101
|
Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B. Approaches to Obtaining Fluorinated α-Amino Acids. Chem Rev 2019; 119:10718-10801. [PMID: 31436087 DOI: 10.1021/acs.chemrev.9b00024] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fluorine does not belong to the pool of chemical elements that nature uses to build organic matter. However, chemists have exploited the unique properties of fluorine and produced countless fluoro-organic compounds without which our everyday lives would be unimaginable. The incorporation of fluorine into amino acids established a completely new class of amino acids and their properties, and those of the biopolymers constructed from them are extremely interesting. Increasing interest in this class of amino acids caused the demand for robust and stereoselective synthetic protocols that enable straightforward access to these building blocks. Herein, we present a comprehensive account of the literature in this field going back to 1995. We place special emphasis on a particular fluorination strategy. The four main sections describe fluorinated versions of alkyl, cyclic, aromatic amino acids, and also nickel-complexes to access them. We progress by one carbon unit increments. Special cases of amino acids for which there is no natural counterpart are described at the end of each section. Synthetic access to each of the amino acids is summarized in form of a table at the end of this article with the aim to make the information easily accessible to the reader.
Collapse
Affiliation(s)
- Johann Moschner
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Valentina Stulberg
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Rita Fernandes
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Susanne Huhmann
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Jakob Leppkes
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Beate Koksch
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| |
Collapse
|
102
|
van Groesen E, Lohans CT, Brem J, Aertker KMJ, Claridge TDW, Schofield CJ. 19 F NMR Monitoring of Reversible Protein Post-Translational Modifications: Class D β-Lactamase Carbamylation and Inhibition. Chemistry 2019; 25:11837-11841. [PMID: 31310409 PMCID: PMC6771976 DOI: 10.1002/chem.201902529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Indexed: 11/05/2022]
Abstract
Bacterial production of β‐lactamases with carbapenemase activity is a global health threat. The active sites of class D carbapenemases such as OXA‐48, which is of major clinical importance, uniquely contain a carbamylated lysine residue which is essential for catalysis. Although there is significant interest in characterizing this post‐translational modification, and it is a promising inhibition target, protein carbamylation is challenging to monitor in solution. We report the use of 19F NMR spectroscopy to monitor the carbamylation state of 19F‐labelled OXA‐48. This method was used to investigate the interactions of OXA‐48 with clinically used serine β‐lactamase inhibitors, including avibactam and vaborbactam. Crystallographic studies on 19F‐labelled OXA‐48 provide a structural rationale for the sensitivity of the 19F label to active site interactions. The overall results demonstrate the use of 19F NMR to monitor reversible covalent post‐translational modifications.
Collapse
Affiliation(s)
- Emma van Groesen
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Christopher T Lohans
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | | | | | |
Collapse
|
103
|
Edgar M, Zeinali F, Mojally M, Hughes C, Riaz S, Weaver GW. NMR spectral analysis of second-order 19F-19F, 19F-1H and 13C-19F coupling constants in pentafluorobenzene and tetrafluoro-4-(morpholino)pyridine using ANATOLIA. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
104
|
Aro-Heinilä A, Lönnberg T, Virta P. 3-Fluoro-2-mercuri-6-methylaniline Nucleotide as a High-Affinity Nucleobase-Specific Hybridization Probe. Bioconjug Chem 2019; 30:2183-2190. [PMID: 31246432 DOI: 10.1021/acs.bioconjchem.9b00405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A 3-fluoro-6-methylaniline nucleoside was synthesized and incorporated into an oligonucleotide, and its ability to form mercury-mediated base pairs was studied. UV melting experiments revealed increased duplex stability with thymine, guanine, and cytosine opposite to the probe and a clear nucleobase-specific binding preference (T > G > C > A). Moreover, the 3-fluoro group was utilized as a spin label that showed distinct 19F NMR resonance shifts depending on the complementary nucleobase, providing more detailed information on Hg(II)-mediated base pairing.
Collapse
Affiliation(s)
- Asmo Aro-Heinilä
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| | - Tuomas Lönnberg
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| | - Pasi Virta
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| |
Collapse
|
105
|
Mei H, Han J, Fustero S, Medio-Simon M, Sedgwick DM, Santi C, Ruzziconi R, Soloshonok VA. Fluorine-Containing Drugs Approved by the FDA in 2018. Chemistry 2019; 25:11797-11819. [PMID: 31099931 DOI: 10.1002/chem.201901840] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Over the last two decades, fluorine substitution has become one of the essential structural traits in modern pharmaceuticals. Thus, about half of the most successful drugs (blockbuster drugs) contain fluorine atoms. In this review, we profile 17 fluorine-containing drugs approved by the food and drug administration (FDA) in 2018. The newly approved pharmaceuticals feature several types of aromatic F and CF3 , as well as aliphatic (CF2 ) substitution, offering advances in the treatment of various diseases, including cancer, HIV, malarial and smallpox infections.
Collapse
Affiliation(s)
- Haibo Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.,Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Mercedes Medio-Simon
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.,Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Daniel M Sedgwick
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.,Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Claudio Santi
- Department of Phrmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Renzo Ruzziconi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
106
|
Tungstosulfonic acid-catalyzed green synthesis and bioassay of α-aminophosphonates. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2385-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
107
|
Christensen MV, Kongstad KT, Sondergaard TE, Staerk D, Nielsen HM, Franzyk H, Wimmer R. 19F-substituted amino acids as an alternative to fluorophore labels: monitoring of degradation and cellular uptake of analogues of penetratin by 19F NMR. JOURNAL OF BIOMOLECULAR NMR 2019; 73:167-182. [PMID: 30887171 DOI: 10.1007/s10858-019-00239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Current methods for assessment of cellular uptake of cell-penetrating peptides (CPPs) often rely on detection of fluorophore-labeled CPPs. However, introduction of the fluorescent probe often confers changed physicochemical properties, so that the fluorophore-CPP conjugate may exhibit cytotoxic effects and membrane damage not exerted by the native CPP. In the present study, introduction of fluorine probes was investigated as an alternative to fluorophore labeling of a CPP, since this only confers minor changes to its overall physicochemical properties. The high sensitivity of 19F NMR spectroscopy and the absence of background signals from naturally occurring fluorine enabled detection of internalized CPP. Also, degradation of fluorine-labeled peptides during exposure to Caco-2 cells could be followed by using 19F NMR spectroscopy. In total, five fluorinated analogues of the model CPP penetratin were synthesized by using commercially available fluorinated amino acids as labels, including one analogue also carrying an N-terminal fluorophore. The apparent cellular uptake was considerably higher for the fluorophore-penetratin conjugate indicating that the fluorophore moiety promoted uptake of the peptide. The use of 19F NMR spectroscopy enabled monitoring of the fate of the CPPs over time by establishing molar balances, and by verifying CPP integrity upon uptake. Thus, the NMR-based method offers several advantages over currently widespread methods relying on fluorescence detection. The present findings provide guidelines for improved labeling strategies for CPPs, thereby expanding the repertoire of analytical techniques available for studying degradation and uptake of CPPs.
Collapse
Affiliation(s)
- Malene V Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Teis Esben Sondergaard
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Hanne M Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Reinhard Wimmer
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
108
|
Hayashi T, Kehr G, Bergander K, Gilmour R. Stereospecific α‐Sialylation by Site‐Selective Fluorination. Angew Chem Int Ed Engl 2019; 58:3814-3818. [DOI: 10.1002/anie.201812963] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Taiki Hayashi
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
109
|
Hayashi T, Kehr G, Bergander K, Gilmour R. Stereospecific α‐Sialylation by Site‐Selective Fluorination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Taiki Hayashi
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
110
|
Biggs GS, O'Neill MJ, Carames Mendez P, Scrase TG, Lin Y, Bin-Maarof AM, Bond AD, Boss SR, Barker PD. Use of a fluorinated probe to quantitatively monitor amino acid binding preferences of ruthenium(ii) arene complexes. Dalton Trans 2019; 48:6910-6920. [DOI: 10.1039/c8dt05159c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Speciation of Ru(ii) arene complexes in mixtures of amino acids with coordinating sidechains is easily resolved by 19F NMR.
Collapse
Affiliation(s)
- George S. Biggs
- University of Cambridge
- Chemistry Department
- Cambridge CB2 1EW
- UK
| | - Michael J. O'Neill
- University of Cambridge
- Chemistry Department
- Cambridge CB2 1EW
- UK
- Faculty of Science and Engineering School of Mathematics and Physical Sciences
| | | | | | - Yulu Lin
- University of Cambridge
- Chemistry Department
- Cambridge CB2 1EW
- UK
| | | | - Andrew D. Bond
- University of Cambridge
- Chemistry Department
- Cambridge CB2 1EW
- UK
| | - Sally R. Boss
- University of Cambridge
- Chemistry Department
- Cambridge CB2 1EW
- UK
| | - Paul D. Barker
- University of Cambridge
- Chemistry Department
- Cambridge CB2 1EW
- UK
| |
Collapse
|
111
|
Mei H, Liu J, Fustero S, Román R, Ruzziconi R, Soloshonok VA, Han J. Chemistry of detrifluoroacetylativelyin situgenerated fluoro-enolates. Org Biomol Chem 2019; 17:762-775. [DOI: 10.1039/c8ob02843e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review article provides a summary of the detrifluoroacetylativein situgeneration of fluorine-containing enolates and their related reactions.
Collapse
Affiliation(s)
- Haibo Mei
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - Jiang Liu
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - Santos Fustero
- Departamento de Química Orgánica
- Universidad de Valencia
- 46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| | - Raquel Román
- Departamento de Química Orgánica
- Universidad de Valencia
- 46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| | - Renzo Ruzziconi
- Department of Chemistry
- Biology and Biotechnologies
- 06123 Perugia
- Italy
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I
- Faculty of Chemistry
- University of the Basque Country UPV/EHU
- 20018 San Sebastián
- Spain
| | - Jianlin Han
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| |
Collapse
|
112
|
McAlpine JB, Chen SN, Kutateladze A, MacMillan JB, Appendino G, Barison A, Beniddir MA, Biavatti MW, Bluml S, Boufridi A, Butler MS, Capon RJ, Choi YH, Coppage D, Crews P, Crimmins MT, Csete M, Dewapriya P, Egan JM, Garson MJ, Genta-Jouve G, Gerwick WH, Gross H, Harper MK, Hermanto P, Hook JM, Hunter L, Jeannerat D, Ji NY, Johnson TA, Kingston DGI, Koshino H, Lee HW, Lewin G, Li J, Linington RG, Liu M, McPhail KL, Molinski TF, Moore BS, Nam JW, Neupane RP, Niemitz M, Nuzillard JM, Oberlies NH, Ocampos FMM, Pan G, Quinn RJ, Reddy DS, Renault JH, Rivera-Chávez J, Robien W, Saunders CM, Schmidt TJ, Seger C, Shen B, Steinbeck C, Stuppner H, Sturm S, Taglialatela-Scafati O, Tantillo DJ, Verpoorte R, Wang BG, Williams CM, Williams PG, Wist J, Yue JM, Zhang C, Xu Z, Simmler C, Lankin DC, Bisson J, Pauli GF. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Nat Prod Rep 2019; 36:35-107. [PMID: 30003207 PMCID: PMC6350634 DOI: 10.1039/c7np00064b] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/20/2022]
Abstract
Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.
Collapse
Affiliation(s)
- James B McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Andrei Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - John B MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Universita` del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | | | - Mehdi A Beniddir
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Stefan Bluml
- University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Asmaa Boufridi
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Young H Choi
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - David Coppage
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Michael T Crimmins
- Kenan and Caudill Laboratories of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marie Csete
- University of Southern California, Huntington Medical Research Institutes, 99 N. El Molino Ave., Pasadena, CA 91101, USA
| | - Pradeep Dewapriya
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joseph M Egan
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mary J Garson
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Grégory Genta-Jouve
- C-TAC, UMR 8638 CNRS, Faculté de Pharmacie de Paris, Paris-Descartes University, Sorbonne, Paris Cité, 4, Aveue de l'Observatoire, 75006 Paris, France
| | - William H Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Harald Gross
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Precilia Hermanto
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luke Hunter
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Damien Jeannerat
- University of Geneva, Department of Organic Chemistry, 30 quai E. Ansermet, CH 1211 Geneva 4, Switzerland
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China
| | - Tyler A Johnson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Guy Lewin
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Tadeusz F Molinski
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Bradley S Moore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Joo-Won Nam
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ram P Neupane
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Matthias Niemitz
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jean-Marc Nuzillard
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Nicholas H Oberlies
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | | | - Guohui Pan
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - D Sai Reddy
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Jean-Hugues Renault
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - José Rivera-Chávez
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Wolfgang Robien
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Carla M Saunders
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Thomas J Schmidt
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Seger
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ben Shen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Steinbeck
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Hermann Stuppner
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Sonja Sturm
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Orazio Taglialatela-Scafati
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Dean J Tantillo
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Robert Verpoorte
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bin-Gui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China and Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Craig M Williams
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip G Williams
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Julien Wist
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jian-Min Yue
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Chen Zhang
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Zhengren Xu
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Charlotte Simmler
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - David C Lankin
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Jonathan Bisson
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Guido F Pauli
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| |
Collapse
|
113
|
Auger M, Lefèvre T, Otis F, Voyer N, Auger M. Lipid membrane interactions of a fluorinated peptide with potential ion channel-forming ability. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Maud Auger
- Regroupement québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines (PROTEO), Centre de Recherche sur les Matériaux Avancés (CERMA), Centre Québécois sur les Matériaux Fonctionnels (CQMF), Département de Chimie, Université Laval, 1045 avenue de la Médecine; Québec QC Canada G1V 0A6
| | - Thierry Lefèvre
- Regroupement québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines (PROTEO), Centre de Recherche sur les Matériaux Avancés (CERMA), Centre Québécois sur les Matériaux Fonctionnels (CQMF), Département de Chimie, Université Laval, 1045 avenue de la Médecine; Québec QC Canada G1V 0A6
| | - François Otis
- PROTEO, Département de chimie; Université Laval, 1045 avenue de la Médecine; Québec QC Canada G1V 0A6
| | - Normand Voyer
- PROTEO, Département de chimie; Université Laval, 1045 avenue de la Médecine; Québec QC Canada G1V 0A6
| | - Michèle Auger
- Regroupement québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines (PROTEO), Centre de Recherche sur les Matériaux Avancés (CERMA), Centre Québécois sur les Matériaux Fonctionnels (CQMF), Département de Chimie, Université Laval, 1045 avenue de la Médecine; Québec QC Canada G1V 0A6
| |
Collapse
|
114
|
Ishizuka T, Bao HL, Xu Y. 19F NMR Spectroscopy for the Analysis of DNA G-Quadruplex Structures Using 19F-Labeled Nucleobase. Methods Mol Biol 2019; 2035:407-433. [PMID: 31444766 DOI: 10.1007/978-1-4939-9666-7_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplex structures have been suggested to be biologically important in processes such as transcription and translation, gene expression and regulation in human cancer cells, and regulation of telomere length. Investigation of G-quadruplex structures associated with biological events is therefore essential to understanding the functions of these molecules. We developed the 19F-labeled nucleobases and introduced them into DNA sequences for the 19F NMR spectroscopy analysis. We present the 19F NMR methodology used in our research group for the study of G-quadruplex structures in vitro and in living cells.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
115
|
Zhao Z, To AJ, Murphy GK. Difluorinative ring expansions of benzo-fused carbocycles and heterocycles are achieved withp-(difluoroiodo)toluene. Chem Commun (Camb) 2019; 55:14821-14824. [PMID: 31763650 DOI: 10.1039/c9cc08310c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorination of exocyclic alkenes and allenes withp-TolIF2gives ring-expanded β,β-difluoridesviaa 1,2-phenyl shift.
Collapse
Affiliation(s)
- Zhensheng Zhao
- Department of Chemistry
- University of Waterloo
- Waterloo
- Canada
| | - Avery J. To
- Department of Chemistry
- University of Waterloo
- Waterloo
- Canada
| | | |
Collapse
|
116
|
Liang H, Xu GQ, Feng ZT, Wang ZY, Xu PF. Dual Catalytic Switchable Divergent Synthesis: An Asymmetric Visible-Light Photocatalytic Approach to Fluorine-Containing γ-Keto Acid Frameworks. J Org Chem 2018; 84:60-72. [PMID: 30507130 DOI: 10.1021/acs.joc.8b02316] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe a novel and efficient method for constructing a series of fluorine-containing γ-keto acid derivatives through combining visible-light photoredox catalysis and chiral Lewis acid catalysis. With this dual catalytic strategy, a variety of chiral γ-keto amides containing a gem-difluoroalkyl group and a series of fluorine-containing α,β-unsaturated-γ-keto esters were successfully constructed with high stereoselectivities, respectively. A series of experiments showed that the chemoselectivity of this process was highly dependent on the fluorine reagents besides the Lewis acid catalysts. This approach facilitates rapid access to γ-keto acid derivatives, an important class of precursors for pharmaceuticals, plasticizers, and various other additives.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Zhi-Tao Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Zhu-Yin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| |
Collapse
|
117
|
Ishizuka T, Zhao PY, Bao HL, Xu Y. A multi-functional guanine derivative for studying the DNA G-quadruplex structure. Analyst 2018; 142:4083-4088. [PMID: 28932835 DOI: 10.1039/c7an00941k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study, we developed a multi-functional guanine derivative, 8FG, as a G-quadruplex stabilizer, a fluorescent probe for the detection of G-quadruplex formation, and a 19F sensor for the observation of the G-quadruplex. We demonstrate that the functional nucleoside bearing a 3,5-bis(trifluoromethyl)benzene group at the 8-position of guanine stabilizes the DNA G-quadruplex structure and fluoresces following the G-quadruplex formation. Furthermore, we show that the functional sensor can be used to directly observe DNA G-quadruplexes by 19F-NMR in living cells. To our knowledge, this is the first study showing that the nucleoside derivative simultaneously allows for three kinds of functions at a single G-quadruplex DNA. Our results suggest that the multi-functional nucleoside derivative can be broadly used for studying the G-quadruplex structure and serves as a powerful tool for examining the molecular basis of G-quadruplex formation in vitro and in living cells.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | |
Collapse
|
118
|
Zhang CC, Zhou CZ, Burnap RL, Peng L. Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria. TRENDS IN PLANT SCIENCE 2018; 23:1116-1130. [PMID: 30292707 DOI: 10.1016/j.tplants.2018.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Carbon and nitrogen are the two most abundant nutrient elements for all living organisms, and their metabolism is tightly coupled. What are the signaling mechanisms that cells use to sense and control the carbon/nitrogen (C/N) metabolic balance following environmental changes? Based on studies in cyanobacteria, it was found that 2-phosphoglycolate derived from the oxygenase activity of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and 2-oxoglutarate from the Krebs cycle act as the carbon- and nitrogen-starvation signals, respectively, and their concentration ratio likely reflects the status of the C/N metabolic balance. We will present and discuss the regulatory principles underlying the signaling mechanisms, which are likely to be conserved in other photosynthetic organisms. These concepts may also contribute to developments in the field of biofuel engineering or improvements in crop productivity.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; Aix-Marseille Université, CNRS, LCB, France.
| | - Cong-Zhao Zhou
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisée Ligue Contre le Cancer, CINaM UMR 7325, 13288 Marseille, France
| |
Collapse
|
119
|
Hamaguchi N, Okuno Y, Oe Y, Ohta T. A simple quantitative chiral analysis of amino acid esters by fluorine-19 nuclear magnetic resonance using the modified James-Bull method. Chirality 2018; 31:34-40. [PMID: 30395695 DOI: 10.1002/chir.23028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Naoto Hamaguchi
- Department of Biomedical Information, Faculty of Life and Medical Sciences; Doshisha University; Kyoto Japan
| | - Yuta Okuno
- Department of Biomedical Information, Faculty of Life and Medical Sciences; Doshisha University; Kyoto Japan
| | - Yohei Oe
- Department of Biomedical Information, Faculty of Life and Medical Sciences; Doshisha University; Kyoto Japan
| | - Tetsuo Ohta
- Department of Biomedical Information, Faculty of Life and Medical Sciences; Doshisha University; Kyoto Japan
| |
Collapse
|
120
|
Dalvit C, Vulpetti A. Ligand-Based Fluorine NMR Screening: Principles and Applications in Drug Discovery Projects. J Med Chem 2018; 62:2218-2244. [DOI: 10.1021/acs.jmedchem.8b01210] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
121
|
Manna S, Sarkar D, Srivatsan SG. A Dual-App Nucleoside Probe Provides Structural Insights into the Human Telomeric Overhang in Live Cells. J Am Chem Soc 2018; 140:12622-12633. [PMID: 30192541 PMCID: PMC6348103 DOI: 10.1021/jacs.8b08436] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding the topology adopted by individual G-quadruplex (GQ)-forming sequences in vivo and targeting a specific GQ motif among others in the genome will have a profound impact on GQ-directed therapeutic strategies. However, this remains a major challenge as most of the tools poorly distinguish different GQ conformations and are not suitable for both cell-free and in-cell analysis. Here, we describe an innovative probe design to investigate GQ conformations and recognition in both cell-free and native cellular environments by using a conformation-sensitive dual-app nucleoside analogue probe. The nucleoside probe, derived by conjugating fluorobenzofuran at the 5-position of 2'-deoxyuridine, is composed of a microenvironment-sensitive fluorophore and an in-cell NMR compatible 19F label. This noninvasive nucleoside, incorporated into the human telomeric DNA oligonucleotide repeat, serves as a common probe to distinguish different GQ topologies and quantify topology-specific binding of ligands by fluorescence and NMR techniques. Importantly, unique signatures displayed by the 19F-labeled nucleoside for different GQs enabled a systematic study in Xenopus laevis oocytes to provide new structural insights into the GQ topologies adopted by human telomeric overhang in cells, which so far has remained unclear. Studies using synthetic cell models, immunostaining on fixed cells, and crystallization conditions suggest that parallel GQ is the preferred conformation of telomeric DNA repeat. However, our findings using the dual-app probe clearly indicate that multiple structures including hybrid-type parallel-antiparallel and parallel GQs are formed in the cellular environment. Taken together, our findings open new experimental strategies to investigate topology, recognition, and therapeutic potential of individual GQ-forming motifs in a biologically relevant context.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Debayan Sarkar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
122
|
Chaubey B, Pal S. Binding Interaction of Organofluorine–Serum Albumin: A Comparative Ligand-Detected 19F NMR Analysis. J Phys Chem B 2018; 122:9409-9418. [DOI: 10.1021/acs.jpcb.8b06583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bhawna Chaubey
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
123
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
124
|
Xu Y. Recent progress in human telomere RNA structure and function. Bioorg Med Chem Lett 2018; 28:2577-2584. [DOI: 10.1016/j.bmcl.2018.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/15/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
|
125
|
Sadurní A, Gilmour R. Stereocontrolled Synthesis of 2-Fluorinated C-Glycosides. European J Org Chem 2018; 2018:3684-3687. [PMID: 30147438 PMCID: PMC6099233 DOI: 10.1002/ejoc.201800618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 11/22/2022]
Abstract
A systematic study of the addition of C-based nucleophiles to fluorinated lactones based on 2-deoxy-2-fluoro-d-pyranoses is disclosed. This high yielding, α-selective process was found to be independent on the nature or configuration [(R)-C(sp3)-F, (S)-C(sp3)-F] of the substituent at C2. Representative, fluorinated analogues of Trehalose, Carminic acid, and the spirocyclic cores of Tofogliflozin and Papulacandin D are also reported. These glycomimics constitute a valuable series of 19F NMR active probes for application in structural biology.
Collapse
Affiliation(s)
- Anna Sadurní
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Ryan Gilmour
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 4048149MünsterGermany
- Excellence Cluster EXC 1003Cells in MotionGermany
| |
Collapse
|
126
|
Hofman GJ, Ottoy E, Light ME, Kieffer B, Kuprov I, Martins JC, Sinnaeve D, Linclau B. Minimising conformational bias in fluoroprolines through vicinal difluorination. Chem Commun (Camb) 2018; 54:5118-5121. [PMID: 29717724 DOI: 10.1039/c8cc01493k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Monofluorination at the proline 4-position results in conformational effects, which is exploited for a range of applications. However, this conformational distortion is a hindrance when the natural proline conformation is important. Here we introduce (3S,4R)-3,4-difluoroproline, in which the individual fluorine atoms instil opposite conformational effects, as a suitable probe for fluorine NMR studies.
Collapse
Affiliation(s)
- Gert-Jan Hofman
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Oliver M, Gadais C, García-Pindado J, Teixidó M, Lensen N, Chaume G, Brigaud T. Trifluoromethylated proline analogues as efficient tools to enhance the hydrophobicity and to promote passive diffusion transport of the l-prolyl-l-leucyl glycinamide (PLG) tripeptide. RSC Adv 2018; 8:14597-14602. [PMID: 35540789 PMCID: PMC9079923 DOI: 10.1039/c8ra02511h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 01/23/2023] Open
Abstract
The synthesis of four CF3-proline analogues of the PLG peptide is reported. Our results show that the incorporation of trifluoromethylated amino acids (Tfm-AAs) at the N-terminal position of a peptide significantly increases its hydrophobicity. In addition, depending on the relative configuration and the position of the CF3 group, Tfm-AAs can also promote passive diffusion transport.
Collapse
Affiliation(s)
- Martin Oliver
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise 5 mail Gay-Lussac, Neuville-sur-Oise 95031 Cergy-Pontoise France
| | - Charlène Gadais
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise 5 mail Gay-Lussac, Neuville-sur-Oise 95031 Cergy-Pontoise France
| | - Júlia García-Pindado
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST) C/ Baldiri Reixac 10 08028 Barcelona Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST) C/ Baldiri Reixac 10 08028 Barcelona Spain
| | - Nathalie Lensen
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise 5 mail Gay-Lussac, Neuville-sur-Oise 95031 Cergy-Pontoise France
| | - Grégory Chaume
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise 5 mail Gay-Lussac, Neuville-sur-Oise 95031 Cergy-Pontoise France
| | - Thierry Brigaud
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise 5 mail Gay-Lussac, Neuville-sur-Oise 95031 Cergy-Pontoise France
| |
Collapse
|
128
|
Abstract
Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.
Collapse
|
129
|
Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JAS, Toste FD. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem Rev 2018; 118:3887-3964. [PMID: 29608052 DOI: 10.1021/acs.chemrev.7b00778] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New methods for preparation of tailor-made fluorine-containing compounds are in extremely high demand in nearly every sector of chemical industry. The asymmetric construction of quaternary C-F stereogenic centers is the most synthetically challenging and, consequently, the least developed area of research. As a reflection of this apparent methodological deficit, pharmaceutical drugs featuring C-F stereogenic centers constitute less than 1% of all fluorine-containing medicines currently on the market or in clinical development. Here we provide a comprehensive review of current research activity in this area, including such general directions as asymmetric electrophilic fluorination via organocatalytic and transition-metal catalyzed reactions, asymmetric elaboration of fluorine-containing substrates via alkylations, Mannich, Michael, and aldol additions, cross-coupling reactions, and biocatalytic approaches.
Collapse
Affiliation(s)
- Yi Zhu
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China
| | - Jiandong Wang
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory , RIKEN, and RIKEN Center for Sustainable Resourse Science , 2-1 Hirosawa , Wako 351-0198 , Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry , University of the Basque Country UPV/EHU , 20018 San Sebastian , Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| | - Jaime A S Coelho
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - F Dean Toste
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
130
|
Investigation of higher-order RNA G-quadruplex structures in vitro and in living cells by 19F NMR spectroscopy. Nat Protoc 2018. [PMID: 29517770 DOI: 10.1038/nprot.2017.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidence indicates that RNA G-quadruplexes have important roles in various processes such as transcription, translation, regulation of telomere length, and formation of telomeric heterochromatin. Investigation of RNA G-quadruplex structures associated with biological events is therefore essential to understanding the functions of these RNA molecules. We recently demonstrated that the sensitivity and simplicity of 19F NMR can be used to directly observe higher-order telomeric G-quadruplexes of labeled RNA molecules in vitro and in living cells, as well as their interactions with ligands and proteins. This protocol describes detailed procedures for preparing 19F-labeled RNA, the evaluation of 19F-labeled RNA G-quadruplexes in vitro and in living Xenopus laevis oocytes by 19F NMR spectroscopy, the quantitative characterization of thermodynamic properties of the G-quadruplexes, and monitoring of RNA G-quadruplex interactions with ligand molecules and proteins. This approach has several advantages over existing techniques. First, it is relatively easy to prepare 19F-labeled RNA molecules by introducing a 3,5-bis(trifluoromethyl) benzene moiety into its 5' terminus. Second, the absence of any natural fluorine background signal in RNA and cells results in a simple and clear 19F NMR spectrum and does not suffer from high background signals as does 1H NMR. Finally, the simplicity and sensitivity of 19F NMR can be used to easily distinguish different RNA G-quadruplex conformations under various conditions, even in living cells, and to obtain the precise thermodynamic parameters of higher-order G-quadruplexes. This protocol can be completed in 2 weeks.
Collapse
|
131
|
New insights into the influence of monofluorination on dimyristoylphosphatidylcholine membrane properties: A solid-state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:654-663. [DOI: 10.1016/j.bbamem.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
132
|
Towards the use of monofluorinated dimyristoylphosphatidylcholines as 19F NMR reporters in bacterial model membranes. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2017.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
133
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
134
|
Fustero S, Sedgwick DM, Román R, Barrio P. Recent advances in the synthesis of functionalised monofluorinated compounds. Chem Commun (Camb) 2018; 54:9706-9725. [DOI: 10.1039/c8cc05181j] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past few years, we have tackled the synthesis of interesting monofluorinated organic molecules, such as: dihydronaphthalene derivatives, β-fluoro sulfones and related carbonyl compounds, fluorohydrins and allylic alcohols.
Collapse
Affiliation(s)
- Santos Fustero
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| | - Daniel M. Sedgwick
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| | - Raquel Román
- Laboratorio de Moléculas Orgánicas
- Centro de Investigación Príncipe Felipe
- E-46012 Valencia
- Spain
| | - Pablo Barrio
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| |
Collapse
|
135
|
Gagnon MC, Auger M, Paquin JF. Progress in the synthesis of fluorinated phosphatidylcholines for biological applications. Org Biomol Chem 2018; 16:4925-4941. [DOI: 10.1039/c8ob00991k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorinated phospholipids have attracted a lot of interest over the past 40 years. While mono- and polyfluorinated analogs are mostly designed to be used as 19F NMR probes, highly fluorinated phospholipids are mainly developed as drug delivery devices and oxygen carriers. This review describes their synthetic pathways, their properties and potential applications.
Collapse
Affiliation(s)
| | - Michèle Auger
- PROTEO
- CERMA
- CQMF
- Département de Chimie
- Université Laval
| | | |
Collapse
|
136
|
Sakamoto T, Hasegawa D, Fujimoto K. Disassembly-driven signal turn-on probes for bimodal detection of DNA with 19F NMR and fluorescence. Org Biomol Chem 2018; 16:7157-7162. [DOI: 10.1039/c8ob02218f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembling molecular probes that can detect DNA in a 19F NMR and fluorescence signal turn-on manner were successfully developed.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Faculty of Systems Engineering
- Wakayama University
- Wakayama 640-8510
- Japan
| | - Daisaku Hasegawa
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| | - Kenzo Fujimoto
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| |
Collapse
|
137
|
Ishizuka T, Yamashita A, Asada Y, Xu Y. Studying DNA G-Quadruplex Aptamer by 19F NMR. ACS OMEGA 2017; 2:8843-8848. [PMID: 30023592 PMCID: PMC6045382 DOI: 10.1021/acsomega.7b01405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
In this study, we demonstrated that 19F NMR can be used to study the thrombin-binding aptamer (TBA) DNA G-quadruplex, widely used as a model structure for studying G-quadruplex aptamers. We systematically examined the structural feature of the TBA G-quadruplex aptamer with fluorine-19 (19F) labels at all of the thymidine positions. We successfully observed the structural change between the G-quadruplex and the unstructured single strand by 19F NMR spectroscopy. The thermodynamic parameters of these DNA G-quadruplex aptamers were also determined from the 19F NMR signals. We further showed that the 19F NMR method can be used to observe the complex formed by TBA G-quadruplex and thrombin. Our results suggest that 19F NMR spectroscopy is a useful approach to study the aptamer G-quadruplex structure.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Atsushi Yamashita
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yujiro Asada
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division
of Chemistry, Department of Medical Sciences, Faculty of
Medicine and Department of Pathology, Division of Pathophysiology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
138
|
Melnykov SV, Pataman AS, Dmytriv YV, Shishkina SV, Vovk MV, Sukach VA. Regioselective decarboxylative addition of malonic acid and its mono(thio)esters to 4-trifluoromethylpyrimidin-2(1 H)-ones. Beilstein J Org Chem 2017; 13:2617-2625. [PMID: 29259672 PMCID: PMC5727768 DOI: 10.3762/bjoc.13.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
Background: Due to the high reactivity towards various C-nucleophiles, trifluoromethylketimines are known to be useful reagents for the synthesis of α-trifluoromethylated amine derivatives. However, decarboxylative reactions with malonic acid and its mono(thio)esters have been poorly investigated so far despite the potential to become a convenient route to β-trifluoromethyl-β-amino acid derivatives and to their partially saturated heterocyclic analogues. Results: In this paper we show that 4-trifluoromethylpyrimidin-2(1H)-ones, unique heterocyclic ketimines, react with malonic acid under organic base catalysis to regioselectively provide either Michael- or Mannich-type decarboxylative addition products depending on solvent polarity. Malonic mono(thio)esters give exclusively Michael-type products. The two regioisomeric products can be converted into saturated (2-oxohexahydropyrimidin-4-yl)acetic acid derivatives by mild hydrogenation of the endocyclic C=C double bond in the presence of Pd/C as catalyst. The cis-stereoisomers selectively formed upon reduction of the Michael-type products were structurally determined by X-ray diffraction. As a result of this study, a number of novel acetic acid derivatives containing trifluoromethylated, partially or fully saturated 2-oxopyrimidine cores were prepared and characterized as promising building blocks. Conclusions: Regio- and stereoselective protocols have been developed for the synthesis of novel isomeric 4(6)-trifluoromethylated 1,2,3,4-tetrahydro- and perhydro-(2-oxopyrimidin-4-yl)acetic acid derivatives.
Collapse
Affiliation(s)
- Sergii V Melnykov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02660, Ukraine
| | | | - Yurii V Dmytriv
- Enamine LTD, 78 Chervonotkats'ka str., Kyiv 02094, Ukraine.,National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremohy ave., Kyiv 03056, Ukraine
| | - Svitlana V Shishkina
- STC ''Institute for Single Crystals'', National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv 61001, Ukraine.,Department of Inorganic Chemisrtry, V.M. Karasin Kharkiv National University, 4 Svobody sq, Kharkiv 61122, Ukraine
| | - Mykhailo V Vovk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02660, Ukraine
| | - Volodymyr A Sukach
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02660, Ukraine
| |
Collapse
|
139
|
Dalvit C, Knapp S. 19 F NMR isotropic chemical shift for efficient screening of fluorinated fragments which are racemates and/or display multiple conformers. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:1091-1095. [PMID: 28762528 DOI: 10.1002/mrc.4640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Fluorine ligand-based NMR spectroscopy is now an established method for performing binding screening against a macromolecular target. Typically, the transverse relaxation rate of the fluorine signals is monitored in the absence and presence of the target. However, useful structural information can sometimes be obtained from the analysis of the fluorine isotropic chemical shift. This is particularly relevant for molecules that are racemates and/or display multiple conformers. The large difference in fluorine isotropic chemical shift between free and bound state deriving mainly from the breaking and/or making of intramolecular and/or intermolecular hydrogen bonds allows the detection of very weak affinity ligands. According to our experimental results, racemates should always be included in the generation of the fluorinated fragment libraries. The selection or the availability of only one of the enantiomers for the fluorinated screening library could result in missing relevant chemical scaffold motifs.
Collapse
Affiliation(s)
- Claudio Dalvit
- Faculty of Science, University of Neuchatel, 2000, Neuchatel, Switzerland
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Riedberg Campus, 60438, Frankfurt, Germany
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford University, Oxford, OX3 7DQ, UK
| |
Collapse
|
140
|
Quantification of size effect on protein rotational mobility in cells by 19F NMR spectroscopy. Anal Bioanal Chem 2017; 410:869-874. [PMID: 29184995 DOI: 10.1007/s00216-017-0745-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/21/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022]
Abstract
Protein diffusion in living cells might differ significantly from that measured in vitro. Little is known about the effect of globular protein size on rotational diffusion in cells because each protein has distinct surface properties, which result in different interactions with cellular components. To overcome this problem, the B1 domain of protein G (GB1) and several concatemers of the protein were labeled with 5-fluorotryptophan and studied by 19F NMR in Escherichia coli cells, Xenopus laevis oocytes, and in aqueous solutions crowded with glycerol, or Ficoll70™ and lysozyme. Relaxation data show that the size dependence of protein rotation in cells is due to weak interactions of the target protein with cellular components, but the effect of these interactions decreases as protein size increases. The results provide valuable information for interpreting protein diffusion data acquired in living cells. Graphical abstract Size matters. The protein rotational mobility in living cells was assessed by 19F NMR. The size dependence effect may arise from weak interactions between protein and cytoplasmic components.
Collapse
|
141
|
Rydzik AM, Warminski M, Sikorski PJ, Baranowski MR, Walczak S, Kowalska J, Zuberek J, Lukaszewicz M, Nowak E, W Claridge TD, Darzynkiewicz E, Nowotny M, Jemielity J. mRNA cap analogues substituted in the tetraphosphate chain with CX2: identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation. Nucleic Acids Res 2017; 45:8661-8675. [PMID: 28666355 PMCID: PMC5587727 DOI: 10.1093/nar/gkx569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Analogues of the mRNA 5'-cap are useful tools for studying mRNA translation and degradation, with emerging potential applications in novel therapeutic interventions including gene therapy. We report the synthesis of novel mono- and dinucleotide cap analogues containing dihalogenmethylenebisphosphonate moiety (i.e. one of the bridging O atom substituted with CCl2 or CF2) and their properties in the context of cellular translational and decapping machineries, compared to phosphate-unmodified and previously reported CH2-substituted caps. The analogues were bound tightly to eukaryotic translation initiation factor 4E (eIF4E), with CCl2-substituted analogues having the highest affinity. When incorporated into mRNA, the CCl2-substituted dinucleotide most efficiently promoted cap-dependent translation. Moreover, the CCl2-analogues were potent inhibitors of translation in rabbit reticulocyte lysate. The crystal structure of eIF4E in complex with the CCl2-analogue revealed a significantly different ligand conformation compared to that of the unmodified cap analogue, which likely contributes to the improved binding. Both CCl2- and CF2- analogues showed lower susceptibility to hydrolysis by the decapping scavenger enzyme (DcpS) and, when incorporated into RNA, conferred stability against major cellular decapping enzyme (Dcp2) to transcripts. Furthermore, the use of difluoromethylene cap analogues was exemplified by the development of 19F NMR assays for DcpS activity and eIF4E binding.
Collapse
Affiliation(s)
- Anna M Rydzik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Sylwia Walczak
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Timothy D W Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
142
|
Bao HL, Ishizuka T, Sakamoto T, Fujimoto K, Uechi T, Kenmochi N, Xu Y. Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res 2017; 45:5501-5511. [PMID: 28180296 PMCID: PMC5435947 DOI: 10.1093/nar/gkx109] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/06/2017] [Indexed: 11/12/2022] Open
Abstract
Human telomeric RNA has been identified as a key component of the telomere machinery. Recently, the growing evidence suggests that the telomeric RNA forms G-quadruplex structures to play an important role in telomere protection and regulation. In the present studies, we developed a 19F NMR spectroscopy method to investigate the telomeric RNA G-quadruplex structures in vitro and in living cells. We demonstrated that the simplicity and sensitivity of 19F NMR approach can be used to directly observe the dimeric and two-subunits stacked G-quadruplexes in vitro and in living cells and quantitatively characterize the thermodynamic properties of the G-quadruplexes. By employing the 19F NMR in living cell experiment, we confirmed for the first time that the higher-order G-quadruplex exists in cells. We further demonstrated that telomere RNA G-quadruplexes are converted to the higher-order G-quadruplex under molecular crowding condition, a cell-like environment. We also show that the higher-order G-quadruplex has high thermal stability in crowded solutions. The finding provides new insight into the structural behavior of telomere RNA G-quadruplex in living cells. These results open new avenues for the investigation of G-quadruplex structures in vitro and in living cells.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takashi Sakamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
143
|
Duro-Castano A, Gallon E, Decker C, Vicent MJ. Modulating angiogenesis with integrin-targeted nanomedicines. Adv Drug Deliv Rev 2017; 119:101-119. [PMID: 28502767 DOI: 10.1016/j.addr.2017.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Targeting angiogenesis-related pathologies, which include tumorigenesis and metastatic processes, has become an attractive strategy for the development of efficient guided nanomedicines. In this respect, integrins are cell-adhesion molecules involved in angiogenesis signaling pathways and are overexpressed in many angiogenic processes. Therefore, they represent specific biomarkers not only to monitor disease progression but also to rationally design targeted nanomedicines. Arginine-glycine-aspartic (RGD) containing peptides that bind to specific integrins have been widely utilized to provide ligand-mediated targeting capabilities to small molecules, peptides, proteins, and antibodies, as well as to drug/imaging agent-containing nanomedicines, with the final aim of maximizing their therapeutic index. Within this review, we aim to cover recent and relevant examples of different integrin-assisted nanosystems including polymeric nanoconstructs, liposomes, and inorganic nanoparticles applied in drug/gene therapy as well as imaging and theranostics. We will also critically address the overall benefits of integrin-targeting.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Elena Gallon
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Caitlin Decker
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
144
|
Axthelm J, Askes SHC, Elstner M, G UR, Görls H, Bellstedt P, Schiller A. Fluorinated Boronic Acid-Appended Pyridinium Salts and 19F NMR Spectroscopy for Diol Sensing. J Am Chem Soc 2017; 139:11413-11420. [PMID: 28719195 DOI: 10.1021/jacs.7b01167] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The identification and discrimination of diols is of fundamental importance in medical diagnostics, such as measuring the contents of glucose in the urine of diabetes patients. Diol sensors are often based on fluorophore-appended boronic acids, but these severely lack discriminatory power and their response is one-dimensional. As an alternative strategy, we present the use of fluorinated boronic acid-appended pyridinium salts in combination with 19F NMR spectroscopy. A pool of 59 (bio)analytes was screened, containing monosaccharides, phosphorylated and N-acetylated sugars, polyols, carboxylic acids, nucleotides, and amines. The majority of analytes could be clearly detected and discriminated. In addition, glucose and fructose could be distinguished up to 1:9 molar ratio in mixtures. Crucially, the receptors feature high sensitivity and selectivity and are water-soluble, and their 19F-NMR analyte fingerprint is pH-robust, thereby making them particularly well-suited for medical application. Finally, to demonstrate this applicability, glucose could be detected in synthetic urine samples down to 1 mM using merely a 188 MHz NMR spectrometer.
Collapse
Affiliation(s)
- Jörg Axthelm
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena , Humboldtstrasse 8, D-07743 Jena, Germany
| | - Sven H C Askes
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena , Humboldtstrasse 8, D-07743 Jena, Germany
| | - Martin Elstner
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena , Humboldtstrasse 8, D-07743 Jena, Germany
| | - Upendar Reddy G
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena , Humboldtstrasse 8, D-07743 Jena, Germany
| | - Helmar Görls
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena , Humboldtstrasse 8, D-07743 Jena, Germany
| | - Peter Bellstedt
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena , Humboldtstrasse 8, D-07743 Jena, Germany
| | - Alexander Schiller
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena , Humboldtstrasse 8, D-07743 Jena, Germany
| |
Collapse
|
145
|
Bao H, Ishizuka T, Iwanami A, Oyoshi T, Xu Y. A Simple and Sensitive
19
F NMR Approach for Studying the Interaction of RNA G‐Quadruplex with Ligand Molecule and Protein. ChemistrySelect 2017. [DOI: 10.1002/slct.201700711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hong‐Liang Bao
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Ayaka Iwanami
- Faculty of Science, Department of ChemistryShizuoka University 836 Ohya Suruga Shizuoka 422-8529 Japan
| | - Takanori Oyoshi
- Faculty of Science, Department of ChemistryShizuoka University 836 Ohya Suruga Shizuoka 422-8529 Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| |
Collapse
|
146
|
Calvete MJF, Dias LD, Henriques CA, Pinto SMA, Carrilho RMB, Pereira MM. A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an Inorganic Acid Catalyst. Molecules 2017; 22:molecules22050741. [PMID: 28475140 PMCID: PMC6154588 DOI: 10.3390/molecules22050741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023] Open
Abstract
Herein we report the synthesis of unsymmetrical meso-aryl substituted porphyrins, using NaY zeolite as an inorganic acid catalyst. A comparative study between this method and the several synthetic strategies available in the literature was carried out. Our method presented a better, more cost-efficient rationale and displayed a significantly lower environmental impact. Furthermore, it was possible to verify the scalability of the process as well as the reutilization of the inorganic catalyst NaY (up to 6 times) without significant yield decrease. In addition, this method was applied to the synthesis of several other unsymmetrical porphyrins, from a low melting point porphyrin to mono-carboxylated halogenated unsymmetrical porphyrins, in yields higher than those found in the literature. Additionally, for the first time, two acetamide functionalized halogenated porphyrins were prepared in high yields. This methodology opens the way to the preparation of high yielding functionalized porphyrins, which can be easily immobilized for a variety of applications, either in catalysis or in biomedicine.
Collapse
Affiliation(s)
- Mário J F Calvete
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Lucas D Dias
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - César A Henriques
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Sara M A Pinto
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Rui M B Carrilho
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Mariette M Pereira
- Coimbra Chemistry Centre, CQC, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
147
|
Hou Y, Hu W, Li X, Skinner JJ, Liu D, Wüthrich K. Solvent-accessibility of discrete residue positions in the polypeptide hormone glucagon by 19F-NMR observation of 4-fluorophenylalanine. JOURNAL OF BIOMOLECULAR NMR 2017; 68:1-6. [PMID: 28508109 PMCID: PMC5487752 DOI: 10.1007/s10858-017-0107-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
The amino acid 4-fluoro-L-phenylalanine (4F-Phe) was introduced at the positions of Phe6 and Phe22 in the 29-residue polypeptide hormone glucagon by expressing glucagon in E. coli in the presence of an excess of 4F-Phe. Glucagon regulates blood glucose homeostasis by interaction with the glucagon receptor (GCGR), a class B GPCR. By referencing to the 4F-Phe chemical shifts at varying D2O concentrations, the solvent exposure of the two Phe sites along the glucagon sequence was determined, showing that 4F-Phe6 was fully solvent exposed and 4F-Phe22 was only partially exposed. The incorporation of fluorine atoms in polypeptide hormones paves the way for novel studies of their interactions with membrane-spanning receptors, specifically by differentiating between effects on the solvent accessibility, the line shapes, and the chemical shifts from interactions with lipids, detergents and proteins. Studies of interactions of GCGR with ligands in solution is at this point of keen interest, given that recent crystallographic studies revealed that an apparent small molecule antagonist actually binds as an allosteric effector at a distance of ~20 Å from the orthosteric ligand binding site (Jazayeri et al., in Nature 533:274-277, 2016).
Collapse
Affiliation(s)
- Yaguang Hou
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Wanhui Hu
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Xiaona Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - John J Skinner
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
148
|
Tähtinen V, Granqvist L, Murtola M, Strömberg R, Virta P. 19 F NMR Spectroscopic Analysis of the Binding Modes in Triple-Helical Peptide Nucleic Acid (PNA)/MicroRNA Complexes. Chemistry 2017; 23:7113-7124. [PMID: 28370485 DOI: 10.1002/chem.201700601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 12/21/2022]
Abstract
Triplex-forming peptide nucleic acids (TFPNAs) were targeted to double-helical regions of 19 F-labeled RNA hairpin models (a UA-rich duplex with a hexaethylene glycol (heg) loop and a microRNA model, miR-215). In addition to conventional UV- and circular dichroism (CD)-based detection, binding was monitored by 19 F NMR spectroscopy. Detailed information on the stoichiometry and transition between the triple-helical peptide nucleic acid (PNA)/RNA and (PNA)2 /RNA binding modes could be obtained. γ-(R)-Hydroxymethyl-modified thymine-1-yl- and 2-aminopyridin-3-yl-acetyl derivatives of TFPNAs were additionally synthesized, which were targeted to the same RNA models, and the effect of the γ-(R)-hydroxymethyl group on binding was studied. An appropriate pattern of γ-(R)-hydroxymethyl modifications reduced the stability of the ternary complex and preferred stoichiometric binding to the miR-215 model.
Collapse
Affiliation(s)
- Ville Tähtinen
- Department of Chemistry, University of Turku, Turku, 20014, Finland
| | - Lotta Granqvist
- Department of Chemistry, University of Turku, Turku, 20014, Finland
| | - Merita Murtola
- Department of Chemistry, University of Turku, Turku, 20014, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 83, Huddinge, Stockholm, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 83, Huddinge, Stockholm, Sweden
| | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, 20014, Finland
| |
Collapse
|
149
|
Zeng JL, Chachignon H, Ma JA, Cahard D. Nucleophilic Trifluoromethylthiolation of Cyclic Sulfamidates: Access to Chiral β- and γ-SCF3 Amines and α-Amino Esters. Org Lett 2017; 19:1974-1977. [DOI: 10.1021/acs.orglett.7b00501] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun-Liang Zeng
- UMR 6014 CNRS
COBRA, Normandie Université, INSA Rouen, 1 rue Tesnière, 76821 Mont Saint Aignan, France
- Department
of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences,
and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hélène Chachignon
- UMR 6014 CNRS
COBRA, Normandie Université, INSA Rouen, 1 rue Tesnière, 76821 Mont Saint Aignan, France
| | - Jun-An Ma
- Department
of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences,
and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dominique Cahard
- UMR 6014 CNRS
COBRA, Normandie Université, INSA Rouen, 1 rue Tesnière, 76821 Mont Saint Aignan, France
| |
Collapse
|
150
|
|