101
|
Saalim M, Resham S, Manzoor S, Ahmad H, Jaleel S, Ashraf J, Imran M, Naseem S. IL-22: a promising candidate to inhibit viral-induced liver disease progression and hepatocellular carcinoma. Tumour Biol 2016; 37:105-14. [PMID: 26541758 DOI: 10.1007/s13277-015-4294-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a growing concern all over the world. With the number of patients rising exponentially with each passing day, HCC is a problem that needs immediate attention. Currently, available treatment strategies focus on controlling the damage after the development of HCC. The options available from chemo- and radio-embolization to surgical resection and transplantation are not efficacious as required due to the complex nature of the disease. Liver regeneration and tissue healing are the subject of great interest today. Interleukin-22 (IL-22) is a cytokine with the ability to regenerate and therefore reverse the injuries caused by a wide range of agents. IL-22 acts via STAT molecule and controls the activity of a wide variety of cell survival and proliferation genes. Experimental data has given a positive insight into the role of IL-22 in inhibition of viral and alcohol-induced hepatocellular carcinoma. A further insight into the nature of IL-22 and the factors that can be manipulated in controlling the activity of IL-22 can help to counter the menace caused by the devastating effects of HCC.
Collapse
Affiliation(s)
- Muhammad Saalim
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Saleha Resham
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Hassam Ahmad
- Hepatopancreatobiliary Liver Transplant Unit, Shaikh Zayd Hospital, Lahore, 54000, Punjab, Pakistan
| | - Shahla Jaleel
- Department of Histopathology, Shaikh Zayd Hospital, Lahore, 54000, Punjab, Pakistan
| | - Javed Ashraf
- Islam Dental College, Sialkot, 51310, Punjab, Pakistan
| | - Muhammad Imran
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sidrah Naseem
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| |
Collapse
|
102
|
Abstract
Liver cancer, primarily hepatocellular carcinoma (HCC), is a major cause of cancer-related death worldwide. HCC is a suitable model of inflammation-induced cancer because more than 90% of HCC cases are caused by liver damage and chronic inflammation. Several inflammatory response pathways, such as NF-κB and JAK/STAT3 signaling pathways, play roles in the crosstalk between inflammation and HCC. MicroRNAs (miRNAs) are evolutionarily conserved, short endogenous, non-coding single-stranded RNAs that are involved in various biological and pathological processes by regulating gene expression and protein translation. Evidence showed that miRNAs play a pivotal role in hepatitis virus infection and serve as promoters or inhibitors of inflammatory response. Aberrant miRNA was observed during liver inflammation and HCC. Many dysregulated miRNAs modulate the initiation and progression of inflammation-induced HCC. This review summarizes the role and functions of miRNAs in inflammation-associated HCC, as well as the designed therapeutics targeting miRNAs to treat liver inflammation and HCC.
Collapse
Affiliation(s)
- Lin Huan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin-Hui Liang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiang-Huo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
103
|
Wang M, Devarajan K, Singal AG, Marrero JA, Dai J, Feng Z, Rinaudo JAS, Srivastava S, Evans A, Hann HW, Lai Y, Yang H, Block TM, Mehta A. The Doylestown Algorithm: A Test to Improve the Performance of AFP in the Detection of Hepatocellular Carcinoma. Cancer Prev Res (Phila) 2015; 9:172-9. [PMID: 26712941 DOI: 10.1158/1940-6207.capr-15-0186] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023]
Abstract
Biomarkers for the early diagnosis of hepatocellular carcinoma (HCC) are needed to decrease mortality from this cancer. However, as new biomarkers have been slow to be brought to clinical practice, we have developed a diagnostic algorithm that utilizes commonly used clinical measurements in those at risk of developing HCC. Briefly, as α-fetoprotein (AFP) is routinely used, an algorithm that incorporated AFP values along with four other clinical factors was developed. Discovery analysis was performed on electronic data from patients who had liver disease (cirrhosis) alone or HCC in the background of cirrhosis. The discovery set consisted of 360 patients from two independent locations. A logistic regression algorithm was developed that incorporated log-transformed AFP values with age, gender, alkaline phosphatase, and alanine aminotransferase levels. We define this as the Doylestown algorithm. In the discovery set, the Doylestown algorithm improved the overall performance of AFP by 10%. In subsequent external validation in over 2,700 patients from three independent sites, the Doylestown algorithm improved detection of HCC as compared with AFP alone by 4% to 20%. In addition, at a fixed specificity of 95%, the Doylestown algorithm improved the detection of HCC as compared with AFP alone by 2% to 20%. In conclusion, the Doylestown algorithm consolidates clinical laboratory values, with age and gender, which are each individually associated with HCC risk, into a single value that can be used for HCC risk assessment. As such, it should be applicable and useful to the medical community that manages those at risk for developing HCC.
Collapse
Affiliation(s)
- Mengjun Wang
- Drexel University College of Medicine, Philadelphia, Pennsylvania. 19102
| | | | - Amit G Singal
- Division of Digestive and Liver Diseases, University of Texas Southwestern, Dallas, Texas
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, University of Texas Southwestern, Dallas, Texas
| | - Jianliang Dai
- Department of Biostatistics, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ziding Feng
- Department of Biostatistics, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jo Ann S Rinaudo
- Cancer Biomarkers Research Group, Division of Cancer Prevention, NCI, Bethesda, Maryland
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, NCI, Bethesda, Maryland
| | - Alison Evans
- Drexel University School of Public Health, Philadelphia, Pennsylvania
| | - Hie-Won Hann
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yinzhi Lai
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hushan Yang
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Anand Mehta
- Drexel University College of Medicine, Philadelphia, Pennsylvania. 19102.
| |
Collapse
|
104
|
Nguyen K, Jack K, Sun W. Hepatocellular Carcinoma: Past and Future of Molecular Target Therapy. Diseases 2015; 4:E1. [PMID: 28933381 PMCID: PMC5456309 DOI: 10.3390/diseases4010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/03/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer related mortality worldwide. The incidence of HCC has been increasing annually. Viral infection, alcohol usage, and other causes of cirrhosis have been identified as major risk factors for HCC development. The underlying pathogenesis has not been as well defined. There have been multiple hypotheses to the specific mechanisms of hepatocarcinogenesis and they share the common theme of chronic inflammation, increase oxidative stress, and genomic alteration. Therapeutic options of HCC have been primarily local and/or regional including transplantation, resection, and radial frequency ablation, chemoembolization or radio-embolization. For unresectable or metastatic disease, the options are limited. Conventional chemotherapeutic options have been noted to have limited benefit. Sorafenib has been the one and only systemic therapy which has demonstrated modest overall survival benefit. This has led to more extensive research with focus on targeted therapy. Numerous pre-clinical and early phase clinical studies have been noted but failed to show efficacy in later phase clinical trials. In an effort to identify new potential therapeutic options, new understanding of underlying pathways to hepatocarcinogenesis should be one of the main focuses. This leads to development of more molecularly targeted agents to specific pathways, and immunotherapy. This article provides a review of major studies of molecular targeted agents which attempts to target these specific pathways in HCC.
Collapse
Affiliation(s)
- Khanh Nguyen
- University of Pittsburgh Medical Center, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5150 Center Ave. 5th floor, Pittsburgh, PA 15232, USA.
| | - Kerri Jack
- University of Pittsburgh Medical Center, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5150 Center Ave. 5th floor, Pittsburgh, PA 15232, USA.
| | - Weijing Sun
- University of Pittsburgh Medical Center, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5150 Center Ave. 5th floor, Pittsburgh, PA 15232, USA.
| |
Collapse
|
105
|
Campanholo VMDLP, Silva RM, Silva TD, Neto RA, Paiotti APR, Ribeiro DA, Forones NM. Oral concentrated grape juice suppresses expression of NF-kappa B, TNF-α and iNOS in experimentally induced colorectal carcinogenesis in Wistar rats. Asian Pac J Cancer Prev 2015; 16:947-52. [PMID: 25735387 DOI: 10.7314/apjcp.2015.16.3.947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED The aim of this study was to evaluate the effects of grape juice on colon carcinogenesis induced by azoxymethane (AOM) and expression of NF-kB, iNOS and TNF- α. METHODS Forty male Wistar rats were divided into 7 groups: G1, control; G2, 15 mg/kg AOM; G3, 1% grape juice 2 weeks before AOM; G4, 2% grape juice 2 weeks before AOM; G5, 1% grape juice 4 weeks after AOM; G6, 2% grape juice 4 weeks after AOM; G7, 2% grape juice without AOM. Histological changes and aberrant crypt foci (ACF) were studied, while RNA expression of NF- kB, TNF- and iNOS was evaluated by qPCR. RESULTS The number of ACF was higher in G2, and G4 presented a smaller number of crypts per focus than G5 (p=0.009) and G6. Small ACF (1-3) were more frequent in G4 compared to G2, G5 and G6 (p=0.009, p=0.009 and p=0.041, respectively). RNA expression of NF-kB was lower in G3 and G4 compared to G2 (p=0.004 and p=0.002, respectively). A positive correlation was observed between TNF- α and NF-kB gene expression (p=0.002). In conclusion, the administration of 2% grape juice before AOM reduced the crypt multiplicity, attenuating carcinogenesis. Lower expression of NF-kB was observed in animals exposed to grape juice for a longer period of time, regardless of concentration.
Collapse
|
106
|
Wu YH, Ai X, Liu FY, Liang HF, Zhang BX, Chen XP. c-Jun N-terminal kinase inhibitor favors transforming growth factor-β to antagonize hepatitis B virus X protein-induced cell growth promotion in hepatocellular carcinoma. Mol Med Rep 2015; 13:1345-52. [PMID: 26648552 PMCID: PMC4732859 DOI: 10.3892/mmr.2015.4644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/02/2015] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor (TGF)-β induces cell growth arrest in well-differentiated hepatocellular carcinoma (HCC) while hepatitis B virus X protein (HBx) minimizes the tumor suppression of TGF-β signaling in early chronic hepatitis B. However, how to reverse the oncogenic effect of HBx and sustain the tumor-suppressive action of TGF-β has yet to be investigated. The present study examined the effect of TGF-β and a c-Jun N-terminal kinase (JNK) inhibitor on cell growth in HCC cells with forced expression of HBx. It was found that HBx promoted cell growth via activation of the JNK/pSMAD3L pathway and inhibition of the transforming growth factor-beta type I receptor (TβRI)/pSMAD3C pathway. pSMAD3L/SMAD4 and pSMAD3C/SMAD4 complexes antagonized each other to regulate c-Myc expression. In the absence of HBx, TGF-β induced cell growth arrest through activation of the TβRI/pSMAD3C pathway in well-differentiated HCC cells. In the presence of HBx, TGF-β had no effect on cell growth. JNK inhibitor SP600125 significantly reversed the oncogenic action of HBx and favored TGF-β to regain the ability to inhibit the cell growth in HBx-expressing well-differentiated HCC cells. In conclusion, targeting JNK signaling favors TGF-β to block HBx-induced cell growth promotion in well-differentiated HCC cells. As an adjunct to anti-viral therapy, the combination of TGF-β and inhibition of JNK signaling is a potential therapy for HBV-infected HCC.
Collapse
Affiliation(s)
- Yan-Hui Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xi Ai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fu-Yao Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
107
|
Tsai MC, Chen KD, Wang CC, Huang KT, Wu CH, Kuo IY, Chen LY, Hu TH, Goto S, Nakano T, Dorling A, McVey JH, Chen CL, Lin CC. Factor VII promotes hepatocellular carcinoma progression through ERK-TSC signaling. Cell Death Discov 2015; 1:15051. [PMID: 27551480 PMCID: PMC4993037 DOI: 10.1038/cddiscovery.2015.51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/17/2015] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated PAR2 starts upstreamed with tissue factor (TF) and factor VII (FVII), inhibited autophagy via mTOR signaling in HCC. However, the mechanism underlying for merging functions of PAR2 with the coagulation system in HCC progression remained unclear. The present study aimed to investigate the role of TF, FVII and PAR2 in tumor progression of HCC. The expressions of TF, FVII and PAR2 from HCC specimens were evaluated by immunohistochemical stains and western blotting. We found that the expression of FVII, but not TF and PAR2, directly related to the vascular invasion and the clinical staging. Importantly, a lower level of FVII expression was significantly associated with the longer disease-free survival. The addition of FVII but not TF induced the expression of PAR2 and phosphorylation of ERK1/2, whereas knockdown of FVII decreased PAR2 expression and ERK1/2 phosphorylation in HCC cell lines. Furthermore, levels of phosphor-TSC2 (Ser664) were increased after treatment with FVII and PAR2 agonist whereas these were significantly abolished in the presence of a potent and specific MEK/ERK inhibitor U0126. Moreover, mTOR knockdown highly reduced Hep3B migration, which could be reverted by FVII but not TF and PAR2. These results indicated that FVII/PAR2 signaling through MEK/ERK and TSC2 axis for mTOR activation has potent effects on the migration of HCC cells. In addition, FVII/PAR2 signaling elicits an mTOR-independent signaling, which promotes hepatoma cell migration in consistent with the clinical observations. Our study indicates that levels of FVII, but not TF, are associated with tumor migration and invasiveness in HCC, and provides clues that evaluation of FVII expression in HCC may be useful as a prognostic indicator in patients with HCC and may form an alternative target for further therapy.
Collapse
Affiliation(s)
- M-C Tsai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - K-D Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - C-C Wang
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - K-T Huang
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - C-H Wu
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - I-Y Kuo
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - L-Y Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - T-H Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - S Goto
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Fukuoka Institution of Occupational Health, Fukuoka, Japan
| | - T Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - A Dorling
- Division of Transplantation Immunology and Mucosal Biology, Guy's Hospital, King's College London, MRC Centre for Transplantation , London, UK
| | - J H McVey
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - C-L Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - C-C Lin
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| |
Collapse
|
108
|
Waller LP, Deshpande V, Pyrsopoulos N. Hepatocellular carcinoma: A comprehensive review. World J Hepatol 2015; 7:2648-2663. [PMID: 26609342 PMCID: PMC4651909 DOI: 10.4254/wjh.v7.i26.2648] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/30/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is rapidly becoming one of the most prevalent cancers worldwide. With a rising rate, it is a prominent source of mortality. Patients with advanced fibrosis, predominantly cirrhosis and hepatitis B are predisposed to developing HCC. Individuals with chronic hepatitis B and C infections are most commonly afflicted. Different therapeutic options, including liver resection, transplantation, systemic and local therapy, must be tailored to each patient. Liver transplantation offers leading results to achieve a cure. The Milan criteria is acknowledged as the model to classify the individuals that meet requirements to undergo transplantation. Mean survival remains suboptimal because of long waiting times and limited donor organ resources. Recent debates involve expansion of these criteria to create options for patients with HCC to increase overall survival.
Collapse
|
109
|
Lin G, Zhang K, Li J. Application of CRISPR/Cas9 Technology to HBV. Int J Mol Sci 2015; 16:26077-86. [PMID: 26540039 PMCID: PMC4661809 DOI: 10.3390/ijms161125950] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
More than 240 million people around the world are chronically infected with hepatitis B virus (HBV). Nucleos(t)ide analogs and interferon are the only two families of drugs to treat HBV currently. However, none of these anti-virals directly target the stable nuclear covalently closed circular DNA (cccDNA), which acts as a transcription template for viral mRNA and pre-genomic RNA synthesis and secures virus persistence. Thus, the fact that only a small number of patients treated achieve sustained viral response (SVR) or cure, highlights the need for new therapies against HBV. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system can specifically target the conserved regions of the HBV genome. This results in robust viral suppression and provides a promising tool for eradicating the virus. In this review, we discuss the function and application of the CRISPR/Cas9 system as a novel therapy for HBV.
Collapse
Affiliation(s)
- Guigao Lin
- National Center for Clinical Laboratories, Beijing Hospital, Beijing 100730, China.
| | - Kuo Zhang
- National Center for Clinical Laboratories, Beijing Hospital, Beijing 100730, China.
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, Beijing 100730, China.
| |
Collapse
|
110
|
Powers TW, Holst S, Wuhrer M, Mehta AS, Drake RR. Two-Dimensional N-Glycan Distribution Mapping of Hepatocellular Carcinoma Tissues by MALDI-Imaging Mass Spectrometry. Biomolecules 2015; 5:2554-72. [PMID: 26501333 PMCID: PMC4693247 DOI: 10.3390/biom5042554] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 01/28/2023] Open
Abstract
A new mass spectrometry imaging approach to simultaneously map the two-dimensional distribution of N-glycans in tissues has been recently developed. The method uses Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS) to spatially profile the location and distribution of multiple N-linked glycan species released by peptide N-glycosidase F in frozen or formalin-fixed tissues. Multiple formalin-fixed human hepatocellular carcinoma tissues were evaluated with this method, resulting in a panel of over 30 N-glycans detected. An ethylation reaction of extracted N-glycans released from adjacent slides was done to stabilize sialic acid containing glycans, and these structures were compared to N-glycans detected directly from tissue profiling. In addition, the distribution of singly fucosylated N-glycans detected in tumor tissue microarray cores were compared to the histochemistry staining pattern of a core fucose binding lectin. As this MALDI-IMS workflow has the potential to be applied to any formalin-fixed tissue block or tissue microarray, the advantages and limitations of the technique in context with other glycomic methods are also summarized.
Collapse
Affiliation(s)
- Thomas W Powers
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, The Netherlands.
- Division of BioAnalytical Chemistry, VU University, Amsterdam 1081HV, The Netherlands.
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam 1007MB, The Netherlands.
| | - Anand S Mehta
- Department of Microbiology and Immunology, College of Medicine, Drexel University, 2900 W. Queen Lane, Philadelphia, PA 19129, USA.
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
111
|
Lu Y, Zhu MY, Zhang XE, Li W, Dong X, Chen Y, Lin B, Guo JL, Li MS. Construction of a lentiviral expression vector of HBx and its stable expression in human Chang liver cell line. Shijie Huaren Xiaohua Zazhi 2015; 23:4482-4489. [DOI: 10.11569/wcjd.v23.i28.4482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a lentiviral expression vector carrying the hepatitis B virus x (HBx) gene and to test its expression in the human Chang liver cell line.
METHODS: The HBx gene was amplified from plasmid pcDNA3.1-HBx by PCR. The purified HBx gene fragment was inserted into the pEB-3xflag-GP-Puro lentiviral vector, and the inserted fragment was identified by PCR, restriction endonuclease digestion and DNA sequencing. The recombinant vector was then transfected into Chang liver cells. Puromycin was applied to screen stable cell clones, and the expression of HBx in Chang liver cells was examined by immunofluorescence and Western blot.
RESULTS: Restriction enzyme digestion and DNA sequencing showed that the HBx gene had been successfully subcloned into the pEB-3xflag-GP-Puro vector. The titer of purified recombinant lentivirus was 1 × 108 TU/mL. HBx was produced after transfection with the recombinant lentivirus vector and screening with puromycin. Stable expression of HBx protein was present in Chang liver-HBx cells.
CONCLUSION: The Chang liver-HBx cell line that can stably express the HBx gene has been successfully generated; this model cell may be applied to study the role of HBx in the malignant transformation of liver cells.
Collapse
|
112
|
Chitapanarux T, Phornphutkul K. Risk Factors for the Development of Hepatocellular Carcinoma in Thailand. J Clin Transl Hepatol 2015; 3:182-8. [PMID: 26623264 PMCID: PMC4663199 DOI: 10.14218/jcth.2015.00025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. The incidence of HCC is on the rise in Thailand, where it has become the most common malignancy in males and the third most common in females. Here, we review some of the risk factors that have contributed to this increase in HCC incidence in the Thai population. Hepatitis B virus (HBV) is the main etiologic risk factor for HCC, followed by hepatitis C virus (HCV). Patients with HBV genotype C have a higher positive rate of hepatitis B early antigen (HBeAg) and progress to cirrhosis and HCC earlier than genotype B. For HCV patients, 16% developed HCC associated cirrhosis by year 5 after diagnosis, and the cumulative risk for death from HCC at year 10 was 60%. Dietary exposure to the fungal hepatocarcinogen aflatoxin B1 has been shown to interact synergistically with HBV infection to increase the risk of early onset HCC. Chronic alcohol abuse remains an important risk factor for malignant transformation of hepatocytes, frequently in association with alcohol-induced cirrhosis. In recent years, obesity and metabolic syndrome have markedly increased the incidence of HCC and are important causes of HCC in some resource-rich regions.
Collapse
Affiliation(s)
- Taned Chitapanarux
- Division of Gastrohepatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Correspondence to: Taned Chitapanarux, Division of Gastrohepatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand. Tel: +66-53-945482, Fax: +66-53-945481, E-mail:
| | - Kannika Phornphutkul
- Division of Gastrohepatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Gastrohepatology unit, Rajavej Chiang Mai Hospital, Chiang Mai, Thailand
| |
Collapse
|
113
|
Li HG, Liu FF, Zhu HQ, Zhou X, Lu J, Chang H, Hu JH. Common Variants of the Prostaglandin-Endoperoxide Synthase 2 Gene and Hepatocellular Carcinoma Susceptibility. Medicine (Baltimore) 2015; 94:e1116. [PMID: 26334888 PMCID: PMC4616504 DOI: 10.1097/md.0000000000001116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease with substantial genetic constitution. Previous work has evaluated the effect of prostaglandin-endoperoxide synthase 2 (PTGS2) variants (-765G/C, -1195A/G, and +8473T/C) on the development of HCC, but the conclusions are inconsistent. We conducted a meta-analysis in this work. Data from 7 case-control studies were combined to assess the association between PTGS2 variants and HCC. The risk of HCC (OR and 95% CI) was estimated using either the fixed- or the random-effects model according to the Q test. No significant association was identified for -765G/C and +8473T/C. However, we identified a significantly decreased risk in relation to the GG genotype of -1195A/G (OR = 0.70, 95% CI = 0.50-0.98 for GG versus AA). We also observed a similar decrease (OR = 0.47, 95% CI = 0.23-0.95 for GG versus AA) in Caucasian samples. Variant -1195A/G in the promoter PTGS2 may protect against the malignant progression of HCC. This significant association suggests that -1195A/G could be used as a biomarker of HCC.
Collapse
Affiliation(s)
- Hong-Guang Li
- From the Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China (HGL, FFL, XZ, JL, HC); and Department of Gastroenterology Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250021, China (JHH)
| | | | | | | | | | | | | |
Collapse
|
114
|
Liu Q, Dai SJ, Li H, Dong L, Peng YP. Silencing of NUF2 inhibits tumor growth and induces apoptosis in human hepatocellular carcinomas. Asian Pac J Cancer Prev 2015; 15:8623-9. [PMID: 25374179 DOI: 10.7314/apjcp.2014.15.20.8623] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As an important component of the NDC80 kinetochore complex, NUF2 is essential for kinetochore-microtubule attachment and chromosome segregation. Previous studies also suggested its involvement in development of various kinds of human cancers, however, its expression and functions in human hepatocellular carcinoma (HCC) are still unclear. MATERIALS AND METHODS In the present study, we aimed to test the hypothesis that NUF2 is aberrant in human HCCs and associated with cell growth. RESULTS Our results showed significantly elevated expression of NUF2 in human HCC tissues compared to adjacent normal tissues, and high expression of NUF2 in HCC cell lines. Using lentivirus-mediated silencing of NUF2 in HepG2 human HCC cells, we found that NUF2 depletion markedly suppressed proliferation and colony formation capacity in vitro, and dramatically hampered tumor growth of xenografts in vivo. Moreover, NUF2 silencing could induce cell cycle arrest and trigger cell apoptosis. Additionally, altered levels of cell cycle and apoptosis related proteins including cyclin B1, Cdc25A, Cdc2, Bad and Bax were also observed. CONCLUSIONS In conclusion, these results demonstrate that NUF2 plays a critical role in the regulation of HCC cell proliferation and apoptosis, indicating that NUF2 may serve as a potential molecular target for therapeutic approaches.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Radiology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China E-mail :
| | | | | | | | | |
Collapse
|
115
|
Zheng H, Yang S, Yang Y, Yuan SX, Wu FQ, Wang LL, Yan HL, Sun SH, Zhou WP. Epigenetically silenced long noncoding-SRHC promotes proliferation of hepatocellular carcinoma. J Cancer Res Clin Oncol 2015; 141:1195-203. [PMID: 25512078 DOI: 10.1007/s00432-014-1871-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate the expression of SRHC and the role of SRHC in the pathogenesis of hepatocellular carcinoma (HCC). METHODS We analyzed HCC samples and matched non-tumor liver tissues (controls) collected from 81 patients who underwent hepatectomy in Shanghai, China. The expression levels of SRHC were determined by quantitative reverse-transcription polymerase chain reaction. Statistical analyses were used to associate the levels of SRHC with tumor features and patient outcomes. RESULTS We found that a lower SRHC expression level was significantly more frequent in tissues with a high serum a-fetoprotein level (positive, >20 µg/L, P = 0.004) and a low degree of differentiated tumors (poorly differentiated, P = 0.017). Furthermore, we found that the promoter region of SRHC contains a CpG-rich island and that SRHC is down-regulated in tumors by DNA methylation. CONCLUSION Here, we identified a new long noncoding RNA designated as SRHC that is capable of inhibiting cancer proliferation and is down-regulated in tumors at least partly by DNA methylation.
Collapse
Affiliation(s)
- Hao Zheng
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
García-Niño WR, Zazueta C. Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 2015; 97:84-103. [DOI: 10.1016/j.phrs.2015.04.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/23/2022]
|
117
|
Lamontagne J, Steel LF, Bouchard MJ. Hepatitis B virus and microRNAs: Complex interactions affecting hepatitis B virus replication and hepatitis B virus-associated diseases. World J Gastroenterol 2015; 21:7375-7399. [PMID: 26139985 PMCID: PMC4481434 DOI: 10.3748/wjg.v21.i24.7375] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/25/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) is the leading risk factor for the development of hepatocellular carcinoma (HCC). With nearly 750000 deaths yearly, hepatocellular carcinoma is the second highest cause of cancer-related death in the world. Unfortunately, the molecular mechanisms that contribute to the development of HBV-associated HCC remain incompletely understood. Recently, microRNAs (miRNAs), a family of small non-coding RNAs that play a role primarily in post-transcriptional gene regulation, have been recognized as important regulators of cellular homeostasis, and altered regulation of miRNA expression has been suggested to play a significant role in virus-associated diseases and the development of many cancers. With this in mind, many groups have begun to investigate the relationship between miRNAs and HBV replication and HBV-associated disease. Multiple findings suggest that some miRNAs, such as miR-122, and miR-125 and miR-199 family members, are playing a role in HBV replication and HBV-associated disease, including the development of HBV-associated HCC. In this review, we discuss the current state of our understanding of the relationship between HBV and miRNAs, including how HBV affects cellular miRNAs, how these miRNAs impact HBV replication, and the relationship between HBV-mediated miRNA regulation and HCC development. We also address the impact of challenges in studying HBV, such as the lack of an effective model system for infectivity and a reliance on transformed cell lines, on our understanding of the relationship between HBV and miRNAs, and propose potential applications of miRNA-related techniques that could enhance our understanding of the role miRNAs play in HBV replication and HBV-associated disease, ultimately leading to new therapeutic options and improved patient outcomes.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Hepatitis B virus/genetics
- Hepatitis B virus/growth & development
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Host-Pathogen Interactions
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/virology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Virus Replication
Collapse
|
118
|
Block TM, Rawat S, Brosgart CL. Chronic hepatitis B: A wave of new therapies on the horizon. Antiviral Res 2015; 121:69-81. [PMID: 26112647 DOI: 10.1016/j.antiviral.2015.06.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/21/2015] [Indexed: 02/07/2023]
Abstract
This year marks the 50th anniversary of the discovery of the Australia antigen (Blumberg et al., 1965), which in 1967 was identified to be the hepatitis B virus (HBV) surface antigen. Even though several antiviral medications have been in use for the management of chronic HBV infection for more than 20years, sustained clearance of HBsAg, similar to the sustained viral response (SVR) or cure in chronic hepatitis C, occurs in only a minority of treated patients. Moreover, even after 10years of effective suppression of HBV viremia with current therapy, there is only a 40-70% reduction in deaths from liver cancer. Recent success in developing antivirals for hepatitis C that are effective across all genotypes has renewed interest in a similar cure for chronic HBV infection. In this article, we review a wave of newly identified drug targets, investigational compounds and experimental strategies that are now under clinical evaluation or in preclinical development. The paper forms part of a symposium in Antiviral Research on "An unfinished story: From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."
Collapse
Affiliation(s)
- Timothy M Block
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| | - Siddhartha Rawat
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Carol L Brosgart
- University of California, San Francisco, School of Medicine, Departments of Medicine, Epidemiology and Biostatistics, USA
| |
Collapse
|
119
|
Huang P, Zhuang B, Zhang H, Yan H, Xiao Z, Li W, Zhang J, Tang Q, Hu K, Koeffler HP, Wang J, Yin D. Hepatitis B Virus X Protein (HBx) Is Responsible for Resistance to Targeted Therapies in Hepatocellular Carcinoma: Ex Vivo Culture Evidence. Clin Cancer Res 2015; 21:4420-30. [PMID: 26059188 DOI: 10.1158/1078-0432.ccr-14-2067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 05/19/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Molecular targeted therapy is an important approach for advanced hepatocellular carcinoma (HCC). Hepatitis B virus-related HCC (HBV-HCC) accounts for approximately 50% of all HCC cases. Bortezomib, a proteasome inhibitor (PI), is used extensively for the treatment of hematologic malignancies, but its application in HCC, particularly in HBV-HCC, has not been fully explored. EXPERIMENTAL DESIGN The effects of bortezomib on HCC tissues were evaluated by TUNEL assays. The growth inhibitory activity was measured using cell viability assays, and apoptosis was measured using flow cytometry. The levels of HBx, P-Raf/Raf, and P-Erk/Erk expression were measured by Western blot analysis. The ability of the MEK inhibitor PD98059 to enhance the cell killing activity of bortezomib was evaluated using ex vivo and in vivo methods. RESULTS The potency of bortezomib varied among HCC samples and cell lines, and HBV/HBx expression was associated with resistance to bortezomib. Bortezomib increased the levels of P-Raf and P-Erk in HBV/HBx-positive cells but not in HBV/HBx-negative HCC cells or in breast cancer or glioblastoma multiform cells. HBx was also upregulated after exposure to bortezomib, which was associated with the inhibition of proteasome activity. P-Erk upregulation mediated by bortezomib was effectively suppressed by the addition of the MEK inhibitor PD98059. Moreover, bortezomib and PD98059 synergistically inhibited HCC cell proliferation, as measured using both ex vivo and in vivo models. CONCLUSIONS Our studies demonstrate for the first time that HBx causes resistance to bortezomib in HCC, and this resistance can be antagonized by a MEK signaling inhibitor, providing a novel therapeutic approach.
Collapse
Affiliation(s)
- Pinbo Huang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Baoxiong Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heyun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haiyan Yan
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenbin Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qibin Tang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - H Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California. National University of Singapore (CSI, NCIS), Singapore, Singapore
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Dong Yin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
120
|
Modeling the effect of HIV coinfection on clearance and sustained virologic response during treatment for hepatitis C virus. Epidemics 2015; 12:1-10. [PMID: 26342237 DOI: 10.1016/j.epidem.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND HIV/hepatitis C (HCV) coinfection is a major concern in global health today. Each pathogen can exacerbate the effects of the other and affect treatment outcomes. Understanding the within-host dynamics of these coinfecting pathogens is crucial, particularly in light of new, direct-acting antiviral agents (DAAs) for HCV treatment that are becoming available. METHODS AND FINDINGS In this study, we construct a within-host mathematical model of HCV/HIV coinfection by adapting a previously published model of HCV monoinfection to include an immune system component in infection clearance. We explore the effect of HIV-coinfection on spontaneous HCV clearance and sustained virologic response (SVR) by building in decreased immune function with increased HIV viral load. Treatment is modeled by modifying HCV burst-size, and we use clinically-relevant parameter estimates. Our model replicates real-world patient outcomes; it outputs infected and uninfected target cell counts, and HCV viral load for varying treatment and coinfection scenarios. Increased HIV viral load and reduced CD4(+) count correlate with decreased spontaneous clearance and SVR chances. Treatment efficacy/duration combinations resulting in SVR are calculated for HIV-positive and negative patients, and crucially, we replicate the new findings that highly efficacious DAAs reduce treatment differences between HIV-positive and negative patients. However, we also find that if drug efficacy decays sufficiently over treatment course, SVR differences between HIV-positive and negative patients reappear. CONCLUSIONS Our model shows theoretical evidence of the differing outcomes of HCV infection in cases where the immune system is compromised by HIV. Understanding what controls these outcomes is especially important with the advent of efficacious but often prohibitively expensive DAAs. Using a model to predict patient response can lend insight into optimal treatment design, both in helping to identify patients who might respond well to treatment and in helping to identify treatment pathways and pitfalls.
Collapse
|
121
|
Wu G, Wang Y, Lu X, He H, Liu H, Meng X, Xia S, Zheng K, Liu B. Low mir-372 expression correlates with poor prognosis and tumor metastasis in hepatocellular carcinoma. BMC Cancer 2015; 15:182. [PMID: 25880458 PMCID: PMC4379970 DOI: 10.1186/s12885-015-1214-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 03/18/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent studies have shown that miR-372 plays important roles in hepatocellular carcinoma (HCC) progression. However, results have been conflicting regarding its expression levels and role in HCC. METHODS RT-PCR and in situ hybridization was used to evaluate miR-372 expression in HCC tissues and cell lines. The methylation status of neighboring CpG islands upstream of the miR-372 promoter was analyzed by methylation-specific PCR (MSP). Transfection of miR-372 mimic into HCC cell lines was used to evaluate cellular proliferation and invasion. Prognostic significance was analyzed by the Kaplan-Meier survival method and Cox regression. RESULTS miR-372 was expressed at lower levels in HCC tissues compared with controls and was related to tumor metastasis and poor prognosis. Hypermethylation of miR-372 was detected in HCC cell lines and tissues, and miR-372 expression was restored upon 5-aza-dCyd treatment. Upregulated expression by mir-372 mimic transfection inhibited proliferation and invasion capacity in HCC cells. CONCLUSIONS miR-372 may play an important role in hepatic carcinogenesis and may serve as a new target or method to detect and treat HCC in the future.
Collapse
Affiliation(s)
- Gang Wu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Yawei Wang
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Xiaojun Lu
- Department of General Surgery, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, China.
| | - Hui He
- Department of General Surgery, The First Hospital Affiliated to Dalian Medical University, Dalian, China.
| | - Haiyang Liu
- Department of General Surgery, The Fourth Hospital Affiliated to China Medical University, Shenyang, Liaoning, China.
| | - Xiangyu Meng
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Shuguan Xia
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Kunming Zheng
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Boqian Liu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
122
|
Liu H, Li W, Chen C, Pei Y, Long X. MiR-335 acts as a potential tumor suppressor miRNA via downregulating ROCK1 expression in hepatocellular carcinoma. Tumour Biol 2015; 36:6313-9. [PMID: 25804796 DOI: 10.1007/s13277-015-3317-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/08/2015] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence has suggested that dysregulation of microRNAs (miRNAs) could contribute to tumor progression. Previous miRNA microarray analysis illustrated that miR-335 is downregulated in various cancers; however, the role of miR-335 on hepatocellular carcinoma (HCC) has not been well elucidated. In this study, we investigated the biological functions and molecular mechanisms of miR-335 in human HCC in vitro, discussing whether it could be a therapeutic biomarker of HCC in the future. Four HCC cell lines and samples from 62 patients with HCC were analyzed for the expression of miR-335 by quantitative RT-PCR. Overexpression of miR-335 was established by transfecting mimics into HepG2 and HuH7 cells. Cell proliferation and cell migration were assessed by cell viability assay and transwell assay. Luciferase reporter assay and Western blot were to verify ROCK1 as a novel target gene of miR-335. We observed that miR-335 was downregulated in human HCC tissues and in all four HCC cell lines. The MTT assay revealed that overexpression of miR-335 subsequently inhibited cell growth. Furthermore, the transwell assay also showed significant cell migration inhibition in miR-335 transfectant. The expression of ROCK1 was decreased evidently after overexpression of miR-335, indicating that ROCK1 is a target gene for miR-335. Our data revealed that miR-335 could inhibit the proliferation and migration invasion of HCC cells via regulating ROCK1, suggesting that miR-335 could be a therapeutic biomarker of HCC in the future.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Xiangya Hospital, Central South University, No.87 Xiangya Road, 410008, Changsha, Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|
123
|
Wu Q, Qiao L, Yang J, Zhou Y, Liu Q. Stronger activation of SREBP-1a by nucleus-localized HBx. Biochem Biophys Res Commun 2015; 460:561-5. [PMID: 25800871 DOI: 10.1016/j.bbrc.2015.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
We previously showed that hepatitis B virus (HBV) X protein activates the sterol regulatory element-binding protein-1a (SREBP-1a). Here we examined the role of nuclear localization of HBx in this process. In comparison to the wild-type and cytoplasmic HBx, nuclear HBx had stronger effects on SREBP-1a and fatty acid synthase transcription activation, intracellular lipid accumulation and cell proliferation. Furthermore, nuclear HBx could activate HBV enhancer I/X promoter and was more effective on up-regulating HBV mRNA level in the context of HBV replication than the wild-type HBx, while the cytoplasmic HBx had no effect. Our results demonstrate the functional significance of the nucleus-localized HBx in regulating host lipogenic pathway and HBV replication.
Collapse
Affiliation(s)
- Qi Wu
- VIDO-InterVac, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Ling Qiao
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jian Yang
- Drug Discovery Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yan Zhou
- VIDO-InterVac, Veterinary Microbiology, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- VIDO-InterVac, Veterinary Microbiology, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
124
|
Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. NF-κB in cancer therapy. Arch Toxicol 2015; 89:711-31. [PMID: 25690730 DOI: 10.1007/s00204-015-1470-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor kappa B (NF-κB) has attracted increasing attention in the field of cancer research from last few decades. Aberrant activation of this transcription factor is frequently encountered in a variety of solid tumors and hematological malignancies. NF-κB family members and their regulated genes have been linked to malignant transformation, tumor cell proliferation, survival, angiogenesis, invasion/metastasis, and therapeutic resistance. In this review, we highlight the diverse molecular mechanism(s) by which the NF-κB pathway is constitutively activated in different types of human cancers, and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. Additionally, various pharmacological approaches employed to target the deregulated NF-κB signaling pathway, and their possible therapeutic potential in cancer therapy is also discussed briefly.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, Cancer Science Institute, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Nakaoka K, Hashimoto S, Kawabe N, Nitta Y, Murao M, Nakano T, Shimazaki H, Kan T, Takagawa Y, Ohki M, Kurashita T, Takamura T, Nishikawa T, Ichino N, Osakabe K, Yoshioka K. PNPLA3 I148M associations with liver carcinogenesis in Japanese chronic hepatitis C patients. SPRINGERPLUS 2015; 4:83. [PMID: 25713769 PMCID: PMC4334918 DOI: 10.1186/s40064-015-0870-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/03/2015] [Indexed: 12/15/2022]
Abstract
Aim To investigate associations between patatin-like phospholipase domain-containing 3 (PNPLA3) genotypes and fibrosis and hepatocarcinogenesis in Japanese chronic hepatitis C (CHC) patients. Methods Two hundred and thirty-one patients with CHC were examined for PNPLA3 genotypes, liver stiffness measurements (LSM), and hepatocellular carcinoma (HCC) from May 2010 to October 2012 at Fujita Health University Hospital. The rs738409 single nucleotide polymorphism (SNP) encoding for a functional PNPLA3 I148M protein variant was genotyped using a TaqMan predesigned SNP genotyping assay. LSM was determined as the velocity of a shear wave (Vs) with an acoustic radiation force impulse. Vs cut-off values for cirrhosis were set at 1.55 m/s. We excluded CHC patients with a sustained virological response or relapse after interferon treatment. Results PNPLA3 genotypes were CC, CG, and GG for 118, 72, and 41 patients, respectively. Multivariable logistic regression analysis selected older age (OR = 1.06; 95% CI: 1.03–1.09; p < 0.0001), higher body mass index (BMI) (OR= 1.12; 95% CI: 1.03–1.22; p = 0.0082), and PNPLA3 genotype GG (OR = 2.07; 95% CI: 0.97–4.42; p = 0.0599) as the factors independently associated with cirrhosis. When 137 patients without past history of interferon treatment were separately assessed, multivariable logistic regression analysis selected older age (OR = 1.05; 95% CI: 1.02–1.09; p = 0.0034), and PNPLA3 genotype GG (OR = 3.35; 95% CI: 1.13–9.91; p = 0.0291) as the factors independently associated with cirrhosis. Multivariable logistic regression analysis selected older age (OR = 1.12; 95% CI: 1.07–1.17; p < 0.0001), PNPLA3 genotype GG (OR = 2.62; 95% CI: 1.15–5.96; p = 0.0218), and male gender (OR = 1.83; 95% CI: 0.90–3.71); p = 0.0936) as the factors independently associated with HCC. Conclusion PNPLA3 genotype I148M is one of risk factors for developing HCC in Japanese CHC patients, and is one of risk factors for progress to cirrhosis in the patients without past history of interferon treatment.
Collapse
Affiliation(s)
- Kazunori Nakaoka
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Senju Hashimoto
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Naoto Kawabe
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Yoshifumi Nitta
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Michihito Murao
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Takuji Nakano
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Hiroaki Shimazaki
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Toshiki Kan
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Yuka Takagawa
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Masashi Ohki
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Takamitsu Kurashita
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Tomoki Takamura
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Toru Nishikawa
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| | - Naohiro Ichino
- Faculty of Medical Technology, School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Keisuke Osakabe
- Faculty of Medical Technology, School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Kentaro Yoshioka
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
126
|
Ringelhan M, O'Connor T, Protzer U, Heikenwalder M. The direct and indirect roles of HBV in liver cancer: prospective markers for HCC screening and potential therapeutic targets. J Pathol 2015; 235:355-67. [PMID: 25196558 DOI: 10.1002/path.4434] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains the number one risk factor for hepatocellular carcinoma (HCC), accounting for more than 600 000 deaths/year. Despite highly effective antiviral treatment options, chronic hepatitis B (CHB), subsequent end-stage liver disease and HCC development remain a major challenge worldwide. In CHB, liver damage is mainly caused by the influx of immune cells and destruction of infected hepatocytes, causing necro-inflammation. Treatment with nucleoside/nucleotide analogues can effectively suppress HBV replication in patients with CHB and thus decrease the risk for HCC development. Nevertheless, the risk of HCC in treated patients showing sufficient suppression of HBV DNA replication is significantly higher than in patients with inactive CHB, regardless of the presence of baseline liver cirrhosis, suggesting direct, long-lasting, predisposing effects of HBV. Direct oncogenic effects of HBV include integration in the host genome, leading to deletions, cis/trans-activation, translocations, the production of fusion transcripts and generalized genomic instability, as well as pleiotropic effects of viral transcripts (HBsAg and HBx). Analysis of these viral factors in active surveillance may allow early identification of high-risk patients, and their integration into a molecular classification of HCC subtypes might help in the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Marc Ringelhan
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; Second Medical Department, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; German Centre for Infection research (DZIF), Munich Partner Site, Germany
| | | | | | | |
Collapse
|
127
|
Abstract
Liver cancer is the fifth most common cancer, but the second leading cause of cancer death, in the world, with more than 700,000 fatalities annually. The major etiology of liver cancer is infection with an hepatotropic virus such as hepatitis B virus or hepatitis C virus infection. While chronic viral infection remains the main cause of liver disease and risk of hepatocellular carcinoma (HCC), rates of nonviral-associated HCC are occurring at an alarmingly increasing rate. Like many cancers, survival rates are closely associated with time of detection. If HCC is caught early, survival rates can be as high as 50%. Regrettably, most cases of HCC are caught late where survival rates can be as low as 2-7%. Thus, there has been great interest in discovering serum biomarkers that could be used to identify those with HCC. To this end, many groups have examined the N-linked glycans to identify changes that occur with HCC. As the liver secretes the vast majority of proteins into the serum, this has often been a starting point for study. In serum, alterations in core fucosylation, outer-arm fucosylation, increased sialylation, and glycan branching have been observed in patients with HCC. Similar findings have been found directly in HCC tissue suggesting that these glycan changes may play a role in tumor formation and development.
Collapse
Affiliation(s)
- Anand Mehta
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, USA
| | - Harmin Herrera
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, USA
| | - Timothy Block
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, USA
| |
Collapse
|
128
|
Zhuo H, Tang J, Lin Z, Jiang R, Zhang X, Ji J, Wang P, Sun B. The aberrant expression of MEG3 regulated by UHRF1 predicts the prognosis of hepatocellular carcinoma. Mol Carcinog 2015; 55:209-19. [PMID: 25641194 DOI: 10.1002/mc.22270] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/28/2014] [Accepted: 11/26/2014] [Indexed: 12/15/2022]
Abstract
MEG3 as a tumor suppressor has been reported to be linked with pathogenesis of malignancies including hepatocellular carcinoma (HCC). However, the mechanism of MEG3 in HCC still remains unclear. In our study, the aberrant decreased level of MEG3 in 72 tumor tissues obtained from HCC patients and cell lines was examined by using real-time PCR. The inhibition affection in proliferation and inducing affection in apoptosis was further confirmed in vivo and vitro, we also demonstrated that MEG3 regulates HCC cell proliferation and apoptosis partially via the accumulation of p53. Besides, the hypermethylation of MEG3 in promoter region was identified by bisulfite sequencing while MEG3 increased with the inhibition of methylation. Subsequently, UHRF1, a new identified oncogene which is required for DNA methylation and recruits, was investigated. A negative correlation of MEG3 and UHRF1 expression was verified in primary HCC tissues. Down-regulation of UHRF1 induced MEG3 expression in HCC cell lines, which could be reversed by the up-regulation of UHRF1. In addition, up-regulation of MEG3 in HCC cells partially diminished the promotion of proliferation induced by UHRF1. Moreover, Kaplan-Meier analysis demonstrated that the patients with low expression of MEG3 indicated worse overall and relapse-free survivals compared with high expression of MEG3. Cox proportional hazards analyses showed that MEG3 expression was an independent prognostic factor for HCC patients. In conclusion, we demonstrated MEG3, acting as a potential biomarker in predicting the prognosis of HCC, was regulated by UHRF1 via recruiting DNMT1 and regulated p53 expression.
Collapse
Affiliation(s)
- Han Zhuo
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Junwei Tang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Zhe Lin
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Runqiu Jiang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Xudong Zhang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Jie Ji
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Ping Wang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Beicheng Sun
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
129
|
Zhang Z, Yan Z, Yuan Z, Sun Y, He H, Mai C. SPHK1 inhibitor suppresses cell proliferation and invasion associated with the inhibition of NF-κB pathway in hepatocellular carcinoma. Tumour Biol 2014; 36:1503-9. [PMID: 25537088 DOI: 10.1007/s13277-014-2665-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/19/2014] [Indexed: 01/06/2023] Open
Abstract
Sphingosine kinase 1 (SphK1) is an oncogenic enzyme promoting transformation, proliferation, and angiogenesis of a number of human tumors. However, its effect on hepatocellular carcinoma (HCC) behavior has not been fully clarified. The purpose of this study was to determine the correlation between HCC and SphK1, and to evaluate the effect of SphK1 inhibitor N,N-dimethylsphingosine (DMS) in HCC. The expression of SphK1 was measured in tissue samples from 76 HCC and paired adjacent noncancerous liver tissues (NT) by immunohistochemistry, quantitative real-time PCR, and Western blotting analysis. The effect of DMS was tested on HCC cells by evaluating cell viability in vitro. Transwell cell migration and invasion assay were carried out for functional analysis. Furthermore, Western blotting analysis was performed to examine the impact of DMS on the PI3K/Akt/NF-kB signaling. High expression of Sphk1 was observed in 84.21% (64/76) of the HCC versus 15.79% (12/76) of the adjacent non-tumorous liver tissues; the difference of Sphk1 expression between HCC and the adjacent non-tumorous liver tissues was statistically significant (P < 0.001). The results were confirmed by Western blot analyses and quantitative real-time PCR. DMS inhibited the proliferation of SK-Hep1 and MHCCLM3 cells which have a relatively high level of SphK1 in a time- and concentration-dependent manner, and the invasion and migration of SK-Hep1 cells were distinctly suppressed after undergoing treatment with DMS. Furthermore, DMS markedly suppressed the expression of phosphorylations of Akt and NF-κB in HCC cells. Our data suggest that the pathogenesis of human HCC maybe mediated by Sphk1, and the specific Sphk1 inhibitor DMS can play a therapeutic role in the treatment of HCC and thus, Sphk1 could represent selective targets for the molecularly targeted treatments of HCC.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Pathology, Central Hospital of Nanyang, No. 312, Gongnong Road, Nanyang, 473009, China,
| | | | | | | | | | | |
Collapse
|
130
|
Zeng XC, Liu FQ, Yan R, Yi HM, Zhang T, Wang GY, Li Y, Jiang N. Downregulation of miR-610 promotes proliferation and tumorigenicity and activates Wnt/β-catenin signaling in human hepatocellular carcinoma. Mol Cancer 2014; 13:261. [PMID: 25491321 PMCID: PMC4295306 DOI: 10.1186/1476-4598-13-261] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Wnt/β-catenin signaling pathway plays important roles in human cancer progression. Better understanding the mechanism underlying regulation of Wnt/β-catenin signaling pathway might provide novel therapeutic targets for cancer treatment. METHODS miR-610 expression levels in hepatocellular carcinoma (HCC) cell lines, HCC tissues and 76 archived HCC specimens were determined using real-time PCR. Cell viability was measured by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. The level of DNA synthesis was determined by BrdU incorporation assay. Flow cytometry analysis was used to analyze cell cycle progression. The cells proliferation and tumorigenesis were determined by colony formation and anchorage-independent growth assays in vitro, and by xenograft tumors in vivo. Luciferase assay and micro-ribonucleoprotein complex immunoprecipitation assay were used to confirm the association of the targeted mRNAs with miR-610. RESULTS miR-610 was downregulated in human HCC cells and tissues, and correlated with HCC progression and patient survival. Inhibition of miR-610 promoted, but overexpression of miR-610 reduced, HCC cell proliferation and tumorigenicity both in vitro and in vivo. Furthermore, we found that inhibiting miR-610 activated, but overexpressing miR-610 decreased, the Wnt/β-catenin activity through directly suppressing lipoprotein receptor-related protein 6 (LRP6) and transducin β-like protein 1 (TBL1X). The in vitro analysis was consistent with the inverse correlation detected between miR-610 levels with expression of LRP6 and TBL1X in a cohort of human HCC samples. CONCLUSIONS Our results indicate that miR-610 downregulation plays essential roles in HCC progression and reduced miR-610 is correlated with Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nan Jiang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 310630, China.
| |
Collapse
|
131
|
Schottenfeld D, Beebe-Dimmer J. The cancer burden attributable to biologic agents. Ann Epidemiol 2014; 25:183-7. [PMID: 25523895 DOI: 10.1016/j.annepidem.2014.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/16/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE A review of cohort and case-control studies that attempt to quantify the proportion of cancer cases diagnosed in the United States and throughout the world that may be attributed to biologic or infectious agents. METHODS Epidemiologic studies published primarily since the year 2000 are summarized that estimate population attributable fractions based on consensus estimates of relative risk and of the exposure prevalence to putative oncogenic infectious agents in representative populations. RESULTS The proportion of incident cancers attributable to infectious agents diagnosed in low- and middle-income countries, comprising more than 80% of the world's population, has been estimated to vary from 20% to 30%, in contrast to a range of 5% or less to 10% in the United States and other highly industrialized populations. More than 90% of the global cancer cases attributed to infectious agents have been caused by hepatitis B virus, hepatitis C virus, human papillomaviruses, and the gram-negative bacterium, Helicobacter pylori. CONCLUSIONS Epidemiologic and pathologic studies that use molecular diagnostic probes and immunologic and biochemical assays have described the substantial impact of infectious agents on global cancer incidence. These compelling observations have stimulated the development of effective hepatitis B virus and human papillomavirus vaccines and the rationale for eradication of Helicobacter pylori.
Collapse
Affiliation(s)
- David Schottenfeld
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor.
| | - Jennifer Beebe-Dimmer
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI; Karmanos Cancer Institute, Detroit, MI
| |
Collapse
|
132
|
Wan LF, Zhao HB, Xue BY. Chronic liver inflammation and liver cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:4757-4761. [DOI: 10.11569/wcjd.v22.i31.4757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic hepadnavirus infection, alcohol abuse, nonalcoholic fatty liver disease and contact with chemical poisons can lead to chronic liver inflammation. Current studies suggest that chronic inflammation of the liver is an important factor contributing to the occurrence, development and prognosis of liver cancer. Liver cancer is highly malignant and has a poor prognosis and high incidence. For better tumor prevention and treatment, it is important to fully understand the relationship between chronic liver inflammation and liver cancer. In this paper, we review recent progress in understanding the relationship between chronic liver inflammation and liver cancer.
Collapse
|
133
|
Mizejewski GJ. Cancer during Pregnancy: What is the Role of Maternal Serum and Placental Biomarkers? A Review and Commentary. TUMORI JOURNAL 2014. [DOI: 10.1177/1778.19254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Gerald J Mizejewski
- Wadsworth Center, Division of Translational Medicine, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
134
|
Ning BF, Ding J, Liu J, Yin C, Xu WP, Cong WM, Zhang Q, Chen F, Han T, Deng X, Wang PQ, Jiang CF, Zhang JP, Zhang X, Wang HY, Xie WF. Hepatocyte nuclear factor 4α-nuclear factor-κB feedback circuit modulates liver cancer progression. Hepatology 2014; 60:1607-19. [PMID: 24752868 DOI: 10.1002/hep.27177] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Hepatocyte nuclear factor 4α (HNF4α) is a liver enriched transcription factor and is indispensable for liver development. However, the role of HNF4α in hepatocellular carcinoma (HCC) progression remains to be elucidated. We report that reduced HNF4α expression correlated well with the aggressive clinicopathological characteristics of HCC and predicted poor prognosis of patients. HNF4α levels were even lower in metastatic HCCs, and ectopic HNF4α expression suppressed the metastasis of hepatoma cells both in vitro and in vivo. Forced HNF4α expression attenuated the expression and nuclear translocation of RelA (p65) and impaired NF-κB activation through an IKK-independent mechanism. Blockage of RelA robustly attenuated the suppressive effect of HNF4α on hepatoma cell metastasis. MicroRNA (miR)-7 and miR-124 were transcriptionally up-regulated by HNF4α, which repressed RelA expression by way of interaction with RelA-3' untranslated region (UTR). In addition, nuclear factor kappa B (NF-κB) up-regulated the expression of miR-21 in hepatoma cells, resulting in decreased HNF4α levels through down-regulating HNF4α-3'UTR activity. CONCLUSIONS Collectively, an HNF4α-NF-κB feedback circuit including miR-124, miR-7, and miR-21 was identified in HCC, and the combination of HNF4α and NF-κB exhibited more powerful predictive efficiency of patient prognosis. These findings broaden the knowledge of hepatic inflammation and cancer initiation/progression, and also provide novel prognostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Bei-Fang Ning
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Superinfection with woodchuck hepatitis virus strain WHVNY of livers chronically infected with strain WHV7. J Virol 2014; 89:384-405. [PMID: 25320318 DOI: 10.1128/jvi.02361-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The determinants of the maintenance of chronic hepadnaviral infection are yet to be fully understood. A long-standing unresolved argument in the hepatitis B virus (HBV) research field suggests that during chronic hepadnaviral infection, cell-to-cell spread of hepadnavirus is at least very inefficient (if it occurs at all), virus superinfection is an unlikely event, and chronic hepadnavirus infection can be maintained exclusively via division of infected hepatocytes in the absence of virus spread. Superinfection exclusion was previously shown for duck HBV, but it was not demonstrated for HBV or HBV-related woodchuck hepatitis virus (WHV). Three woodchucks, which were chronically infected with the strain WHV7 and already developed WHV-induced hepatocellular carcinomas (HCCs), were superinfected with another WHV strain, WHVNY. Six weeks after the superinfection, the woodchucks were sacrificed and tissues of the livers and HCCs were examined. The WHVNY superinfection was demonstrated by using WHV strain-specific PCR assays and (i) finding WHVNY relaxed circular DNA in the serum samples collected from all superinfected animals during weeks one through six after the superinfection, (ii) detecting replication-derived WHVNY RNA in the tissue samples of the livers and HCCs collected from three superinfected woodchucks, and (iii) finding WHVNY DNA replication intermediates in tissues harvested after the superinfection. The results are consistent with the occurrence of continuous but inefficient hepadnavirus cell-to-cell spread and superinfection during chronic infection and suggest that the replication space occupied by the superinfecting hepadnavirus in chronically infected livers is limited. The findings are discussed in the context of the mechanism of chronic hepadnavirus infection. IMPORTANCE This study aimed to better understand the determinants of the maintenance of chronic hepadnavirus infection. The generated data suggest that in the livers chronically infected with woodchuck hepatitis virus, (i) hepadnavirus superinfection and cell-to-cell spread likely continue to occur and (ii) the virus spread is apparently inefficient, which is consistent with the interpretation that a limited number of cells in the livers facilitates the spread of hepadnavirus. The limitations of the cell-to-cell virus spread most likely are mediated at the level of the cells and do not reflect the properties of the virus. Our results further advance the understanding of the mechanism of chronic hepadnavirus infection. The significance of the continuous but limited hepadnavirus spread and superinfection for the maintenance of the chronic state of infection should be further evaluated in follow-up studies in order to determine whether blocking the virus spread would facilitate the suppression of chronic hepadnavirus infection.
Collapse
|
136
|
Wang J, Xu L, Zeng W, Hu P, Zeng M, Rabkin SD, Liu R. Treatment of human hepatocellular carcinoma by the oncolytic herpes simplex virus G47delta. Cancer Cell Int 2014; 14:83. [PMID: 25360068 PMCID: PMC4213511 DOI: 10.1186/s12935-014-0083-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 08/05/2014] [Indexed: 12/31/2022] Open
Abstract
Background Oncolytic herpes simplex virus (HSV) can replicate in and kill cancer cells while sparing the adjacent normal tissue. Hepatocellular carcinoma (HCC) is amongst the most common and lethal cancers, especially in Third World countries. In this study, the cytotoxicity of a third-generation oncolytic HSV, G47Δ, was investigated in different human HCC cell lines and in an immortalized human hepatic cell line. Additionally, subcutaneous models of HCC were established to evaluate the in vivo anti-tumor efficacy of G47Δ. Methods The HepG2, HepB, SMMC-7721, BEL-7404, and BEL-7405 human HCC cell lines and the HL-7702 human hepatic immortalized cell lines were infected with G47Δ at different multiplicities of infection (MOIs). The viability of infected cells was determined, and the G47Δ replication was identified by X-gal staining for LacZ expression. Two subcutaneous (s.c.) HCC tumor models of HCC were also established in Balb/c nude mice, which were intratumorally(i.t.) treated with either G47Δ or mock virus. Tumor volume and mouse survival times were documented. Results More than 95% of the HepG2, Hep3B,and SMMC-7721 HCC cells were killed on by day 5 after infection with a MOI’s of 0.01. For the HL-7702 human hepatic immortalized cells, 100% of the cells were killed on by day 5 after infection with a MOI’s of 0.01. The BEL-7404 HCC cell line was less susceptible with about 70% cells were killed by day 5 after infection with a MOI’s of 0.01. Whereas the BEL-7405 HCC cells were the least susceptible, with only 30% of the cells were killed. Both the SMMC-7721 and BEL-7404 cells form aggressive sc tumor models. G47Δ replicates in the tumors, such that most of the tumors regressed after the G47Δ-treatment, and treated tumor-bearing mice survived much longer than the control animals. Conclusions G47Δ effectively kills human HCC cells and an immortalized hepatic cell line at low MOI. Intra-tumor injection of G47Δ can induce a therapeutic effect and prolong the survival of treated mice bearing SMMC-7721 and BEL-7404 subcutaneously (s.c.) tumors. Thus, G47Δ may be useful as a novel therapeutic agent for HCC.
Collapse
Affiliation(s)
- Jiani Wang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, 510630 Guangzhou, China
| | - Lihua Xu
- Department of Oncology and Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weigen Zeng
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, 510630 Guangzhou, China ; Department of Colorectal Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, 100021 Beijing, China
| | - Pan Hu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, 510630 Guangzhou, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Renbin Liu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, 510630 Guangzhou, China
| |
Collapse
|
137
|
CAHECA: Computer Aided Hepatocellular Carcinoma therapy planning. Interdiscip Sci 2014; 6:222-34. [DOI: 10.1007/s12539-013-0204-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/27/2013] [Accepted: 10/28/2013] [Indexed: 10/24/2022]
|
138
|
Mathew S, Ali A, Abdel-Hafiz H, Fatima K, Suhail M, Archunan G, Begum N, Jahangir S, Ilyas M, Chaudhary AG, Al Qahtani M, Mohamad Bazarah S, Qadri I. Biomarkers for virus-induced hepatocellular carcinoma (HCC). INFECTION GENETICS AND EVOLUTION 2014; 26:327-39. [DOI: 10.1016/j.meegid.2014.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/14/2014] [Accepted: 06/14/2014] [Indexed: 02/07/2023]
|
139
|
Chu R, Mo G, Duan Z, Huang M, Chang J, Li X, Liu P. miRNAs affect the development of hepatocellular carcinoma via dysregulation of their biogenesis and expression. Cell Commun Signal 2014; 12:45. [PMID: 25012758 PMCID: PMC4117189 DOI: 10.1186/s12964-014-0045-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/24/2014] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is not fully understood, which has affected the early diagnosis and treatment of HCC and the survival time of patients. MicroRNAs (miRNAs) are a class of evolutionarily conserved small, non-coding RNAs, which regulate the expression of various genes post-transcriptionally. Emerging evidence indicates that the key enzymes involved in the miRNA biosynthesis pathway and some tumor-specific miRNAs are widely deregulated or upregulated in HCC and closely associated with the occurrence and development of various cancers, including HCC. Early studies have shown that miRNAs have critical roles in HCC progression by targeting many critical protein-coding genes, thereby contributing to the promotion of cell proliferation; the avoidance of apoptosis, inducing via angiogenesis; and the activation of invasion and metastasis pathways. Experimental data indicate that discovery of increasing numbers of aberrantly expressed miRNAs has opened up a new field for investigating the molecular mechanism of HCC progression. In this review, we describe the current knowledge about the roles and validated targets of miRNAs in the above pathways that are known to be hallmarks of HCC, and we also describe the influence of genetic variations in miRNA biosynthesis and genes.
Collapse
|
140
|
Sun Q, Wang R, Luo J, Wang P, Xiong S, Liu M, Cheng B. Notch1 promotes hepatitis B virus X protein-induced hepatocarcinogenesis via Wnt/β-catenin pathway. Int J Oncol 2014; 45:1638-48. [PMID: 25017705 DOI: 10.3892/ijo.2014.2537] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/24/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus X protein (HBx) is implicated in the pathogenesis of hepatocellular carcinoma (HCC) via a network of signaling pathways. Notch pathway is a major member of the network. Notch signaling may generate opposing effect in different steps of carcinogenesis, depending on the tumor cell type and the status of other signaling pathways, such as Wnt signaling pathway. Our previous studies have shown that activated Notch1 signaling is required for HBx to promote proliferation and survival of human hepatic cell line L02. However, the exact mechanisms remain vague. Here, we used L02/HBx cell lines as a cell model to study the relationship between Notch and Wnt/β-catenin pathways in promoting proliferation. We observed that activated Notch1 and Wnt/β-catenin signaling pathways and L02 cell malignant transformation were induced by HBx. Inhibition of the Notch1 pathway decreased the activation of Wnt/β-catenin pathway and cell proliferation, while inhibition of the Wnt/β-catenin pathway impaired cell proliferation, but did not significantly affect Notch1 signaling pathway in L02/HBx cells. Furthermore, inhibition of the Wnt/β-catenin pathway overcame the inhibition effect of knockdown Notch1 on proliferation and survival in L02/HBx cells. Additionally, the activity of Wnt/β-catenin signaling appears to be consistent with Fzd10 expression. Therefore, we demonstrate that Wnt signaling is downstream of the Notch pathway in regulating proliferation of L02/HBx cells, and which may be related to Fzd10 instead of Fzd7. These data suggest a new model of HBx-related HCC via cooperation between Wnt and Notch pathways.
Collapse
Affiliation(s)
- Qian Sun
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jing Luo
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Peng Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
141
|
Efficient induction of apoptosis by wee1 kinase inhibition in hepatocellular carcinoma cells. PLoS One 2014; 9:e100495. [PMID: 24960176 PMCID: PMC4069002 DOI: 10.1371/journal.pone.0100495] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) potently inhibits human hepatocellular carcinoma (HCC) cell growth. Here we demonstrated that TGF-β1-induced apoptosis is mediated by decreased phosphorylation of cdc2 at Tyr15 accompanied by down-regulation of Wee1 kinase expression. As expected from these results, a Wee1 kinase inhibitor efficiently induced apoptosis in HCC cells in the absence of TGF-β1 treatment. In surgically resected samples, Wee1 kinase was expressed in moderately to poorly differentiated HCC, whereas no Wee1 kinase expression was observed in non-cancerous tissue, including cirrhotic tissue. Our results suggest that Wee1 kinase inhibitors may be a practical novel therapeutic option against advanced HCC.
Collapse
|
142
|
Evaluation of α-fetoprotein-L3 and Golgi protein 73 detection in diagnosis of hepatocellular carcinoma. Contemp Oncol (Pozn) 2014; 18:192-6. [PMID: 25520580 PMCID: PMC4268990 DOI: 10.5114/wo.2014.43157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/19/2013] [Accepted: 08/29/2013] [Indexed: 12/13/2022] Open
Abstract
Aim of the study Hepatocellular carcinoma (HCC) is common throughout the world. Most HCCs are diagnosed at an advanced stage. There is an urgent need to find new methods for screening and surveillance of individuals at risk for HCC. The aim of this study was to evaluate serum α-fetoprotein (AFP)-L3 and serum Golgi protein 73 (GP73) detection in diagnosis of HCC with different AFP concentration. Material and methods One hundred and eighty one patients were involved, including 102 with HCC and 79 with benign liver disease. The serum AFP-L3 and GP73 was measured by a liquid-phase binding assay and quantitative enzyme-linked immunosorbent assay, respectively. Results Of the 102 HCC patients, 53 were positive for AFP, 77 were positive for AFP-L3, and 79 were positive for GP73. The maximum area under the curve for AFP-L3% and for GP73 was significantly different from the AUC of 0.5525 for total AFP (p < 0.01). AFP-L3% was not detected for AFP < 20 ng/ml. However, elevated GP73 was detected in 87.50% of the patients. In the HCC patients with total AFP 20–400 ng/ml, elevated AFP-L3 was detected in 26 patients, whereas in 23 patients elevated GP73 could be detected. In the HCC patients with a total AFP > 400 ng/ml, AFP-L3% > 10% was present in 96.23%, and GP73 was detected in 87.50%. Conclusions The determination of AFP-L3% and GP73 in combination with AFP can increase the sensitivity and specificity in diagnosis of HCC. α-fetoprotein-L3% and GP73, in combination with AFP, are useful biomarkers to confirm the diagnosis of HCC.
Collapse
|
143
|
Coactivation of the PI3K/Akt and ERK signaling pathways in PCB153-induced NF-κB activation and caspase inhibition. Toxicol Appl Pharmacol 2014; 277:270-8. [DOI: 10.1016/j.taap.2014.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
|
144
|
Panebianco C, Saracino C, Pazienza V. Epithelial-mesenchymal transition: molecular pathways of hepatitis viruses-induced hepatocellular carcinoma progression. Tumour Biol 2014; 35:7307-15. [PMID: 24833096 DOI: 10.1007/s13277-014-2075-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/07/2014] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma is the fifth most common tumor and the third cause of death for cancer in the world. Among the main causative agents of this tumor is the chronic infection by hepatitis viruses B and C, which establish a context of chronic inflammation degenerating in fibrosis, cirrhosis, and, finally, cancer. Recent findings, however, indicate that hepatitis viruses are not only responsible for cancer onset but also for its progression towards metastasis. Indeed, they are able to promote epithelial-mesenchymal transition, a process of cellular reprogramming underlying tumor spread. In this manuscript, we review the currently known molecular mechanisms by which hepatitis viruses induce epithelial-mesenchymal transition and, thus, hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione "Casa Sollievo della Sofferenza" IRCCS Hospital, San Giovanni Rotondo, FG, Italy
| | | | | |
Collapse
|
145
|
Hackl C, Schlitt HJ, Kirchner GI, Knoppke B, Loss M. Liver transplantation for malignancy: Current treatment strategies and future perspectives. World J Gastroenterol 2014; 20:5331-5344. [PMID: 24833863 PMCID: PMC4017048 DOI: 10.3748/wjg.v20.i18.5331] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/31/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023] Open
Abstract
In 1967, Starzl et al performed the first successful liver transplantation for a patient diagnosed with hepatoblastoma. In the following, liver transplantation was considered ideal for complete tumor resection and potential cure from primary hepatic malignancies. Several reports of liver transplantation for primary and metastatic liver cancer however showed disappointing results and the strategy was soon dismissed. In 1996, Mazzaferro et al introduced the Milan criteria, offering liver transplantation to patients diagnosed with limited hepatocellular carcinoma. Since then, liver transplantation for malignant disease is an ongoing subject of preclinical and clinical research. In this context, several aspects must be considered: (1) Given the shortage of deceased-donor organs, long-term overall and disease free survival should be comparable with results obtained in patients transplanted for non-malignant disease; (2) In this regard, living-donor liver transplantation may in selected patients help to solve the ethical dilemma of optimal individual patient treatment vs organ allocation justice; and (3) Ongoing research focusing on perioperative therapy and anti-proliferative immunosuppressive regimens may further reduce tumor recurrence in patients transplanted for malignant disease and thus improve overall survival. The present review gives an overview of current indications and future perspectives of liver transplantation for malignant disease.
Collapse
|
146
|
Iannelli F, Collino A, Sinha S, Radaelli E, Nicoli P, D'Antiga L, Sonzogni A, Faivre J, Buendia MA, Sturm E, Thompson RJ, Knisely AS, Natoli G, Ghisletti S, Ciccarelli FD. Massive gene amplification drives paediatric hepatocellular carcinoma caused by bile salt export pump deficiency. Nat Commun 2014; 5:3850. [PMID: 24819516 DOI: 10.1038/ncomms4850] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is almost invariably associated with an underlying inflammatory state, whose direct contribution to the acquisition of critical genomic changes is unclear. Here we map acquired genomic alterations in human and mouse HCCs induced by defects in hepatocyte biliary transporters, which expose hepatocytes to bile salts and cause chronic inflammation that develops into cancer. In both human and mouse cancer genomes, we find few somatic point mutations with no impairment of cancer genes, but massive gene amplification and rearrangements. This genomic landscape differs from that of virus- and alcohol-associated liver cancer. Copy-number gains preferentially occur at late stages of cancer development and frequently target the MAPK signalling pathway, and in particular direct regulators of JNK. The pharmacological inhibition of JNK retards cancer progression in the mouse. Our study demonstrates that intrahepatic cholestasis leading to hepatocyte exposure to bile acids and inflammation promotes cancer through genomic modifications that can be distinguished from those determined by other aetiological factors.
Collapse
Affiliation(s)
- Fabio Iannelli
- 1] European Institute of Oncology (IEO), Department of Experimental Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy [2]
| | - Agnese Collino
- 1] European Institute of Oncology (IEO), Department of Experimental Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy [2]
| | - Shruti Sinha
- 1] European Institute of Oncology (IEO), Department of Experimental Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy [2] Division of Cancer Studies, King's College London, London SE1 1UL, UK [3]
| | - Enrico Radaelli
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, O&N4 Herestraat 49 box 602, B-3000 Leuven, Belgium
| | - Paola Nicoli
- European Institute of Oncology (IEO), Department of Experimental Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Lorenzo D'Antiga
- Paediatric Hepatology, Gastroenterology and Transplantation, Ospedale Papa Giovanni XXIII, Piazza OMS - Organizzazione Mondiale della Sanità 1, 24128 Bergamo, Italy
| | - Aurelio Sonzogni
- Department of Pathology, Ospedale Papa Giovanni XXIII, Piazza OMS - Organizzazione Mondiale della Sanità 1, 24128 Bergamo, Italy
| | - Jamila Faivre
- Institut National de la Santé et de la Recherche Médicale (INSERM) U785, University Paris-Sud, France, Centre Hépatobiliaire, Hôpital Paul Brousse, Villejuif F94800, France
| | - Marie Annick Buendia
- Institut National de la Santé et de la Recherche Médicale (INSERM) U785, University Paris-Sud, France, Centre Hépatobiliaire, Hôpital Paul Brousse, Villejuif F94800, France
| | - Ekkehard Sturm
- University Hospital for Children and Adolescents, University of Tuebingen, 72076 Tuebingen, Germany
| | | | - A S Knisely
- Institute of Liver Studies, King's College Hospital, London SE5 9RS, UK
| | - Gioacchino Natoli
- European Institute of Oncology (IEO), Department of Experimental Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Serena Ghisletti
- European Institute of Oncology (IEO), Department of Experimental Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Francesca D Ciccarelli
- 1] European Institute of Oncology (IEO), Department of Experimental Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy [2] Division of Cancer Studies, King's College London, London SE1 1UL, UK
| |
Collapse
|
147
|
Zhang K, Jiang L, He R, Li BL, Jia Z, Huang RH, Mu Y. Prognostic value of CYP2W1 expression in patients with human hepatocellular carcinoma. Tumour Biol 2014; 35:7669-73. [PMID: 24801906 DOI: 10.1007/s13277-014-2023-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 04/27/2014] [Indexed: 12/21/2022] Open
Abstract
CYP2W1 overexpression has been reported in a variety of human cancers. However, the role of CYP2W1 in hepatocellular carcinoma (HCC) remains unclear. This study was designed to evaluate the expression and prognostic significance of CYP2W1 in human HCC. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was conducted to detect CYP2W1 messenger RNA (mRNA) expression in 41 pairs of fresh-frozen HCC tissues and adjacent noncancerous tissues. In addition, CYP2W1 expression was analyzed by immunohistochemistry in 133 clinicopathologically characterized HCC cases. The relationship between CYP2W1 expression and clinicopathological features was analyzed by appropriate statistics. Kaplan-Meier analysis and Cox proportional hazards regression models were used to investigate the correlation between CYP2W1 expression and prognosis of HCC patients. The relative mRNA expression of CYP2W1 was significantly higher in HCC tissues than in adjacent noncancerous tissues (P < 0.001). In addition, CYP2W1 expression was significantly correlated with tumor size (P = 0.023), histological differentiation (P = 0.04), and tumor stage (P = 0.014). The Kaplan-Meier survival curves indicated that patients with high expression of CYP2W1 had shorter overall survival than those with low expression (P < 0.001). Furthermore, Cox regression analyses showed that CYP2W1 expression was an independent predictor of overall survival. Our data suggest that CYP2W1 could play an important role in HCC and might serve as a valuable prognostic marker and potential target for gene therapy in the treatment of HCC.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Hepatobiliary Surgery, Beijing Ditan Hospital, Capital Medical University, No. 8 Jingshun East Street, Beijing, 100015, China
| | | | | | | | | | | | | |
Collapse
|
148
|
Wu G, Lu X, Wang Y, He H, Meng X, Xia S, Zhen K, Liu Y. Epigenetic high regulation of ATAD2 regulates the Hh pathway in human hepatocellular carcinoma. Int J Oncol 2014; 45:351-61. [PMID: 24805933 DOI: 10.3892/ijo.2014.2416] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022] Open
Abstract
ATAD2 is associated with many cellular progresses such as cell growth, differentiation and apoptosis. Some studies suggest ATAD2 is highly expressed in cancer cells. In our previous studies, we found that ATAD2 is highly expressed in HCC tissues, compared with adjacent normal tissues, and patients with high expression of ATAD2 had a poorer prognosis. Moreover, we found mir-372 can regulate the expression of ATAD2 in HCC cell lines. We also detected a relationship between the mRNA expression of ATAD2 and Ptch1 by gene microarray. Here, we completed the function studies of ATAD2 in vivo and in vitro, and tested whether ATAD2 could regulate the Hh pathway. ATAD2 and Hh pathway protein expressions in 80 HCC specimens were examined by immunohistochemistry (IHC). The mRNA expression of ATAD2 and Hh pathway members in paired-HCC tissues and cell lines were, respectively, analyzed using quantitative PCR. ATAD2‑RNAi was transduced into HCCLM3 and Huh7 cells, using a lentiviral vector. The effect of ATAD2 in HCC cell lines on cell cycle and apoptosis were evaluated by flow cytometry. Tumorigenicity experiments in nude mice were performed to test the function of ATAD2 in vivo. Pharmacological regulation of Hh signaling was performed to test the relation between the ATAD2 and Hh pathways and C-myc. We found that ATAD2 and Ptch1 were both highly expressed in HCC tissues, compared with paired normal hepatic tissues. In addition, we found that ATAD2 could affect the expression of the Hh pathway by PCR and western blot anaysis in HCC cell lines, by observing the outcome before and after transfection. We speculate that ATAD2 cooperates with the MYC gene to regulate the expression of SMO and Gli, activating the Hh pathway and inducing an active feedback of the Hh pathway.
Collapse
Affiliation(s)
- Gang Wu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojun Lu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yawei Wang
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hui He
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiangyu Meng
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuguan Xia
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Kunming Zhen
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yongfeng Liu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
149
|
Wang YZ, Zhu Z, Zhang HY, Zhu MZ, Xu X, Chen CH, Liu LG. Detection of hepatitis B virus A1762T/G1764A mutant by amplification refractory mutation system. Braz J Infect Dis 2014; 18:261-5. [PMID: 24389280 PMCID: PMC9427444 DOI: 10.1016/j.bjid.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/03/2013] [Accepted: 09/11/2013] [Indexed: 01/25/2023] Open
Affiliation(s)
- Yong-Zhong Wang
- Institute for the Study of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Zhen Zhu
- Institute for the Study of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Hong-Yu Zhang
- Institute for the Study of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Min-Zhi Zhu
- Institute for the Study of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Xin Xu
- Institute for the Study of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Chun-Hua Chen
- Institute for the Study of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Long-Gen Liu
- Institute for the Study of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, China.
| |
Collapse
|
150
|
Zhang F, Fan YC, Mu NN, Zhao J, Sun FK, Zhao ZH, Gao S, Wang K. Exportin 4 gene expression and DNA promoter methylation status in chronic hepatitis B virus infection. J Viral Hepat 2014; 21:241-50. [PMID: 24597692 DOI: 10.1111/jvh.12136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/30/2013] [Indexed: 02/04/2023]
Abstract
Exportin 4 (XPO4) is a novel identified candidate tumour-suppressor gene involved in the pathogenesis of hepatocellular carcinoma (HCC). This study was aimed to determine the clinical features of XPO4 mRNA expression and promoter methylation status in peripheral blood mononuclear cells (PBMCs) of patients with chronic hepatitis B virus (HBV) infection. PBMCs were isolated from 44 HCC, 38 liver cirrhosis (LC), 34 chronic hepatitis B (CHB) patients and 17 healthy controls (HCs). The mRNA level and promoter methylation status of XPO4 were determined by quantitative real-time RT-PCR and methylation-specific PCR, respectively. XPO4 mRNA level of HCC patients was significantly lower compared with LC and CHB patients as well as HCs (all P < 0.01, respectively), and significant differences of the XPO4 mRNA level were found in LC and CHB group than in HCs (LC vs HCs, P < 0.01; CHB vs HCs, P < 0.05). Methylation rate of XPO4 promoter was significantly increased in patients with HCC than in patients with CHB and HCs (both P < 0.05). DNA methylation pattern was responsible for the suppression of XPO4 transcription in the progression of HBV infection (P = 0.000). Furthermore, AFP level was significantly higher in HCC patients with XPO4 methylation than in those without methylation ((8702 ± 15635) μm vs (1052 ± 5370) μm, P < 0.05). In conclusion, transcription of XPO4 gene was gradually decreased and methylation rate of XPO4 promoter was increased with the progression of HBV infection. Methylation status of XPO4 in PBMCs tended to be a noninvasive biomarker to predict HCC and the progression of HBV infection.
Collapse
Affiliation(s)
- F Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|