101
|
Fan Z, Li Y, Zhao Q, Fan L, Tan B, Zuo J, Hua K, Ji Q. Highly Expressed Granulocyte Colony-Stimulating Factor (G-CSF) and Granulocyte Colony-Stimulating Factor Receptor (G-CSFR) in Human Gastric Cancer Leads to Poor Survival. Med Sci Monit 2018; 24:1701-1711. [PMID: 29567938 PMCID: PMC5880331 DOI: 10.12659/msm.909128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Chemotherapy for advanced gastric cancer (GC) patients has been the mainstay of therapy for many years. Although adding anti-angiogenic drugs to chemotherapy improves patient survival slightly, identifying anti-angiogenic therapy-sensitive patients remains challenging for oncologists. Granulocyte colony-stimulating factor (G-CSF) promotes tumor growth and angiogenesis, which can be minimized with the anti-G-CSF antibody. Thus, G-CSF might be a potential tumor marker. However, the effects of G-CSF and G-CSFR expression on GC patient survival remain unclear. Material/Methods Seventy GC tissue samples were collected for G-CSF and G-CSFR detection by immunohistochemistry. A total of 40 paired GC tissues and matched adjacent mucosa were used to measure the G-CSF and G-CSFR levels by ELISA. Correlations between G-CSF/G-CSFR and clinical characteristics, VEGF-A levels and overall survival were analyzed. Biological function and underlying mechanistic investigations were carried out using SGC7901 cell lines, and the effects of G-CSF on tumor proliferation, migration, and tube formation were examined. Results The levels of G-CSFR were upregulated in GC tissues compared to normal mucosa tissues. Higher G-CSF expression was associated with later tumor stages and higher tumor VEGF-A and serum CA724 levels, whereas higher G-CSFR expression was associated with lymph node metastasis. Patients with higher G-CSF expression had shorter overall survival times. In vitro, G-CSF stimulated SGC7901 proliferation and migration through the JAK2/STAT3 pathway and accelerated HUVEC tube formation. Conclusions These data suggest that increased G-CSF and G-CSFR in tumors leads to unfavorable outcomes for GC patients by stimulating tumor proliferation, migration, and angiogenesis, indicating that these factors are potential tumor targets for cancer treatment.
Collapse
Affiliation(s)
- Zhisong Fan
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yong Li
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Qun Zhao
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Liqiao Fan
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Bibo Tan
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Jing Zuo
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Kelei Hua
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Qiang Ji
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
102
|
Lecavalier-Barsoum M, Chaudary N, Han K, Koritzinsky M, Hill R, Milosevic M. Targeting the CXCL12/CXCR4 pathway and myeloid cells to improve radiation treatment of locally advanced cervical cancer. Int J Cancer 2018; 143:1017-1028. [PMID: 29417588 DOI: 10.1002/ijc.31297] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/10/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022]
Abstract
Cervical cancer is the fourth most commonly diagnosed cancer and the fourth leading cause of cancer death in women worldwide. Approximately half of cervical cancer patients present with locally advanced disease, for which surgery is not an option. These cases are nonetheless potentially curable with radiotherapy and cisplatin chemotherapy. Unfortunately, some tumours are resistant to treatment, and lymph node and distant recurrences are major problems in patients with advanced disease at diagnosis. New targeted treatments that can overcome treatment resistance and reduce metastases are urgently needed. The CXCL12/CXCR4 chemokine pathway is ubiquitously expressed in many normal tissues and cancers, including cervical cancer. Emerging evidence indicates that it plays a central role in cervical cancer pathogenesis, malignant progression, the development of metastases and radiation treatment response. Pre-clinical studies of standard-of-care fractionated radiotherapy and concurrent weekly cisplatin plus the CXCR4 inhibitor Plerixafor (AMD3100) in patient-derived orthotopic cervical cancer xenografts have shown improved primary tumour response and reduced lymph node metastases with no increase in early or late side effects. These studies have pointed the way forward to future clinical trials of radiotherapy/cisplatin plus Plerixafor or other newly emerging CXCL12 or CXCR4 inhibitors in women with cervical cancer.
Collapse
Affiliation(s)
- Magali Lecavalier-Barsoum
- Department of Oncology, Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, Canada
| | - Naz Chaudary
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Canada
| | - Kathy Han
- Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Richard Hill
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Canada.,Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael Milosevic
- Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
103
|
Hoshimoto S, Hoshi N, Ozawa I, Tomikawa M, Shirakawa H, Fujita T, Wakamatsu S, Hoshi S, Hirabayashi K, Hishinuma S, Ogata Y. Rapid progression of a granulocyte colony-stimulating factor-producing liver tumor metastasized from esophagogastric junction cancer: A case report and literature review. Oncol Lett 2018; 15:6475-6480. [PMID: 29725401 DOI: 10.3892/ol.2018.8144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/22/2018] [Indexed: 12/22/2022] Open
Abstract
The current study presents the case of a 72-year-old woman with a rapidly enlarged liver metastasis from esophagogastric junction (EGJ) cancer, accompanied by progressive leukocytosis (47,680/µl) and elevated serum granulocyte colony-stimulating factor (G-CSF; 779 pg/ml). The patient underwent right hemihepatectomy 26 months after a total gastrectomy. On the seventh post-operative day the patient's leukocyte count and serum G-CSF level decreased to 4,280/µl and ≤19.5 pg/ml, respectively. Histologically, the lesion was a well to moderately differentiated adenocarcinoma similar to the primary lesion. Therefore, this tumor was clinically diagnosed as a G-CSF-producing liver metastasis from EGJ cancer, although immunohistochemical staining for G-CSF was negative. A right pulmonary nodule detected simultaneously with the hepatic mass was resected four months following the hepatectomy and was diagnosed as a pulmonary metastasis. The patient's leukocyte count was normal at the time of her initial surgery for EGJ cancer, and her clinical course varied for different metastatic sites. The liver metastasis was accompanied by progressive leukocytosis and elevated serum G-CSF and demonstrated rapid tumor growth during a six-month period, whereas the non-G-CSF-producing pulmonary metastasis grew slowly during the same period. In addition 21 reported cases of G-CSF-producing upper gastrointestinal tract cancer were reviewed to elucidate the clinicopathological features of this disease.
Collapse
Affiliation(s)
- Sojun Hoshimoto
- Department of Digestive Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Nobuo Hoshi
- Department of Pathology, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Iwao Ozawa
- Department of Digestive Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Moriaki Tomikawa
- Department of Digestive Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Hirofumi Shirakawa
- Department of Digestive Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Takeshi Fujita
- Department of Digestive Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Saho Wakamatsu
- Department of Pathology, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Sayuri Hoshi
- Department of Pathology, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Kaoru Hirabayashi
- Department of Pathology, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Shoichi Hishinuma
- Department of Digestive Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Yoshiro Ogata
- Department of Digestive Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| |
Collapse
|
104
|
Gillessen S, Attard G, Beer TM, Beltran H, Bossi A, Bristow R, Carver B, Castellano D, Chung BH, Clarke N, Daugaard G, Davis ID, de Bono J, Borges Dos Reis R, Drake CG, Eeles R, Efstathiou E, Evans CP, Fanti S, Feng F, Fizazi K, Frydenberg M, Gleave M, Halabi S, Heidenreich A, Higano CS, James N, Kantoff P, Kellokumpu-Lehtinen PL, Khauli RB, Kramer G, Logothetis C, Maluf F, Morgans AK, Morris MJ, Mottet N, Murthy V, Oh W, Ost P, Padhani AR, Parker C, Pritchard CC, Roach M, Rubin MA, Ryan C, Saad F, Sartor O, Scher H, Sella A, Shore N, Smith M, Soule H, Sternberg CN, Suzuki H, Sweeney C, Sydes MR, Tannock I, Tombal B, Valdagni R, Wiegel T, Omlin A. Management of Patients with Advanced Prostate Cancer: The Report of the Advanced Prostate Cancer Consensus Conference APCCC 2017. Eur Urol 2018; 73:178-211. [PMID: 28655541 DOI: 10.1016/j.eururo.2017.06.002] [Citation(s) in RCA: 369] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND In advanced prostate cancer (APC), successful drug development as well as advances in imaging and molecular characterisation have resulted in multiple areas where there is lack of evidence or low level of evidence. The Advanced Prostate Cancer Consensus Conference (APCCC) 2017 addressed some of these topics. OBJECTIVE To present the report of APCCC 2017. DESIGN, SETTING, AND PARTICIPANTS Ten important areas of controversy in APC management were identified: high-risk localised and locally advanced prostate cancer; "oligometastatic" prostate cancer; castration-naïve and castration-resistant prostate cancer; the role of imaging in APC; osteoclast-targeted therapy; molecular characterisation of blood and tissue; genetic counselling/testing; side effects of systemic treatment(s); global access to prostate cancer drugs. A panel of 60 international prostate cancer experts developed the program and the consensus questions. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The panel voted publicly but anonymously on 150 predefined questions, which have been developed following a modified Delphi process. RESULTS AND LIMITATIONS Voting is based on panellist opinion, and thus is not based on a standard literature review or meta-analysis. The outcomes of the voting had varying degrees of support, as reflected in the wording of this article, as well as in the detailed voting results recorded in Supplementary data. CONCLUSIONS The presented expert voting results can be used for support in areas of management of men with APC where there is no high-level evidence, but individualised treatment decisions should as always be based on all of the data available, including disease extent and location, prior therapies regardless of type, host factors including comorbidities, as well as patient preferences, current and emerging evidence, and logistical and economic constraints. Inclusion of men with APC in clinical trials should be strongly encouraged. Importantly, APCCC 2017 again identified important areas in need of trials specifically designed to address them. PATIENT SUMMARY The second Advanced Prostate Cancer Consensus Conference APCCC 2017 did provide a forum for discussion and debates on current treatment options for men with advanced prostate cancer. The aim of the conference is to bring the expertise of world experts to care givers around the world who see less patients with prostate cancer. The conference concluded with a discussion and voting of the expert panel on predefined consensus questions, targeting areas of primary clinical relevance. The results of these expert opinion votes are embedded in the clinical context of current treatment of men with advanced prostate cancer and provide a practical guide to clinicians to assist in the discussions with men with prostate cancer as part of a shared and multidisciplinary decision-making process.
Collapse
Affiliation(s)
- Silke Gillessen
- Department of Medical Oncology, Cantonal Hospital St. Gallen and University of Berne, Switzerland.
| | - Gerhardt Attard
- Department of Medical Oncology, The Institute of Cancer Research/Royal Marsden, London, UK
| | - Tomasz M Beer
- Oregon Health & Science University Knight Cancer Institute, OR, USA
| | - Himisha Beltran
- Department of Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Alberto Bossi
- Department of Radiation Oncology, Genito Urinary Oncology, Prostate Brachytherapy Unit, Goustave Roussy, Paris, France
| | - Rob Bristow
- Department of Radiation Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, USA
| | - Brett Carver
- Department of Urology, Sidney Kimmel Center for Prostate and Urologic Cancers, New York, NY, USA
| | - Daniel Castellano
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Byung Ha Chung
- Department of Urology, Gangnam Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Noel Clarke
- Department of Urology, The Christie and Salford Royal Hospitals, Manchester, UK
| | - Gedske Daugaard
- Department of Medical Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ian D Davis
- Monash University and Eastern Health, Eastern Health Clinical School, Box Hill, Australia
| | - Johann de Bono
- Department of Medical Oncology, The Institute of Cancer Research/Royal Marsden, London, UK
| | - Rodolfo Borges Dos Reis
- Department of Urology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Charles G Drake
- Department of Medical Oncology, Division of Haematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Ros Eeles
- Department of Clinical Oncology and Genetics, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Eleni Efstathiou
- Department of Medical Oncology, University of Texas MD Anderson Cancer Center, TX, USA
| | - Christopher P Evans
- Department of Urology, University of California, Davis School of Medicine, CA, USA
| | - Stefano Fanti
- Department of Nuclear Medicine, Policlinico S. Orsola, Università di Bologna, Italy
| | - Felix Feng
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Karim Fizazi
- Department of Medical Oncology, Gustave Roussy, University of Paris Sud, Paris, France
| | - Mark Frydenberg
- Department of Surgery, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University
| | - Martin Gleave
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Susan Halabi
- Department of Clinical trials and Statistics, Duke University, Durham, NC, USA
| | | | - Celestia S Higano
- Department of Medicine, Division of Medical Oncology, University of Washington and Fred Hutchinson Cancer Research Center, WA, USA
| | - Nicolas James
- Department of Clinical Oncology, Clinical Oncology Queen Elizabeth Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Philip Kantoff
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Pirkko-Liisa Kellokumpu-Lehtinen
- Department of Clinical Oncology, Tampere University Hospital, Faculty of Medicine and Life Sciences, University of Tampere, Finland
| | - Raja B Khauli
- Department of Urology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Chris Logothetis
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Centre, Houston, TX, USA
| | - Fernando Maluf
- Department of Medical Oncology Hospital Israelita Albert Einstein and Department of Medical Oncology Beneficência Portuguesa de São Paulo
| | - Alicia K Morgans
- Department of Medical Oncology and Epidemiology, Vanderbilt University Medical Center, Division of Hematology/Oncology, Nashville, TN, USA
| | - Michael J Morris
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicolas Mottet
- Department of Urology, University Hospital Nord St. Etienne, St. Etienne, France
| | - Vedang Murthy
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, India
| | - William Oh
- Department of Medical Oncology, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Piet Ost
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Anwar R Padhani
- Department of Radiology, Mount Vernon Cancer Centre and Institute of Cancer Research, London, UK
| | - Chris Parker
- Department of Clinical Oncology, Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Mack Roach
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Mark A Rubin
- Department of Pathology, University of Bern and the Inselspital, Bern (CH)
| | - Charles Ryan
- Department of Medical Oncology, Clinical Medicine and Urology at the Helen Diller Family Comprehensive Cancer Center at the University of, California, San Francisco, CA, USA
| | - Fred Saad
- Department of Urology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Oliver Sartor
- Department of Medical Oncology, Tulane Cancer Center, New Orleans, LA, USA
| | - Howard Scher
- Department of Medical Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Avishay Sella
- Department of Medical Oncology, Department of Oncology, Assaf Harofeh Medical Centre, Tel-Aviv University, Sackler School of Medicine, Zerifin, Israel
| | - Neal Shore
- Department of Urology, Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | - Matthew Smith
- Department of Medical Oncology, Massachusetts General Hospital Cancer Centre, Boston, MA, USA
| | - Howard Soule
- Prostate Cancer Foundation, Santa Monica, CA, USA
| | - Cora N Sternberg
- Department of Medical Oncology, San Camillo Forlanini Hospital, Rome, Italy
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, Japan
| | - Christopher Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew R Sydes
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Ian Tannock
- Department of Medical Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Bertrand Tombal
- Department of Urology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Riccardo Valdagni
- Department of Oncology and Haemato-oncology, Università degli Studi di Milano. Radiation Oncology 1, Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Thomas Wiegel
- Department of Radiation Oncology, Klinik für Strahlentherapie und Radioonkologie des Universitätsklinikum Ulm, Albert-Einstein-Allee, Ulm, Germany
| | - Aurelius Omlin
- Department of Medical Oncology, Cantonal Hospital St. Gallen and University of Berne, Switzerland
| |
Collapse
|
105
|
Tsubaki T, Kadonosono T, Sakurai S, Shiozawa T, Goto T, Sakai S, Kuchimaru T, Sakamoto T, Watanabe H, Kondoh G, Kizaka-Kondoh S. Novel adherent CD11b + Gr-1 + tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget 2018. [PMID: 29541408 PMCID: PMC5834266 DOI: 10.18632/oncotarget.24359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The immunosuppressive tumor microenvironment is a hallmark of cancer. Myeloid-derived suppressor cells (MDSCs) are CD11b+ Gr-1+ tumor-infiltrating immature myeloid cells that strongly mediate tumor immunosuppression. The CD11b+ Gr-1+ cells are a heterogeneous cell population, and the impacts of each subpopulation on tumor progression are not yet completely understood. In the present study, we identified a novel subpopulation of CD11b+ Gr-1+ cells from murine lung carcinoma tumors according to their strongly adherent abilities. Although strong adherent activity is a unique property of macrophages, their marker expression patterns are similar to those of MDSCs; thus, we named this novel subpopulation MDSC-like adherent cells (MLACs). Unlike known MDSCs, MLACs lack the ability to suppress cytotoxic T lymphocytes and differentiate into tumor-associated macrophages (TAMs), but could still directly facilitate tumor growth and angiogenesis through secreting CCL2, CXCL1/2/5, PAI-1, MMPs, and VEGFA. Furthermore, MLACs recruited MDSCs via the secretion of CCL2/5 and CXCL1/2/5, thereby enhancing the immunosuppressive tumor microenvironment and promoting TAMs-mediated tumor progression. Our findings suggest that MLACs may function as an initiator of the immunosuppressive tumor microenvironment and highlight a new therapeutic target to prevent the onset or delay malignant progression.
Collapse
Affiliation(s)
- Takuya Tsubaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shimon Sakurai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Tadashi Shiozawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Toshiki Goto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shiori Sakai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takahiro Kuchimaru
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takeharu Sakamoto
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
106
|
Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19:108-119. [PMID: 29348500 DOI: 10.1038/s41590-017-0022-x] [Citation(s) in RCA: 1234] [Impact Index Per Article: 205.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells generated during a large array of pathologic conditions ranging from cancer to obesity. These cells represent a pathologic state of activation of monocytes and relatively immature neutrophils. MDSCs are characterized by a distinct set of genomic and biochemical features, and can, on the basis of recent findings, be distinguished by specific surface molecules. The salient feature of these cells is their ability to inhibit T cell function and thus contribute to the pathogenesis of various diseases. In this Review, we discuss the origin and nature of these cells; their distinctive features; and their biological roles in cancer, infectious diseases, autoimmunity, obesity and pregnancy.
Collapse
|
107
|
Myeloid-derived suppressor cells in ovarian cancer: friend or foe? Cent Eur J Immunol 2017; 42:383-389. [PMID: 29472817 PMCID: PMC5820985 DOI: 10.5114/ceji.2017.72823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Although previous decades contributed to major progress in targeted therapy of many malignancies, the treatment of gynaecological cancers remains a challenging task. In the evidence of rising cancer mortality, the search for new methods of treatment is a dire need. Exploring the mechanisms of interaction between tumour cells and host immune response may allow the introduction of new, effective therapies – not as toxic and far more efficient than conventional methods of cancer treatment. Epithelial ovarian cancer (EOC) is typically diagnosed at advanced stages. Its incidence and mortality rate is high. Powerful diagnostic tools for this kind of cancer are still under investigation. Multiple mechanisms existing in the ovarian tumour network create a specific immunosuppressive microenvironment, in which accumulation of myeloid-derived suppressor cells (MDSCs) may be a critical component for diagnosis and treatment. This review attempts to verify current knowledge on the role of MDSCs in EOC.
Collapse
|
108
|
Kobara H, Kashima H, Miyamoto T, Yamada Y, Asaka S, Shiozawa T. A case of pure-type ovarian squamous cell carcinoma producing granulocyte-colony stimulating factor. Gynecol Oncol Rep 2017; 22:89-91. [PMID: 29159261 PMCID: PMC5684440 DOI: 10.1016/j.gore.2017.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 11/27/2022] Open
Abstract
Pure-type ovarian squamous cell carcinoma (POSCC) is extremely rare. This is the first report of G-CSF-producing POSCC. This case was successfully treated with primary surgery and standard chemotherapy. A tumor with uninfected neutrophilia may be a G-CSF-producing tumor. 18F-FDG-PET/CT and MRI may be useful for diagnosing G-CSF-producing tumors.
Collapse
Affiliation(s)
- Hisanori Kobara
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Hiroyasu Kashima
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yasushi Yamada
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Shiho Asaka
- Department of Diagnostic Pathology, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto 390-8621, Japan.,Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Tanri Shiozawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
109
|
Zhang F, Ren CC, Liu L, Chen YN, Yang L, Zhang XA, Wang XM, Yu FJ. SHH gene silencing suppresses epithelial-mesenchymal transition, proliferation, invasion, and migration of cervical cancer cells by repressing the hedgehog signaling pathway. J Cell Biochem 2017; 119:3829-3842. [PMID: 28941302 DOI: 10.1002/jcb.26414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
Abstract
The study aimed to investigate the mechanism by which the sonic Hedgehog (SHH) gene silencing acts upon epithelial-mesenchymal transition (EMT), proliferation, invasion, and migration of cervical cancer (CC) cells via the Hedgehog signaling pathway. RT-qPCR and Western blotting were all employed to detect the SHH mRNA and protein expressions. HeLa and CasKi cells were cultured and subsequently divided into the blank, negative control (NC), and SHH-RNAi groups. A cell counting kit-8 (CCK-8) assay was utilized for cell proliferation. Cell migration and invasion ability were evaluated through scratching test and Transwell assay. The mRNA and protein expressions of the Hedgehog signaling pathway-related factors were detected using RT-qPCR and Western blotting, respectively. After tumor xenograft in nude mice, tumor growth was subsequently observed. SHH mRNA and protein expressions were greater in the SHH-RNAi group than in the blank and NC groups. Compared with the blank group and NC groups, the SHH-RNAi group displayed inhibited levels of proliferation, migration, invasion abilities, as well as a decreased in the Hh signaling pathway-related factors, as well as a reduction in the mRNA and protein expressions of N-cadherin and Vimentin, however, on the contrary increased expressions of E-cadherin were observed. Following tumor xenograft in nude mice, tumor growth was exhibited vast levels of inhibition, particularly in the SHH-RNAi group in comparison to the blank and the NC groups. During the study it was well established that SHH gene silencing suppresses EMT, proliferation, invasion, and migration of CC cells through the repression of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yan-Nan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xiao-Ming Wang
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P. R. China
| | - Feng-Jing Yu
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P. R. China
| |
Collapse
|
110
|
Martin D, Rödel F, Winkelmann R, Balermpas P, Rödel C, Fokas E. Peripheral Leukocytosis Is Inversely Correlated with Intratumoral CD8+ T-Cell Infiltration and Associated with Worse Outcome after Chemoradiotherapy in Anal Cancer. Front Immunol 2017; 8:1225. [PMID: 29085358 PMCID: PMC5649213 DOI: 10.3389/fimmu.2017.01225] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022] Open
Abstract
Peripheral blood leukocytosis has been implicated in promoting tumor progression leading to worse survival, but the mechanisms behind this phenomenon remain unexplored. Here, we examined the prognostic role of pretreatment white blood cell (WBC) count and clinicopathologic parameters in the context of CD8+ tumor-infiltrating lymphocytes (TIL) and myeloperoxidase+ tumor-associated neutrophils (TANs) in patients with anal squamous cell carcinoma (ASCC) treated with definitive chemoradiotherapy (CRT). After a median follow-up of 26 months, leukocytosis correlated with advanced T-stage (p < 0.001) and N-stage (p < 0.001), and predicted for worse distant-metastasis-free survival (p = 0.006), disease-free-survival (DFS, p = 0.029), and overall survival (p = 0.013). Importantly, leukocytosis was associated with a lower intraepithelial CD8+ TIL density (p = 0.014), whereas low CD8+ TIL expression in the intraepithelial compartment was associated with worse DFS (p = 0.028). Additionally, high TAN expression in the peritumoral compartment was associated with a significantly lower density of CD8+ TIL (p = 0.039), albeit, TAN expression lacked prognostic value. In conclusion, leukocytosis constitutes an important prognostic marker in ASCC patients treated with CRT. In conjunction with intratumoral TIL and TAN, these data provide for the first time important insight on the correlation of peripheral blood leukocytosis with the intratumoral immune contexture and could be relevant for future patient stratification using immunotherapies in ASCC.
Collapse
Affiliation(s)
- Daniel Martin
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, Frankfurt, Germany
| | - Ria Winkelmann
- Senckenberg Institute for Pathology, Goethe University Frankfurt, Frankfurt, Germany
| | - Panagiotis Balermpas
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, Frankfurt, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, Frankfurt, Germany
| | - Emmanouil Fokas
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
111
|
Mouchemore KA, Anderson RL, Hamilton JA. Neutrophils, G-CSF and their contribution to breast cancer metastasis. FEBS J 2017; 285:665-679. [PMID: 28834401 DOI: 10.1111/febs.14206] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022]
Abstract
Evidence is mounting for a role for neutrophils in breast cancer progression to metastasis. However, the role of G-CSF in neutrophil biology in a cancer setting remains to be defined. Herein we discuss the most recent clinical and experimental evidence for neutrophils and G-CSF in the promotion of metastasis, demonstrating a potential mechanistic link between them. Understanding this link is imperative both for the development of diagnostic tests and for therapies targeting neutrophils to improve the treatment of breast cancer patients with or at risk of developing metastatic disease. As a high neutrophil-to-lymphocyte ratio in patients predicts poor outcome, while mild neutropenia predicts an improved outcome, we urge caution in the use of G-CSF in neutrophil recovery following chemotherapy as there is increasing evidence in preclinical models that G-CSF can promote metastasis.
Collapse
Affiliation(s)
- Kellie A Mouchemore
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin L Anderson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,La Trobe University School of Cancer Medicine, Bundoora, Victoria, Australia
| | - John A Hamilton
- Arthritis and Inflammation Research Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
112
|
Jiang L, Shi S, Shi Q, Zhang H, Hu R, Wang M. Similarity in the functions of HIF-1α and HIF-2α proteins in cervical cancer cells. Oncol Lett 2017; 14:5643-5651. [PMID: 29098039 DOI: 10.3892/ol.2017.6837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/21/2017] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is a common feature of many solid tumours, including cervical cancer. Aggressive tumour progression is mostly associated with hypoxia. Furthermore, hypoxic conditions in tumours are also associated with resistance to chemotherapy and radiation, and with poor prognosis. Hypoxia inducible factor (HIF)-1, composed of a constitutively expressed β-subunit (HIF-β/ARNT) and one of the three known oxygen-regulated α-subunits, HIF-1α, HIF-2α, or HIF-3α, mediates the tumour cell response to hypoxia. The distinction between the roles of HIF-1α and HIF-2α in tumorigenesis is not clearly delineated. Therefore, the aim of the present study was to investigate the effect of HIF-2α on the characteristics of a cervical cancer cell line and to compare the functions of HIF-1α and HIF-2α. The present study demonstrated that the levels of HIF-1α and HIF-2α expression increased under hypoxic exposure compared with normoxia. The major difference was the temporal expression of HIF-1α and HIF-2α, with expression of the two proteins peaking at different time-points. In addition, HIF-1α and HIF-2α had similar effects on proliferation, cell cycle and apoptosis. Suppression of expression of HIF-1α or HIF-2α inhibited proliferation, induced G1-phase arrest and promoted apoptosis in the cervical cancer cell line CaSki. However, the effects of HIF-1α and HIF-2α on invasion and cell autophagy were different. The inhibitory effect of HIF-1α on cell invasion was stronger compared with HIF-2α, while the inhibitory effect of HIF-1α on cell autophagy was weaker compared with HIF-2α. Together, these results demonstrate that HIF-1α and HIF-2α have similar effects on the characteristics of a cervical cancer cell line. The major difference that the authors observed between the effects exerted by the two proteins on the cervical cancer cell line studied is the extent of their effect on invasion and autophagy.
Collapse
Affiliation(s)
- Lixia Jiang
- Department of Clinical Examination, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Shaohua Shi
- Department of Clinical Examination, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Qiaofa Shi
- Department of Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huijuan Zhang
- Department of Clinical Examination, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Rong Hu
- Department of Clinical Examination, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Meizhen Wang
- Department of Medicine, Nanchang University Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
113
|
Alvarez KLF, Beldi M, Sarmanho F, Rossetti RAM, Silveira CRF, Mota GR, Andreoli MA, Caruso EDDC, Kamillos MF, Souza AM, Mastrocalla H, Clavijo-Salomon MA, Barbuto JAM, Lorenzi NP, Longatto-Filho A, Baracat E, Lopez RVM, Villa LL, Tacla M, Lepique AP. Local and systemic immunomodulatory mechanisms triggered by Human Papillomavirus transformed cells: a potential role for G-CSF and neutrophils. Sci Rep 2017; 7:9002. [PMID: 28827632 PMCID: PMC5566396 DOI: 10.1038/s41598-017-09079-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/19/2017] [Indexed: 01/09/2023] Open
Abstract
Cervical cancer is the last stage of a series of molecular and cellular alterations initiated with Human Papillomavirus (HPV) infection. The process involves immune responses and evasion mechanisms, which culminates with tolerance toward tumor antigens. Our objective was to understand local and systemic changes in the interactions between HPV associated cervical lesions and the immune system as lesions progress to cancer. Locally, we observed higher cervical leukocyte infiltrate, reflected by the increase in the frequency of T lymphocytes, neutrophils and M2 macrophages, in cancer patients. We observed a strong negative correlation between the frequency of neutrophils and T cells in precursor and cancer samples, but not cervicitis. In 3D tumor cell cultures, neutrophils inhibited T cell activity, displayed longer viability and longer CD16 expression half-life than neat neutrophil cultures. Systemically, we observed higher plasma G-CSF concentration, higher frequency of immature low density neutrophils, and tolerogenic monocyte derived dendritic cells, MoDCs, also in cancer patients. Interestingly, there was a negative correlation between T cell activation by MoDCs and G-CSF concentration in the plasma. Our results indicate that neutrophils and G-CSF may be part of the immune escape mechanisms triggered by cervical cancer cells, locally and systemically, respectively.
Collapse
Affiliation(s)
- Karla Lucia Fernandez Alvarez
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil
| | - Mariana Beldi
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Fabiane Sarmanho
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Renata Ariza Marques Rossetti
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil
| | - Caio Raony Farina Silveira
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil
| | - Giana Rabello Mota
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo, LIM-24. R. Dr. Ovídio Pires de Campos, 255, Radiology Building, 05403-000, São Paulo, SP, Brazil
| | | | - Eliana Dias de Carvalho Caruso
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Marcia Ferreira Kamillos
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Ana Marta Souza
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Haydee Mastrocalla
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Maria Alejandra Clavijo-Salomon
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil
| | - José Alexandre Marzagão Barbuto
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil
| | - Noely Paula Lorenzi
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Adhemar Longatto-Filho
- Laboratory of Medical Investigation, School of Medicine, University of São Paulo, Av. Dr. Arnaldo, 455, office 1159, 01246-903, São Paulo, SP, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, R. Antenor Duarte Vilela, 1331, Barretos, 14784-400, São Paulo, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, R. da Universidade and ICVS/3B's - PT Government Associated Laboratory, 4704-553, Braga/Guimarães, Portugal
| | - Edmund Baracat
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Rossana Verónica Mendoza Lopez
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, 01246-000, São Paulo, SP, Brazil
| | - Luisa Lina Villa
- Department of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo, LIM-24. R. Dr. Ovídio Pires de Campos, 255, Radiology Building, 05403-000, São Paulo, SP, Brazil
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, 01246-000, São Paulo, SP, Brazil
| | - Maricy Tacla
- Department of Gynecologic Clinic, School of Medicine, Universidade de São Paulo; Clinics Hospital at the São Paulo University, R. Dr. Enéas de Carvalho aguiar, 255, 5th floor, 05403-000, São Paulo, SP, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Ed. Biomédicas IV, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
114
|
Najjar YG, Ding F, Lin Y, VanderWeele R, Butterfield LH, Tarhini AA. Melanoma antigen-specific effector T cell cytokine secretion patterns in patients treated with ipilimumab. J Transl Med 2017; 15:39. [PMID: 28222797 PMCID: PMC5319167 DOI: 10.1186/s12967-017-1140-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/04/2017] [Indexed: 12/11/2022] Open
Abstract
Background In a previously reported study, patients with regionally advanced melanoma were treated with neoadjuvant ipilimumab (ipi) (Tarhini in PLoS ONE 9(2): e87705, 3). Significant changes in circulating myeloid derived suppressor cells (MDSC), regulatory T cells (Treg) and peptide specific type I CD4+ and CD8+ T cells were noted at week 6 that correlated with clinical outcome. Characterization of antigen-specific effector T cell secreted cytokines may shed insights into ipi associated T cell activation and function. Methods Patients were treated with neoadjuvant ipi (10 mg/kg every 3 weeks ×2) administered intravenously before and after surgery. Peripheral blood mononuclear cells (PBMC) that were collected at baseline and week 6 (after ipi) were tested here. Each sample was divided into 5 groups and stimulated with controls or shared melanoma antigen overlapping peptide pools (NY-ESO 1, gp-100, MART-1). Secreted cytokines, chemokines and growth factors were assessed using Luminex. Cytokine expression levels between the 3 antigen groups were compared using the Wilcox rank-sum test. Results Seventeen cytokines were differentially expressed with stimulation by each antigen at baseline (p value <0.05): IL1β, MIP1β, IL1RA, VEGF, IL13, IL17, MIP1α, GM-CSF, MCP1, IL5, IL2R, IL4, IL10, IFNγ, TNFα, IL8 and IL2. At week 6, 15 cytokines were differentially expressed (p < 0.05): IL1β, VEGF, G-CSF, HGF, IL13, IL17, GM-CSF, MCP1, IL5, IL7, IL4, IL10, IFNγ, IL8 and IL2. Patients were later clustered based on cytokine expression levels at baseline and at week 6, and recurrence free survival (RFS) was compared. Clear differences in RFS were noted based on cytokine level clustering both at baseline and at week 6: Patients whose PBMCs secreted more cytokines in response to NY-ESO-1 showed a trend towards better RFS. Conclusions PBMCs of patients treated with ipi secreted significantly more cytokines, chemokines and growth factors in response to NY-ESO-1 than to gp-100 or MART-1. These cytokines belonged to different functional groups, including inflammatory, type 1, type 2 and regulatory, that warrant further study. Patients whose PBMCs secreted more cytokines (particularly in response to NY-ESO-1) tended to have better RFS, supporting further exploration in terms of therapeutic predictive value. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1140-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yana G Najjar
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Fei Ding
- Biostatistics Facility, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Yan Lin
- Biostatistics Facility, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | - Lisa H Butterfield
- University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Ahmad A Tarhini
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, University of Pittsburgh Cancer Institute, 5150 Centre Avenue (555), Pittsburgh, PA, 15232, USA.
| |
Collapse
|
115
|
Weise G, Pösel C, Möller K, Kranz A, Didwischus N, Boltze J, Wagner DC. High-dosage granulocyte colony stimulating factor treatment alters monocyte trafficking to the brain after experimental stroke. Brain Behav Immun 2017; 60:15-26. [PMID: 27524669 DOI: 10.1016/j.bbi.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/26/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke elicits a prompt inflammatory response that is characterized by a well-timed recruitment of peripheral immune cells to the brain. Among these, monocytes play a particularly important, but multifaceted role and have been increasingly recognized to affect stroke outcome. Granulocyte colony stimulating factor (GCSF) is known for its immunosuppressive actions on mononuclear cells, but previous studies in the stroke field were mainly confined to its neuroprotective actions. Herein, we investigated whether GCSF affects post-stroke inflammation in a mouse model of focal brain ischemia by modulating monocyte responses. Treatment with GCSF was controlled by vehicle injection, sham surgery and naive animals. Despite a significant monocytosis, high-dosage GCSF reduced the number of brain-infiltrating monocytes/macrophages four days after stroke. Lower numbers of mononuclear phagocytes in the brain were associated with smaller cerebral edema and improved motor outcome after stroke. GCSF treatment over 72h, but not 24h diminished integrin expression on circulating Ly6C+ inflammatory monocytes. In vitro experiments further revealed that GCSF strongly promotes interleukin (IL)-10 secretion by activated mononuclear cells. Blockade of the IL-10 receptor partly reversed GCSF-induced downregulation of integrin surface expression. Overall, our results suggest that high-dosage GCSF mitigates monocyte infiltration after stroke, likely by attenuating integrin-mediated adhesion to the brain endothelium in an IL-10-dependent manner. Lower amounts of mononuclear cells in the brain translate to less severe brain edema and functional impairment and thus support a harmful role of Ly6C+ inflammatory monocytes in the acute stage of stroke.
Collapse
Affiliation(s)
- Gesa Weise
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; University of Leipzig, Department of Neurology, Leipzig, Germany.
| | - Claudia Pösel
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Karoline Möller
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Kranz
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Nadine Didwischus
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Institute for Biology, Human Biology, University of Leipzig, Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Fraunhofer Research Institution of Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany; Massachusetts General Hospital and Harvard Medical School, Stroke and Neurovascular Regulation Laboratory, Charlestown, MA, USA
| | - Daniel-Christoph Wagner
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Institute of Pathology, University Medical Center Mainz, Germany
| |
Collapse
|
116
|
Xu M, Zhao Z, Song J, Lan X, Lu S, Chen M, Wang Z, Chen W, Fan X, Wu F, Chen L, Tu J, Ji J. Interactions between interleukin-6 and myeloid-derived suppressor cells drive the chemoresistant phenotype of hepatocellular cancer. Exp Cell Res 2017; 351:142-149. [PMID: 28109867 DOI: 10.1016/j.yexcr.2017.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 02/08/2023]
Abstract
Emerging evidence implicates an important role for myeloid-derived suppressor cells (MDSCs) in tumor growth, angiogenesis and metastasis. However, limited knowledge is known about the function of MDSCs in response to chemotherapies. In this study, we find that drug-resistant hepatocellular cancer (HCC) cells-derived conditioned medium significantly enhances the expansion and immunosuppressive function of MDSCs compared to their parental sensitive cells, which is demonstrated by increased level of arginase, nitric oxide (NO), and reactive oxygen species (ROS). Next, we reveal that drug-resistant HCC cells-derived IL-6 activated MDSCs, which is demonstrated by using an anti-IL-6 neutralizing antibody that caused a reduced MDSC immunosuppressive activity. More importantly, the depletion of MDSC via the administration of anti-Gr-1 antibody or the blockade of IL-6 signaling sensitized 5-FU-resistant H22 hepatoma to chemotherapy in the immunocompetent C57BL/6N mice. In primary human HCC, IL-6 expression levels strongly correlate with an MDSC phenotype and chemotherapy response in HCC patients. In conclusion, these results describe a role of IL-6 in the drug resistance in HCC chemotherapy and suggest that MDSC-targeting treatments may be potential therapeutic strategy for HCC chemoresistance.
Collapse
Affiliation(s)
- Min Xu
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Zhongwei Zhao
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Jingjing Song
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Xilin Lan
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Siming Lu
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Minjiang Chen
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Zufei Wang
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Weiqian Chen
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Xiaoxi Fan
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Fazong Wu
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Li Chen
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Jianfei Tu
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China
| | - Jiansong Ji
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang, Lishui, Zhejiang 323000, PR China.
| |
Collapse
|
117
|
Schernberg A, Escande A, Rivin Del Campo E, Ducreux M, Nguyen F, Goere D, Chargari C, Deutsch E. Leukocytosis and neutrophilia predicts outcome in anal cancer. Radiother Oncol 2017; 122:137-145. [DOI: 10.1016/j.radonc.2016.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 12/25/2022]
|
118
|
Singel KL, Segal BH. Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal. Immunol Rev 2016; 273:329-43. [PMID: 27558344 PMCID: PMC5477672 DOI: 10.1111/imr.12459] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophils are the first responders to infection and injury and are critical for antimicrobial host defense. Through the generation of reactive oxidants, activation of granular constituents and neutrophil extracellular traps, neutrophils target microbes and prevent their dissemination. While these pathways are beneficial in the context of trauma and infection, their off-target effects in the context of tumor are variable. Tumor-derived factors have been shown to reprogram the marrow, skewing toward the expansion of myelopoiesis. This can result in stimulation of both neutrophilic leukocytosis and the release of immature granulocytic populations that accumulate in circulation and in the tumor microenvironment. While activated neutrophils have been shown to kill tumor cells, there is growing evidence for neutrophil activation driving tumor progression and metastasis through a number of pathways, including stimulation of thrombosis and angiogenesis, stromal remodeling, and impairment of T cell-dependent anti-tumor immunity. There is also growing appreciation of neutrophil heterogeneity in cancer, with distinct neutrophil populations promoting cancer control or progression. In addition to the effects of tumor on neutrophil responses, anti-neoplastic treatment, including surgery, chemotherapy, and growth factors, can influence neutrophil responses. Future directions for research are expected to result in more mechanistic knowledge of neutrophil biology in the tumor microenvironment that may be exploited as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kelly L. Singel
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brahm H. Segal
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
119
|
Moses K, Brandau S. Human neutrophils: Their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol 2016; 28:187-96. [PMID: 27067179 DOI: 10.1016/j.smim.2016.03.018] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
Increased frequencies of peripheral blood neutrophils as well as tumor-infiltrating (associated) neutrophils (TAN) have been observed in many tumor entities. Although the most frequent cell type in the peripheral blood, neutrophils are outnumbered by other leukocyte subsets in the tumor microenvironment. Nevertheless, a number of recent meta-analyses identified TAN as well as high neutrophil-lymphocyte ratio in the blood as one of the most powerful immunologic prognostic parameters in human oncology. This clinical impact is based on an intense bidirectional crosstalk of neutrophils and tumor cells resulting in changes in neutrophil as well as tumor cell biology. These changes eventually lead to TAN equipped with various tumor promoting features, which enhance angiogenesis, cancer cell invasion and metastasis. Many of the pro-tumor features of TAN are shared with PMN-MDSC (myeloid-derived suppressor cells). Consequently, the distinction of these two cell populations is a matter of intensive debate and also specifically discussed in this article. The importance of neutrophils in cancer progression has triggered numerous efforts to therapeutically target these cells. Current strategies in this area focus on the inhibition of either TAN recruitment or pro-tumorigenic function.
Collapse
Affiliation(s)
- Katrin Moses
- Research Division of the Department of Otorhinolaryngology, University Hospital Essen, West German Cancer Center, German Cancer Consortium, Germany
| | - Sven Brandau
- Research Division of the Department of Otorhinolaryngology, University Hospital Essen, West German Cancer Center, German Cancer Consortium, Germany.
| |
Collapse
|