101
|
Rong G, Tuttle EE, Neal Reilly A, Clark HA. Recent Developments in Nanosensors for Imaging Applications in Biological Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:109-128. [PMID: 30857408 PMCID: PMC6958676 DOI: 10.1146/annurev-anchem-061417-125747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sensors are key tools for monitoring the dynamic changes of biomolecules and biofunctions that encode valuable information that helps us understand underlying biological processes of fundamental importance. Because of their distinctive size-dependent physicochemical properties, materials with nanometer scales have recently emerged as promising candidates for biological sensing applications by offering unique insights into real-time changes of key physiological parameters. This review focuses on recent advances in imaging-based nanosensor developments and applications categorized by their signal transduction mechanisms, namely, fluorescence, plasmonics, MRI, and photoacoustics. We further discuss the synergy created by multimodal nanosensors in which sensor components work based on two or more signal transduction mechanisms.
Collapse
Affiliation(s)
- Guoxin Rong
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Erin E Tuttle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ashlyn Neal Reilly
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Heather A Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
102
|
Jia X, Ye HN, Weng H, Huang N, Yu Y, Xue JP. Small molecular target-based multifunctional upconversion nanocomposites for targeted and in-depth photodynamic and chemo-anticancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109849. [PMID: 31499944 DOI: 10.1016/j.msec.2019.109849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/14/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
A novel multifunctional nano-system, ZnPc-UCNPs-PEG-G, was designed for targeted and in-depth photodynamic therapy. The nano-system was built via covalent conjugation, in which phthalocyanine zinc (ZnPc), Gefitinib (G), NaYF4: Yb, Er (UCNPs) and PEG derivatives were employed as the photosensitizer, target moiety, upconversion nanomaterial and linker unit, respectively. The photophysical/chemical properties, in-depth photodynamic activity, cancer cell specificity and anticancer activity of ZnPc-UCNPs-PEG-G were investigated. The as-prepared ZnPc-UCNPs-PEG-G exhibits excellent photosensitizing ability, generating reactive oxygen species (ROS) via effective energy transfer from UCNP to phthalocyanine zinc. In addition, the composite exhibits specific affinity to HepG2 cancer cells and high anticancer activity. To the best of our knowledge, this is the only example of a UCNP platform that is capable of molecular targeted and in-depth photodynamic and chemo-anticancer therapy via the introduction of a small molecular targeting drug moiety.
Collapse
Affiliation(s)
- Xiao Jia
- College of Chemistry, Institution Fujian Engineering Research Center for Drug and Diagnoses-Treatment of Photodynamic Therapy, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China
| | - Huan-Nian Ye
- College of Chemistry, Institution Fujian Engineering Research Center for Drug and Diagnoses-Treatment of Photodynamic Therapy, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China
| | - Huilan Weng
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ning Huang
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology (Fuzhou University), Fujian Province University, Fuzhou, China.
| | - Jin-Ping Xue
- College of Chemistry, Institution Fujian Engineering Research Center for Drug and Diagnoses-Treatment of Photodynamic Therapy, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China.
| |
Collapse
|
103
|
Chai SQ, Lv WY, He JH, Li CH, Li YF, Li CM, Huang CZ. Dual Energy Transfer-Based Fluorescent Nanoprobe for Imaging miR-21 in Nonalcoholic Fatty Liver Cells with Low Background. Anal Chem 2019; 91:6761-6768. [PMID: 31020834 DOI: 10.1021/acs.analchem.9b00841] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) can progress gradually to liver failure, early warning of which is critical for improving the cure rate of NAFLD. In situ imaging and monitoring of overexpressed miR-21 is an advanced strategy for NAFLD diagnosis. However, this strategy usually suffers from the high background imaging in living cells owing to the complexity of the biological system. To overcome this problem, herein, we have developed a one-donor-two-acceptor nanoprobe by assembling gold nanoparticles (AuNPs) coupled with BHQ2 (AuBHQ) and quantum dots (QDs) through DNA hybridization for imaging of miR-21 in living cells. The fluorescence of QDs was quenched up to 82.8% simultaneously by the AuNPs and the BHQ2 via nanometal surface energy transfer and fluorescence resonance energy transfer, reducing the background signals for target imaging. This low background fluorescent nanoprobe was successfully applied for imaging the target miR-21 in nonalcoholic fatty liver cells by catalyzing the disassembly of QDs with the AuBHQ and the fluorescence recovery of QDs. In addition, the sensitivity of this nanoprobe has also been enhanced toward detecting miR-21 in the range of 2.0-15.0 nM with the detection limit (LOD, 3σ) of 0.22 nM, which was 13.5 times lower than that without BHQ2. The proposed approach provides a new way for early warning, treatments, and prognosis of NAFLD.
Collapse
Affiliation(s)
- Shui Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China
| | - Wen Yi Lv
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China
| | - Jia Hui He
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China
| | - Chun Hong Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China
| | - Yuan Fang Li
- Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Chun Mei Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China.,Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| |
Collapse
|
104
|
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019; 48:2053-2108. [PMID: 30259015 PMCID: PMC6437026 DOI: 10.1039/c8cs00618k] [Citation(s) in RCA: 1622] [Impact Index Per Article: 324.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nonradiative conversion of light energy into heat (photothermal therapy, PTT) or sound energy (photoacoustic imaging, PAI) has been intensively investigated for the treatment and diagnosis of cancer, respectively. By taking advantage of nanocarriers, both imaging and therapeutic functions together with enhanced tumour accumulation have been thoroughly studied to improve the pre-clinical efficiency of PAI and PTT. In this review, we first summarize the development of inorganic and organic nano photothermal transduction agents (PTAs) and strategies for improving the PTT outcomes, including applying appropriate laser dosage, guiding the treatment via imaging techniques, developing PTAs with absorption in the second NIR window, increasing photothermal conversion efficiency (PCE), and also increasing the accumulation of PTAs in tumours. Second, we introduce the advantages of combining PTT with other therapies in cancer treatment. Third, the emerging applications of PAI in cancer-related research are exemplified. Finally, the perspectives and challenges of PTT and PAI for combating cancer, especially regarding their clinical translation, are discussed. We believe that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve our ability to combat cancers.
Collapse
Affiliation(s)
- Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
105
|
Vithani K, Jannin V, Pouton CW, Boyd BJ. Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs. Adv Drug Deliv Rev 2019; 142:16-34. [PMID: 30677448 DOI: 10.1016/j.addr.2019.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 01/15/2023]
Abstract
Self-dispersing lipid-based formulations, particularly self-microemulsifying drug delivery systems (SMEDDS) have gained an increased interest in recent times as a means to enhance the oral bioavailability of poorly water-soluble lipophilic drugs. Upon dilution, SMEDDS self-emulsify in an aqueous fluid and usually form a kinetically stable oil-in-water emulsion or in some rare cases a true thermodynamically stable microemulsion. The digestion of the formulation leads to the production of amphiphilic digestion products that interact with endogenous amphiphilic components and form self-assembled colloidal phases in the aqueous environment of the intestine. The formed colloidal phases play a pivotal role in maintaining the lipophilic drug in the solubilised state during gastrointestinal transit prior to absorption. Thus, this review describes the structural characterisation techniques employed for SMEDDS and the recent literature studies that elucidated the colloidal aspects during dispersion and digestion of SMEDDS and solid SMEDDS. Possible future studies are proposed to gain better understanding on the colloidal aspects of SMEDDS and solid SMEDDS.
Collapse
|
106
|
Guo J, Qiu X, Mingoes C, Deschamps JR, Susumu K, Medintz IL, Hildebrandt N. Conformational Details of Quantum Dot-DNA Resolved by Förster Resonance Energy Transfer Lifetime Nanoruler. ACS NANO 2019; 13:505-514. [PMID: 30508369 DOI: 10.1021/acsnano.8b07137] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA-nanoparticle conjugates are important tools in nanobiotechnology. Knowing the orientation, function, and length of DNA on nanoparticle surfaces at low nanomolar concentrations under physiological conditions is therefore of great interest. Here, we investigate the conformation of a 31 nucleotides (nt) long DNA attached to a semiconductor quantum dot (QD) via Förster resonance energy transfer (FRET) from Tb-DNA probes hybridized to different positions on the QD-DNA. Precise Tb-to-QD distance determination from 7 to 14 nm along 26 nt of the peptide-appended QD-DNA was realized by time-resolved FRET spectroscopy. The FRET nanoruler measured linear single-stranded (ssDNA) and double-stranded (dsDNA) extensions of ∼0.15 and ∼0.31 nm per base, reflecting the different conformations. Comparison with biomolecular modeling confirmed the denser conformation of ssDNA and a possibly more flexible orientation on the QD surface, whereas the dsDNA was fully extended with radial orientation. The temporally distinct photoluminescence decays of the different DNA-FRET configurations were used for prototypical DNA hybridization assays that demonstrated the large potential for extended temporal multiplexing. The extensive experimental and theoretical analysis of 11 different distances/configurations of the same QD-DNA conjugate provided important information on DNA conformation on nanoparticle surfaces and will be an important benchmark for the development and optimization of DNA-nanobiosensors.
Collapse
Affiliation(s)
- Jiajia Guo
- NanoBioPhotonics, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Xue Qiu
- NanoBioPhotonics, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Carlos Mingoes
- NanoBioPhotonics, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | | | | | | | - Niko Hildebrandt
- NanoBioPhotonics, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| |
Collapse
|
107
|
Dey PC, Das R. Ligand free surface of CdS nanoparticles enhances the energy transfer efficiency on interacting with Eosin Y dye - Helping in the sensing of very low level of chlorpyrifos in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:156-163. [PMID: 30227346 DOI: 10.1016/j.saa.2018.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
With an aim to sense the presence of chlorpyrifos (CP) pesticide in water, fluorescence resonance energy transfer (FRET) between the chemically synthesized ligand free CdS nanocrystals (donor) and Eosin Y dye (acceptor) has been studied in presence and absence of CP in the FRET pair system. This prepared water soluble CdS nanocrystals have been characterized by Transmission Electron microscopy (TEM), which shows that CdS nanocrystals are spherical in shape with an average size of 5 nm approximately. Further, Fourier Transform Infrared Spectroscopic (FTIR) study confirms that these CdS nanocrystals are ligand free stable nanocrystals. It has been observed that this CdS nanocrystals and Eosin Y FRET pair can strongly sense the presence of chlorpyrifos (CP) pesticide in water up to a very low concentration of 10 ppb, which is the sensitivity of detection or detection limit. This FRET pair is found to be very simple and cost effective for the sensing of toxic pesticide CP.
Collapse
Affiliation(s)
- Pijush Ch Dey
- Nano-Physics & Nanotechnology Research Lab., Department of Physics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura 799022, India
| | - Ratan Das
- Nano-Physics & Nanotechnology Research Lab., Department of Physics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura 799022, India.
| |
Collapse
|
108
|
Cao SH, Weng YH, Xie KX, Wang ZC, Pan XH, Chen M, Zhai YY, Xu LT, Li YQ. Surface Plasmon Coupled Fluorescence-Enhanced Interfacial “Molecular Beacon” To Probe Biorecognition Switching: An Efficient, Versatile, and Facile Signaling Biochip. ACS APPLIED BIO MATERIALS 2019; 2:625-629. [DOI: 10.1021/acsabm.8b00751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuo-Hui Cao
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
- Shenzhen Research Institute, Xiamen University, Shenzhen 518000, P. R. China
| | - Yu-Hua Weng
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai-Xin Xie
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zheng-Chuang Wang
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiao-Hui Pan
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Min Chen
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yan-Yun Zhai
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lin-Tao Xu
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yao-Qun Li
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
109
|
López de Guereñu A, Bastian P, Wessig P, John L, Kumke MU. Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift. BIOSENSORS 2019; 9:E9. [PMID: 30626081 PMCID: PMC6468880 DOI: 10.3390/bios9010009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022]
Abstract
Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF₄-based UCNP co-doped with Yb3+ and Tm3+ as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d']bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye. The possibility of resonance energy transfer (RET) between UCNP and the DBD-6 attached to their surface was demonstrated based on the comparison of luminescence intensities, band ratios, and decay kinetics. The architecture of UCNP influenced both the luminescence properties and the energy transfer to the dye: UCNP with an inert shell were the brightest, but their RET efficiency was the lowest (17%). Nanoparticles with Tm3+ only in the shell have revealed the highest RET efficiencies (up to 51%) despite the compromised luminescence due to surface quenching.
Collapse
Affiliation(s)
- Anna López de Guereñu
- Department of Chemistry (Physical Chemistry), University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Philipp Bastian
- Department of Chemistry (Physical Chemistry), University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Pablo Wessig
- Department of Chemistry (Organic Chemistry), University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Leonard John
- Department of Chemistry (Organic Chemistry), University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Michael U Kumke
- Department of Chemistry (Physical Chemistry), University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
110
|
Wang C, Otto S, Dorn M, Heinze K, Resch-Genger U. Luminescent TOP Nanosensors for Simultaneously Measuring Temperature, Oxygen, and pH at a Single Excitation Wavelength. Anal Chem 2019; 91:2337-2344. [DOI: 10.1021/acs.analchem.8b05060] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Cui Wang
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, Berlin D-12489, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Takustrasse 3, Berlin D-14195, Germany
| | - Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, Mainz D-55128, Germany
| | - Matthias Dorn
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, Berlin D-12489, Germany
| |
Collapse
|
111
|
Sun C, Pan L, Zhang L, Huang J, Yao D, Wang CZ, Zhang Y, Jiang N, Chen L, Yuan CS. A biomimetic fluorescent nanosensor based on imprinted polymers modified with carbon dots for sensitive detection of alpha-fetoprotein in clinical samples. Analyst 2019; 144:6760-6772. [DOI: 10.1039/c9an01065c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A biomimetic fluorescent nanosensor based on molecularly imprinted polymers modified with carbon dots (CDs@MIPs) has been prepared for rapid, selective and sensitive detection of alpha-fetoprotein (AFP) in clinical samples.
Collapse
Affiliation(s)
- Chenghong Sun
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
- Management Center of Family Planning Drugs and Instruments of Sichuan Province
| | - Linli Pan
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Lei Zhang
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Jiaojiao Huang
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
- Department of Pharmacy
| | - Dandan Yao
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research
- and Department of Anesthesia & Critical Care
- University of Chicago
- Chicago
- USA
| | - Yu Zhang
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Nan Jiang
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Lina Chen
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Chun-su Yuan
- Tang Center for Herbal Medicine Research
- and Department of Anesthesia & Critical Care
- University of Chicago
- Chicago
- USA
| |
Collapse
|
112
|
An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Food Chem 2018; 280:115-122. [PMID: 30642476 DOI: 10.1016/j.foodchem.2018.12.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
In this paper a new aptasensor with high-sensitivity, and high-specificity for detection of diazinon, was discovered, based on fluorescence resonance energy transfer (FRET) between quantum dot (QD) as a donor and graphene oxide (GO) as an acceptor. l-cysteine capped CdS QDs/DF20 aptamer bioconjugates were successfully synthesized. GO was also attached to aptamers and photoluminescence quenching was obtained through FRET. By adding target diazinon to the bioconjugates containing GO, photoluminescence recovery was detected due to detachment of GO from the aptamer as a result of the difference in affinity for the aptamer. The detection limit of the biosensor was 0.13 nM and the linearity was maintained from 1.05 to 206 nM. Other pesticides and herbicides did not contribute to photoluminescence recovery due to lack of binding affinity for the aptamers, which demonstrates the selectivity of the biosensor. The results show the applicability of the aptasensor for monitoring diazinon in environmental and agricultural samples.
Collapse
|
113
|
Lee J, Adegoke O, Park EY. High-Performance Biosensing Systems Based on Various Nanomaterials as Signal Transducers. Biotechnol J 2018; 14:e1800249. [PMID: 30117715 DOI: 10.1002/biot.201800249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Recently, highly sensitive and selective biosensors have become necessary for improving public health and well-being. To fulfill this need, high-performance biosensing systems based on various nanomaterials, such as nanoparticles, carbon nanomaterials, and hybrid nanomaterials, are developed. Numerous nanomaterials show excellent physical properties, including plasmonic, magnetic, catalytic, mechanical and fluorescence properties and high electrical conductivities, and these unique and beneficial properties have contributed to the fabrication of high-performance biosensors with various applications, including in optical, electrical, and electrochemical detection platforms. In addition, these properties can be transformed to signals for the detection of biomolecules. In this review, various types of nanomaterial-based biosensors are introduced, and they show high sensitivity and selectivity. In addition, the potential applications of these sensors on the biosensing of several types of biomolecules are also discussed. These nanomaterials-based biosensing systems provide a significant improvement on healthcare including rapid monitoring and early detection of infectious disease for public health.
Collapse
Affiliation(s)
- Jaewook Lee
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Oluwasesan Adegoke
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Laboratory of Biotechnology, College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
114
|
Abstract
Advances in polymeric nanoparticles as novel nanomedicines have opened a new class of diagnostic and therapeutic tools for many diseases. However, although the benchtop research studies in the nanoworld are numerous, their translation to currently marketed products is still limited. This lack of transference can be attributed, among other factors, to problems with nanomedicine characterization. Characterization techniques at the nanoscale could be divided in three categories: characterization of physicochemical properties (e.g., size and surface charge), characterization of nanomaterials interactions with biological components (e.g., proteins from the blood), and analytical characterization and purification methods. Currently available literature of this last group only describes methodologies applied for a specific type of nanomaterial or even methods used for bulk materials, which are not completely applicable to nanomaterials. For this reason, the current review aims to become a scholastic guide for those scientists starting in the nanoworld, giving them a description of analytical characterization techniques aimed to analyze polymers forming nanoparticles and possible forms to purify them before being used in preclinical and clinical applications.
Collapse
|
115
|
Lv X, Zhang S, Ma H, Dong P, Ma X, Xu M, Tian Y, Tang Z, Peng J, Chen H, Zhang J. In situ monitoring of the structural change of microemulsions in simulated gastrointestinal conditions by SAXS and FRET. Acta Pharm Sin B 2018; 8:655-665. [PMID: 30109189 PMCID: PMC6089861 DOI: 10.1016/j.apsb.2018.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/17/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Microemulsions are promising drug delivery systems for the oral administration of poorly water-soluble drugs. However, the evolution of microemulsions in the gastrointestinal tract is still poorly characterized, especially the structural change of microemulsions under the effect of lipase and mucus. To better understand the fate of microemulsions in the gastrointestinal tract, we applied small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) to monitor the structural change of microemulsions under the effect of lipolysis and mucus. First, the effect of lipolysis on microemulsions was studied by SAXS, which found the generation of liquid crystalline phases. Meanwhile, FRET spectra indicated micelles with smaller particle sizes were generated during lipolysis, which could be affected by CaCl2, bile salts and lecithin. Then, the effect of mucus on the structural change of lipolysed microemulsions was studied. The results of SAXS and FRET indicated that the liquid crystalline phases disappeared, and more micelles were generated. In summary, we studied the structural change of microemulsions in simulated gastrointestinal conditions by SAXS and FRET, and successfully monitored the appearance and disappearance of the liquid crystalline phases and micelles.
Collapse
Affiliation(s)
- Xia Lv
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Shuguang Zhang
- Xinglin College, Liaoning University of Traditional Chinese Medicine, Shenyang 110167, China
| | - Huipeng Ma
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Peipei Dong
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ming Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan Tian
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zeyao Tang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Haibo Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jianbin Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
116
|
Alarfaj NA, El-Tohamy MF, Oraby HF. CA 19-9 Pancreatic Tumor Marker Fluorescence Immunosensing Detection via Immobilized Carbon Quantum Dots Conjugated Gold Nanocomposite. Int J Mol Sci 2018; 19:E1162. [PMID: 29641488 PMCID: PMC5979385 DOI: 10.3390/ijms19041162] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
The clinical detection of carbohydrate antigen 19-9 (CA 19-9), a tumor marker in biological samples, improves and facilitates the rapid screening and diagnosis of pancreatic cancer. A simple, low cost, fast, and green synthesis method to prepare a viable carbon quantum dots/gold (CQDs/Au) nanocomposite fluorescence immunosensing solution for the detection of CA 19-9 was reported. The present method is conducted by preparing glucose-derived CQDs using a microwave-assisted method. CQDs were employed as reducing and stabilizing agents for the preparation of a CQDs/Au nanocomposite. The immobilized anti-CA 19-9-labeled horseradish peroxidase enzyme (Ab-HRP) was anchored to the surface of a CQDs/Au nanocomposite by a peptide interaction between the carboxylic and amine active groups. The CA 19-9 antigen was trapped by another monoclonal antibody that was coated on the surface of microtiter wells. The formed sandwich capping antibody-antigen-antibody enzyme complex had tunable fluorescence properties that were detected under excitation and emission wavelengths of 420 and 530 nm. The increase in fluorescence intensities of the immunoassay sensing solution was proportional to the CA 19-9 antigen concentration in the linear range of 0.01-350 U mL-1 and had a lower detection limit of 0.007 U mL-1. The proposed CQDs/Au nanocomposite immunoassay method provides a promising tool for detecting CA 19-9 in human serum.
Collapse
Affiliation(s)
- Nawal Ahmad Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | - Maha Farouk El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
- General Administration and Medical Affairs, Zagazig University, Zagazig 44511, Egypt.
| | - Hesham Farouk Oraby
- Department of Agronomy, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
117
|
Cheng HR, Lu XJ, Zhang Y, Deng XY. Synthesis and Fluorescence Property of a New Dendritic Perylenediimide-Naphthalimide Derivative. ChemistrySelect 2018. [DOI: 10.1002/slct.201800272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huan-Ren Cheng
- School of Chemistry and Chemical Engineering; Hubei Polytechnic University; Huangshi 435003 People's Republic of China
| | - Xiao-Ju Lu
- School of Chemistry and Chemical Engineering; Hubei Polytechnic University; Huangshi 435003 People's Republic of China
| | - Yong Zhang
- School of Chemistry and Chemical Engineering; Hubei Polytechnic University; Huangshi 435003 People's Republic of China
| | - Xiang-Yi Deng
- School of Chemistry and Chemical Engineering; Hubei Polytechnic University; Huangshi 435003 People's Republic of China
| |
Collapse
|
118
|
Sotnikov DV, Zherdev AV, Dzantiev BB. Mathematical Modeling of Bioassays. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523069 DOI: 10.1134/s0006297917130119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The high affinity and specificity of biological receptors determine the demand for and the intensive development of analytical systems based on use of these receptors. Therefore, theoretical concepts of the mechanisms of these systems, quantitative parameters of their reactions, and relationships between their characteristics and ligand-receptor interactions have become extremely important. Many mathematical models describing different bioassay formats have been proposed. However, there is almost no information on the comparative characteristics of these models, their assumptions, and predictive insights. In this review we suggested a set of criteria to classify various bioassays and reviewed classical and contemporary publications on these bioassays with special emphasis on immunochemical analysis systems as the most common and in-demand techniques. The possibilities of analytical and numerical modeling are discussed, as well as estimations of the minimum concentrations that may be detected in bioassays and recommendations for the choice of assay conditions.
Collapse
Affiliation(s)
- D V Sotnikov
- Bach Institute of Biochemistry, Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
119
|
Liu R, Zhang L, Chen Y, Huang Z, Huang Y, Zhao S. Design of a New Near-Infrared Ratiometric Fluorescent Nanoprobe for Real-Time Imaging of Superoxide Anions and Hydroxyl Radicals in Live Cells and in Situ Tracing of the Inflammation Process in Vivo. Anal Chem 2018. [DOI: 10.1021/acs.analchem.7b04488] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rongjun Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Yunyun Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Zirong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
120
|
Liu L, Zhang H, Song D, Wang Z. An upconversion nanoparticle-based fluorescence resonance energy transfer system for effectively sensing caspase-3 activity. Analyst 2018; 143:761-767. [PMID: 29327008 DOI: 10.1039/c7an01744h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new fluorescence resonance energy transfer (FRET) sensing platform for the sensitive detection of caspase-3 activity in vitro and in cells using NaGdF4:Yb3+,Er3+@NaGdF4 upconversion nanoparticles (UCNPs) as the energy donor and Rhodamine B (RB) as the energy acceptor. The phosphorylated RB-modified peptide containing a caspase-3 cleavage site and cell-penetrating peptide (CPP) motif (sequence, (RB)-DEVDGGS(p)GCGT(p)GRKKRRQRRRPQ) is immobilized on the UCNP surface via the strong coordination interaction between Gd3+ ions with phosphate. After the cleavage of DEVD by caspase-3, the RB is released from the UCNP surface and the reduced upconversion luminescence (UCL) is recovered. Under the optimum conditions, the recovery ratio of the UCL is linearly dependent on the caspase-3 concentration within the range of 0.01 to 1000 pg mL-1 and with a limit of detection (LOD) of 0.01 pg mL-1 (S/N = 3). In particular, the as-proposed UCNP-based FRET sensing platform has reasonable selectivity which is successfully employed to monitor caspase-3 activity in drug-induced apoptosis of HeLa cells.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
121
|
|
122
|
Chen B, Su Q, Kong W, Wang Y, Shi P, Wang F. Energy transfer-based biodetection using optical nanomaterials. J Mater Chem B 2018; 6:2924-2944. [DOI: 10.1039/c8tb00614h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on recent progress in the development of FRET probes and the applications of FRET-based sensing systems.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering
- City University of Hong Kong
- China
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology
- Shanghai University
- Shanghai 200444
- China
| | - Wei Kong
- Department of Materials Science and Engineering
- City University of Hong Kong
- China
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
| | - Yuan Wang
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
| | - Peng Shi
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
- China
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
| | - Feng Wang
- Department of Materials Science and Engineering
- City University of Hong Kong
- China
- City Universities of Hong Kong Shenzhen Research Institute
- Shenzhen 518057
| |
Collapse
|
123
|
Nosrati R, Golichenari B, Nezami A, Taghdisi SM, Karimi B, Ramezani M, Abnous K, Shaegh SAM. Helicobacter pylori point-of-care diagnosis: Nano-scale biosensors and microfluidic systems. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
124
|
Eftekhari-Sis B, Karaminejad S, Malekan F, Araghi HY, Akbari A. CdSe Quantum Dots Based Nano-Biosensor for Detection of 185delAG Mutation in BRCA1 Gene, Responsible for Breast Cancer. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0661-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
125
|
Pan X, Wang W, Ke L, Zhang N. Observation of aggregation triggered by Resonance Energy Transfer (RET) induced intermolecular pairing force. Sci Rep 2017; 7:5970. [PMID: 28729556 PMCID: PMC5519756 DOI: 10.1038/s41598-017-05157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022] Open
Abstract
In this report, we showed the existence of RET induced intermolecular pairing force by comparing their fluorescence behaviors under room illumination vs standing in dark area for either PFluAnt solution or PFluAnt&PFOBT mixture. Their prominent emission attenuation under room illumination brought out the critical role of photo, i.e. RET induced intermolecular pairing force in induction of polymer aggregation. Constant UV-Vis absorption and fluorescence spectra in terms of both peak shapes and maximum wavelengths implied no chemical decomposition was involved. Recoverable fluorescence intensity, fluorescence lifetime as well as NMR spectra further exclude photo induced decomposition. The controllable on/off state of RET induced intermolecular pairing force was verified by the masking effect of outside PFluAnt solution which function as filter to block the excitation of inside PFluAnt and thus off the RET induced intermolecular pairing force. Theoretical calculation suggest that magnitude of RET induced intermolecular pairing force is on the same scale as that of van der Waals interaction. Although the absolute magnitude of RET induced intermolecular pairing force was not tunable, its effect can be magnified by intentionally turn it "on", which was achieved by irradiance with 5 W desk lamp in this report.
Collapse
Affiliation(s)
- Xiaoyong Pan
- 2 Fusionopolis Way, Innovis, #08-03, Institute of Materials Research and Engineering (IMRE), 138634, Singapore, Singapore.
| | - Weizhi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Lin Ke
- 2 Fusionopolis Way, Innovis, #08-03, Institute of Materials Research and Engineering (IMRE), 138634, Singapore, Singapore
| | - Nan Zhang
- 2 Fusionopolis Way, Innovis, #08-03, Institute of Materials Research and Engineering (IMRE), 138634, Singapore, Singapore
| |
Collapse
|
126
|
Wu M, Wang X, Wang K, Guo Z. An ultrasensitive fluorescent nanosensor for trypsin based on upconversion nanoparticles. Talanta 2017; 174:797-802. [PMID: 28738656 DOI: 10.1016/j.talanta.2017.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/19/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022]
Abstract
Trypsin and its inhibitors are relevant to many physiological processes and diseases. In this study, a nanosensor capable of detecting trypsin and its inhibitors was designed based on the fluorescence resonance energy transfer (FRET) between upconversion nanoparticle (UCNP) and gold nanoparticle (AuNP). UCNP and AuNP were linked by a trypsin-sensitive peptide DDDDARC, forming the non-fluorescent UCNP-peptide-AuNP nanosensor. In the presence of trypsin, the peptide was cleaved and the quenched fluorescence was restored; in the presence of trypsin inhibitors, the recovery of the fluorescence was decreased. The nanosensor showed a superb sensitivity and selectivity for trypsin and its inhibitors, with a detection limit of 4.15ngmL-1 for trypsin. UCNP-peptide-AuNP could eliminate the interference of background fluorescence and avoid the light toxicity, and potentially be used to diagnose trypsin-related diseases or screen trypsin inhibitors.
Collapse
Affiliation(s)
- Mingmin Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| | - Kun Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
127
|
Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS NANO 2017; 11:5238-5292. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro biosensors have been an integral component for early diagnosis of cancer in the clinic. Among them, no-wash biosensors, which only depend on the simple mixing of the signal generating probes and the sample solution without additional washing and separation steps, have been found to be particularly attractive. The outstanding advantages of facile, convenient, and rapid response of no-wash biosensors are especially suitable for point-of-care testing (POCT). One fast-growing field of no-wash biosensor design involves the usage of nanomaterials as signal amplification carriers or direct signal generating elements. The analytical capacity of no-wash biosensors with respect to sensitivity or limit of detection, specificity, stability, and multiplexing detection capacity is largely improved because of their large surface area, excellent optical, electrical, catalytic, and magnetic properties. This review provides a comprehensive overview of various nanomaterial-enhanced no-wash biosensing technologies and focuses on the analysis of the underlying mechanism of these technologies applied for the early detection of cancer biomarkers ranging from small molecules to proteins, and even whole cancerous cells. Representative examples are selected to demonstrate the proof-of-concept with promising applications for in vitro diagnostics of cancer. Finally, a brief discussion of common unresolved issues and a perspective outlook on the field are provided.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
128
|
Ye W, Guo J, Bao X, Chen T, Weng W, Chen S, Yang M. Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs)-Based Electrochemical Biosensors. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E603. [PMID: 28772965 PMCID: PMC5553420 DOI: 10.3390/ma10060603] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 11/16/2022]
Abstract
The wide abuse of antibiotics has accelerated bacterial multiresistance, which means there is a need to develop tools for rapid detection and characterization of bacterial response to antibiotics in the management of infections. In the study, an electrochemical biosensor based on nanoporous alumina membrane and graphene quantum dots (GQDs) was developed for bacterial response to antibiotics detection. Anti-Salmonella antibody was conjugated with amino-modified GQDs by glutaraldehyde and immobilized on silanized nanoporous alumina membranes for Salmonella bacteria capture. The impedance signals across nanoporous membranes could monitor the capture of bacteria on nanoporous membranes as well as bacterial response to antibiotics. This nanoporous membrane and GQD-based electrochemical biosensor achieved rapid detection of bacterial response to antibiotics within 30 min, and the detection limit could reach the pM level. It was capable of investigating the response of bacteria exposed to antibiotics much more rapidly and conveniently than traditional tools. The capability of studying the dynamic effects of antibiotics on bacteria has potential applications in the field of monitoring disease therapy, detecting comprehensive food safety hazards and even life in hostile environment.
Collapse
Affiliation(s)
- Weiwei Ye
- Institute of Ocean Research, Zhejiang University of Technology, Hangzhou 310014, China.
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| | - Jiubiao Guo
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518063, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| | - Xianfeng Bao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Tian Chen
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wenchuan Weng
- Guangdong Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510623, China.
| | - Sheng Chen
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518063, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| | - Mo Yang
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| |
Collapse
|
129
|
Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629019 DOI: 10.1016/j.msec.2017.05.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene quantum dots (GQDs) are new efficient nanomaterials used in therapeutic applications. In this study, blue fluorescent nitrogen-doped GQDs (N-GQDs) were synthesized by a hydrothermal method via pyrolisis of citric acid as the carbon source and urea as the nitrogen source. The existence of doped nitrogen in GQDs was confirmed by FTIR characterization. Here, for the first time, the N-GQDs were loaded with the anticancer drug, methotrexate (MTX), to prepare MTX-(N-GQDs) as an efficient drug delivery system. The establishment of the strong π-π stacking interaction between MTX and N-GQDs was confirmed by FTIR and UV-vis spectroscopies indicating successful loading of MTX to N-GQDs. The in-vitro cytotoxicity of MTX-(N-GQDs) on human breast cancer cells investigated through MTT assay suggested that the drug-free N-GQDs nanocarriers are highly biocompatible, whereas the MTX-loaded ones are more cytotoxic than the free MTX.
Collapse
|
130
|
Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosens Bioelectron 2017; 89:123-135. [DOI: 10.1016/j.bios.2016.06.046] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
|
131
|
Karthikeyan B. Förster resonance energy transfer and excited state life time reduction of rhodamine 6G with NiO nanorods in PVP films. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:301-306. [PMID: 27673498 DOI: 10.1016/j.saa.2016.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
In the present study, we report the preparation of NiO nanorods (NNR) and its Förster resonant energy transfer (FRET) behaviour with rhodamine 6G (R6G) in a Polyvinyl pyrrolidone (PVP) polymer matrix. The prepared nanocomposite polymer (NCP) films contain PVP and R6G whose concentrations are kept constant and different concentrations of NNR. Spectral overlap between the absorption and fluorescence spectrum of R6G and NNR shows the possibility of FRET phenomena to be occurring in the prepared NCP films. Steady state and time resolved fluorescence measurements are carried out at two excitation wavelengths (330 and 510nm) to study the energy transfer process between R6G and NNR in the PVP host. The obtained results show that the energy transfer is from R6G (serves as a donor) to NNR (functions as an acceptor). Calculated radiative efficiencies, donor-acceptor distances and average lifetime also confirm the energy transfer from R6G to NNR.
Collapse
Affiliation(s)
- B Karthikeyan
- Nanophotonics Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, India.
| |
Collapse
|
132
|
Vilela P, El-Sagheer A, Millar TM, Brown T, Muskens OL, Kanaras AG. Graphene Oxide-Upconversion Nanoparticle Based Optical Sensors for Targeted Detection of mRNA Biomarkers Present in Alzheimer's Disease and Prostate Cancer. ACS Sens 2017; 2:52-56. [PMID: 28722438 DOI: 10.1021/acssensors.6b00651] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of new sensors for the accurate detection of biomarkers in biological fluids is of utmost importance for the early diagnosis of diseases. Next to advanced laboratory techniques, there is a need for relatively simple methods which can significantly broaden the availability of diagnostic capability. Here, we demonstrate the successful application of a sensor platform based on graphene oxide and upconversion nanoparticles (NPs) for the specific detection of mRNA-related oligonucleotide markers in complex biological fluids. The combination of near-infrared light upconversion with low-background photon counting readout enables reliable detection of low quantities of small oligonucleotide sequences in the femtomolar range. We demonstrate the successful detection of analytes relevant to mRNAs present in Alzheimer's disease as well as prostate cancer in human blood serum. The high performance and relative simplicity of the upconversion NP-graphene sensor platform enables new opportunities in early diagnosis based on specific detection of oligonucleotide sequences in complex environments.
Collapse
Affiliation(s)
| | - Afaf El-Sagheer
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, 12
Mansfield Road, Oxford OX1 3TA, U.K
- Chemistry
Branch, Department of Science and Mathematics, Faculty of Petroleum
and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Timothy M. Millar
- Faculty
of Medicine, University of Southampton, Southampton SO16 6YD, U.K
| | - Tom Brown
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, 12
Mansfield Road, Oxford OX1 3TA, U.K
| | | | | |
Collapse
|
133
|
Arslan O, Topuz F, Eren H, Biyikli N, Uyar T. Pd nanocube decoration onto flexible nanofibrous mats of core–shell polymer–ZnO nanofibers for visible light photocatalysis. NEW J CHEM 2017. [DOI: 10.1039/c7nj00187h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmonic enhancement for electron–hole separation efficiency and visible light photocatalysis was achieved by Pd nanocube decoration on a ZnO nanolayer coated onto electrospun polymeric (polyacrylonitrile (PAN)) nanofibers.
Collapse
Affiliation(s)
- Osman Arslan
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara
- Turkey
| | - Fuat Topuz
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara
- Turkey
| | - Hamit Eren
- Institute of Materials Science & Nanotechnology
- Bilkent University
- Ankara
- Turkey
| | - Necmi Biyikli
- Electrical and Computer Engineering Department
- Utah State University
- Logan
- USA
| | - Tamer Uyar
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara
- Turkey
- Institute of Materials Science & Nanotechnology
| |
Collapse
|
134
|
Cao L, Li X, Qin L, Kang SZ, Li G. Graphene quantum dots supported by graphene oxide as a sensitive fluorescence nanosensor for cytochrome c detection and intracellular imaging. J Mater Chem B 2017; 5:6300-6306. [DOI: 10.1039/c7tb01629h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new class of Cyt c detection fluorescence sensor based on graphene quantum dots supported by graphene oxide has been facilely developed. The sensor shows a high sensitivity and selectivity for Cyt c detection, and further exhibits favorable intracellular imaging in A549 cells.
Collapse
Affiliation(s)
- Lin Cao
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Lixia Qin
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Guodong Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
135
|
Yang HY, Fu Y, Jang MS, Li Y, Lee JH, Chae H, Lee DS. Multifunctional Polymer Ligand Interface CdZnSeS/ZnS Quantum Dot/Cy3-Labeled Protein Pairs as Sensitive FRET Sensors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35021-35032. [PMID: 27983790 DOI: 10.1021/acsami.6b12877] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High-quality CdZnSeS/ZnS alloyed core/thick-shell quantum dots (QDs) as energy donors were first exploited in Förster resonance energy transfer (FRET) applications. A highly efficient ligand-exchange method was used to prepare low toxicity, high quantum yield, stabile, and biocompatible CdZnSeS/ZnS QDs densely capped with multifunctional polymer ligands containing dihydrolipoic acid (DHLA). The resulting QDs can be applied to construct QDs-based Förster resonance energy transfer (FRET) systems by their high affinity interaction with dye cyanine 3 (Cy3)-labeled human serum albumin (HSA). This QD-based FRET protein complex can serve as a sensitive sensor for probing the interaction of clofazimine with proteins using fluorescence spectroscopic techniques. The ability of FRET imaging both in vitro and in vivo not only reveals that the current FRET system can remain intact for 2 h but also confirms the potential of the FRET system to act as a nanocarrier for intracellular protein delivery or to serve as an imaging probe for cancer diagnosis.
Collapse
Affiliation(s)
| | | | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute , Seoul 135-710, Republic of Korea
| | | | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute , Seoul 135-710, Republic of Korea
| | | | | |
Collapse
|
136
|
Dey N, Bhagat D, Cherukaraveedu D, Bhattacharya S. Utilization of Red-Light-Emitting CdTe Nanoparticles for the Trace-Level Detection of Harmful Herbicides in Adulterated Food and Agricultural Crops. Chem Asian J 2016; 12:76-85. [DOI: 10.1002/asia.201601302] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 1 India
| | - Deepa Bhagat
- Indian Council of Agricultural Research; National Bureau of Agriculturally Insect Resources; Bangalore 560 024 India
| | - Durgadas Cherukaraveedu
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 1 India
- School of Chemistry; University of Edinburgh; David Brewster Road, Joseph Black Building EH9 3JF United Kingdom
| | - Santanu Bhattacharya
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 1 India
- Indian Association of Cultivation of Science; Kolkata 700032 India
| |
Collapse
|
137
|
A fluorescence turn-on biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS 2) nanosheets for epithelial cell adhesion molecule (EpCAM) detection. Biosens Bioelectron 2016; 93:182-188. [PMID: 27614683 DOI: 10.1016/j.bios.2016.09.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
Abstract
This paper presents a "turn-on" fluorescence biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for rapid and sensitive detection of epithelial cell adhesion molecule (EpCAM). PEGylated GQDs were used as donor molecules, which could not only largely increase emission intensity but also prevent non-specific adsorption of PEGylated GQD on MoS2 surface. The sensing platform was realized by adsorption of PEGylated GQD labelled EpCAM aptamer onto MoS2 surface via van der Waals force. The fluorescence signal of GQD was then quenched by MoS2 nanosheets via fluorescence resonance energy transfer (FRET) mechanism. In the presence of EpCAM protein, the stronger specific affinity interaction between aptamer and EpCAM protein could detach GQD labelled EpCAM aptamer from MoS2 nanosheets, leading to the restoration of fluorescence intensity. By monitoring the change of fluorescence signal, the target EpCAM protein could be detected sensitively and selectively with a linear detection range from 3nM to 54nM and limit of detection (LOD) around 450pM. In addition, this nanobiosensor has been successfully used for EpCAM-expressed breast cancer MCF-7 cell detection.
Collapse
|
138
|
Wang Y, Gan N, Zhou Y, Li T, Cao Y, Chen Y. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics. Biosens Bioelectron 2016; 87:508-513. [PMID: 27596250 DOI: 10.1016/j.bios.2016.08.107] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/08/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023]
Abstract
Herein, a smart single-stranded DNA binding protein (SSB)-assisted fluorescence aptamer switch based on fluorescence resonance energy transfer (FRET) was designed. The FRET switch was synthesized by connecting SSB labeled quantum dots (QDs@SSB) as donor with aptamer (apt) labeled gold nanoparticles (AuNPs@apt) as acceptor, and it was employed for detecting chloramphenicol (CAP) in a homogenous solution. In the assay, the interaction between core-shell QDs@SSB and AuNPs@apt leads to a dramatic quenching (turning off). After adding CAP in the detection system, AuNPs@apt can bind the target specifically then separate QDs@SSB with AuNPs@apt-target, resulting in restoring the fluorescence intensity of QDs (turning on). Consequently, the fluorescence intensity recovers and the recovery extent can be used for detection of CAP in homogenous phase via optical responses. Under optimal conditions, the fluorescence intensity increased linearly with increasing concentrations of CAP from 0.005 to 100ngmL-1. The limit of this fluorescence aptamer switch was around 3pgmL-1 for CAP detection. When the analyte is changed, the assay can be applied to detect other targets only by changing relative aptamer in AuNPs@apt probe. Furthermore, it has potential to be served as a simple, sensitive and portable platform for antibiotic contaminants detection in biological and environmental samples.
Collapse
Affiliation(s)
- Ye Wang
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - You Zhou
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Tianhua Li
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yuting Cao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yinji Chen
- Deptartment of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210000, China
| |
Collapse
|
139
|
Kim S, Hwang SH, Im SG, Lee MK, Lee CH, Son SJ, Oh HB. Upconversion Nanoparticle-Based Förster Resonance Energy Transfer for Detecting DNA Methylation. SENSORS 2016; 16:s16081259. [PMID: 27517925 PMCID: PMC5017424 DOI: 10.3390/s16081259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/02/2023]
Abstract
Aberrant methylation of a crucial CpG island is the main mechanism for the inactivation of CDKN2A in the early stages of carcinogenesis. Therefore, the detection of DNA methylation with high sensitivity and specificity is important, and various detection methods have been developed. Recently, upconversion nanoparticles (UCNPs) have been found to display a high signal-to-noise ratio and no photobleaching, making them useful for diagnostic applications. In this pilot study, we applied UCNPs to the detection of CDKN2A methylation and evaluated the feasibility of this system for use in molecular diagnostics. DNA PCR was performed using biotinylated primers, and the PCR amplicon was then intercalated with SYTOX Orange dye, followed by incubation with streptavidin-conjugated UCNPs. Fluorescence detection of the Förster resonance energy transfer (FRET) of the UCNPs (MS-UC-FRET) was then performed, and the results were compared to those from real-time PCR (RQ-PCR) and pyrosequencing. Detection by MS-UC-FRET was more sensitive than that by either RQ-PCR or pyrosequencing. Our results confirmed the success of our MS-UC-FRET system for detecting DNA methylation and demonstrated the potential application of this system in molecular diagnostics.
Collapse
Affiliation(s)
- Seockjune Kim
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea.
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Center for Diagnostic Oncology, Research Institute and Hospital, National Cancer Center, Goyang-si 10408, Korea.
- Hematologic Malignancy Branch, Research Institute and Hospital, National Cancer Center, Goyang-si 10408, Korea.
| | - Su-Gyeong Im
- Department of Laboratory Medicine, Center for Diagnostic Oncology, Research Institute and Hospital, National Cancer Center, Goyang-si 10408, Korea.
| | - Min-Ki Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 602-739, Korea.
| | - Chang-Hun Lee
- Department of Pathology, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 602-739, Korea.
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi, and Gachon Medical Research Institute, Gil Medical Center, Inchon 461-701, Korea.
| | - Heung-Bum Oh
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea.
| |
Collapse
|
140
|
Kuang L, Cao SP, Zhang L, Li QH, Liu ZC, Liang RP, Qiu JD. A novel nanosensor composed of aptamer bio-dots and gold nanoparticles for determination of thrombin with multiple signals. Biosens Bioelectron 2016; 85:798-806. [PMID: 27288712 DOI: 10.1016/j.bios.2016.05.096] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 11/18/2022]
Abstract
Thrombin is a crucial multifunctional enzyme involved in many physiological and pathological processes. Its detection is of great importance. In this work, a novel bio-dots nanosensor for detection of thrombin with colorimetric, fluorometric and light-scattering signals is developed. This nanosensor is composed of thrombin-binding aptamer bio-dots (TBA-dots) and gold nanoparticles (AuNPs), where TBA-dots serve as fluorometric reporter and AuNPs function as multiple roles as colorimetric reporter, light scattering reporter and fluorescence quencher. TBA-dots retain inherent structures of aptamer to specifically interact with thrombin and simultaneously induce the aggregation of AuNPs. The mechanism of the sensing system is based on distance-dependent aggregation of AuNPs and fluorescence resonance energy transfer (FRET). The nanosensor needs no further surface functionalization required for the as-prepared bio-dots and AuNPs, which provides a sensitive method for the selective detection of thrombin with a detection limit as low as 0.59nM. In addition, it provides a brand new perspective for bio-dots and its potential use in bioanalysis.
Collapse
Affiliation(s)
- Lan Kuang
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shu-Ping Cao
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Li Zhang
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Qiu-Hong Li
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhi-Chao Liu
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ru-Ping Liang
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jian-Ding Qiu
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
141
|
Huang Y, Hemmer E, Rosei F, Vetrone F. Multifunctional Liposome Nanocarriers Combining Upconverting Nanoparticles and Anticancer Drugs. J Phys Chem B 2016; 120:4992-5001. [DOI: 10.1021/acs.jpcb.6b02013] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Huang
- Institut
National de la Recherche Scientifique - Énergie, Matériaux
et Télécommunications, Université du Québec, Varennes, Québec J3X 1S2, Canada
| | - Eva Hemmer
- Institut
National de la Recherche Scientifique - Énergie, Matériaux
et Télécommunications, Université du Québec, Varennes, Québec J3X 1S2, Canada
| | - Federico Rosei
- Institut
National de la Recherche Scientifique - Énergie, Matériaux
et Télécommunications, Université du Québec, Varennes, Québec J3X 1S2, Canada
- Institute
for Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, PR China
- Centre
for Self-Assembled Chemical Structures, McGill University, Montreal, Québec H3A 2K6, Canada
| | - Fiorenzo Vetrone
- Institut
National de la Recherche Scientifique - Énergie, Matériaux
et Télécommunications, Université du Québec, Varennes, Québec J3X 1S2, Canada
- Institute
for Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, PR China
- Centre
for Self-Assembled Chemical Structures, McGill University, Montreal, Québec H3A 2K6, Canada
| |
Collapse
|
142
|
High specific surface gold electrode on polystyrene substrate: Characterization and application as DNA biosensor. Talanta 2016; 152:301-7. [DOI: 10.1016/j.talanta.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 11/20/2022]
|
143
|
Wang Q, Xiao Y, Huang Y, Li H. An important prerequisite for efficient Förster resonance energy transfer (FRET) from human serum albumin to alkyl gallate. RSC Adv 2016. [DOI: 10.1039/c6ra06920g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The formation of a stable complex by fixing alkyl gallate to HSA at an appropriate orientation and distance was an important prerequisite for efficient FRET. The specific structure of HSA helped provide the selectivity of alkyl gallate.
Collapse
Affiliation(s)
- Qing Wang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Ying Xiao
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Yanmei Huang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Hui Li
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China
| |
Collapse
|
144
|
Lv Y, Wu J, Wu P, Chen YZ, Tan Y, Tan C, Jiang Y. A sensitive polymeric dark quencher-based sensing platform for fluorescence “turn on” detection of proteins. RSC Adv 2016. [DOI: 10.1039/c6ra07310g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A sensing platform consisting of polymeric dark quenchers and oppositely charged probes was constructed for detection of proteins.
Collapse
Affiliation(s)
- Ying Lv
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology
| | - Jiatao Wu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology
| | - Pan Wu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology
| | - Yu Zong Chen
- Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics
- Shenzhen Kivita Innovative Drug Discovery Institute
- Shenzhen 518055
- P. R. China
| | - Ying Tan
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
- P. R. China
| | - Chunyan Tan
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology
| | - Yuyang Jiang
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
- P. R. China
| |
Collapse
|
145
|
Feng Y, Liu L, Hu S, Liu Y, Ren Y, Zhang X. Förster resonance energy transfer properties of a new type of near-infrared excitation PDT photosensitizer: CuInS2/ZnS quantum dots-5-aminolevulinic acid conjugates. RSC Adv 2016. [DOI: 10.1039/c6ra06937a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recently, near-infrared (NIR) excitation has been suggested for PDT improvement and therapy of cancer.
Collapse
Affiliation(s)
- Yueshu Feng
- School of Science
- Changchun University of Science and Technology
- International Joint Research Center for Nanophotonics and Biophotonics
- Changchun 130000
- China
| | - Liwei Liu
- School of Science
- Changchun University of Science and Technology
- International Joint Research Center for Nanophotonics and Biophotonics
- Changchun 130000
- China
| | - Siyi Hu
- School of Science
- Changchun University of Science and Technology
- International Joint Research Center for Nanophotonics and Biophotonics
- Changchun 130000
- China
| | - Yingyi Liu
- School of Science
- Changchun University of Science and Technology
- International Joint Research Center for Nanophotonics and Biophotonics
- Changchun 130000
- China
| | - Yu Ren
- School of Science
- Changchun University of Science and Technology
- International Joint Research Center for Nanophotonics and Biophotonics
- Changchun 130000
- China
| | - Xihe Zhang
- School of Science
- Changchun University of Science and Technology
- International Joint Research Center for Nanophotonics and Biophotonics
- Changchun 130000
- China
| |
Collapse
|
146
|
Liu Y, Gong X, Cheng Z, Shuang S, Choi MMF, Li C, Dong C. Near-infrared photoluminescence enhancement of N-acetyl- l-cysteine (NAC)-protected gold nanoparticles via fluorescence resonance energy transfer from NAC-stabilized CdTe quantum dots. RSC Adv 2016. [DOI: 10.1039/c6ra18456a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water-soluble N-acetyl-l-cysteine-protected gold nanoparticles (NAC-AuNPs) and NAC-stabilized cadmium telluride quantum dots (NAC-CdTeQDs) have been synthesized.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Environmental Science
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Xiaojuan Gong
- Institute of Environmental Science
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Zhe Cheng
- Institute of Environmental Science
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Shaomin Shuang
- Institute of Environmental Science
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Martin M. F. Choi
- Partner State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Chenzhong Li
- Department of Biomedical Engineering
- Florida International University
- Miami
- USA
| | - Chuan Dong
- Institute of Environmental Science
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| |
Collapse
|
147
|
Li Q, Kamra T, Ye L. A modular approach for assembling turn-on fluorescence sensors using molecularly imprinted nanoparticles. Chem Commun (Camb) 2016; 52:12237-12240. [DOI: 10.1039/c6cc06628c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Combining straightforward molecular imprinting with orthogonal click chemistry and accessible fluorescent dyes, a modular approach has been developed to assemble turn-on optical sensors based on fluorescence resonance energy transfer in molecularly imprinted nanoparticles.
Collapse
Affiliation(s)
- Qianjin Li
- Division of Pure and Applied Biochemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Tripta Kamra
- Division of Pure and Applied Biochemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry
- Department of Chemistry
- Lund University
- 221 00 Lund
- Sweden
| |
Collapse
|
148
|
Wang C, Li X, Zhang F. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst 2016; 141:3601-20. [DOI: 10.1039/c6an00150e] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Upconversion nanoparticles (UCNPs), which can emit ultraviolet/visible (UV/Vis) light under near-infrared (NIR) excitation, are regarded as a new generation of nanoprobes because of their unique optical properties, including a virtually zero auto-fluorescence background for the improved signal-to-noise ratio, narrow emission bandwidths and high resistance to photo-bleaching.
Collapse
Affiliation(s)
- Chengli Wang
- Department of Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- Fudan University
| | - Xiaomin Li
- Department of Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- Fudan University
| | - Fan Zhang
- Department of Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- Fudan University
| |
Collapse
|
149
|
Shan B, Liu Y, Shi R, Jin S, Li L, Chen S, Shu Q. Squaramide-based lab-on-a-molecule for the detection of silver ion and nitroaromatic explosives. RSC Adv 2015. [DOI: 10.1039/c5ra18754k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A squaramide based lab-on-a-molecule showed selective absorption enhancement and emission quenching towards Ag+ and nitroaromatic explosives, respectively in aqueous solution.
Collapse
Affiliation(s)
- Bo Shan
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Yunfei Liu
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Rui Shi
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Shaohua Jin
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Lijie Li
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Shusen Chen
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Qinghai Shu
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| |
Collapse
|