101
|
Li L, He D, He H, Wang X, Zhang L, Luo Y, Nan X. Overexpression of PML induced apoptosis in bladder cancer cell by caspase dependent pathway. Cancer Lett 2005; 236:259-68. [PMID: 16216409 DOI: 10.1016/j.canlet.2005.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/15/2005] [Accepted: 05/16/2005] [Indexed: 02/01/2023]
Abstract
The promyelocytic leukemia gene (PML) encodes a growth/tumor suppressor protein that is essential for the induction of apoptosis in response to various apoptotic signals. The mechanism by which PML plays a role in the regulation of cell death is still unknown. Our previous study demonstrated that overexpression of PML suppress the growth of bladder cancer cells by inducing apoptosis and cell cycle arrest. To further elucidate the mechanism of PML induced apoptosis in bladder cancer, we constructed a PML inducible stable cell line. We found that the increased expression of PML significantly inhibit the growth of the UM-UC-2/PML clone cells and present apparent massive apoptosis in 24 h post-induction, while the UM-UC-2/PMEP4 cells are not. We also examined the effect of PML on the cell cycle distribution in UM-UC-2 cells. We showed overexpression of PML cause a cell cycle arrest in G1 phase. In additional, increased expression of PML in bladder cancer UM-UC-2 cells reduce Survivin expression and up regulated Caspase-3, and cleaved PARP expression, these suggested that PML might regulate apoptosis through Caspase dependent pathways. Our results demonstrate a novel mechanism of PML-induced apoptosis by down-regulation of Survivin and activation of Caspase dependent pathway.
Collapse
Affiliation(s)
- Lei Li
- Institute of Urology, No. 1 Hospital, Xi'an Jiaotong University, Shaanxi 710061, China
| | | | | | | | | | | | | |
Collapse
|
102
|
Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W, Accili D. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab 2005; 2:153-63. [PMID: 16154098 DOI: 10.1016/j.cmet.2005.08.004] [Citation(s) in RCA: 467] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 03/29/2005] [Accepted: 08/12/2005] [Indexed: 02/02/2023]
Abstract
Diabetes causes pancreatic beta cell failure through hyperglycemia-induced oxidative stress, or "glucose toxicity." We show that the forkhead protein FoxO1 protects beta cells against oxidative stress by forming a complex with the promyelocytic leukemia protein Pml and the NAD-dependent deacetylase Sirt1 to activate expression of NeuroD and MafA, two Insulin2 (Ins2) gene transcription factors. Using acetylation-defective and acetylation-mimicking mutants, we demonstrate that acetylation targets FoxO1 to Pml and prevents ubiquitin-dependent degradation. We show that hyperglycemia suppresses MafA expression in vivo and that MafA inhibition can be prevented by transgenic expression of constitutively nuclear FoxO1 in beta cells. The findings provide a mechanism linking glucose- and growth factor receptor-activated pathways to protect beta cells against oxidative damage via FoxO proteins.
Collapse
Affiliation(s)
- Yukari Ido Kitamura
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Petkovic M, Dietschy T, Freire R, Jiao R, Stagljar I. The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci 2005; 118:4261-9. [PMID: 16141230 DOI: 10.1242/jcs.02556] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Rothmund-Thomson syndrome (RTS) is a human genetic disorder characterized by genome instability, cancer susceptibility and premature aging. The gene defective in a subset of RTS cases, RECQL4, encodes a member of the RecQ family of DNA helicases. To better define the function of the RECQL4 protein, we have determined its subcellular localization. We have raised antibodies against the N- and C-terminal parts of RECQL4 and could show that in various human cells endogenous RECQL4 forms discrete nuclear foci that colocalize with promyelotic leukaemia protein (PML). The number of foci and their colocalization with PML does not significantly change after induction of different types of DNA damages. Silencing of RECQL4 expression by siRNA causes a significant reduction in RECQL4 nuclear foci formation. Furthermore, we demonstrate that RECQL4 foci coincide with foci formed by human Rad51 and regions of single-stranded DNA after induction of DNA double-strand breaks. In agreement with this, we also show that RECQL4 and Rad51 form a complex in human cells. Our findings suggest a role for RECQL4 in the repair of DNA double-strand breaks by homologous recombination and shed new light onto RECQL4's function in human cells.
Collapse
Affiliation(s)
- Maja Petkovic
- Institute of Vet. Biochemistry and Molecular Biology, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
104
|
Chalkiadaki A, Talianidis I. SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Mol Cell Biol 2005; 25:5095-105. [PMID: 15923626 PMCID: PMC1140606 DOI: 10.1128/mcb.25.12.5095-5105.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modification by SUMO elicits a repressive effect on many transcription factors. In principle, sumoylation may either influence transcription factor activity on promoters, or it may act indirectly by targeting the modified factors to specific cellular compartments. To provide direct experimental evidence for the above, not necessarily mutually exclusive models, we analyzed the role of SUMO modification on the localization and the activity of the orphan nuclear receptor LRH-1. We demonstrate, by using fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) assays, that sumoylated LRH-1 is exclusively localized in promyelocytic leukemia protein (PML) nuclear bodies and that this association is a dynamic process. Release of LRH-1 from nuclear bodies correlated with its desumoylation, pointing to the pivotal role of SUMO conjugation in keeping LRH-1 in these locations. SUMO-dependent shuttling of LRH-1 into PML bodies defines two spatially separated pools of the protein, of which only the soluble, unmodified one is associated with actively transcribed target genes. The results suggest that SUMO-PML nuclear bodies may primarily function as dynamic molecular reservoirs, controlling the availability of certain transcription factors to active chromatin domains.
Collapse
Affiliation(s)
- Angeliki Chalkiadaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, P.O. Box 1527, Vassilika Vouton, 711 10 Herakleion, Crete, Greece
| | | |
Collapse
|
105
|
Stracker TH, Lee DV, Carson CT, Araujo FD, Ornelles DA, Weitzman MD. Serotype-specific reorganization of the Mre11 complex by adenoviral E4orf3 proteins. J Virol 2005; 79:6664-73. [PMID: 15890904 PMCID: PMC1112111 DOI: 10.1128/jvi.79.11.6664-6673.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The early transcriptional region 4 (E4) of adenovirus type 5 (Ad5) encodes gene products that modulate splicing, apoptosis, transcription, DNA replication, and repair pathways. Viruses lacking both E4orf3 and E4orf6 have a severe replication defect, partially characterized by the formation of genome concatemers. Concatemer formation is dependent upon the cellular Mre11 complex and is prevented by both the E4orf3 and E4orf6 proteins. The Mre11/Rad50/Nbs1 proteins are targeted for proteasome-mediated degradation by the Ad5 viral E1b55K/E4orf6 complex. The expression of Ad5 E4orf3 causes a redistribution of Mre11 complex members and results in their exclusion from viral replication centers. For this study, we further analyzed the interactions of E4 proteins from different adenovirus serotypes with the Mre11 complex. Analyses of infections with serotypes Ad4 and Ad12 demonstrated that the degradation of Mre11/Rad50/Nbs1 proteins is a conserved feature of the E1b55K/E4orf6 complex. Surprisingly, Nbs1 and Rad50 were localized to the replication centers of both Ad4 and Ad12 viruses prior to Mre11 complex degradation. The transfection of expression vectors for the E4orf3 proteins of Ad4 and Ad12 did not alter the localization of Mre11 complex members. The E4orf3 proteins of Ad4 and Ad12 also failed to complement defects in both concatemer formation and late protein production of a virus with a deletion of E4. These results reveal surprising differences among the highly conserved E4orf3 proteins from different serotypes in the ability to disrupt the Mre11 complex.
Collapse
Affiliation(s)
- Travis H Stracker
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
106
|
Luciani JJ, Depetris D, Missirian C, Mignon-Ravix C, Metzler-Guillemain C, Megarbane A, Moncla A, Mattei MG. Subcellular distribution of HP1 proteins is altered in ICF syndrome. Eur J Hum Genet 2005; 13:41-51. [PMID: 15470359 DOI: 10.1038/sj.ejhg.5201293] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Immunodeficiency, Centromeric instability, and Facial (ICF) syndrome is a rare autosomal recessive disorder that results from mutations in the DNMT3B gene, encoding a DNA-methyltransferase that acts on GC-rich satellite DNAs. This syndrome is characterized by immunodeficiency, facial dysmorphy, mental retardation of variable severity and chromosomal abnormalities that essentially involve juxtacentromeric heterochromatin of chromosomes 1 and 16. These abnormalities demonstrate that hypomethylation of satellite DNA can induce alterations in the structure of heterochromatin. In order to investigate the effect of DNA hypomethylation on heterochromatin organization, we analyzed the in vivo distribution of HP1 proteins, essential components of heterochromatin, in three ICF patients. We observed that, in a large proportion of ICF G2 nuclei, all HP1 isoforms show an aberrant signal concentrated into a prominent bright focus that co-localizes with the undercondensed 1qh or 16qh heterochromatin. We found that SP100, SUMO-1 and other proteins from the promyelocytic leukemia nuclear bodies (NBs) form a large body that co-localizes with the HP1 signal. This is the first description of altered nuclear distribution of HP1 proteins in the constitutional ICF syndrome. Our results show that satellite DNA hypomethylation does not prevent HP1 proteins from associating with heterochromatin. They suggest that, at G2 phase, HP1 proteins are involved in the heterochromatin condensation and may therefore remain concentrated at these sites until the condensation is complete. They also indicate that proteins from the NB could play a role in this process. Finally, satellite DNA length polymorphism could affect the efficiency of heterochromatin condensation and thus contribute to the variability of the ICF phenotype.
Collapse
MESH Headings
- Cell Nucleus/metabolism
- Centromere/genetics
- Child, Preschool
- Chromobox Protein Homolog 5
- Chromosomal Proteins, Non-Histone/genetics
- Chromosome Aberrations
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 16/genetics
- DNA Methylation
- DNA, Satellite/metabolism
- Face/abnormalities
- Female
- G2 Phase
- Heterochromatin/genetics
- Heterochromatin/metabolism
- Humans
- Immunologic Deficiency Syndromes/genetics
- In Situ Hybridization, Fluorescence
- Infant
- Karyotyping
- Leukemia, Promyelocytic, Acute/genetics
- Mutation/genetics
- Protein Isoforms
- Syndrome
Collapse
|
107
|
Eladad S, Ye TZ, Hu P, Leversha M, Beresten S, Matunis MJ, Ellis NA. Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum Mol Genet 2005; 14:1351-65. [PMID: 15829507 DOI: 10.1093/hmg/ddi145] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Bloom syndrome gene, BLM, encodes a RecQ DNA helicase that when absent from the cell results in genomic instability and cancer predisposition. We show here that BLM is a substrate for small ubiquitin-like modifier (SUMO) modification, with lysines at K317, K331, K334 and K347 being preferred sites of modification. Unlike normal BLM, a double mutant BLM protein with lysine to arginine substitutions at residues 317 and 331 was not modified by SUMO, and it failed to localize efficiently to the PML nuclear bodies. Rather, double mutant BLM protein induced the formation of DNA damage-induced foci (DDI) that contained BRCA1 protein and phosphorylated histone H2AX. Double mutant BLM only partially complemented the genomic instability phenotypes of Bloom syndrome cells as assessed by sister-chromatid exchange and micronuclei formation assays. These results constitute evidence that BLM is a DNA damage sensor that signals the formation of DDI, and they establish SUMO modification as a negative regulator of BLM's signaling function.
Collapse
Affiliation(s)
- Sonia Eladad
- Laboratory of Cancer Suspectibility, Department of Medicine, Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Xu ZX, Zou WX, Lin P, Chang KS. A Role for PML3 in Centrosome Duplication and Genome Stability. Mol Cell 2005; 17:721-32. [PMID: 15749021 DOI: 10.1016/j.molcel.2005.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 12/22/2004] [Accepted: 02/09/2005] [Indexed: 11/25/2022]
Abstract
The promyelocytic leukemia gene (PML), which is disrupted by the chromosomal translocation t(15;17) in acute promyelocytic leukemia (APL), encodes a multifunctional protein involved in several important cellular functions. Herein, we demonstrate that PML is localized to centrosomes and that PML deficiency leads to centrosome amplification. By using PML isoform-specific antibodies, we found PML3-specific association with the centrosome and the pole of the mitotic spindle. PML3 deficiency leads to dysregulation of the centrosome duplication checkpoint. Furthermore, PML3 physically interacts with Aurora A and regulates its kinase activity. Specific knockdown of PML3 activates Cdk2/cyclin kinase activity. The results of this study implicate a direct role for PML3 in the control of centrosome duplication through suppression of Aurora A activation to prevent centrosome reduplication.
Collapse
Affiliation(s)
- Zhi-Xiang Xu
- Department of Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
109
|
Cairo S, De Falco F, Pizzo M, Salomoni P, Pandolfi PP, Meroni G. PML interacts with Myc, and Myc target gene expression is altered in PML-null fibroblasts. Oncogene 2005; 24:2195-203. [PMID: 15735755 DOI: 10.1038/sj.onc.1208338] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
c-myc is a well-known proto-oncogene encoding for a transcription factor that needs to be tightly regulated in order to preserve cell homeostasis. The Promyelocytic Leukaemia gene product PML plays an important role in cell growth and survival, and resides in discrete subnuclear structures called Nuclear Bodies (NB). We performed comparative analysis of the expression of 40 Myc target genes and of Myc binding to their regulatory regions both in wild-type and PML knockout cells. We demonstrate that if PML is absent, despite Myc binding to the DNA regulatory sequences is unchanged, the expression profile of several Myc target genes is altered. PML is largely involved in gene regulation, via recruitment of several transcription factors and cofactors to the NB. Consistently, we show that Myc partially localizes to the NB and physically interacts with PML, and that this localization depends on Myc expression levels. As deregulation occurs to both activated and repressed Myc target genes, we propose that PML influences Myc transcriptional activity through a mechanism that involves the control of Myc post-translational modifications.
Collapse
Affiliation(s)
- Stefano Cairo
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
110
|
Zimber A, Nguyen QD, Gespach C. Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell Signal 2004; 16:1085-104. [PMID: 15240004 DOI: 10.1016/j.cellsig.2004.03.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Accepted: 03/17/2004] [Indexed: 01/08/2023]
Abstract
There is much interest in recent years in the possible role of different nuclear compartments and subnuclear domains in the regulation of gene expression, signalling, and cellular functions. The nucleus contains inositol phosphates, actin and actin-binding proteins and myosin isoforms, multiple protein kinases and phosphatases targeting Cdk-1 and Cdk-2, MAPK/SAPK, and Src-related kinases and their substrates, suggesting the implication of several signalling pathways in the intranuclear organization and function of nuclear bodies (NBs). NBs include the well-characterized Cajal bodies (CBs; or coiled bodies), the nucleolus, perinucleolar and perichromatin regions, additional NBs best illustrated by the promyelocytic leukemia nuclear bodies [PML-NBs, also named PML oncogenic dots (PODs), ND10, Kr-bodies] and similar intranuclear foci containing multi-molecular complexes with major role in DNA replication, surveillance, and repair, as well as messenger RNA and ribosomal RNA synthesis and assembly. Chromatin modifying proteins, such as the CBP acetyltransferase and type I histone deacetylase, accumulate at PML-NBs. PML-NBs and Cajal bodies are very dynamic and mobile within the nuclear space and are regulated by cellular stress (heat shock, apoptosis, senescence, heavy metal exposure, viral infection, and DNA damage responses). NBs strongly interact, using signalling mechanisms for the directional and ordered traffic of essential molecular components. NBs organize the delivery and storage of essential RNAs and proteins that play a role in transcription, pre-mRNA biosynthesis and splicing, and the sequestration and/or degradation of regulatory proteins, such as heterogenous nuclear ribonuclear proteins (hnRNPs), p53, Rb1, CBP, STAT3, and others. The objective of this review is to summarize some aspects of these nuclear structures/bodies/domains, including their proposed roles in cellular signalling and in human diseases, mainly neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Amazia Zimber
- Department of Animal Sciences, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
111
|
Dellaire G, Bazett-Jones DP. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 2004; 26:963-77. [PMID: 15351967 DOI: 10.1002/bies.20089] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Promyelocytic leukaemia nuclear bodies (PML NBs) are generally present in all mammalian cells, and their integrity correlates with normal differentiation of promyelocytes. Mice that lack PML NBs have impaired immune function, exhibit chromosome instability and are sensitive to carcinogens. Although their direct role in nuclear activity is unclear, PML NBs are implicated in the regulation of transcription, apoptosis, tumour suppression and the anti-viral response. An emerging view is that they represent sites where multi-subunit complexes form and where post-translational modification of regulatory factors, such as p53, occurs in response to cellular stress. Following DNA damage, several repair factors transit through PML NBs in a temporally regulated manner implicating these bodies in DNA repair. We propose that PML NBs are dynamic sensors of cellular stress, which rapidly disassemble following DNA damage into large supramolecular complexes, dispersing associated repair factors to sites of damage. The dramatically increased total surface area available would enhance interactions between PML-associated factors regulating DNA repair and apoptosis.
Collapse
Affiliation(s)
- Graham Dellaire
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
112
|
Rogers RS, Inselman A, Handel MA, Matunis MJ. SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 2004; 113:233-43. [PMID: 15349788 DOI: 10.1007/s00412-004-0311-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 01/26/2023]
Abstract
The XY body is a specialized chromatin territory that forms during meiotic prophase of spermatogenesis and comprises the transcriptionally repressed sex chromosomes. Remodeling of the XY chromatin is brought about by recruitment of specific proteins to the X and Y chromosomes during meiosis, and also by post-translational modifications of histones and other chromatin-associated proteins. Here, we demonstrate that SUMO, a small ubiquitin-related modifier protein that regulates a wide variety of nuclear functions in somatic cells, dramatically localizes to the XY body. SUMO was first detected in the XY body of early pachytene spermatocytes and gradually accumulated, reaching maximal levels there during the mid to late pachytene stages. Several known SUMO substrates, including PML and DAXX, were also found to accumulate in the XY body of mid to late stage pachytene spermatocytes. These same proteins localize to PML nuclear bodies of somatic interphase nuclei. Together, these findings indicate a role for SUMO modification in regulating the structure and function of the XY body and reveal molecular similarities between the XY body and PML nuclear bodies.
Collapse
Affiliation(s)
- Richard S Rogers
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
113
|
Callén E, Surrallés J. Telomere dysfunction in genome instability syndromes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2004; 567:85-104. [PMID: 15341904 DOI: 10.1016/j.mrrev.2004.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 06/22/2004] [Accepted: 06/22/2004] [Indexed: 12/28/2022]
Abstract
Telomeres are nucleoprotein complexes located at the end of eukaryotic chromosomes. They have essential roles in preventing terminal fusions, protecting chromosome ends from degradation, and in chromosome positioning in the nucleus. These terminal structures consist of a tandemly repeated DNA sequence (TTAGGG in vertebrates) that varies in length from 5 to 15 kb in humans. Several proteins are attached to this telomeric DNA, some of which are also involved in different DNA damage response pathways, including Ku80, Mre11, NBS and BLM, among others. Mutations in the genes encoding these proteins cause a number of rare genetic syndromes characterized by chromosome and/or genetic instability and cancer predisposition. Deletions or mutations in any of these genes may also cause a telomere defect resulting in accelerated telomere shortening, lack of end-capping function, and/or end-to-end chromosome fusions. This telomere phenotype is also known to promote chromosomal instability and carcinogenesis. Therefore, it is essential to understand the interplay between telomere biology and genome stability. This review is focused in the dual role of chromosome fragility proteins in telomere maintenance.
Collapse
Affiliation(s)
- Elsa Callén
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
| | | |
Collapse
|
114
|
Jul-Larsen A, Visted T, Karlsen BO, Rinaldo CH, Bjerkvig R, Lønning PE, Bøe SO. PML-nuclear bodies accumulate DNA in response to polyomavirus BK and simian virus 40 replication. Exp Cell Res 2004; 298:58-73. [PMID: 15242762 DOI: 10.1016/j.yexcr.2004.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 03/10/2004] [Indexed: 01/08/2023]
Abstract
Promyelocytic nuclear bodies (PML-NBs) are distinct nuclear structures that are involved in apoptosis, differentiation, transcriptional regulation and DNA damage response. These bodies have also been shown to associate with nuclear sites of viral DNA replication. In the present study, we used BrdU pulse labeling to demonstrate that PML-NBs accumulate newly synthesized DNA in cells infected by the polyomaviruses simian virus 40 (SV40) or polyomavirus BK (BKV). Sequestration of DNA molecules in these structures depended on active viral DNA replication, and was observed exclusively in cells that contained prominent viral replication domains. Furthermore, a significant portion of the accumulated DNA was found to be single-stranded, indicating that the sequestered DNA had been subjected to processing by nuclease or DNA unwinding activities. siRNA-mediated suppression of the PML protein prevented the recruitment of single-stranded DNA into nuclear foci, but did not significantly affect the overall efficiency of viral DNA replication. These results indicate a role of PML and PML-NBs in post-replication DNA processing, and suggest that PML-NBs become linked to sites of viral DNA synthesis due to a role of these structures in DNA metabolism.
Collapse
Affiliation(s)
- Asne Jul-Larsen
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, 5009, Norway
| | | | | | | | | | | | | |
Collapse
|
115
|
Shin J, Park B, Cho S, Lee S, Kim Y, Lee SO, Cho K, Lee S, Jin BS, Ahn JH, Choi EJ, Ahn K. Promyelocytic leukemia is a direct inhibitor of SAPK2/p38 mitogen-activated protein kinase. J Biol Chem 2004; 279:40994-1003. [PMID: 15273249 DOI: 10.1074/jbc.m407369200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The promyelocytic leukemia gene (PML) encodes a growth/tumor suppressor protein that is essential for the induction of apoptosis in response to various apoptotic signals. The mechanism by which PML plays a role in the regulation of cell death is still unknown. In the current study, we demonstrate that PML negatively regulated the SAPK2/p38 signaling pathway by sequestering p38 from its upstream kinases, MKK3, MKK4, and MKK6, whereas PML did not affect the SAPK1/c-Jun NH(2)-terminal kinase pathway. PML associated with p38 both in vitro and in vivo and the carboxyl terminus of PML mediated the interaction. In contrast to other studies of PML and PML-nuclear bodies (NB), our study shows that the formation of PML-NBs was not required for PML to suppress p38 activity because PML was still able to bind and inhibit p38 activity under the conditions in which PML-NBs were disrupted. In addition, we show that the promotion of Fas-induced cell death by PML correlated with the extent of p38 inhibition by PML, suggesting that PML might regulate apoptosis through manipulating SAPK2/p38 pathways. Our findings define a novel function of PML as a negative regulator of p38 kinase and provide further understanding on the mechanism of how PML induces multiple pathways of apoptosis.
Collapse
Affiliation(s)
- Jinwook Shin
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Tashiro S, Muto A, Tanimoto K, Tsuchiya H, Suzuki H, Hoshino H, Yoshida M, Walter J, Igarashi K. Repression of PML nuclear body-associated transcription by oxidative stress-activated Bach2. Mol Cell Biol 2004; 24:3473-84. [PMID: 15060166 PMCID: PMC381671 DOI: 10.1128/mcb.24.8.3473-3484.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several lines of evidence suggest that gene expression is regulated not only by the interaction between transcription factors and DNA but also by the higher-order architecture of the cell nucleus. PML bodies are one of the most prominent nuclear substructures which have been implicated in transcription regulation during apoptosis and stress responses. Bach2 is a member of the BTB-basic region leucine zipper factor family and represses transcription activity directed by the 12-O-tetradecanoylphorbol-13-acetate response element, the Maf recognition element, and the antioxidant-responsive element. Bach2 forms nuclear foci associated with PML bodies upon oxidative stress. Here, we demonstrate that transcription activity associated with PML bodies is selectively repressed by the recruitment of Bach2 around PML bodies. Fluorescence recovery after photobleaching experiments revealed that Bach2 showed rapid turnover in the nuclear foci. The Bach2 N-terminal region including the BTB domain is essential for the focus formation. Sumoylation of Bach2 is required for the recruitment of the protein around PML bodies. These observations represent the first example of modulation of transcription activity associated with PML bodies by a sequence-specific transcription factor upon oxidative stress.
Collapse
Affiliation(s)
- Satoshi Tashiro
- Department of Biomedical Chemistry and Leukemia Program Project, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Cabrera CM, Jiménez P, Concha A, Garrido F, Ruiz-Cabello F. Promyelocytic leukemia (PML) nuclear bodies are disorganized in colorectal tumors with total loss of major histocompatibility complex class I expression and LMP7 downregulation. ACTA ACUST UNITED AC 2004; 63:446-52. [PMID: 15104675 DOI: 10.1111/j.0001-2815.2004.00204.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The promyelocytic leukemia (PML) protein is the product of the PML gene that fuses with the retinoic acid receptor-alpha (RARalpha) gene in acute promyelocytic leukemia (APL) and produces disruption of PML bodies. Wild-type PML localizes in the nucleus with a typical speckled pattern. PML bodies accumulate several proteins involved in multiple cellular pathways such as apoptosis, transcriptional regulation, and proteasomal degradation of ubiquitinated proteins. The ubiquitin-proteasome pathway at PML bodies is dependent on proteasome component recruitment. Proteasome components such as low-molecular weight proteins (LMPs) are frequently downregulated in different tumor tissues that present impaired major histocompatibility complex (MHC) class I expression. We have recently documented LMP7 downregulation in colorectal tumors with total loss of MHC class I antigen. An immunohistochemical study of PML protein in these tumors revealed a disrupted pattern of PML bodies in a nuclear diffuse form, as observed in APL cells. Therefore, the disruption of the PML bodies was clearly associated with LMP7 downregulation.
Collapse
Affiliation(s)
- C M Cabrera
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | | | | | | | | |
Collapse
|
118
|
Nabetani A, Yokoyama O, Ishikawa F. Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J Biol Chem 2004; 279:25849-57. [PMID: 15075340 DOI: 10.1074/jbc.m312652200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomere maintenance is essential for continued cell proliferation. Although most cells accomplish this by activating telomerase, a subset of immortalized tumors and cell lines do so in a telomerase-independent manner, a process called alternative lengthening of telomeres (ALT). DNA recombination has been shown to be involved in ALT, but the precise mechanisms remain unknown. A fraction of cells in a given ALT population contain a unique nuclear structure called APB (ALT-associated promyelocytic leukemia (PML) body), which is characterized by the presence of telomeric DNA in the PML body. Here we describe that hRad9, hHus1, and hRad1, which form a DNA clamp complex that is associated with DNA damage, as well as its clamp loader, hRad17, are constitutive components of APB. Phosphorylated histone H2AX (gamma-H2AX), a molecular marker of double-strand breaks (DSBs), also colocalizes with some APBs. The results suggest that telomeric DNAs at APBs are recognized as DSBs. PML staining and fluorescence in situ hybridization analyses of mitotic ALT cells revealed that telomeric DNAs present at APBs are of both extrachromosomal and native telomere origins. Furthermore, we demonstrated that DNA synthesis occurs at APBs and is significantly inhibited by caffeine, an inhibitor of phosphatidylinositol 3-kinase-related kinases. Taken together, we suggest that telomeric DNAs at APBs are recognized and processed as DSBs, leading to telomeric DNA synthesis and thereby contributing to telomere maintenance in ALT cells.
Collapse
Affiliation(s)
- Akira Nabetani
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502
| | | | | |
Collapse
|
119
|
Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, Verbel DA, Cordon-Cardo C, Pandolfi PP. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 2004; 96:269-79. [PMID: 14970276 DOI: 10.1093/jnci/djh043] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The PML gene is fused to the RARalpha gene in the vast majority of acute promyelocytic leukemias (APL) and has been implicated in the control of key tumor-suppressive pathways. However, its role in the pathogenesis of human cancers other than APL is still unclear. We therefore assessed the status and expression of the PML gene in solid tumors of multiple histologic origins. METHODS We created tumor tissue microarrays (TTMs) with samples from patients with colon adenocarcinoma (n = 109), lung carcinoma (n = 19), prostate adenocarcinoma (n = 36), breast carcinoma (n = 38), central nervous system (CNS) tumors (n = 51), germ cell tumors (n = 60), thyroid carcinoma (n = 32), adrenal cortical carcinoma (n = 12), and non-Hodgkin's lymphoma (n = 251) and from normal tissue corresponding to each histotype and analyzed PML protein and mRNA expression by immunohistochemistry and in situ hybridization, respectively. Tumor cell lines (n = 64) of various histologic origins were analyzed for PML protein and mRNA expression by immunofluorescence and northern blotting, respectively. DNA from microdissected tumor samples and cell lines was analyzed for PML mutations and loss of heterozygosity (LOH). For some tumor types, the association between PML expression and tumor stage and grade was analyzed. Statistical tests were two-sided. RESULTS All normal tissues expressed PML protein. PML protein expression was reduced or abolished in prostate adenocarcinomas (63% [95% confidence interval [CI] = 48% to 78%] and 28% [95% CI = 13% to 43%], respectively), colon adenocarcinomas (31% [95% CI = 22% to 40%] and 17% [95% CI = 10% to 24%]), breast carcinomas (21% [95% CI = 8% to 34%] and 31% [95% CI = 16% to 46%]), lung carcinomas (36% [95% CI = 15% to 57%] and 21% [95% = 3% to 39%]), lymphomas (14% [95% CI = 10% to 18%] and 69% [95% CI = 63% to 75%]), CNS tumors (24% [95% CI = 13% to 35%] and 49% [95% CI = 36% to 62%]), and germ cell tumors (36% [95% CI = 24% to 48%] and 48% [95% CI = 36% to 60%]) but not in thyroid or adrenal carcinomas. Loss of PML protein expression was associated with tumor progression in prostate cancer (the progression from prostatic intraepithelial neoplasia to invasive carcinoma was associated with complete PML loss; P<.001), breast cancer (complete PML loss was associated with lymph node metastasis; P =.01), and CNS tumors (complete PML loss was associated with high-grade tumors; P =.003). PML mRNA was expressed in all tumor and cell line samples. The PML gene was rarely mutated and was not subject to LOH. CONCLUSIONS PML protein expression is frequently lost in human cancers of various histologic origins, and its loss associates with tumor grade and progression in some tumor histotypes.
Collapse
Affiliation(s)
- Carmela Gurrieri
- Molecular Biology Program and Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Bernardi R, Pandolfi PP. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 2004; 22:9048-57. [PMID: 14663483 DOI: 10.1038/sj.onc.1207106] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PML is a tumor suppressor implicated in leukemia and cancer pathogenesis. PML epitomizes a multiprotein nuclear structure, the PML-nuclear body (PML-NB), whose proper formation and function depends on PML. Studies in knockout (KO) mice and cells unraveled an essential pleiotropic role for PML in multiple p53-dependent and -independent apoptotic pathways. As a result, Pml(-/-) mice and cells are protected from apoptosis triggered by a number of stimuli such as ionizing radiation, interferon, ceramide, Fas and TNF. It is becoming apparent that PML and the PML-NB act as molecular hubs for the induction and/or reinforcement of programmed cell death through a selective and dynamic regulation of proapoptotic transcriptional events. In addition, recent observations propose a role for PML in checkpoint responses upon DNA damage. Moreover, PML and the PML-NB have also been implicated in the control of genomic stability and DNA repair. Here, we will discuss the molecular mechanisms by which PML regulates these processes and the implication of these findings for cancer pathogenesis and therapy.
Collapse
Affiliation(s)
- Rosa Bernardi
- Molecular Biology Program and Department of Pathology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
121
|
Abstract
The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.
Collapse
Affiliation(s)
- C Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstr. 22, 93047 Regensburg, Germany
| | | |
Collapse
|
122
|
Xu ZX, Zhao RX, Ding T, Tran TT, Zhang W, Pandolfi PP, Chang KS. Promyelocytic leukemia protein 4 induces apoptosis by inhibition of survivin expression. J Biol Chem 2003; 279:1838-44. [PMID: 14597622 DOI: 10.1074/jbc.m310987200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The promyelocytic leukemia protein (PML) plays an essential role in multiple pathways of apoptosis. Our previous study showed that PML enhances tumor necrosis factor-induced apoptosis by inhibiting the NFkappaB survival pathway. To continue exploring the mechanism of PML-induced apoptosis, we performed a DNA microarray screening of PML target genes using a PML-inducible stable cell line. We found that Survivin was one of the downstream target genes of PML. Cotransfection experiments demonstrated that PML4 repressed transactivation of the Survivin promoter in an isoform-specific manner. Western blot analysis demonstrated that induced PML expression down-regulated Survivin. Inversely, PML knockdown by siRNA up-regulated Survivin expression. A substantial increase in Survivin expression was found in PML-deficient cells. Re-expression of PML in PML-/- mouse embryo fibroblasts down-regulated the expression of Survivin. Furthermore, cells arrested at the G2/M cell cycle phase expressed a high level of Survivin and a significantly lower level of PML. Overexpression of PML in A549 cells reduced Survivin expression leading to massive apoptotic cell death associated with activation of procaspase 9, caspase 3, and caspase 7. Together, our results demonstrate a novel mechanism of PML-induced apoptosis by down-regulation of Survivin.
Collapse
Affiliation(s)
- Zhi-Xiang Xu
- Department of Molecular Pathology and Department of Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Bachrati CZ, Hickson ID. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 2003; 374:577-606. [PMID: 12803543 PMCID: PMC1223634 DOI: 10.1042/bj20030491] [Citation(s) in RCA: 297] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Revised: 06/10/2003] [Accepted: 06/12/2003] [Indexed: 02/04/2023]
Abstract
The RecQ helicases represent a subfamily of DNA helicases that are highly conserved in evolution. Loss of RecQ helicase function leads to a breakdown in the maintenance of genome integrity, in particular hyper-recombination. Germ-line defects in three of the five known human RecQ helicases give rise to defined genetic disorders associated with cancer predisposition and/or premature aging. These are Bloom's syndrome, Werner's syndrome and Rothmund-Thomson syndrome, which are caused by defects in the genes BLM, WRN and RECQ4 respectively. Here we review the properties of RecQ helicases in organisms from bacteria to humans, with an emphasis on the biochemical functions of these enzymes and the range of protein partners that they operate with. We will discuss models in which RecQ helicases are required to protect against replication fork demise, either through prevention of fork breakdown or restoration of productive DNA synthesis.
Collapse
Affiliation(s)
- Csanád Z Bachrati
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
124
|
Libura M, Asnafi V, Tu A, Delabesse E, Tigaud I, Cymbalista F, Bennaceur-Griscelli A, Villarese P, Solbu G, Hagemeijer A, Beldjord K, Hermine O, Macintyre E. FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood 2003; 102:2198-204. [PMID: 12791658 DOI: 10.1182/blood-2003-01-0162] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
MLL rearrangements in acute myeloid leukemia (AML) include translocations and intragenic abnormalities such as internal duplication and breakage induced by topoisomerase II inhibitors. In adult AML, FLT3 internal tandem duplications (ITDs) are more common in cases with MLL intragenic abnormalities (33%) than those with MLL translocation (8%). Mutation/deletion involving FLT3 D835 are found in more than 20% of cases with MLL intragenic abnormalities compared with 10% of AML with MLL translocation and 5% of adult AML with normal MLL status. Real-time quantification of FLT3 in 141 cases of AML showed that all cases with FLT3 D835 express high level transcripts, whereas FLT3-ITD AML can be divided into cases with high-level FLT3 expression, which belong essentially to the monocytic lineage, and those with relatively low-level expression, which predominantly demonstrate PML-RARA and DEK-CAN. FLT3 abnormalities in CBF leukemias with AML1-ETO or CBFbeta-MYH11 were virtually restricted to cases with variant CBFbeta-MYH11 fusion transcripts and/or atypical morphology. These data suggest that the FLT3 and MLL loci demonstrate similar susceptibility to agents that modify chromatin configuration, including topoisomerase II inhibitors and abnormalities involving PML and DEK, with consequent errors in DNA repair. Variant CBFbeta-MYH11 fusions and bcr3 PML-RARA may also be initiated by similar mechanisms.
Collapse
Affiliation(s)
- Marta Libura
- Laboratoire d'Hématologie, Tour Pasteur, Hôpital Necker, 149-161 rue de Sèvres, 75743 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Chen L, Huang S, Lee L, Davalos A, Schiestl RH, Campisi J, Oshima J. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2003; 2:191-9. [PMID: 12934712 DOI: 10.1046/j.1474-9728.2003.00052.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3' --> 5' exonuclease and 3' --> 5' helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN-/-) complemented with either wtWRN, exonuclease-defective WRN (E-), helicase-defective WRN (H-) or exonuclease/helicase-defective WRN (E-H-). The single E-and H- mutants each partially complemented the NHEJ abnormality of WRN-/- cells. Strikingly, the E-H- double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E- and H- single mutants increased HR to levels higher than those restored by either E-H- or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events.
Collapse
Affiliation(s)
- Lishan Chen
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Wei X, Yu ZK, Ramalingam A, Grossman SR, Yu JH, Bloch DB, Maki CG. Physical and functional interactions between PML and MDM2. J Biol Chem 2003; 278:29288-97. [PMID: 12759344 DOI: 10.1074/jbc.m212215200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor protein PML and oncoprotein MDM2 have opposing effects on p53. PML stimulates p53 activity by recruiting it to nuclear foci termed PML nuclear bodies. In contrast, MDM2 inhibits p53 by promoting its degradation. To date, neither a physical nor functional relationship between PML and MDM2 has been described. In this study, we report an in vivo and in vitro interaction between PML and MDM2 which is independent of p53. Two separate regions of PML are recognized which can interact with MDM2. The C-terminal half of PML, encoded by residues 300-633, can interact with the central region of MDM2 which includes the MDM2 acidic domain. In addition, PML amino acids 1-200, which encode the RING-finger and most of the B box zinc binding motifs, can interact with the C-terminal, RING-finger containing region of MDM2. Interestingly, PML mutants in which sumoylation at lysine 160 was inhibited displayed an increased association with MDM2, suggesting that sumoylation at this site may be a determinant of PML-MDM2 binding. Coexpression with MDM2 caused a redistribution of PML from the nucleus to the cytoplasm, and this required the PML N terminus and the MDM2 RING-finger domain. These results suggest that interaction between the PML N terminus and MDM2 C terminus can promote PML nuclear exclusion. Wild-type MDM2 inhibited the ability of PML to stimulate the transcriptional activity of a GAL4-CBP fusion protein. This inhibition required the central, acidic region of MDM2, but did not require the MDM2 C terminus. Taken together, these studies demonstrate that MDM2 and PML can interact through at least two separate protein regions, and that these interactions can have specific effects on the activity and/or localization of PML.
Collapse
Affiliation(s)
- Xiaolong Wei
- Department of Radiation Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Wu L, Davies SL, Hickson ID. Roles of RecQ family helicases in the maintenance of genome stability. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:573-81. [PMID: 12760076 DOI: 10.1101/sqb.2000.65.573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- L Wu
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, United Kingdom
| | | | | |
Collapse
|
128
|
Mistry AR, Pedersen EW, Solomon E, Grimwade D. The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 2003; 17:71-97. [PMID: 12642121 DOI: 10.1016/s0268-960x(02)00075-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acute promyelocytic leukaemia (APL) is characterised by chromosomal rearrangements of 17q21, leading to fusion of the gene encoding retinoic acid receptor alpha (RARalpha) to a number of alternative partner genes (X), the most frequent of which are PML (>95%), PLZF (0.8%) and NPM (0.5%). Over the last few years, it has been established that the X-RARalpha fusion proteins play a key role in the pathogenesis of APL through recruitment of co-repressors and the histone deacetylase (HDAC)-complex to repress genes implicated in myeloid differentiation. Paradoxically, the X-RARalpha fusion protein has the potential to mediate myeloid differentiation at pharmacological doses of its ligand (all trans-retinoic acid (ATRA)), which is dependent on the dissociation of the HDAC/co-repressor complex. Arsenic compounds have also been shown to be promising therapeutic agents, leading to differentiation and apoptosis of APL blasts. It is now apparent that the nature of the RARalpha-fusion partner is a critical determinant of response to ATRA and arsenic, underlining the importance of cytogenetic and molecular characterisation of patients with suspected APL to determine the most appropriate treatment approach. Standard protocols involving ATRA combined with anthracycline-based chemotherapy, lead to cure of approximately 70% patients with PML-RARalpha-associated APL. Patients at high risk of relapse can be identified by minimal residual disease monitoring. The challenge for future studies is to improve complete remission rates through reduction of induction deaths, particularly due to haemorrhage, identification of patients at high risk of relapse who would benefit from additional therapy, and identification of a favourable-risk group, for which treatment intensity could be reduced, thereby reducing risks of treatment toxicity and development of secondary leukaemia/myelodysplasia. With the advent of ATRA and arsenic, APL has already provided the first example of successful molecularly targeted therapy; it is hoped that with further understanding of the pathogenesis of the disease, the next decade will yield further improvements in the outlook for these patients.
Collapse
MESH Headings
- Animals
- Gene Rearrangement
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/therapy
- Models, Biological
- Mutation
- Neoplasm, Residual/genetics
- Neoplasm, Residual/pathology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Translocation, Genetic
Collapse
Affiliation(s)
- Anita R Mistry
- Division of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine, London, UK
| | | | | | | |
Collapse
|
129
|
Xu ZX, Timanova-Atanasova A, Zhao RX, Chang KS. PML colocalizes with and stabilizes the DNA damage response protein TopBP1. Mol Cell Biol 2003; 23:4247-56. [PMID: 12773567 PMCID: PMC156140 DOI: 10.1128/mcb.23.12.4247-4256.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2002] [Revised: 01/26/2003] [Accepted: 03/25/2003] [Indexed: 12/16/2022] Open
Abstract
The PML tumor suppressor gene is consistently disrupted by t(15;17) in patients with acute promyelocytic leukemia. Promyelocytic leukemia protein (PML) is a multifunctional protein that plays essential roles in cell growth regulation, apoptosis, transcriptional regulation, and genome stability. Our study here shows that PML colocalizes and associates in vivo with the DNA damage response protein TopBP1 in response to ionizing radiation (IR). Both PML and TopBP1 colocalized with the IR-induced bromodeoxyuridine single-stranded DNA foci. PML and TopBP1 also colocalized with Rad50, Brca1, ATM, Rad9, and BLM. IR and interferon (IFN) coinduce the expression levels of both TopBP1 and PML. In PML-deficient NB4 cells, TopBP1 was unable to form IR-induced foci. All-trans-retinoic acid induced reorganization of the PML nuclear body (NB) and reappearance of the IR-induced TopBP1 foci. Inhibition of PML expression by siRNA is associated with a significant decreased in TopBP1 expression. Furthermore, PML-deficient cells express a low level of TopBP1, and its expression cannot be induced by IR or IFN. Adenovirus-mediated overexpression of PML in PML(-/-) mouse embryo fibroblasts substantially increased TopBP1 expression, which colocalized with the PML NBs. These studies demonstrated a mechanism of PML-dependent expression of TopBP1. PML overexpression induced TopBP1 protein but not the mRNA expression. Pulse-chase labeling analysis demonstrated that PML overexpression stabilized the TopBP1 protein, suggesting that PML plays a role in regulating the stability of TopBP1 in response to IR. Together, our findings demonstrate that PML regulates TopBP1 functions by association and stabilization of the protein in response to IR-induced DNA damage.
Collapse
Affiliation(s)
- Zhi-Xiang Xu
- Department of Molecular Pathology, The University of Texas M D Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
130
|
Antolini F, Lo Bello M, Sette M. Purified promyelocytic leukemia coiled-coil aggregates as a tetramer displaying low alpha-helical content. Protein Expr Purif 2003; 29:94-102. [PMID: 12729730 DOI: 10.1016/s1046-5928(03)00004-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The promyelocytic leukemia (PML) gene is involved in the 15/17 chromosomal translocation of acute promyelocytic leukemia (APL). It encodes a nuclear phosphoprotein containing an alpha-helical coiled-coil domain with four heptad repeats. The heptad repeats consist of four clusters of hydrophobic amino acids that mediate in vivo the complex formation between PML and other PML molecules or PML-RARalpha mutant protein. In this report, we show the production of PML coiled-coil (fragment 223-360) as a fusion protein, its solubilization by the combined action of two different detergents, and its purification with affinity chromatography after column proteolytic cleavage. The FPLC chromatograms of the purified coiled-coils, carried out under non-denaturing conditions, show that the peptide elutes only in the presence of Sarkosyl detergent (conc. 0.1%) and, under these conditions, elutes as a tetrameric complex. This confirms the evidence from in vivo experiments that this region is responsible for protein complex formation. The HPLC analyses show the presence of a single peak eluting under highly hydrophobic conditions, indicating the high hydrophobicity of the peptide in accordance with the primary sequence analysis. Finally, the purified peptide was structurally characterized by means of circular dichroism (CD) measurements that were carried out with low Sarkosyl concentration (0.003%). The CD spectra indicate a low alpha-helical content (13.5%) with respect to predictions based on the primary sequence analysis (PSI-PRED, SS-PRO, and J-PRED), suggesting that the alpha-helix content could be modulated by coiled-coil surrounding domains and/or by other post-translational modifications, even if the effect of the Sarkosyl on the peptide secondary structure cannot be excluded.
Collapse
Affiliation(s)
- Francesco Antolini
- Department of Internal Medicine, Applied Biochemistry and Clinical Chemistry section, Via del Giochetto s.n.c., 06100 Perugia, Italy.
| | | | | |
Collapse
|
131
|
Roussigne M, Cayrol C, Clouaire T, Amalric F, Girard JP. THAP1 is a nuclear proapoptotic factor that links prostate-apoptosis-response-4 (Par-4) to PML nuclear bodies. Oncogene 2003; 22:2432-42. [PMID: 12717420 DOI: 10.1038/sj.onc.1206271] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Promyelocytic leukemia (PML) nuclear bodies (PML NBs) are discrete subnuclear domains organized by the promyelocytic leukemia protein PML, a tumor suppressor essential for multiple apoptotic pathways. We have recently described a novel family of cellular factors, the THAP proteins, characterized by the presence at their amino-terminus of an evolutionary conserved putative DNA-binding motif, designated THAP domain. Here, we report that THAP1 is a novel nuclear proapoptotic factor associated with PML NBs, which potentiates both serum withdrawal- and TNF alpha-induced apoptosis, and interacts with prostate-apoptosis-response-4 (Par-4), a well characterized proapoptotic factor, previously linked to prostate cancer and neurodegenerative diseases. We show that endogenous Par-4 colocalizes with ectopic THAP1 within PML NBs in primary endothelial cells and fibroblasts. In addition, we found that Par-4 is a component of PML NBs in blood vessels, a major site of PML expression in vivo. Finally, we investigated the role of the THAP domain in THAP1 activities and found that this putative DNA-binding domain is not required for Par-4 binding and localization within PML NBs, but is essential for THAP1 proapoptotic activity. Together, our results provide an unexpected link between a nuclear factor of the THAP family, the proapoptotic protein Par-4 and PML nuclear bodies.
Collapse
Affiliation(s)
- Myriam Roussigne
- Laboratoire de Biologie Vasculaire, Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, 31077 Toulouse, France
| | | | | | | | | |
Collapse
|
132
|
Seker H, Rubbi C, Linke SP, Bowman ED, Garfield S, Hansen L, Borden KLB, Milner J, Harris CC. UV-C-induced DNA damage leads to p53-dependent nuclear trafficking of PML. Oncogene 2003; 22:1620-8. [PMID: 12642865 DOI: 10.1038/sj.onc.1206140] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The promyelocytic leukemia protein (PML) is a nuclear phosphoprotein that localizes to distinct domains in the nucleus, described as PML nuclear bodies (PML-NBs). Recent findings indicate that PML regulates the p53 response to oncogenic signals. Here, we define a p53-dependent role for PML in response to DNA damage. We exposed cells to ultraviolet light (UV-C) and imaged the nuclear distribution of PML, p53, and the BLM helicase by confocal microscopy. After DNA damage, PML partially relocated out of the PML-NBs, and colocalized with BLM and p53 at sites of DNA repair. In addition, using the isogenic HCT116 cell lines (p53+/+ and -/-), we show that the redistribution of PML was dependent on functional p53. Western analysis revealed that the level of PML protein remained unaltered after UV-C treatment. These results are consistent with the hypothesis that PML, in conjunction with p53 and BLM, contributes to the cellular response to UV-C-induced DNA damage and its repair.
Collapse
Affiliation(s)
- Hasan Seker
- Laboratory of Human Carcinogenesis, CCR, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
RecQ helicases are highly conserved from bacteria to man. Germline mutations in three of the five known family members in humans give rise to debilitating disorders that are characterized by, amongst other things, a predisposition to the development of cancer. One of these disorders--Bloom's syndrome--is uniquely associated with a predisposition to cancers of all types. So how do RecQ helicases protect against cancer? They seem to maintain genomic stability by functioning at the interface between DNA replication and DNA repair.
Collapse
Affiliation(s)
- Ian D Hickson
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
134
|
Wu L, Hickson ID. The Bloom's syndrome helicase stimulates the activity of human topoisomerase IIIalpha. Nucleic Acids Res 2002; 30:4823-9. [PMID: 12433984 PMCID: PMC137159 DOI: 10.1093/nar/gkf611] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Revised: 09/17/2002] [Accepted: 09/17/2002] [Indexed: 11/14/2022] Open
Abstract
Bloom's syndrome (BS) is a disorder associated with chromosomal instability and a predisposition to the development of cancer. The BS gene product, BLM, is a DNA helicase of the RecQ family that forms a complex in vitro and in vivo with topoisomerase IIIalpha. Here, we show that BLM stimulates the ability of topoisomerase IIIalpha to relax negatively supercoiled DNA. Moreover, DNA binding analyses indicate that BLM recruits topoisomerase IIIalpha to its DNA substrate. Consistent with this, a mutant form of BLM that retains helicase activity, but is unable to bind topoisomerase IIIalpha, fails to stimulate topoisomerase activity. These results indicate that a physical association between BLM and topoisomerase IIIalpha is a prerequisite for their functional biochemical interaction.
Collapse
Affiliation(s)
- Leonard Wu
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
135
|
Yang S, Kuo C, Bisi JE, Kim MK. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 2002; 4:865-70. [PMID: 12402044 DOI: 10.1038/ncb869] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Revised: 07/10/2002] [Accepted: 08/19/2002] [Indexed: 01/08/2023]
Abstract
The promyelocytic leukaemia (PML) gene is translocated in most acute promyelocytic leukaemias and encodes a tumour suppressor protein. PML is involved in multiple apoptotic pathways and is thought to be pivotal in gamma irradiation-induced apoptosis. The DNA damage checkpoint kinase hCds1/Chk2 is necessary for p53-dependent apoptosis after gamma irradiation. In addition, gamma irradiation-induced apoptosis also occurs through p53-independent mechanisms, although the molecular mechanism remains largely unknown. Here, we report that hCds1/Chk2 mediates gamma irradiation-induced apoptosis in a p53-independent manner through an ataxia telangiectasia-mutated (ATM)-hCds1/Chk2-PML pathway. Our results provide the first evidence of a functional relationship between PML and a checkpoint kinase in gamma irradiation-induced apoptosis.
Collapse
Affiliation(s)
- Shutong Yang
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
136
|
Ferbeyre G. PML a target of translocations in APL is a regulator of cellular senescence. Leukemia 2002; 16:1918-26. [PMID: 12357343 DOI: 10.1038/sj.leu.2402722] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Accepted: 06/07/2002] [Indexed: 02/07/2023]
Abstract
PML is the most frequent fusion partner of the RARalpha in the specific translocations associated with acute promyelocytic leukemia (APL). Models to explain the origin of this leukemia propose a block in cell differentiation due to aberrant repression of retinoic acid responsive genes and/or disruption of the function of the PML-containing nuclear bodies. Recently, PML has been identified as a regulator of replicative senescence and the premature senescence that occurs in response to oncogenic ras. This review discusses the idea that senescence is a general tumor suppressor mechanism related to terminal differentiation and disrupted during the establishment of APL and other cancers. According to this idea the PML-RARalpha fusion protein promotes leukemogenesis not only through repression of retinoic acid responsive genes, but also by way of interfering with several tumor suppressor proteins that cooperate to establish senescence. Retinoids and other drugs effective against APL do so by re-establishment of the senescence program, which also includes features of cell differentiation.
Collapse
Affiliation(s)
- G Ferbeyre
- Université de Montréal, Département de Biochimie, Canada
| |
Collapse
|
137
|
Fang W, Mori T, Cobrinik D. Regulation of PML-dependent transcriptional repression by pRB and low penetrance pRB mutants. Oncogene 2002; 21:5557-65. [PMID: 12165854 DOI: 10.1038/sj.onc.1205666] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2002] [Revised: 04/25/2002] [Accepted: 05/10/2002] [Indexed: 11/09/2022]
Abstract
The retinoblastoma protein (pRB) is thought to suppress tumorigenesis, in part, through interactions with E2F transcription factors. However, certain low penetrance pRB mutants substantially reduce tumor incidence despite having a minimal ability to bind E2F. These low penetrance mutants retain the ability to induce a senescence-like state, suggesting that they may suppress tumorigenesis through a senescence-associated process. Here, we identify a novel pRB function that is associated with senescence and which is retained by non-E2F binding low penetrance pRB mutants. It was found that pRB and these mutants substantially increased the production of PML nuclear bodies (NBs). In keeping with the role of PML in transcriptional repression, pRB also promoted PML-dependent transcriptional repression by the c-Myc antagonist Mad1. In a series of pRB-p130 chimeric proteins, the ability to increase NB production correlated with the ability to induce a senescence-like phenotype. However, neither NB formation nor PML function were required for pRB to induce the senescence-like response. Together, these observations indicate that a pRB-induced increase in PML NB formation is coordinated with, but separable from, the pRB-induced senescence program. The data further suggest that PML may contribute to an E2F-independent tumor suppressor function of pRB.
Collapse
Affiliation(s)
- Weizhao Fang
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
138
|
Chan JYH, Meng CL, To KF, Leung SF, Chan ATC, Lee KKH, Johnson PJ. Differential expression of the suppressor PML and Ki-67 identifies three subtypes of human nasopharyngeal carcinoma. Eur J Cancer 2002; 38:1600-6. [PMID: 12142048 DOI: 10.1016/s0959-8049(02)00080-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The promyelocytic leukaemia (PML) gene, which encodes a transformation and growth suppressor, was found to regulate transcription and apoptosis. PML was first identified at the chromosomal translocation break-points t(15;17) of acute promyelocytic leukaemia and the gene product may mediate cell-cycle control and apoptosis. PML was found to interact with the co-transactivator CREB binding protein (CBP) and the apoptotic-modulator Bax. To determine if PML, CBP and Bax may be involved in solid tumours, such as the nasopharyngeal carcinoma (NPC), a rare neoplasia that is prevalent in Southern China, the expression of these proteins and the proliferation marker Ki-67 was analysed by immunohistochemical staining. Expression of PML in the PML-oncogenic domain (POD) or nuclear bodies in most NPC was inversely correlated with the expression of Ki-67. In addition, based on PML expression patterns in NPC three subtypes could be identified, namely, Subtype-1, with strong PML expression in POD structures and with low Ki-67 staining; Subtype-2, where PML was expressed in a homogeneously diffused pattern, but with a low intensity in the tumour cells; while Ki-67 was expressed in a moderate number of cells and Subtype-3, where the majority of tumour cells were PML-negative, while a considerable number of tumour cells were strongly labelled with Ki-67. Furthermore, CBP was present in most of the NPC cells with moderate-strong nuclear staining, while the expression in non-tumour cells were relatively weak. However, there was no direct correlation between PML and CBP expression in the NPC examined. In addition, there was low or no expression of Bax in the NP and NPC. This is, to our knowledge, the first report describing PML and CBP expression in NPC and our data strongly suggests that PML and CBP, but not Bax, may play a role in the transformed phenotypes of NPC.
Collapse
Affiliation(s)
- J Y H Chan
- Institute of Radiological Sciences, National Yang Ming University, 155 Sec.2, Li-Nung St., Shi-Pai, ROC, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
139
|
Rasheed ZA, Saleem A, Ravee Y, Pandolfi PP, Rubin EH. The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies. Exp Cell Res 2002; 277:152-60. [PMID: 12083797 DOI: 10.1006/excr.2002.5550] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously identified topors as a topoisomerase I-binding protein that localizes in punctate nuclear regions when expressed as a GFP fusion protein. We now demonstrate that both the GFP-topors fusion protein and endogenous topors are associated with promyelocytic leukemia (PML) nuclear bodies in exponentially growing HeLa cells. Studies using isogenic PML+/+ and PML-/- murine embryonic fibroblasts indicate that the punctate nuclear localization of topors is dependent on PML. A basic C-terminal region but not the N-terminal RING domain of topors is required for the punctate nuclear localization of this protein. Additional studies indicate that topors, but not PML, rapidly relocalizes from nuclear bodies to the nucleoplasm in cells exposed to the transcription inhibitor dichloro-1-beta-d-ribofuranolsylbenzimidazole or to the topoisomerase I-targeting drug camptothecin. These results identify topors as a new member of the group of proteins that associate dynamically with PML nuclear bodies and suggest that topors may be involved in the cellular response to camptothecin.
Collapse
Affiliation(s)
- Zeshaan A Rasheed
- Department of Pharmacology, Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903-2681, USA
| | | | | | | | | |
Collapse
|
140
|
Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, Wermke M, Bornhäuser M, Ritter M, Neubauer A, Ehninger G, Illmer T. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99:4326-35. [PMID: 12036858 DOI: 10.1182/blood.v99.12.4326] [Citation(s) in RCA: 1328] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Constitutive activation of the FLT3 receptor tyrosine kinase, either by internal tandem duplication (ITD) of the juxtamembrane region or by point mutations in the second tyrosine kinase domain (TKD), has been described in patients with acute myelogenous leukemia (AML). We analyzed the prevalence and the potential prognostic impact of FLT3 mutations in 979 AML patients. Results were correlated with cytogenetic data and the clinical response. FLT3-ITD mutations were found in 20.4% and FLT3-TKD mutations in 7.7% of the patients. Each mutation was associated with similar clinical characteristics and was more prevalent in patients with normal karyotype. Significantly more FLT3 aberrations were found in patients with FAB M5, and fewer were found in patients with FAB M2 and M6. Although less frequent in patients with cytogenetic aberrations, FLT3-ITDs were found in 13 of 42 patients with t(15;17) and in 9 of 10 patients with t(6;9). The prevalence of the ITD allele on the DNA level was heterogeneous, ranging from faint mutant bands in some patients to predominant mutant bands in others. Based on quantitative analysis, the mutant-wild-type (wt) ratio ranged from 0.03 to 32.56 (median, 0.78). Patients with a high mutant/wt ratio (ie, greater than 0.78) had significantly shorter overall and disease-free survival, whereas survival in patients with ratios below 0.78 did not differ from those without FLT3 aberrations. Multivariate analysis confirmed a high mutant/wt ratio to be a strong independent prognostic factor. Taken together, these data confirm that FLT mutations represent a common alteration in adult AML. Constitutive activation may be associated with monocytoid differentiation. A high mutant/wt ratio in ITD-positive patients appears to have a major impact on the prognostic relevance.
Collapse
Affiliation(s)
- Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der Technischen Universität, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Carbone R, Pearson M, Minucci S, Pelicci PG. PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 2002; 21:1633-40. [PMID: 11896594 DOI: 10.1038/sj.onc.1205227] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2001] [Revised: 11/28/2001] [Accepted: 12/05/2001] [Indexed: 12/11/2022]
Abstract
PML nuclear bodies (PML NBs) respond to many cellular stresses including viral infection, heat shock, arsenic and oncogenes and have been implicated in the regulation of p53-dependent replicative senescence and apoptosis. Recently, the hMre11/Rad50/NBS1 repair complex, involved in Double Strand Breaks (DSBs) repair, was found to colocalize within PML NBs, suggesting a role for these nuclear sub-domains in the DNA repair signalling pathway. We report here that in normal human fibroblasts, after ionizing radiation (IR), the PML NBs are modified and recognize sites of DNA breaks (ssDNA breaks and DSBs). Eight to 12 h after radiation PML NBs associate with hMre11 Ionizing Radiation-Induced Foci (IRIF), and subsequently with p53 within discrete foci. The PML, hMre11 and p53 colocalizing structures mark sites of DSBs as identified by immunolocalization with anti phosphorylated histone gamma-H2AX. Furthermore, we demonstrate that ionizing radiation induces the stable association of p53 with hMre11 and PML. These results suggest that the PML NBs are involved in the recognition and/or processing of DNA breaks and possibly in the recruitment of proteins (p53 and hMre11) required for both checkpoint and DNA-repair responses.
Collapse
Affiliation(s)
- Roberta Carbone
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | | | |
Collapse
|
142
|
Dutertre S, Sekhri R, Tintignac LA, Onclercq-Delic R, Chatton B, Jaulin C, Amor-Guéret M. Dephosphorylation and subcellular compartment change of the mitotic Bloom's syndrome DNA helicase in response to ionizing radiation. J Biol Chem 2002; 277:6280-6. [PMID: 11741924 DOI: 10.1074/jbc.m105735200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bloom's syndrome is a rare human autosomal recessive disorder that combines a marked genetic instability and an increased risk of developing all types of cancers and which results from mutations in both copies of the BLM gene encoding a RecQ 3'-5' DNA helicase. We recently showed that BLM is phosphorylated and excluded from the nuclear matrix during mitosis. We now show that the phosphorylated mitotic BLM protein is associated with a 3'-5' DNA helicase activity and interacts with topoisomerase III alpha. We demonstrate that in mitosis-arrested cells, ionizing radiation and roscovitine treatment both result in the reversion of BLM phosphorylation, suggesting that BLM could be dephosphorylated through the inhibition of cdc2 kinase. This was supported further by our data showing that cdc2 kinase activity is inhibited in gamma-irradiated mitotic cells. Finally we show that after ionizing radiation, BLM is not involved in the establishment of the mitotic DNA damage checkpoint but is subjected to a subcellular compartment change. These findings lead us to propose that BLM may be phosphorylated during mitosis, probably through the cdc2 pathway, to form a pool of rapidly available active protein. Inhibition of cdc2 kinase after ionizing radiation would lead to BLM dephosphorylation and possibly to BLM recruitment to some specific sites for repair.
Collapse
Affiliation(s)
- Stéphanie Dutertre
- CNRS, Unité Mixte de Recherche 1598, Institut Gustave Roussy, 39 Rue Camille Desmoulins, Villejuif Cedex 94 805, France
| | | | | | | | | | | | | |
Collapse
|
143
|
van Brabant AJ, Stan R, Ellis NA. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 2002; 1:409-59. [PMID: 11701636 DOI: 10.1146/annurev.genom.1.1.409] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA helicases are a highly conserved group of enzymes that unwind DNA. They function in all processes in which access to single-stranded DNA is required, including DNA replication, DNA repair and recombination, and transcription of RNA. Defects in helicases functioning in one or more of these processes can result in characteristic human genetic disorders in which genomic instability and predisposition to cancer are common features. So far, different helicase genes have been found mutated in six such disorders. Mutations in XPB and XPD can result in xeroderma pigmentosum, Cockayne syndrome, or trichothiodystrophy. Mutations in the RecQ-like genes BLM, WRN, and RECQL4 can result in Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. Because XPB and XPD function in both nucleotide excision repair and transcription initiation, the cellular phenotypes associated with a deficiency of each one of them include failure to repair mutagenic DNA lesions and defects in the recovery of RNA transcription after UV irradiation. The functions of the RecQ-like genes are unknown; however, a growing body of evidence points to a function in restarting DNA replication after the replication fork has become stalled. The genomic instability associated with mutations in the RecQ-like genes includes spontaneous chromosome instability and elevated mutation rates. Mouse models for nearly all of these entities have been developed, and these should help explain the widely different clinical features that are associated with helicase mutations.
Collapse
Affiliation(s)
- A J van Brabant
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
144
|
Abstract
The PML gene, involved in the t(15;17) chromosomal translocation of acute promyelocytic leukemia (APL), encodes a protein which localizes to the PML-nuclear body, a subnuclear macromolecular structure. PML controls apoptosis, cell proliferation, and senescence. Here, we review the current understanding of its role in tumor suppression.
Collapse
Affiliation(s)
- Paolo Salomoni
- Molecular Biology Program and Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
145
|
Drouin A, Schmitt A, Massé JM, Cieutat AM, Fichelson S, Cramer EM. Identification of PML oncogenic domains (PODs) in human megakaryocytes. Exp Cell Res 2001; 271:277-85. [PMID: 11716540 DOI: 10.1006/excr.2001.5377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Megakaryocytes (Mks) are unique cells in the human body in that they carry a single and polyploid nucleus. It is therefore of interest to understand their nuclear ultrastructure. PML oncogenic domains (PODs) were described in several types of eukaryotic cells using human autoantibodies which recognize nuclear antigens with a specific speckled pattern (dots) in indirect immunofluorescence (IF). Two main antigens, PML and Sp 100, usually colocalize and concentrate in these nuclear subdomains. We investigated the presence of PODs using IF and immunoelectron microscopy (IEM) in cells from megakaryocytic lineage: the HEL cell line and human cultured Mks. Antibodies against PML, Sp100, and anti-nuclear dots were used in single and double labeling. PODs were identified in HEL cells and in human Mks, and their ultrastructure was characterized. We then used IF to quantify PODs within Mks and showed that their number increased proportionally to nuclear lobularity. In summary, we report the identification of PODs in human Mks at an ultrastructural level and an increase in PODs number in parallel with Mk ploidy. We show that endomitosis not only leads to DNA increase but also to the multiplication of at least one of the associated nuclear structures.
Collapse
Affiliation(s)
- A Drouin
- Institut Cochin de Génétique Moléculaire, INSERM U. 474, Paris, France
| | | | | | | | | | | |
Collapse
|
146
|
Engelhardt OG, Ullrich E, Kochs G, Haller O. Interferon-induced antiviral Mx1 GTPase is associated with components of the SUMO-1 system and promyelocytic leukemia protein nuclear bodies. Exp Cell Res 2001; 271:286-95. [PMID: 11716541 DOI: 10.1006/excr.2001.5380] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mx proteins are interferon-induced large GTPases, some of which have antiviral activity against a variety of viruses. The murine Mx1 protein accumulates in the nucleus of interferon-treated cells and is active against members of the Orthomyxoviridae family, such as the influenza viruses and Thogoto virus. The mechanism by which Mx1 exerts its antiviral action is still unclear, but an involvement of undefined nuclear factors has been postulated. Using the yeast two-hybrid system, we identified cellular proteins that interact with Mx1 protein. The Mx1 interactors were mainly nuclear proteins. They included Sp100, Daxx, and Bloom's syndrome protein (BLM), all of which are known to localize to specific subnuclear domains called promyelocytic leukemia protein nuclear bodies (PML NBs). In addition, components of the SUMO-1 protein modification system were identified as Mx1-interacting proteins, namely the small ubiquitin-like modifier SUMO-1 and SAE2, which represents subunit 2 of the SUMO-1 activating enzyme. Analysis of the subcellular localization of Mx1 and some of these interacting proteins by confocal microscopy revealed a close spatial association of Mx1 with PML NBs. This suggests a role of PML NBs and SUMO-1 in the antiviral action of Mx1 and may allow us to discover novel functions of this large GTPase.
Collapse
Affiliation(s)
- O G Engelhardt
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Freiburg, D-79008, Germany.
| | | | | | | |
Collapse
|
147
|
Abstract
Previous investigations into potential transforming activities of adenovirus (Ad) early genes were largely overshadowed by the more obvious roles of E1A and E1B products. One exception was an Ad9 E4 protein (ORF1) shown to enhance transformation of cultured cells and promote mammary tumors in female rats. Recently, significant advances in understanding Ad E4 gene products at the molecular level have revealed that these proteins possess an unexpectedly diverse collection of functions, which not only orchestrate many viral processes, but overlap with oncogenic transformation of primary mammalian cells. Operating through a complex network of protein interactions with key viral and cellular regulatory components, Ad E4 products are apparently involved in transcription, apoptosis, cell cycle control, DNA repair, cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as PML oncogenic domains (PODs). Some of these functions directly relate to known transforming and oncogenic processes, or implicate mechanisms such as modulating the function and subcellular localization of cellular PDZ domain-containing proteins, POD reorganization, targeted proteolytic degradation, inhibition of DNA double-strand break repair and 'hit-and-run' mutagenesis. Here, we summarize the recent data and discuss how E4 gene product interactions may contribute to viral oncogenesis.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
148
|
Abstract
Over the past few years there have been a number of interesting advances in our understanding of the functions encoded by the adenovirus early transcription unit 4 (Ad E4). A large body of recent data demonstrates that E4 proteins encompass an unexpectedly diverse collection of functions required for efficient viral replication. E4 gene products operate through a complex network of protein interactions with key viral and cellular regulatory components involved in transcription, apoptosis, cell cycle control and DNA repair, as well as host cell factors that regulate cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as nuclear bodies (NBs) or PML oncogenic domains (PODs). As understood at present, some of the lytic functions overlap with roles in oncogenic transformation of primary mammalian cells. These observations, together with findings that E4 proteins substantially affect cell toxicity and the immune response of the host have profound implications for the development of Ad vectors for gene therapy. In this article we will summarize recent findings regarding the diverse functions of E4 gene products in the context of earlier work. We will emphasize the interaction of E4 proteins with cellular and viral interaction partners, the role of these interactions for lytic virus growth and how these interactions may contribute to viral oncogenesis. Finally, we will discuss their role in Ad vector and adeno-associated virus infections.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
149
|
Abstract
Acute promyelocytic leukemia (APL) is associated with reciprocal and balanced chromosomal translocations always involving the Retinoic Acid Receptor alpha (RARalpha) gene on chromosome 17 and variable partner genes (X genes) on distinct chromosomes. RARalpha fuses to the PML gene in the vast majority of APL cases, and in a few cases to the PLZF, NPM, NuMA and STAT5b genes. As a consequence, X-RARalpha and RARalpha-X fusion genes are generated encoding aberrant fusion proteins that can interfere with X and/or RARalpha function. Here we will review the relevant conclusions and the open questions that stem from a decade of in vivo analysis of APL pathogenesis in the mouse in transgenic and knock-out models.
Collapse
Affiliation(s)
- F Piazza
- Molecular Biology Program, Department of Pathology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, 1275 York Avenue, New York, New York, NY 10021, USA
| | | | | |
Collapse
|
150
|
Shiels C, Islam SA, Vatcheva R, Sasieni P, Sternberg MJ, Freemont PS, Sheer D. PML bodies associate specifically with the MHC gene cluster in interphase nuclei. J Cell Sci 2001; 114:3705-16. [PMID: 11707522 DOI: 10.1242/jcs.114.20.3705] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Promyelocytic leukemia (PML) bodies are nuclear multi-protein domains. The observations that viruses transcribe their genomes adjacent to PML bodies and that nascent RNA accumulates at their periphery suggest that PML bodies function in transcription. We have used immuno-FISH in primary human fibroblasts to determine the 3D spatial organisation of gene-rich and gene-poor chromosomal regions relative to PML bodies. We find a highly non-random association of the gene-rich major histocompatibilty complex (MHC) on chromosome 6 with PML bodies. This association is specific for the centromeric end of the MHC and extends over a genomic region of at least 1.6 megabases. We also show that PML association is maintained when a subsection of this region is integrated into another chromosomal location. This is the first demonstration that PML bodies have specific chromosomal associations and supports a model for PML bodies as part of a functional nuclear compartment.
Collapse
Affiliation(s)
- C Shiels
- Human Cytogenetics Laboratory, Imperial Cancer Research Fund, London, WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|