pirozzi A, Rimassa L, Bozzarelli S. Pancreatic Ductal Adenocarcinoma and Immune Checkpoint Inhibitors: The Gray Curtain of Immunotherapy and Spikes of Lights. Curr Oncol 2023; 30:3871-3885. [PMID: 37185406 PMCID: PMC10136659 DOI: 10.3390/curroncol30040293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a poor 5-year overall survival rate (~10%). The revolution of immunotherapy in clinical oncology has not substantially changed clinical outcome for patients with PDAC. Despite outstanding efforts, neither immune checkpoint inhibitors (ICIs) alone, nor in combination with chemotherapy or targeted therapies have shown encouraging results. This failure mirrors the lack of knowledge about the real key players of immune system senescence and the complexity of the tumor microenvironment in PDAC. However, some hope can be derived from PARP-inhibitor combinations, vaccines, and CAR-T-cells therapy. In this review, we comprehensively summarize the latest updates about the use of ICIs in PDAC, focusing on clinical evidence and ongoing studies highlighting explanations for the failure of immunotherapy and possible solutions.
Collapse
|
138
|
Chuong MD, Anker CJ, Buckstein MH, Hawkins MA, Kharofa J, Raldow AC, Sanford NN, Wojcieszysnki A, Olsen JR. Hits and Misses in Novel Pancreatic and Rectal Cancer Treatment Options. Int J Radiat Oncol Biol Phys 2023; 115:545-552. [PMID: 36725162 DOI: 10.1016/j.ijrobp.2022.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Christopher J Anker
- Division of Radiation Oncology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Michael H Buckstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ann C Raldow
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Nina N Sanford
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas
| | | | - Jeffrey R Olsen
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
139
|
Nelson BE, Adashek JJ, Lin SH, Subbiah V. On target methods to induce abscopal phenomenon for Off-Target effects: From happenstance to happenings. Cancer Med 2023; 12:6451-6465. [PMID: 36411943 PMCID: PMC10067075 DOI: 10.1002/cam4.5454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Although the "abscopal phenomenon" has been described several decades ago, this phenomenon lately has been obtaining momentous traction with the dawn of immune-based therapies. There has been increased cross talk among radiation oncologists, oncologists and immunologists and consequently a surge in the number of prospective clinical trials. This must be coupled with translation work from these clinical trials to aid in eventual identification of patients who may benefit. Abscopal effects may be induced by local and systemic methods, conventional radiotherapy, particle radiation, radionucleotide methods, cryoablation and brachytherapy. These approaches have all been reported to be stimulate abscopal effect. Immune induction by immune checkpoint therapy, immune adjuvants, cellular therapy including CAR and NK cell therapies may generate systemic abscopal response. With increasing recognition of this effect, there remains a lot of work to explore the modalities of inducing abscopal responses and ultimate prediction or prognostication on stratifying who may benefit. Ultimately, there is an urgent need for prospective studies and data to tease apart which one of these modalities can be applied to the appropriate candidate, to the appropriate cancer at the appropriate setting. This review seeks to elucidate readers on the different modalities of radiation, systemic therapies and other techniques rarely explored to potentiate the abscopal effect from a mere coincidence to a finite occurrence.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jacob J. Adashek
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins HospitalBaltimoreMarylandUSA
| | - Steven H. Lin
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vivek Subbiah
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
140
|
Ayasun R, Saridogan T, Gaber O, Sahin IH. Systemic Therapy for Patients With Pancreatic Cancer: Current Approaches and Opportunities for Novel Avenues Toward Precision Medicine. Clin Colorectal Cancer 2023; 22:2-11. [PMID: 36418197 PMCID: PMC11219281 DOI: 10.1016/j.clcc.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis with a 5-year overall survival of 11%. The disease is usually diagnosed at advanced stages, and systemic chemotherapy is the standard-of-care treatment for the majority of patients with PDAC. Although novel treatment options, such as targeted therapy and immunotherapy, have achieved substantial progress leading to practice-changing results, with FDA approvals for several solid tumors so far, the progress achieved for PDAC is relatively limited. Recent studies uncovered potential therapeutic targets for patients with PDAC, and potential therapeutic opportunities are currently being further examined. Herein, we review recent advances in systemic therapy regimens, including cytotoxic agents, targeted therapies, immunotherapy, and novel therapeutic options for managing patients with PDAC. We also elaborate on molecular profiling to guide treatment and existing therapeutic opportunities that may further advance the clinical care of patients with this devastating disease.
Collapse
Affiliation(s)
| | | | - Ola Gaber
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ibrahim Halil Sahin
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
141
|
Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol 2023; 16:8. [PMID: 36755342 PMCID: PMC9906624 DOI: 10.1186/s13045-023-01405-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.
Collapse
Affiliation(s)
- Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinzhu Chen
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Guo
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
142
|
Wang Q, Shen X, Chen G, Du J. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: From mechanisms to translation. Int J Cancer 2023. [PMID: 36752642 DOI: 10.1002/ijc.34464] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Immunotherapy, especially with immune checkpoint inhibitors (ICIs), has shown advantages in cancer treatment and is a new hope for patients who have failed multiline therapy. However, in colorectal cancer (CRC), the benefit is limited to a small subset of patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) metastatic CRC (mCRC). In addition, 45% to 60% of dMMR/MSI-H mCRC patients showed primary or acquired resistance to ICIs. This means that these patients may have potential unknown pathways mediating immune escape. Almost all mismatch repair-proficient (pMMR) or microsatellite-stable (MSS) mCRC patients do not benefit from ICIs. In this review, we discuss the mechanisms of action of ICIs and their current status in CRC. We then discuss the mechanisms of primary and acquired resistance to ICIs in CRC. Finally, we discuss promising therapeutic strategies to overcome resistance to ICIs in the clinic.
Collapse
Affiliation(s)
- Qianyu Wang
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Chen
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
143
|
Wu C, Shao Y, Gu W. Immunotherapy combined with radiotherapy to reverse immunosuppression in microsatellite stable colorectal cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03091-y. [PMID: 36717514 DOI: 10.1007/s12094-023-03091-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
In recent years, the exploration of immune checkpoint inhibitors (ICIs) has resulted in substantial progress and has changed the pattern of cancer treatment. ICIs have revolutionized the treatment landscape of microsatellite instable colorectal cancer while the efficacy is very limited in patients with microsatellite stable colorectal cancer. Therefore, sensitizing MSS CRC to immunotherapy is a major challenge in the field of CRC immunotherapy. Immunotherapy-based combination therapy is an effective strategy. This review of radiotherapy (RT) as a local treatment has dramatically changed in recent years, and it is now widely accepted that RT can deeply reshape the tumor environment by modulating the immune response. Such evidence gives a strong rationale for the synergism of radiotherapy and immunotherapy, introducing the era of 'immunoradiotherapy'. How to give full play to the synergistic effect of radiotherapy and immunotherapy to improve the therapeutic effect of MSS CRC and bring good prognosis is a hot problem to be solved in the field of cancer treatment.This article reviews the development of CRC immunotherapy, the immune resistance mechanism of MSS CRC, and the impact and potential value of immunotherapy combined with radiotherapy on the immune environment of CRC.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
144
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
145
|
Xiang Q, Li D, Cheng C, Xu K, Zuo C. 68Ga-HBED-CC-WL-12 PET in Diagnosing and Differentiating Pancreatic Cancers in Murine Models. Pharmaceuticals (Basel) 2023; 16:80. [PMID: 36678577 PMCID: PMC9865957 DOI: 10.3390/ph16010080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Positron emission tomography (PET) has been proven as an important technology to detect the expression of programmed death ligand 1 (PD-L1) non-invasively and in real time. As a PD-L1 inhibitor, small peptide WL12 has shown great potential in serving as a targeting molecule to guide PD-L1 blockade therapy in clinic. In this study, WL12 was modified with HBED-CC to label 68Ga in a modified procedure, and the biologic properties were evaluated in vitro and in vivo. 68Ga-HBED-CC-WL12 showed good stability in saline and can specifically target PD-L1-positive cells U87MG and PANC02. In PANC02-bearing mice, 68Ga-HBED-CC-WL12 showed fast permeation in subcutaneous tumors within 20 min (SUVmax 0.37) and was of higher uptake in 90 min (SUVmax 0.38). When compared with 18F-FDG, 68Ga-FAPI-04, and 68Ga-RGD, 68Ga-HBED-CC-WL12 also demonstrated great image quality and advantages in evaluating immune microenvironment. This study modified the 68Ga-labeling procedure of WL12 and obtained better biologic properties and further manifested the clinical potential of 68Ga-HBED-CC-WL12 for PET imaging and guiding for immunotherapy.
Collapse
Affiliation(s)
- Qiying Xiang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Danni Li
- Department of Nuclear Medicine, The First Affiliated Hospital (Changhai Hospital) of Naval Medical University, Shanghai 200433, China
| | - Chao Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital (Changhai Hospital) of Naval Medical University, Shanghai 200433, China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Changjing Zuo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
- Department of Nuclear Medicine, The First Affiliated Hospital (Changhai Hospital) of Naval Medical University, Shanghai 200433, China
| |
Collapse
|
146
|
Gandini A, Puglisi S, Pirrone C, Martelli V, Catalano F, Nardin S, Seeber A, Puccini A, Sciallero S. The role of immunotherapy in microsatellites stable metastatic colorectal cancer: state of the art and future perspectives. Front Oncol 2023; 13:1161048. [PMID: 37207140 PMCID: PMC10189007 DOI: 10.3389/fonc.2023.1161048] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide, despite several advances has been achieved in last decades. Few prognostic and predictive biomarkers guide therapeutic choice in metastatic CRC (mCRC), among which DNA mismatch repair deficiency and/or microsatellite instability (dMMR/MSI) holds a crucial role. Tumors characterized by dMMR/MSI benefit from immune checkpoint inhibitors. However, most of the mCRC patients (around 95%) are microsatellite stable (MSS), thereby intrinsically resistant to immunotherapy. This represents a clear unmet need for more effective treatments in this population of patients. In this review, we aim to analyze immune-resistance mechanisms and therapeutic strategies to overcome them, such as combinations of immunotherapy and chemotherapy, radiotherapy or target therapies specifically in MSS mCRC. We also explored both available and potential biomarkers that may better select MSS mCRC patients for immunotherapy. Lastly, we provide a brief overview on future perspectives in this field, such as the gut microbiome and its potential role as immunomodulator.
Collapse
Affiliation(s)
- Annalice Gandini
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Puglisi
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Pirrone
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Valentino Martelli
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Catalano
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Simone Nardin
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Andreas Seeber
- Department of Haematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alberto Puccini
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Medical Oncology and Haematology Unit, Rozzano, Milan, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
- *Correspondence: Stefania Sciallero,
| |
Collapse
|
147
|
Yang J, Xing P, Kong Y, Xu M, Zhang L. PD-1 inhibitor combined with radiotherapy and GM-CSF in MSS/pMMR metastatic colon cancer: a case report. Front Oncol 2023; 13:1078915. [PMID: 37188188 PMCID: PMC10176449 DOI: 10.3389/fonc.2023.1078915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Patients with chemo-refractory metastatic colorectal cancer (mCRC) have poor prognoses. The application of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) inhibitors encouragingly improved the survival of mCRC patients with microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR). Unfortunately, it was ineffective for mCRC with microsatellite-stable (MSS)/proficient mismatch repair (pMMR), which accounted for 95% of mCRC. Radiotherapy can promote local control by directly killing tumor cells and inducing positive immune activities, which might help synergistically with immunotherapy. We present the report of an advanced MSS/pMMR mCRC patient who had progressive disease (PD) after first-line chemotherapy, palliative surgery and second-line chemotherapy combined with targeted therapy. Then the patient received the therapy of PD-1 inhibitor combined with radiotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF). According to Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST1.1), the patient showed a complete response (CR) after triple-combined therapy with progression-free survival (PFS) for more than 2 years so far. The patient had no other significant adverse reactions except for fatigue (Grade 1). The triple-combination therapy provided a promising strategy for metastatic chemo-refractory MSS/pMMR mCRC patients.
Collapse
Affiliation(s)
- Jiabao Yang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Xing
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuehong Kong
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meiling Xu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liyuan Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Liyuan Zhang,
| |
Collapse
|
148
|
Zhang Y, Li Y, Zuo Z, Li T, An Y, Zhang W. An epithelial-mesenchymal transition-related mRNA signature associated with the prognosis, immune infiltration and therapeutic response of colon adenocarcinoma. Pathol Oncol Res 2023; 29:1611016. [PMID: 36910014 PMCID: PMC9998511 DOI: 10.3389/pore.2023.1611016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
Background: Epithelial-mesenchymal transition (EMT) is closely associated with cancer cell metastasis. Colon adenocarcinoma (COAD) is one of the most common malignancies in the world, and its metastasis leading to poor prognosis remains a challenge for clinicians. The purpose of this study was to explore the prognostic value of EMT-related genes (EMTRGs) by bioinformatics analysis and to develop a new EMTRGs prognostic signature for COAD. Methods: The TCGA-COAD dataset was downloaded from the TCGA portal as the training cohort, and the GSE17538 and GSE29621 datasets were obtained from the GEO database as the validation cohort. The best EMTRGs prognostic signature was constructed by differential expression analysis, Cox, and LASSO regression analysis. Gene set enrichment analysis (GSEA) is used to reveal pathways that are enriched in high-risk and low-risk groups. Differences in tumor immune cell levels were analyzed using microenvironmental cell population counter and single sample gene set enrichment analysis. Subclass mapping analysis and Genomics of Drug Sensitivity in Cancer were applied for prediction of immunotherapy response and chemotherapy response, respectively. Results: A total of 77 differentially expressed EMTRGs were identified in the TCGA-COAD cohort, and they were significantly associated with functions and pathways related to cancer cell metastasis, proliferation, and apoptosis. We constructed EMTRGs prognostic signature with COMP, MYL9, PCOLCE2, SCG2, and TIMP1 as new COAD prognostic biomarkers. The high-risk group had a poorer prognosis with enhanced immune cell infiltration. The GSEA demonstrated that the high-risk group was involved in "ECM Receptor Interaction," "WNT Signaling Pathway" and "Colorectal Cancer." Furthermore, patients with high risk scores may respond to anti-CTLA4 therapy and may be more resistant to targeted therapy agents BI 2536 and ABT-888. Conclusion: Together, we developed a new EMTRGs prognostic signature that can be an independent prognostic factor for COAD. This study has guiding implications for individualized counseling and treatment of COAD patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.,Yunnan Digestive Endoscopy Clinical Medical Center, Kunming, China
| | - Yan Li
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.,Yunnan Digestive Endoscopy Clinical Medical Center, Kunming, China
| | - Zan Zuo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.,Yunnan Digestive Endoscopy Clinical Medical Center, Kunming, China
| | - Ting Li
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.,Yunnan Digestive Endoscopy Clinical Medical Center, Kunming, China
| | - Ying An
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.,Yunnan Digestive Endoscopy Clinical Medical Center, Kunming, China
| | - Wenjing Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.,Department of Medical Oncology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
149
|
Xu ZJ, Li PC, Wang WQ, Liu L. Identification of characteristic markers correlated with Th2 cell infiltration and metabolism molecular subtype in pancreatic adenocarcinoma. J Gastrointest Oncol 2022; 13:3193-3206. [PMID: 36636065 PMCID: PMC9830327 DOI: 10.21037/jgo-22-333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma, the deadliest malignant cancer, has gradually become the third leading cause of cancer-related death. Multidisciplinary therapy has been difficult to implement because of the particularity of pancreatic adenocarcinoma. Research has increasingly indicated the significance of metabolic adaption in pancreatic adenocarcinoma. The difference in metabolism may influence immune cell infiltration in pancreatic adenocarcinoma. Novel immune-related metabolism biomarkers are needed to improve the therapeutic outcomes of existing targeted therapies. METHODS We enrolled whole-genome sequencing data and clinical information about 168 pancreatic adenocarcinoma samples from The Cancer Genome Atlas (TCGA) database, other pancreatic adenocarcinoma samples, and clinical information from other cohorts. We used the gene set variation analysis (GSVA) package to calculate feature score, the weighted gene co-expression network analysis (WGCNA) and randomSurvivalForest package to screen hub genes, the ConsenClusterPlus package to classify subtypes, the pRRopthetic package to evaluate drug sensibility, the maftools package to analyze mutation information and the Seurat package to analyze single cell sequencing data. RESULTS We revealed the prognosis significance of Th2 cell infiltration, classified two subtypes based on hub genes, compared immune cell infiltration, substance metabolism, cellular processes, gene mutation, and copy number variation (CNV) between subtypes and explored the clinical and biological features of Th2 cell infiltration. CONCLUSIONS We displayed the poor prognosis significance of Th2 cell infiltration and the significant difference of simple nucleotide polymorphism, CNV, natural killer (NK) CD56 bright cell infiltration, substance metabolism, autophagy and necroptosis between subtypes. Additionally, we discovered the sensitivity difference of chemotherapy drug and the Th2 cell infiltration changes after chimeric antigen receptor T cells (CAR-T) cell therapy and radiotherapy and explored the differences between normal liver and metastatic liver tissues of pancreatic adenocarcinoma patients.
Collapse
Affiliation(s)
- Zi-Jin Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Surgery Training Base, Fudan University Shanghai Cancer Center Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
150
|
Xue W, Shi J. Identification of genes and cellular response factors related to immunotherapy response in mismatch repair-proficient colorectal cancer: a bioinformatics analysis. J Gastrointest Oncol 2022; 13:3038-3055. [PMID: 36636048 PMCID: PMC9830321 DOI: 10.21037/jgo-22-1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Background Mismatch repair-proficient (pMMR) colorectal cancers (CRCs) are thought to be primarily resistant to immune checkpoint inhibitor (ICI) monotherapy. However, recent clinical trials have reported that early-to-mid stage (non-metastatic) CRC responds well to ICI monotherapy. We hypothesized that the efficacy of immunotherapy is linked to a series of gene expression profiles that can characterize the pMMR CRC disease stage. Methods Using The Cancer Genome Atlas (TCGA) CRC data sets, we first investigated transcriptomic features that continuously changed (were continuously upregulated or downregulated) with pMMR CRC disease-stage progression. We defined these gene sets as stage-associated genes. The deconvolution algorithm then enriched these genes with the dynamic changes in the cell type populations of the CRC tumor microenvironment (TME). Finally, the stage-associated genes were cross-referenced to the current transcriptome profile data on ICI treatment of pMMR CRC, which revealed the gene set specifying an effective pMMR tumor response. Results In total, 774 genes were found to increase in expression and 845 genes to decrease in expression as the stage increased. Using deconvolution methods, we discovered 2 major disease stage-associated alterations in the cellular composition of pMMR CRCs, including changes in cell types involved in host immune responses and tumor cell metastasis. The central memory CD8+ T cell population decreased as the pMMR CRC disease stage increased, but the endothelial cell populations associated with proliferation and metastasis increased. Using a different cell type annotation set (LM22), we discovered that as the disease progressed, M1 macrophages and CD8+ T cells decreased in the TME. In mismatch repair-deficient patients with CRC, however, such a decrease was not observed. Finally, we identified 27 signature genes that can be used to assess ICI efficacy in treatment-naïve patients with pMMR CRC. Conclusions The current study sought to identify the underlying molecular mechanisms, pathways, and cell landscapes that explain why early-to-mid stage pMMR CRC responds well to ICI treatment. This analysis might be valuable for the selection of patients who might benefit from immunotherapeutic strategies.
Collapse
Affiliation(s)
- Wenxiu Xue
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhenzhou, China
| | - Jinglong Shi
- Department of General Surgery, Guangzhou 12th People’s Hospital, Guangzhou, China
| |
Collapse
|