101
|
Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling. Nat Commun 2018; 9:4490. [PMID: 30367044 PMCID: PMC6203711 DOI: 10.1038/s41467-018-06931-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/01/2018] [Indexed: 01/03/2023] Open
Abstract
The underlining mechanisms of dietary cholesterol and nonalcoholic steatohepatitis (NASH) in contributing to hepatocellular carcinoma (HCC) remain undefined. Here we demonstrated that high-fat-non-cholesterol-fed mice developed simple steatosis, whilst high-fat-high-cholesterol-fed mice developed NASH. Moreover, dietary cholesterol induced larger and more numerous NASH-HCCs than non-cholesterol-induced steatosis-HCCs in diethylnitrosamine-treated mice. NASH-HCCs displayed significantly more aberrant gene expression-enriched signaling pathways and more non-synonymous somatic mutations than steatosis-HCCs (335 ± 84/sample vs 43 ± 13/sample). Integrated genetic and expressional alterations in NASH-HCCs affected distinct genes pertinent to five pathways: calcium, insulin, cell adhesion, axon guidance and metabolism. Some of the novel aberrant gene expression, mutations and core oncogenic pathways identified in cholesterol-associated NASH-HCCs in mice were confirmed in human NASH-HCCs, which included metabolism-related genes (ALDH18A1, CAD, CHKA, POLD4, PSPH and SQLE) and recurrently mutated genes (RYR1, MTOR, SDK1, CACNA1H and RYR2). These findings add insights into the link of cholesterol to NASH and NASH-HCC and provide potential therapeutic targets.
Collapse
|
102
|
Deng SP, Guo WL. Identifying Key Genes of Liver Cancer by Networking of Multiple Data Sets. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 16:792-800. [PMID: 30296239 DOI: 10.1109/tcbb.2018.2874238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liver cancer is one of the deadliest cancers in the world. To find effective therapies for this cancer, it is indispensable to identify key genes, which may play critical roles in the incidence of the liver cancer. To identify key genes of the liver cancer with high accuracy, we integrated multiple microarray gene expression data sets to compute common differentially expressed genes, which will result more accurate than those from individual data set. To find the main functions or pathways that these genes are involved in, some enrichment analyses were performed including functional enrichment analysis, pathway enrichment analysis, and disease association study. Based on these genes, a protein-protein interaction network was constructed and analyzed to identify key genes of the liver cancer by combining the local and global influence of nodes in the network. The identified key genes, such as TOP2A, ESR1, and KMO, have been demonstrated to be key biomarkers of the liver cancer in many publications. All the results suggest that our method can effectively identify key genes of the liver cancer. Moreover, our method can be applied to other types of data sets to select key genes of other complex diseases.
Collapse
|
103
|
Condorelli DF, Spampinato G, Valenti G, Musso N, Castorina S, Barresi V. Positive Caricature Transcriptomic Effects Associated with Broad Genomic Aberrations in Colorectal Cancer. Sci Rep 2018; 8:14826. [PMID: 30287863 PMCID: PMC6172234 DOI: 10.1038/s41598-018-32884-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
We re-examined the correlation between Broad Genomic Aberrations (BGAs) and transcriptomic profiles in Colorectal Cancer (CRC). Two types of BGAs have been examined: Broad Copy-Number Abnormal regions (BCNAs), distinguished in gain- and loss-type, and Copy-Neutral Loss of Heterozygosities (CNLOHs). Transcripts are classified as “OverT” or “UnderT” if overexpressed or underexpressed comparing CRCs bearing a specific BGA to CRCs not bearing it and as “UpT” or “DownT” if upregulated or downregulated in cancer compared to normal tissue. BGA-associated effects were evaluated by changes in the “Chromosomal Distribution Index” (CDI) of different transcript classes. Data show that UpT are more sensitive than DownT to BCNA-associated gene dosage effects. “Over-UpT” genes are upregulated in cancer and further overexpressed by gene dosage, defining the so called “positive caricature transcriptomic effect”. When Over-UpT genes are ranked according to overexpression, top positions are occupied by genes implicated at the functional and therapeutic level in CRC. We show that cancer-upregulated transcripts are sensitive markers of BCNA-induced effects and suggest that analysis of positive caricature transcriptomic effects can provide clues toward the identification of BCNA-associated cancer driver genes.
Collapse
Affiliation(s)
- Daniele F Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy.
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Giovanna Valenti
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Sergio Castorina
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, (95123), Italy
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy.
| |
Collapse
|
104
|
Poulose N, Mills IG, Steele RE. The impact of transcription on metabolism in prostate and breast cancers. Endocr Relat Cancer 2018; 25:R435-R452. [PMID: 29760165 DOI: 10.1530/erc-18-0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Metabolic dysregulation is regarded as an important driver in cancer development and progression. The impact of transcriptional changes on metabolism has been intensively studied in hormone-dependent cancers, and in particular, in prostate and breast cancer. These cancers have strong similarities in the function of important transcriptional drivers, such as the oestrogen and androgen receptors, at the level of dietary risk and epidemiology, genetics and therapeutically. In this review, we will focus on the function of these nuclear hormone receptors and their downstream impact on metabolism, with a particular focus on lipid metabolism. We go on to discuss how lipid metabolism remains dysregulated as the cancers progress. We conclude by discussing the opportunities that this presents for drug repurposing, imaging and the development and testing of new therapeutics and treatment combinations.
Collapse
Affiliation(s)
- Ninu Poulose
- Centre for Cancer Research and Cell BiologyQueen's University of Belfast, Belfast, UK
| | - Ian G Mills
- Centre for Cancer Research and Cell BiologyQueen's University of Belfast, Belfast, UK
- Nuffield Department of Surgical SciencesJohn Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rebecca E Steele
- Centre for Cancer Research and Cell BiologyQueen's University of Belfast, Belfast, UK
| |
Collapse
|
105
|
Zhao K, Zhao Y, Zhu JY, Dong H, Cong WM, Yu Y, Wang H, Zhu ZZ, Xu Q. A Panel of Genes Identified as Targets for 8q24.13-24.3 Gain Contributing to Unfavorable Overall Survival in Patients with Hepatocellular Carcinoma. Curr Med Sci 2018; 38:590-596. [PMID: 30128866 DOI: 10.1007/s11596-018-1918-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/17/2018] [Indexed: 12/12/2022]
Abstract
Copy number aberrations (CNAs) in chromosome arm 8q have been associated with unfavorable clinical outcomes of several cancers and progressive tumor characteristics of hepatocellular carcinoma (HCC). This study was to identify correlation of CNAs in 8q with clinical outcomes of HCC patients, and further screen for differentially expressed genes in outcome-related CNAs. Array comparative genomic hybridization and expression arrays were performed to detect CNAs and expression levels, respectively. The correlations between CNAs in 8q and outcomes were analyzed in 66 patients, with a median follow-up time of 45.0 months (range, 2.6-108.6 months). One hundred and nine cases were further evaluated to identify differentially expressed genes in the potential outcome-related CNAs. Copy number gain in 8q was observed in 22 (33.3%) of the 66 HCC cases. The most recurrent gains (with frequencies >20%) were 8q13.3-21.3,8q21.3-23.3,8q23.3-24.13,8q24.13-24.3, and 8q24.3. Survival analysis showed that 8q24.13-24.3 gain was significantly associated with reduced overall survival (jP=0.010). Multivariate Cox analysis identified 8q24.13-24.3 gain as an independent prognostic factor for poor overall survival (HR=2.47; 95% CI=1.16-5.26; Р=0.019). Apanel of 17 genes within the 8q24.13-24.3 region, including ATAD2,SQLE,PVT1,ASAP1, and NDRG1 were significantly upregulated in HCCs with 8q24.13-24.3 gain compared to those without. These results suggest that copy number gain at 8q24.13-24.3 is an unfavorable prognostic marker for HCC patients, and the potential oncogenes ATAD2,SQLE, PVT1, ASAP1,and NDRG1 within the regional gain, may contribute coordinately to the 8q24.13-24.3 gain-related poor prognosis.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Shanghai Clinical College of Anhui Medical University, Shanghai, 200072, China
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jia-Yi Zhu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yi Yu
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Wang
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhong-Zheng Zhu
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
106
|
Jiang R, Zhao C, Gao B, Xu J, Song W, Shi P. Mixomics analysis of breast cancer: Long non-coding RNA linc01561 acts as ceRNA involved in the progression of breast cancer. Int J Biochem Cell Biol 2018; 102:1-9. [PMID: 29890225 DOI: 10.1016/j.biocel.2018.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aimed at finding the long non-coding RNA (lncRNA), miRNA and mRNA which played critical roles in breast cancer (BrCa) by using mixOmics R package. METHOD The BrCa dataset were obtained from TCGA and then analyzed using "DESeq2" R package. Multivariate analyses were performed with the "mixOmics" R package and the first component of the stacked partial least-Squares discriminant analysis results were used for searching the interested lncRNA, miRNA and mRNA. qRT-PCR was applied to identify the bioinformatics results in four BrCa cell lines (MCF7, BT-20, ZR-75-1, and MX-1) and the breast epithelial cell line MCF-10 A. Then cells (MCF-1 and MX-1) were transfected with si-linc01561, miR-145-5p mimics and si-MMP11 to further investigate the effects of linc01561, miR-145-5p and MMP11 on the BrCa cells proliferation and apoptosis. RESULTS MixOmics results showed that linc01561, miR-145-5p and MMP11 might play important roles in BrCa. qRT-PCR results identified that in BrCa cell lines, linc01561 and MMP11 were higher expressed while miR-145-5p was lower expressed compared with those in epithelial cell line. The linc01561 inhibition elevated miR-145-5p expression and then suppressed MMP11 expression. Moreover, linc01561 inhibition suppressed the BrCa cells proliferation and promoted the apoptosis, which was realized by up-regulating expression of miR-145-5p and down-regulating expression of MMP11. CONCLUSION In summary, the findings of this study, based on ceRNA theory, combining the research foundation of miR-145-5p and MMP11, and taking linc01561 as a new study point, provide new insight into molecular-level reversing proliferation and apoptosis of BrCa.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Chunming Zhao
- Department of Opthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Binbin Gao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Peng Shi
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
107
|
The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene 2018; 37:4750-4768. [DOI: 10.1038/s41388-018-0281-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/26/2023]
|
108
|
Cigarette smoke and chewing tobacco alter expression of different sets of miRNAs in oral keratinocytes. Sci Rep 2018; 8:7040. [PMID: 29728663 PMCID: PMC5935709 DOI: 10.1038/s41598-018-25498-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/23/2018] [Indexed: 12/17/2022] Open
Abstract
Carcinogenic effect of tobacco in oral cancer is through chewing and/or smoking. Significant differences exist in development of oral cancer between tobacco users and non-users. However, molecular alterations induced by different forms of tobacco are yet to be fully elucidated. We developed cellular models of chronic exposure to chewing tobacco and cigarette smoke using immortalized oral keratinocytes. Chronic exposure to tobacco resulted in increased cell scattering and invasiveness in immortalized oral keratinocytes. miRNA sequencing using Illumina HiSeq 2500 resulted in the identification of 10 significantly dysregulated miRNAs (4 fold; p ≤ 0.05) in chewing tobacco treated cells and 6 in cigarette smoke exposed cells. We integrated this data with global proteomic data and identified 36 protein targets that showed inverse expression pattern in chewing tobacco treated cells and 16 protein targets that showed inverse expression in smoke exposed cells. In addition, we identified 6 novel miRNAs in chewing tobacco treated cells and 18 novel miRNAs in smoke exposed cells. Integrative analysis of dysregulated miRNAs and their targets indicates that signaling mechanisms leading to oncogenic transformation are distinct between both forms of tobacco. Our study demonstrates alterations in miRNA expression in oral cells in response to two frequently used forms of tobacco.
Collapse
|
109
|
James NE, Chichester C, Ribeiro JR. Beyond the Biomarker: Understanding the Diverse Roles of Human Epididymis Protein 4 in the Pathogenesis of Epithelial Ovarian Cancer. Front Oncol 2018; 8:124. [PMID: 29740539 PMCID: PMC5928211 DOI: 10.3389/fonc.2018.00124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Human epididymis protein 4 (HE4) is an important clinical biomarker used for the detection of epithelial ovarian cancer (EOC). While much is known about the predictive power of HE4 clinically, less has been reported regarding its molecular role in the progression of EOC. A deeper understanding of HE4’s mechanistic functions may help contribute to the development of novel targeted therapies. Thus far, it has been difficult to recommend HE4 as a therapeutic target owing to the fact that its role in the progression of EOC has not been extensively evaluated. This review summarizes what is collectively known about HE4 signaling and how it functions to promote tumorigenesis, chemoresistance, and metastasis in EOC, with the goal of providing valuable insights that will have the potential to aide in the development of new HE4-targeted therapies.
Collapse
Affiliation(s)
- Nicole E James
- Division of Gynecologic Oncology, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
| | - Clinton Chichester
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
| | - Jennifer R Ribeiro
- Division of Gynecologic Oncology, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, United States
| |
Collapse
|
110
|
Cirmena G, Franceschelli P, Isnaldi E, Ferrando L, De Mariano M, Ballestrero A, Zoppoli G. Squalene epoxidase as a promising metabolic target in cancer treatment. Cancer Lett 2018; 425:13-20. [PMID: 29596888 DOI: 10.1016/j.canlet.2018.03.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Oncogenic alteration of the cholesterol synthesis pathway is a recognized mechanism of metabolic adaptation. In the present review, we focus on squalene epoxidase (SE), one of the two rate-limiting enzymes in cholesterol synthesis, retracing its history since its discovery as an antimycotic target to its description as an emerging metabolic oncogene by amplification with clinical relevance in cancer. We review the published literature assessing the association between SE over-expression and poor prognosis in this disease. We assess the works demonstrating how SE promotes tumor cell proliferation and migration, and displaying evidence of cancer cell demise in presence of human SE inhibitors in in vitro and in vivo models. Taken together, robust scientific evidence has by now accumulated pointing out SE as a promising novel therapeutic target in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy.
| | - Gabriele Zoppoli
- Department of Internal Medicine, University of Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
111
|
Parada H, Sun X, Fleming JM, Williams-DeVane CR, Kirk EL, Olsson LT, Perou CM, Olshan AF, Troester MA. Race-associated biological differences among luminal A and basal-like breast cancers in the Carolina Breast Cancer Study. Breast Cancer Res 2017; 19:131. [PMID: 29228969 PMCID: PMC5725885 DOI: 10.1186/s13058-017-0914-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We examined racial differences in the expression of eight genes and their associations with risk of recurrence among 478 white and 495 black women who participated in the Carolina Breast Cancer Study Phase 3. METHODS Breast tumor samples were analyzed for PAM50 subtype and for eight genes previously found to be differentially expressed by race and associated with breast cancer survival: ACOX2, MUC1, FAM177A1, GSTT2, PSPH, PSPHL, SQLE, and TYMS. The expression of these genes according to race was assessed using linear regression and each gene was evaluated in association with recurrence using Cox regression. RESULTS Compared to white women, black women had lower expression of MUC1, a suspected good prognosis gene, and higher expression of GSTT2, PSPHL, SQLE, and TYMS, suspected poor prognosis genes, after adjustment for age and PAM50 subtype. High expression (greater than median versus less than or equal to median) of FAM177A1 and PSPH was associated with a 63% increase (hazard ratio (HR) = 1.63, 95% confidence interval (CI) = 1.09-2.46) and 76% increase (HR = 1.76, 95% CI = 1.15-2.68), respectively, in risk of recurrence after adjustment for age, race, PAM50 subtype, and ROR-PT score. Log2-transformed SQLE expression was associated with a 20% increase (HR = 1.20, 95% CI = 1.03-1.41) in recurrence risk after adjustment. A continuous multi-gene score comprised of eight genes was also associated with increased risk of recurrence among all women (HR = 1.11, 95% CI = 1.04-1.19) and among white (HR = 1.14, 95% CI = 1.03-1.27) and black (HR = 1.11, 95% CI = 1.02-1.20) women. CONCLUSIONS Racial differences in gene expression may contribute to the survival disparity observed between black and white women diagnosed with breast cancer.
Collapse
Affiliation(s)
- Humberto Parada
- Division of Epidemiology & Biostatistics, Graduate School of Public Health, San Diego State University, 5500 Campanile Drive, Hardy Tower Room 168, San Diego, CA, USA
| | - Xuezheng Sun
- Department of Epidemiology, University of North Carolina at Chapel Hill, Campus Box 7435, Chapel Hill, NC, 27599, USA
| | - Jodie M Fleming
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | | | - Erin L Kirk
- Department of Epidemiology, University of North Carolina at Chapel Hill, Campus Box 7435, Chapel Hill, NC, 27599, USA
| | - Linnea T Olsson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Campus Box 7435, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew F Olshan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Campus Box 7435, Chapel Hill, NC, 27599, USA
| | - Melissa A Troester
- Department of Epidemiology, University of North Carolina at Chapel Hill, Campus Box 7435, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
112
|
Chua NK, Howe V, Jatana N, Thukral L, Brown AJ. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis. J Biol Chem 2017; 292:19959-19973. [PMID: 28972164 DOI: 10.1074/jbc.m117.794230] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans.
Collapse
Affiliation(s)
- Ngee Kiat Chua
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Vicky Howe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nidhi Jatana
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110 020, India
| | - Lipi Thukral
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110 020, India
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
113
|
Mevalonate Cascade Inhibition by Simvastatin Induces the Intrinsic Apoptosis Pathway via Depletion of Isoprenoids in Tumor Cells. Sci Rep 2017; 7:44841. [PMID: 28344327 PMCID: PMC5366866 DOI: 10.1038/srep44841] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
The mevalonate (MEV) cascade is responsible for cholesterol biosynthesis and the formation of the intermediate metabolites geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) used in the prenylation of proteins. Here we show that the MEV cascade inhibitor simvastatin induced significant cell death in a wide range of human tumor cell lines, including glioblastoma, astrocytoma, neuroblastoma, lung adenocarcinoma, and breast cancer. Simvastatin induced apoptotic cell death via the intrinsic apoptotic pathway. In all cancer cell types tested, simvastatin-induced cell death was not rescued by cholesterol, but was dependent on GGPP- and FPP-depletion. We confirmed that simvastatin caused the translocation of the small Rho GTPases RhoA, Cdc42, and Rac1/2/3 from cell membranes to the cytosol in U251 (glioblastoma), A549 (lung adenocarcinoma) and MDA-MB-231(breast cancer). Simvastatin-induced Rho-GTP loading significantly increased in U251 cells which were reversed with MEV, FPP, GGPP. In contrast, simvastatin did not change Rho-GTP loading in A549 and MDA-MB-231. Inhibition of geranylgeranyltransferase I by GGTi-298, but not farnesyltransferase by FTi-277, induced significant cell death in U251, A549, and MDA-MB-231. These results indicate that MEV cascade inhibition by simvastatin induced the intrinsic apoptosis pathway via inhibition of Rho family prenylation and depletion of GGPP, in a variety of different human cancer cell lines.
Collapse
|
114
|
Qin Y, Zhang Y, Tang Q, Jin L, Chen Y. SQLE induces epithelial-to-mesenchymal transition by regulating of miR-133b in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2017; 49:138-148. [PMID: 28069586 DOI: 10.1093/abbs/gmw127] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that microRNAs, which control gene expression at the post-transcriptional level, are aberrantly expressed in cancers and play significant roles in carcinogenesis and cancer progression. In this study, we show differential miR-133b down-expression in human esophageal squamous cell carcinoma (ESCC) cells and tissues. In addition, squalene epoxidase (SQLE), a key enzyme of cholesterol synthesis, is identified as the direct downstream target gene of miR-133b by luciferase gene reporter assay. Furthermore, ectogenic miR-133b expression and SQLE knockdown can inhibit proliferation, invasion, and metastasis, and diminish epithelial-to-mesenchymal transition (EMT) traits of ESCC in vitro, implying that miR-133b-dependent SQLE can induce tumorigenicity and that SQLE is an EMT inducer. Xenograft experiment results also proved the biological function of SQLE in vivo. Therefore, we conclude that miR-133b-dependent SQLE plays a critical role in the potential metastasis mechanisms in ESCC.
Collapse
Affiliation(s)
- Yi Qin
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng 224001, China
| | - Yi Zhang
- Department of Oncology, Jimin Hospital, Shanghai 200052, China
| | - Qinting Tang
- College of Nursing, Yancheng Vocational Institute of Health Sciences, Yancheng 224006, China
| | - Li Jin
- Sichuan Cancer Hospital, Chengdu 610041, China
| | - Yong'an Chen
- Department of Oncology, Jimin Hospital, Shanghai 200052, China
| |
Collapse
|
115
|
Haider S, McIntyre A, van Stiphout RGPM, Winchester LM, Wigfield S, Harris AL, Buffa FM. Genomic alterations underlie a pan-cancer metabolic shift associated with tumour hypoxia. Genome Biol 2016; 17:140. [PMID: 27358048 PMCID: PMC4926297 DOI: 10.1186/s13059-016-0999-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Altered metabolism is a hallmark of cancer. However, the role of genomic changes in metabolic genes driving the tumour metabolic shift remains to be elucidated. Here, we have investigated the genomic and transcriptomic changes underlying this shift across ten different cancer types. RESULTS A systematic pan-cancer analysis of 6538 tumour/normal samples covering ten major cancer types identified a core metabolic signature of 44 genes that exhibit high frequency somatic copy number gains/amplifications (>20 % cases) associated with increased mRNA expression (ρ > 0.3, q < 10(-3)). Prognostic classifiers using these genes were confirmed in independent datasets for breast and kidney cancers. Interestingly, this signature is strongly associated with hypoxia, with nine out of ten cancer types showing increased expression and five out of ten cancer types showing increased gain/amplification of these genes in hypoxic tumours (P ≤ 0.01). Further validation in breast and colorectal cancer cell lines highlighted squalene epoxidase, an oxygen-requiring enzyme in cholesterol biosynthesis, as a driver of dysregulated metabolism and a key player in maintaining cell survival under hypoxia. CONCLUSIONS This study reveals somatic genomic alterations underlying a pan-cancer metabolic shift and suggests genomic adaptation of these genes as a survival mechanism in hypoxic tumours.
Collapse
Affiliation(s)
- Syed Haider
- />Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, UK
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alan McIntyre
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ruud G. P. M. van Stiphout
- />Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, UK
| | - Laura M. Winchester
- />Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, UK
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon Wigfield
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adrian L. Harris
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Francesca M. Buffa
- />Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, UK
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
116
|
Jia Y, Chen L, Jia Q, Dou X, Xu N, Liao DJ. The well-accepted notion that gene amplification contributes to increased expression still remains, after all these years, a reasonable but unproven assumption. J Carcinog 2016; 15:3. [PMID: 27298590 PMCID: PMC4895059 DOI: 10.4103/1477-3163.182809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
“Gene amplification causes overexpression” is a longstanding and well-accepted concept in cancer genetics. However, raking the whole literature, we find only statistical analyses showing a positive correlation between gene copy number and expression level, but do not find convincing experimental corroboration for this notion, for most of the amplified oncogenes in cancers. Since an association does not need to be an actual causal relation, in our opinion, this widespread notion still remains a reasonable but unproven assumption awaiting experimental verification.
Collapse
Affiliation(s)
- Yuping Jia
- Animal Facilities, Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong 250101, USA
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Qingwen Jia
- Animal Facilities, Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong 250101, USA
| | - Xixi Dou
- Animal Facilities, Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong 250101, USA
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, China
| | - Dezhong Joshua Liao
- Department of Pathology, Guizhou Medical University Hospital, Guizhou, Guiyang 550004, P.R. China
| |
Collapse
|
117
|
Kuzu OF, Noory MA, Robertson GP. The Role of Cholesterol in Cancer. Cancer Res 2016; 76:2063-70. [PMID: 27197250 DOI: 10.1158/0008-5472.can-15-2613] [Citation(s) in RCA: 492] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022]
Abstract
The roles played by cholesterol in cancer development and the potential of therapeutically targeting cholesterol homeostasis is a controversial area in the cancer community. Several epidemiologic studies report an association between cancer and serum cholesterol levels or statin use, while others suggest that there is not one. Furthermore, the Cancer Genome Atlas (TCGA) project using next-generation sequencing has profiled the mutational status and expression levels of all the genes in diverse cancers, including those involved in cholesterol metabolism, providing correlative support for a role of the cholesterol pathway in cancer development. Finally, preclinical studies tend to more consistently support the role of cholesterol in cancer, with several demonstrating that cholesterol homeostasis genes can modulate development. Because of space limitations, this review provides selected examples of the epidemiologic, TCGA, and preclinical data, focusing on alterations in cholesterol homeostasis and its consequent effect on patient survival. In melanoma, this focused analysis demonstrated that enhanced expression of cholesterol synthesis genes was associated with decreased patient survival. Collectively, the studies in melanoma and other cancer types suggested a potential role of disrupted cholesterol homeostasis in cancer development but additional studies are needed to link population-based epidemiological data, the TCGA database results, and preclinical mechanistic evidence to concretely resolve this controversy. Cancer Res; 76(8); 2063-70. ©2016 AACR.
Collapse
Affiliation(s)
- Omer F Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Mohammad A Noory
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|