101
|
Facile synthesis of pyrazoles via [3 + 2] cycloaddition of diazocarbonyl compounds and enones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
102
|
Synthesis and structure of dialkyl (Z)-3-amino-2-cyano-4-diazopent-2-enedioates. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
103
|
Yang K, Yang JQ, Luo SH, Mei WJ, Lin JY, Zhan JQ, Wang ZY. Synthesis of N-2(5H)-furanonyl sulfonyl hydrazone derivatives and their biological evaluation in vitro and in vivo activity against MCF-7 breast cancer cells. Bioorg Chem 2020; 107:104518. [PMID: 33303210 DOI: 10.1016/j.bioorg.2020.104518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
A series of (E)-N-2(5H)-furanonyl sulfonyl hydrazone derivatives have been rationally designed and efficiently synthesized by one-pot reaction with good yields for the first time. This green approach with wide substrate range and good selectivity can be achieved at room temperature in a short time in the presence of metal-free catalyst. The cytotoxic activities against three human cancer cell lines of all newly obtained compounds have been evaluated by MTT assay. Among them, compound 5 k exhibits high cytotoxic activity against MCF-7 human breast cancer cells with an IC50 value of 14.35 μM. The cytotoxic mechanism may involve G2/M phase arrest pathway, which is probably caused by activating DNA damage. Comet test and immunofluorescence results show that compound 5 k can induce DNA damage in time- and dose-dependent manner. Importantly, 5 k also can effectively inhibit the proliferation of MCF-7 cells and angiogenesis in the zebrafish xenograft model. It is potential to further develop N-2(5H)-furanonyl sulfonyl hydrazone derivatives as potent drugs for breast cancer treatment with higher cytotoxic activity by modifying the structure of the compound.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China; College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jian-Qiong Yang
- Department of Clinical Research Center, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China.
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China.
| | - Jian-Yun Lin
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China
| | - Jia-Qi Zhan
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
104
|
Yan S, Rao J, Zhou CY. Chemoselective Rearrangement Reactions of Sulfur Ylide Derived from Diazoquinones and Allyl/Propargyl Sulfides. Org Lett 2020; 22:9091-9096. [PMID: 33147039 DOI: 10.1021/acs.orglett.0c03493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here, we describe three types of rearrangement reactions of sulfur ylide derived from diazoquinones and allyl/propargyl sulfides. With Rh2(esp)2 as the catalyst, diazoquinones react with allyl/propargyl sulfides to form a sulfur ylide, which undergoes a chemoselective tautomerization/[2,3]-sigmatropic rearrangement reaction, a Doyle-Kirmse rearrangement/Cope rearrangement cascade reaction, or a Doyle-Kirmse rearrangement/elimination reaction, depending on the substituent of the sulfides. The protocol provides alkenyl and allenyl sulfides and multisubstituted phenols with moderate and high yields.
Collapse
Affiliation(s)
- Sijia Yan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Junxin Rao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
105
|
Ouyang W, Rao J, Li Y, Liu X, Huo Y, Chen Q, Li X. Recent Achievements in the Rhodium‐Catalyzed Concise Construction of Medium N‐Heterocycles, Azepines and Azocines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wensen Ouyang
- School of Chemical Engineering and Light Industry Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Jianhang Rao
- School of Chemical Engineering and Light Industry Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Yibiao Li
- School of Biotechnology and Health Science Wuyi University Jiangmen 529020 People's Republic of China
| | - Xiaohang Liu
- BASF Advanced Chemicals Co., Ltd. No. 300, Jiangxinsha Road 200137 Shanghai People's Republic of China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Qian Chen
- School of Chemical Engineering and Light Industry Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| |
Collapse
|
106
|
Xu K, Zheng Y, Ye Y, Liu D, Zhang W. Desymmetrization of meso-Dicarbonatecyclohexene with β-Hydrazino Carboxylic Esters via a Pd-Catalyzed Allylic Substitution Cascade. Org Lett 2020; 22:8836-8841. [PMID: 33170017 DOI: 10.1021/acs.orglett.0c03211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The desymmetrization of meso-dicarbonatecyclohexene with β-hydrazino carboxylic esters has been achieved via a RuPHOX/Pd-catalyzed allylic substitution cascade for the construction of chiral hexahydrocinnoline derivatives with high performance. Mechanistic studies reveal that the reaction exploits a pathway different from that of our previous work and that the first nitrogen nucleophilic process is the rate-determining step. The protocol could be conducted on a gram scale without any loss of catalytic behavior, and the corresponding chiral hexahydrocinnolines can undergo diverse transformations.
Collapse
Affiliation(s)
- Kai Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yan Zheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, P. R. China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
107
|
Lamaa D, Hauguel C, Lin HP, Messe E, Gandon V, Alami M, Hamze A. Sequential One-Pot Synthesis of 3-Arylbenzofurans from N-Tosylhydrazones and Bromophenol Derivatives. J Org Chem 2020; 85:13664-13673. [PMID: 33091298 DOI: 10.1021/acs.joc.0c01835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A divergent and efficient one-pot sequence allowing direct access to 3-arylbenzofuran derivatives has been developed. The process, involving N-tosylhydrazones and bromophenols, proceeds via a palladium-catalyzed Barluenga-Valdés cross-coupling, followed by an aerobic, copper-catalyzed, radical cyclization to form Csp2-Csp2 and O-Csp2 bonds. 3-Arylated benzofurans bearing various substituents were obtained with good to excellent yields (up to 90%). Mechanistic investigation strongly supports a radical process for the cyclization step.
Collapse
Affiliation(s)
- Diana Lamaa
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Camille Hauguel
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Hsin-Ping Lin
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Estelle Messe
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Vincent Gandon
- Institut de Chimie Moleculaire et des Materiaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Batiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
108
|
Abstract
Three- and four-membered rings, widespread motifs in nature and medicinal chemistry, have fascinated chemists ever since their discovery. However, due to energetic considerations, small rings are often difficult to assemble. In this regard, homogeneous gold catalysis has emerged as a powerful tool to construct these highly strained carbocycles. This review aims to provide a comprehensive summary of all the major advances and discoveries made in the gold-catalyzed synthesis of cyclopropanes, cyclopropenes, cyclobutanes, cyclobutenes, and their corresponding heterocyclic or heterosubstituted analogs.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Garcı A-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
109
|
Liu Z, Cao S, Wu J, Zanoni G, Sivaguru P, Bi X. Palladium(II)-Catalyzed Cross-Coupling of Diazo Compounds and Isocyanides to Access Ketenimines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shanshan Cao
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jiayi Wu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | | | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
110
|
Fan Z, Feng J, Hou Y, Rao M, Cheng J. Copper-Catalyzed Aerobic Cyclization of β,γ-Unsaturated Hydrazones with Concomitant C═C Bond Cleavage. Org Lett 2020; 22:7981-7985. [PMID: 33021381 DOI: 10.1021/acs.orglett.0c02911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A Cu-catalyzed aerobic oxidative cyclization of β,γ-unsaturated hydrazones for the preparation of pyrazole derivatives has been developed. The hydrazonyl radical promoted the cyclization, along with a concomitant C═C bond cleavage of β,γ-unsaturated hydrazones. This process has been verified via several control experiments, including a radical-trapping study, an 18O-labeling method, and the identification of the possible byproducts. The advantages of this reaction include operational simplicity, a broad reaction scope, and a mild selective reaction process.
Collapse
Affiliation(s)
- Zhenwei Fan
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jiahao Feng
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yuchen Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Min Rao
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
111
|
Li X, Mai S, Li X, Xu J, Xu H, Song Q. Cu-Catalyzed o-Amino Benzofuranthioether Formation from N-Tosylhydrazone-Bearing Thiocarbamates and Arylative Electrophiles. Org Lett 2020; 22:7874-7878. [PMID: 32990445 DOI: 10.1021/acs.orglett.0c02778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An important framework of o-amino benzofuranthioethers was constructed by Cu-catalyzed arylative cyclization of N-tosylhydrazone-bearing thiocarbamates with silylaryl triflates or ArI. This transformation provides a novel strategy for the synthesis of valuable arylative o-amino benzofuranthioethers in moderate yields which could not be obtained from known methods. The reaction features smart design, efficient construction, and mild reaction conditions.
Collapse
Affiliation(s)
- Xue Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Shaoyu Mai
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Hetao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
112
|
Li D, Qiu S, Chen Y, Wu L. K
2
CO
3
‐Promoted Pyrazoles Synthesis from 1,3‐Dipolar Cycloaddition of
N
‐Tosylhydrazones with Acetylene Gas. ChemistrySelect 2020. [DOI: 10.1002/slct.202003067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dongying Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University No.99, Longkun South Road Haikou 571158 P. R. China
| | - Shanguang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University No.99, Longkun South Road Haikou 571158 P. R. China
| | - Yuxue Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University No.99, Longkun South Road Haikou 571158 P. R. China
| | - Luyong Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University No.99, Longkun South Road Haikou 571158 P. R. China
| |
Collapse
|
113
|
Shrestha R, Khanal HD, Rubio PYM, Mohandoss S, Lee YR. Base-Mediated Denitrogenative Sulfonylation/Benzannulation of Conjugated N-Sulfonylhydrazones with 3-Formylchromones for the Construction of Polyfunctionalized Biaryl Sulfones. Org Lett 2020; 22:7531-7536. [PMID: 32936654 DOI: 10.1021/acs.orglett.0c02724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Base-promoted benzannulation of conjugated N-sulfonylhydrazones and 3-formylchromones for the synthesis of diverse biaryl sulfones is described. The approach facilitates new C-C and C-S bond formation via the cascade diazo formation/Michael addition/ring opening/denitrogenative sulfonylation/intramolecular cycloaddition/dehydration and introduces diverse functional groups onto biaryl sulfones. The synthesized compounds are converted to aryl sulfones bearing bioactive benzisoxazole and benzofuran frameworks. Moreover, the synthesized biaryl sulfones possess potent turn-on fluorescence sensing and UV absorbance properties.
Collapse
Affiliation(s)
- Rajeev Shrestha
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Peter Yuosef M Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
114
|
He J, Feng Y, Yang F, Dai B, Liu P. Palladium‐Catalyzed Olefination of
N
‐Tosylhydrazones as
β
‐Diazo Phosphonate Precursors with Arylhalides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jing He
- School of Chemistry and Chemical Engineering the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University 832004 Shihezi City China
| | - Yijiao Feng
- School of Chemistry and Chemical Engineering the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University 832004 Shihezi City China
| | - Fang Yang
- School of Chemistry and Chemical Engineering the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University 832004 Shihezi City China
| | - Bin Dai
- School of Chemistry and Chemical Engineering the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University 832004 Shihezi City China
| | - Ping Liu
- School of Chemistry and Chemical Engineering the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University 832004 Shihezi City China
| |
Collapse
|
115
|
Ma L, Ou P, Huang X. Divergent synthesis of 1,3,5-tri and 1,3-disubstituted pyrazoles under transition metal-free conditions. Org Biomol Chem 2020; 18:6487-6491. [PMID: 32785327 DOI: 10.1039/d0ob01478h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pyrazole cores are common structural motifs existing in various agrochemicals and pharmaceuticals. Herein, a transition metal-free, three-component reaction of arylaldehydes, ethyl acrylate and N-tosylhydrazones is described, which leads to the formation of 1,3,5-trisubstituted and 1,3-disubstituted pyrazoles divergently under slightly different conditions.
Collapse
Affiliation(s)
- Liyao Ma
- College of Chemistry, Fuzhou University, Fuzhou 350116, China and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Pengcheng Ou
- College of Chemistry, Fuzhou University, Fuzhou 350116, China and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
116
|
Zuo H, Qin J, Zhang W, Bashir MA, Yu Q, Zhao W, Wu G, Zhong F. Hemin-Catalyzed Oxidative Phenol-Hydrazone [3+3] Cycloaddition Enables Rapid Construction of 1,3,4-Oxadiazines. Org Lett 2020; 22:6911-6916. [PMID: 32830501 DOI: 10.1021/acs.orglett.0c02442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein, we present a hemin-catalyzed oxidative phenol-hydrazone [3+3] cycloaddition that accommodates a broad spectrum of N-arylhydrazones, a class of less exploited 1,3-dipoles due to their significant Lewis basicity and weak tendency to undergo 1,2-prototropy to form azomethine imines. It renders expedient assembly of diversely functionalized 1,3,4-oxadiazines with excellent atom and step economy. Preliminary mechanistic studies point to the involvement of a one-electron oxidation pathway, which likely differs from the base-promoted aerobic oxidative scenario.
Collapse
Affiliation(s)
- Honghua Zuo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Jingyang Qin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Wentao Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Muhammad Adnan Bashir
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Qile Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University, 3002 Lantian Road, Shenzhen 518118, China
| | - Guojiao Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Fangrui Zhong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
117
|
Tucker ZD, Hill HM, Smith AL, Ashfeld BL. Diverting β-Hydride Elimination of a π-Allyl Pd II Carbene Complex for the Assembly of Disubstituted Indolines via a Highly Diastereoselective (4 + 1)-Cycloaddition. Org Lett 2020; 22:6605-6609. [PMID: 32806141 DOI: 10.1021/acs.orglett.0c02374] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A Pd0-catalyzed formal (4 + 1)-cycloaddition approach to 2,3-disubstituted dihydroindoles is described. The diastereoselective formation of dihydroindoles that is highlighted by a carbene migratory insertion/reductive elimination sequence proceeding via a π-allyl PdII-species compliments existing methods of indoline assembly.
Collapse
Affiliation(s)
- Zachary D Tucker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Harrison M Hill
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andrew L Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Brandon L Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
118
|
Yu Y, Ma L, Xia J, Xin L, Zhu L, Huang X. A Modular Approach to Dibenzo‐fused ϵ‐Lactams: Palladium‐Catalyzed Bridging‐C−H Activation. Angew Chem Int Ed Engl 2020; 59:18261-18266. [DOI: 10.1002/anie.202007799] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiajin Xia
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
119
|
Yu Y, Ma L, Xia J, Xin L, Zhu L, Huang X. A Modular Approach to Dibenzo‐fused ϵ‐Lactams: Palladium‐Catalyzed Bridging‐C−H Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiajin Xia
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
120
|
Li F, Pei C, Koenigs RM. Rhodium-Catalyzed Enamine Homologation of Sulfides with Triazoles as Carbene Precursor. Org Lett 2020; 22:6816-6821. [DOI: 10.1021/acs.orglett.0c02330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fang Li
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M. Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
121
|
Aegurla B, Jarwal N, Peddinti RK. Denitrative imino-diaza-Nazarov cyclization: synthesis of pyrazoles. Org Biomol Chem 2020; 18:6100-6107. [PMID: 32785358 DOI: 10.1039/d0ob01200a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An iodine-catalyzed denitrative imino-diaza-Nazarov cyclization (DIDAN) methodology has been developed for the synthesis of pyrazoles with high to excellent yields by using α-nitroacetophenone derivatives and in situ generated hydrazones. The key transformation of this oxidative 4π-electrocyclization proceeds through an enamine-iminium ion intermediate. This rapid one-pot DIDAN protocol results in the selective generation of C-C and C-N bonds and cleavage of a C-N bond.
Collapse
Affiliation(s)
- Balakrishna Aegurla
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Nisha Jarwal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
122
|
Liu A, Han K, Wu X, Chen S, Wang J. Construction of
Alkenyl‐Functionalized
Spirocarbocyclic Scaffolds from
Alkyne‐Containing Phenol‐Based
Biaryls
via
Sequential
Iodine‐Induced
Cyclization/Dearomatization and
Pd‐Catalyzed
Coupling of
N
‐Tosylhydrazones. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anjia Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot Inner Mongolia 010021 China
| | - Kaiming Han
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot Inner Mongolia 010021 China
| | - Xin‐Xing Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot Inner Mongolia 010021 China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot Inner Mongolia 010021 China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University Beijing 100871 China
| |
Collapse
|
123
|
|
124
|
Korawat H, Basak AK. K 2CO 3-Catalyzed Rapid Conversion of N-Sulfonylhydrazones to Sulfinates. ACS OMEGA 2020; 5:17818-17827. [PMID: 32715267 PMCID: PMC7377682 DOI: 10.1021/acsomega.0c02616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
N-Sulfonylhydrazones derived from alkyl, aryl, and heteroaryl aldehydes and ketones undergo rapid conversion into the corresponding sulfinates when heated with 10 mol % K2CO3 in N,N'-dimethylethylene urea (DMEU) at elevated temperature. The reaction conditions are amenable to several functional groups and suitable for gram-scale synthesis. Under these base-catalyzed conditions, N-tosylhydrazones derived from O-allylated and O-propargylated 2-hydroxyarylaldehydes do not undergo the well-established intramolecular [3 + 2]-cycloaddition reactions and generate corresponding sulfinates in good yields. The base-catalyzed transformation proceeds via crucial rapid intermolecular protonation of the diazo intermediate 11 to generate diazonium ion 12, which upon nucleophilic displacement by the sulfonyl ion 10 provides the desired sulfinate selectively.
Collapse
|
125
|
Kotovshchikov YN, Latyshev GV, Kirillova EA, Moskalenko UD, Lukashev NV, Beletskaya IP. Assembly of Thiosubstituted Benzoxazoles via Copper-Catalyzed Coupling of Thiols with 5-Iodotriazoles Serving as Diazo Surrogates. J Org Chem 2020; 85:9015-9028. [PMID: 32508100 DOI: 10.1021/acs.joc.0c00931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient cascade approach to thiosubstituted benzoxazoles has been developed. The transformation starts with in situ generation of a diazo compound via annulation-triggered electrocyclic opening of the 1,2,3-triazole ring. The subsequent Cu-catalyzed trapping of diazo intermediates by various thiols affords the desired heterocycles in generally good yields of up to 91%. The protocol features very good functional group tolerance and is applicable to substrates with different electronic properties.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Elena A Kirillova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Uliana D Moskalenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nikolay V Lukashev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| |
Collapse
|
126
|
Zhang H, Yu Y, Huang X. Facile access to 2,2-diaryl 2H-chromenes through a palladium-catalyzed cascade reaction of ortho-vinyl bromobenzenes with N-tosylhydrazones. Org Biomol Chem 2020; 18:5115-5119. [PMID: 32596707 DOI: 10.1039/d0ob00978d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A palladium-catalyzed cascade reaction of ortho-vinyl bromobenzenes with N-tosylhydrazones has been developed, which provides a facile approach to 2,2-disubstituted 2H-chromenes. The migration of palladium from the aryl to vinyl position is crucial, as the in situ produced vinyl palladium intermediate could further react with diazo compounds to generate the reactive species for the sequential annulation.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
127
|
Xu Y, Lv G, Yan K, He H, Li J, Luo Y, Lai R, Hai L, Wu Y. Blue Light-promoted Carbene Transfer Reactions of Tosylhydrazones. Chem Asian J 2020; 15:1945-1947. [PMID: 32427419 DOI: 10.1002/asia.202000378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/19/2020] [Indexed: 01/13/2023]
Abstract
Metal-free photochemical carbene-transfer reactions of tosylhydrazones were developed under blue light irradiation at room temperature. This reaction constructs C-X (X=C, N, O, S) bonds and cyclopropanes from readily available and stable starting materials.
Collapse
Affiliation(s)
- Yingying Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Guanghui Lv
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, No. 32 South Renmin Road, Huibei, Shiyan, 442000, China
| | - Kaichuan Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hua He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
128
|
Li J, Wang H, Qiu Z, Huang CY, Li CJ. Metal-Free Direct Deoxygenative Borylation of Aldehydes and Ketones. J Am Chem Soc 2020; 142:13011-13020. [DOI: 10.1021/jacs.0c03813] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jianbin Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Haining Wang
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Zihang Qiu
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chia-Yu Huang
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
129
|
Zhou M, Lankelma M, Vlugt JI, Bruin B. Catalytic Synthesis of 8‐Membered Ring Compounds via Cobalt(III)‐Carbene Radicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Marianne Lankelma
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jarl Ivar Vlugt
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
130
|
Zhou M, Lankelma M, van der Vlugt JI, de Bruin B. Catalytic Synthesis of 8-Membered Ring Compounds via Cobalt(III)-Carbene Radicals. Angew Chem Int Ed Engl 2020; 59:11073-11079. [PMID: 32259369 PMCID: PMC7317878 DOI: 10.1002/anie.202002674] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/20/2022]
Abstract
The metalloradical activation of o-aryl aldehydes with tosylhydrazide and a cobalt(II) porphyrin catalyst produces cobalt(III)-carbene radical intermediates, providing a new and powerful strategy for the synthesis of medium-sized ring structures. Herein we make use of the intrinsic radical-type reactivity of cobalt(III)-carbene radical intermediates in the [CoII (TPP)]-catalyzed (TPP=tetraphenylporphyrin) synthesis of two types of 8-membered ring compounds; novel dibenzocyclooctenes and unprecedented monobenzocyclooctadienes. The method was successfully applied to afford a variety of 8-membered ring compounds in good yields and with excellent substituent tolerance. Density functional theory (DFT) calculations and experimental results suggest that the reactions proceed via hydrogen atom transfer from the bis-allylic/benzallylic C-H bond to the carbene radical, followed by two divergent processes for ring-closure to the two different types of 8-membered ring products. While the dibenzocyclooctenes are most likely formed by dissociation of o-quinodimethanes (o-QDMs) which undergo a non-catalyzed 8π-cyclization, DFT calculations suggest that ring-closure to the monobenzocyclooctadienes involves a radical-rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring-closure reactions to chiral monobenzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt-porphyrin catalyst.
Collapse
Affiliation(s)
- Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| | - Marianne Lankelma
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
131
|
Zhang Q, Tang M, Zhang S, Wei Z. Acid-Promoted [3 + 1 + 1] Cyclization of N-Tosylhydrazones and Isocyanides: A Method for the Preparation of 4,5-Diaminopyrazoles. Org Lett 2020; 22:5182-5186. [DOI: 10.1021/acs.orglett.0c01809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Meng Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Siyu Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zeyang Wei
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
132
|
Li W, Zhang J, He J, Xu L, Vaccaro L, Liu P, Gu Y. I 2/DMSO-Catalyzed Transformation of N-tosylhydrazones to 1,2,3-thiadiazoles. Front Chem 2020; 8:466. [PMID: 32596205 PMCID: PMC7304252 DOI: 10.3389/fchem.2020.00466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/04/2020] [Indexed: 12/05/2022] Open
Abstract
An iodine/DMSO catalyzed selective cyclization of N-tosylhydrazones with sulfur without adding external oxidant was developed for the synthesis of 4-aryl-1,2,3-thiadiazoles. In this reaction, oxidation of HI by using DMSO as dual oxidant and solvent is the key, which allowed the regeneration of I2, ensuring thus the success of the synthesis. This protocol features by simple operation, high step-economy (one-pot fashion), broad substrate scope as well as scale-up ability.
Collapse
Affiliation(s)
- Weiwei Li
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jun Zhang
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jing He
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Liang Xu
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Luigi Vaccaro
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Ping Liu
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
133
|
Lou J, Wang Q, Wu P, Wang H, Zhou YG, Yu Z. Transition-metal mediated carbon-sulfur bond activation and transformations: an update. Chem Soc Rev 2020; 49:4307-4359. [PMID: 32458881 DOI: 10.1039/c9cs00837c] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Carbon-sulfur bond cross-coupling has become more and more attractive as an alternative protocol to establish carbon-carbon and carbon-heteroatom bonds. Diverse transformations through transition-metal-catalyzed C-S bond activation and cleavage have recently been developed. This review summarizes the advances in transition-metal-catalyzed cross-coupling via carbon-sulfur bond activation and cleavage since late 2012 as an update of the critical review on the same topic published in early 2013 (Chem. Soc. Rev., 2013, 42, 599-621), which is presented by the categories of organosulfur compounds, that is, thioesters, thioethers including heteroaryl, aryl, vinyl, alkyl, and alkynyl sulfides, ketene dithioacetals, sulfoxides including DMSO, sulfones, sulfonyl chlorides, sulfinates, thiocyanates, sulfonium salts, sulfonyl hydrazides, sulfonates, thiophene-based compounds, and C[double bond, length as m-dash]S functionality-bearing compounds such as thioureas, thioamides, and carbon disulfide, as well as the mechanistic insights. An overview of C-S bond cleavage reactions with stoichiometric transition-metal reagents is briefly given. Theoretical studies on the reactivity of carbon-sulfur bonds by DFT calculations are also discussed.
Collapse
Affiliation(s)
- Jiang Lou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Quannan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ping Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China
| |
Collapse
|
134
|
Ramakrishna K, Jayarani A, Koothradan FF, Sivasankar C. An efficient method to prepare sulfoxonium ylides and their reactivity studies using copper powder and Sc(III) as catalysts: Molecular and electronic structure analysis. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kankanala Ramakrishna
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| | - Arumugam Jayarani
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| | - Fathima Febin Koothradan
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| |
Collapse
|
135
|
Xia Y, Wang J. Transition-Metal-Catalyzed Cross-Coupling with Ketones or Aldehydes via N-Tosylhydrazones. J Am Chem Soc 2020; 142:10592-10605. [PMID: 32441929 DOI: 10.1021/jacs.0c04445] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
136
|
Zhang J, Li W, Liu Y, Liu P. HI/DMSO‐Catalyzed Cyclization of Aryl(sulfo)acylhydrazones with Sulfur. ChemistrySelect 2020. [DOI: 10.1002/slct.202001310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Zhang
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| | - Weiwei Li
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| | - Ping Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| |
Collapse
|
137
|
Nagaraju K, Gurubrahamam R, Chen K. Organocatalytic Diastereoselective Synthesis of Diazoaryl-benzo[b]azepine Derivatives. J Org Chem 2020; 85:7060-7067. [DOI: 10.1021/acs.joc.0c00431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Koppanathi Nagaraju
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, ROC
| | - Ramani Gurubrahamam
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, ROC
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH 44, Jammu (J&K) 181221, India
| | - Kwunmin Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, ROC
| |
Collapse
|
138
|
Bhaskaran RP, Janardhanan JC, Babu BP. Metal‐Free Synthesis of Pyrazoles and Chromenopyrazoles from Hydrazones and Acetylenic Esters. ChemistrySelect 2020. [DOI: 10.1002/slct.202000719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rasmi P. Bhaskaran
- Department of ChemistryNational Institute of Technology Karnataka (NITK), Surathkal 575025 Mangalore
| | - Jith C. Janardhanan
- Department of Applied ChemistryCochin University of Science and Technology (CUSAT) Kochi 682022 INDIA
| | - Beneesh P. Babu
- Department of ChemistryNational Institute of Technology Karnataka (NITK), Surathkal 575025 Mangalore
| |
Collapse
|
139
|
Ren X, Zhu L, Yu Y, Wang ZX, Huang X. Understanding the Chemoselectivity in Palladium-Catalyzed Three-Component Reaction of o-Bromobenzaldehyde, N-Tosylhydrazone, and Methanol. Org Lett 2020; 22:3251-3257. [PMID: 32227902 DOI: 10.1021/acs.orglett.0c01040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To understand the ligand-controlled palladium-catalyzed coupling of o-bromobenzaldehyde, N-tosylhydrazone, and methanol to give methyl 2-benzylbenzoic ester or methyl ether, we herein investigated the mechanisms which account for how C-C and C-O bonds are formed and why bidentate dppf/dppb ligands afford ester, whereas P(o-tolyl)3 ligand gives ether. The ester chemoselectivity of the bidentate ligands is attributed to the strong electron-donating effect that disfavors the C,Br-reductive elimination of the coupling intermediate of o-bromobenzaldehyde and N-tosylhydrazone.
Collapse
Affiliation(s)
- Xiaojian Ren
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
140
|
Zhu D, Chen L, Fan H, Yao Q, Zhu S. Recent progress on donor and donor-donor carbenes. Chem Soc Rev 2020; 49:908-950. [PMID: 31958107 DOI: 10.1039/c9cs00542k] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Donor and donor-donor carbenes are two important kinds of carbenes, which have experienced tremendous growth in the past two decades. This review provides a comprehensive overview of the recent development of donor and donor-donor carbene chemistry. The development of this chemistry offers efficient protocols to construct a wide variety of C-C and C-X bonds in organic synthesis. This review is organized based on the different types of carbene precursors, including diazo compounds, hydrazones, enynones, cycloheptatrienes and cyclopropenes. The typical transformations, the reaction mechanisms, as well as their subsequent applications in the synthesis of complex natural products and bioactive molecules are discussed. Due to the rapidly increasing interest in this area, we believe that this review will provide a timely and comprehensive discussion of recent progress in donor and donor-donor carbene chemistry.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | | | |
Collapse
|
141
|
Ning Y, Zhang X, Gai Y, Dong Y, Sivaguru P, Wang Y, Reddy BRP, Zanoni G, Bi X. Difluoroacetaldehyde
N
‐Triftosylhydrazone (DFHZ‐Tfs) as a Bench‐Stable Crystalline Diazo Surrogate for Diazoacetaldehyde and Difluorodiazoethane. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yongquan Ning
- Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Xinyu Zhang
- Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Yi Gai
- Department of ChemistryNortheast Normal University Changchun 130024 China
| | - Yuanqing Dong
- Department of ChemistryNortheast Normal University Changchun 130024 China
| | | | - Yingying Wang
- Department of ChemistryNortheast Normal University Changchun 130024 China
| | | | - Giuseppe Zanoni
- Department of ChemistryUniversity of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Xihe Bi
- Department of ChemistryNortheast Normal University Changchun 130024 China
- State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
142
|
Ning Y, Zhang X, Gai Y, Dong Y, Sivaguru P, Wang Y, Reddy BRP, Zanoni G, Bi X. Difluoroacetaldehyde N-Triftosylhydrazone (DFHZ-Tfs) as a Bench-Stable Crystalline Diazo Surrogate for Diazoacetaldehyde and Difluorodiazoethane. Angew Chem Int Ed Engl 2020; 59:6473-6481. [PMID: 31999022 DOI: 10.1002/anie.202000119] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 12/26/2022]
Abstract
Despite the growing importance of volatile functionalized diazoalkanes in organic synthesis, their safe generation and utilization remain a formidable challenge because of their difficult handling along with storage and security issues. In this study, we developed a bench-stable difluoroacetaldehyde N-triftosylhydrazone (DFHZ-Tfs) as an operationally safe diazo surrogate that can release in situ two low-molecular-weight diazoalkanes, diazoacetaldehyde (CHOCHN2 ) or difluorodiazoethane (CF2 HCHN2 ), in a controlled fashion under specific conditions. DFHZ-Tfs has been successfully employed in the Fe-catalyzed cyclopropanation and Doyle-Kirmse reactions, thus highlighting the synthetic utility of DFHZ-Tfs in the efficient construction of molecule frameworks containing CHO or CF2 H groups. Moreover, the reaction mechanism for the generation of CHOCHN2 from CF2 HCHN2 was elucidated by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yi Gai
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yuanqing Dong
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Yingying Wang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
143
|
Merchant RR, Lopez JA. A General C(sp3)–C(sp3) Cross-Coupling of Benzyl Sulfonylhydrazones with Alkyl Boronic Acids. Org Lett 2020; 22:2271-2275. [DOI: 10.1021/acs.orglett.0c00471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rohan R. Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jovan A. Lopez
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
144
|
Jana S, Li F, Empel C, Verspeek D, Aseeva P, Koenigs RM. Stoichiometric Photochemical Carbene Transfer by Bamford-Stevens Reaction. Chemistry 2020; 26:2586-2591. [PMID: 31825123 PMCID: PMC7065054 DOI: 10.1002/chem.201904994] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 01/07/2023]
Abstract
The photolysis of diazoalkanes is a timely strategy to conduct carbene-transfer reactions under mild and metal-free reaction conditions, and has developed as an important alternative to conventional metal-catalyzed carbene-transfer reactions. One of the major limitations lies within the rapidly occurring side reaction of the carbene intermediate with remaining diazoalkane molecules that result in the use of an excess of the reaction partner and thus impacts on the reaction efficiency. Herein, we describe a protocol that takes advantage of the in situ generation of donor-acceptor diazoalkanes by Bamford-Stevens reaction. Following this strategy, the concentration of the diazoalkane reaction partner can be minimized to reduce unwanted side reactions and to now conduct photochemical carbene transfer reactions under stoichiometric reaction conditions. We have explored this approach in the C-H and N-H functionalization and cyclopropanation reaction of N-heterocycles and could demonstrate the applicability of this method in 51 examples.
Collapse
Affiliation(s)
- Sripati Jana
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Fang Li
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Claire Empel
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Dennis Verspeek
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Polina Aseeva
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| |
Collapse
|
145
|
Zhu L, Ren X, Yu Y, Ou P, Wang ZX, Huang X. Palladium-Catalyzed Three-Component Coupling Reaction of o-Bromobenzaldehyde, N-Tosylhydrazone, and Methanol. Org Lett 2020; 22:2087-2092. [DOI: 10.1021/acs.orglett.0c00579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaojian Ren
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Pengcheng Ou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
146
|
Luo K, Mao S, He K, Yu X, Pan J, Lin J, Shao Z, Jin Y. Highly Regioselective Synthesis of Multisubstituted Pyrroles via Ag-Catalyzed [4+1C]insert Cascade. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05360] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kaixiu Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Kun He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xianglin Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Junhong Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jun Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhihui Shao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yi Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
147
|
Goyal S, Budhiraja M, Mandal D, Tyagi V. Experimental and Computational Insights into the Water‐Mediated Decomposition of
N
‐Sulfonylhydrazones: A Catalyst‐Free Synthesis of γ‐Keto/Nitrile Sulfones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shagun Goyal
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004 India
| | - Meenakshi Budhiraja
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004 India
| | - Debasish Mandal
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004 India
| | - Vikas Tyagi
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004 India
| |
Collapse
|
148
|
Easy access to medium-sized lactones through metal carbene migratory insertion enabled 1,4-palladium shift. Nat Commun 2020; 11:461. [PMID: 31974346 PMCID: PMC6978448 DOI: 10.1038/s41467-019-14101-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Reactions that efficiently construct medium-sized lactones are significant, as they overcome the unfavorable entropic factor and transannular interactions for ring closure, and the lactones produced are common structural motifs recurring in many biologically active compounds. Herein, we describe a valuable strategy for medium-sized lactone synthesis by accomplishing site-selective C–H bond functionalization via a palladium carbene migratory insertion enabled 1,4-palladium shift. The overall process achieves the formal dimerization of two readily available benzaldehyde derivatives, providing value-added products medium-sized lactones. Our method is amenable to late-stage modification of approved drugs and other complex molecules. Mechanistic studies including deuterium-labeling experiments and DFT calculation shed light on the reaction pathways. Transannular construction of medium-sized lactones is entropically unfavoured. Herein, the authors describe a strategy for valuable medium-sized lactone synthesis from available benzaldehydes by selective C-H bond functionalization via palladium carbene migratory insertion-enabled 1,4-palladium shift.
Collapse
|
149
|
Zhu C, Zeng H, Liu C, Cai Y, Fang X, Jiang H. Regioselective Synthesis of 3-Trifluoromethylpyrazole by Coupling of Aldehydes, Sulfonyl Hydrazides, and 2-Bromo-3,3,3-trifluoropropene. Org Lett 2020; 22:809-813. [PMID: 31951135 DOI: 10.1021/acs.orglett.9b04228] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general and practical strategy for 3-trifluoromethylpyrazole synthesis is reported that occurs by the three-component coupling of environmentally friendly and large-tonnage industrial feedstock 2-bromo-3,3,3-trifluoropropene (BTP), aldehydes, and sulfonyl hydrazides. This highly regioselective three-component reaction is metal-free, catalyst-free, and operationally simple and features mild conditions, a broad substrate scope, high yields, and valuable functional group tolerance. Remarkably, the reactions could be performed on a 100 mmol scale and smoothly afforded the key intermediates for the synthesis of celecoxib, mavacoxib, SC-560, and AS-136A. Preliminary mechanism studies indicated that a 1,3-hydrogen atom transfer process was involved in this transformation.
Collapse
Affiliation(s)
- Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Xiaojie Fang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
150
|
Liu J, Xu E, Jiang J, Huang Z, Zheng L, Liu ZQ. Copper-mediated tandem ring-opening/cyclization reactions of cyclopropanols with aryldiazonium salts: synthesis of N-arylpyrazoles. Chem Commun (Camb) 2020; 56:2202-2205. [DOI: 10.1039/c9cc09657d] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A general method for the synthesis of structurally diverse N-arylpyrazoles from readily available cyclopropanols and aryldiazonium salts is disclosed.
Collapse
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials
- Guangzhou University
- Guangzhou
- P. R. China
| | - Erjie Xu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials
- Guangzhou University
- Guangzhou
- P. R. China
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials
- Guangzhou University
- Guangzhou
- P. R. China
| | - Zeng Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials
- Guangzhou University
- Guangzhou
- P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials
- Guangzhou University
- Guangzhou
- P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials
- Guangzhou University
- Guangzhou
- P. R. China
| |
Collapse
|