101
|
Stepanidenko EA, Khavlyuk PD, Arefina IA, Cherevkov SA, Xiong Y, Döring A, Varygin GV, Kurdyukov DA, Eurov DA, Golubev VG, Masharin MA, Baranov AV, Fedorov AV, Ushakova EV, Rogach AL. Strongly Luminescent Composites Based on Carbon Dots Embedded in a Nanoporous Silicate Glass. NANOMATERIALS 2020; 10:nano10061063. [PMID: 32486299 PMCID: PMC7352239 DOI: 10.3390/nano10061063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Luminescent composites based on entirely non-toxic, environmentally friendly compounds are in high demand for a variety of applications in photonics and optoelectronics. Carbon dots are a recently developed kind of luminescent nanomaterial that is eco-friendly, biocompatible, easy-to-obtain, and inexpensive, with a stable and widely tunable emission. Herein, we introduce luminescent composites based on carbon dots of different chemical compositions and with different functional groups at the surface which were embedded in a nanoporous silicate glass. The structure and optical properties of these composites were comprehensively examined using electron microscopy, Fourier transform infrared transmission, UV-Vis absorption, and steady-state and time-resolved photoluminescence. It is shown that the silicate matrix efficiently preserved, and even enhanced the emission of different kinds of carbon dots tested. The photoluminescence quantum yield of the fabricated nanocomposite materials reached 35–40%, which is comparable to or even exceeds the values for carbon dots in solution.
Collapse
Affiliation(s)
- Evgeniia A. Stepanidenko
- Center of Information Optical Technologies, ITMO University, 49 Kronverkskiy Pr., 197101 St. Petersburg, Russia; (E.A.S.); (P.D.K.); (I.A.A.); (S.A.C.); (A.V.B.); (A.V.F.); (A.L.R.)
| | - Pavel D. Khavlyuk
- Center of Information Optical Technologies, ITMO University, 49 Kronverkskiy Pr., 197101 St. Petersburg, Russia; (E.A.S.); (P.D.K.); (I.A.A.); (S.A.C.); (A.V.B.); (A.V.F.); (A.L.R.)
| | - Irina A. Arefina
- Center of Information Optical Technologies, ITMO University, 49 Kronverkskiy Pr., 197101 St. Petersburg, Russia; (E.A.S.); (P.D.K.); (I.A.A.); (S.A.C.); (A.V.B.); (A.V.F.); (A.L.R.)
| | - Sergei A. Cherevkov
- Center of Information Optical Technologies, ITMO University, 49 Kronverkskiy Pr., 197101 St. Petersburg, Russia; (E.A.S.); (P.D.K.); (I.A.A.); (S.A.C.); (A.V.B.); (A.V.F.); (A.L.R.)
| | - Yuan Xiong
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; (Y.X.); (A.D.)
| | - Aaron Döring
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; (Y.X.); (A.D.)
| | - Georgii V. Varygin
- Interdisciplinary Resource Center for Nanotechnology, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia;
| | - Dmitry A. Kurdyukov
- Laboratory of Amorphous Semiconductors, Ioffe Institute, 26 Politekhnicheskaya Str., 194021 St. Petersburg, Russia; (D.A.K.); (D.A.E.); (V.G.G.)
| | - Daniil A. Eurov
- Laboratory of Amorphous Semiconductors, Ioffe Institute, 26 Politekhnicheskaya Str., 194021 St. Petersburg, Russia; (D.A.K.); (D.A.E.); (V.G.G.)
| | - Valery G. Golubev
- Laboratory of Amorphous Semiconductors, Ioffe Institute, 26 Politekhnicheskaya Str., 194021 St. Petersburg, Russia; (D.A.K.); (D.A.E.); (V.G.G.)
| | - Mikhail A. Masharin
- Department of Physics and Engineering, ITMO University, 49 Kronverkskiy Pr., 197101 St. Petersburg, Russia;
| | - Alexander V. Baranov
- Center of Information Optical Technologies, ITMO University, 49 Kronverkskiy Pr., 197101 St. Petersburg, Russia; (E.A.S.); (P.D.K.); (I.A.A.); (S.A.C.); (A.V.B.); (A.V.F.); (A.L.R.)
| | - Anatoly V. Fedorov
- Center of Information Optical Technologies, ITMO University, 49 Kronverkskiy Pr., 197101 St. Petersburg, Russia; (E.A.S.); (P.D.K.); (I.A.A.); (S.A.C.); (A.V.B.); (A.V.F.); (A.L.R.)
| | - Elena V. Ushakova
- Center of Information Optical Technologies, ITMO University, 49 Kronverkskiy Pr., 197101 St. Petersburg, Russia; (E.A.S.); (P.D.K.); (I.A.A.); (S.A.C.); (A.V.B.); (A.V.F.); (A.L.R.)
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; (Y.X.); (A.D.)
- Correspondence:
| | - Andrey L. Rogach
- Center of Information Optical Technologies, ITMO University, 49 Kronverkskiy Pr., 197101 St. Petersburg, Russia; (E.A.S.); (P.D.K.); (I.A.A.); (S.A.C.); (A.V.B.); (A.V.F.); (A.L.R.)
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; (Y.X.); (A.D.)
| |
Collapse
|
102
|
Stagi L, Mura S, Malfatti L, Carbonaro CM, Ricci PC, Porcu S, Secci F, Innocenzi P. Anomalous Optical Properties of Citrazinic Acid under Extreme pH Conditions. ACS OMEGA 2020; 5:10958-10964. [PMID: 32455216 PMCID: PMC7241015 DOI: 10.1021/acsomega.0c00775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/27/2020] [Indexed: 05/13/2023]
Abstract
Citrazinic acid (CZA) is a weakly fluorescent molecular compound whose optical properties are dependent on aggregation states and chemical environment. This molecule and its derivatives have been recently identified as the source of the intense blue emission of carbon dots obtained from citric acid with a nitrogen source, such as ammonia or urea. Citrazinic acid has a strong tendency to aggregate and form tautomers whose optical properties are largely unexplored. At extreme acidic and basic pH values, we have observed an "anomalous" optical response of citrazinic acid, attributed to the formation of aggregates from the tautomers. We have characterized the molecule, both at pH = 1 and 14, using UV-vis, NMR, steady-state, and time-resolved fluorescence spectroscopy. At extremely low pH values, the protonation causes luminescence quenching and the appearance of new emissions. On the contrary, high pH values are responsible for deprotonation and splitting of the excitation spectra.
Collapse
Affiliation(s)
- Luigi Stagi
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology,
CR-INSTM, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Stefania Mura
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology,
CR-INSTM, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Luca Malfatti
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology,
CR-INSTM, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Carlo Maria Carbonaro
- Department
of Physics, University of Cagliari, sp 8, km 0.700, 09042 Monserrato, Italy
| | - Pier Carlo Ricci
- Department
of Physics, University of Cagliari, sp 8, km 0.700, 09042 Monserrato, Italy
| | - Stefania Porcu
- Department
of Physics, University of Cagliari, sp 8, km 0.700, 09042 Monserrato, Italy
| | - Francesco Secci
- Department
of Chemical and Geological Sciences and INSTM, University of Cagliari, sp 8, km 0.700, 09042 Monserrato, Italy
| | - Plinio Innocenzi
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology,
CR-INSTM, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
103
|
Long R, Tang C, Li T, Tong X, Tong C, Guo Y, Gao Q, Wu L, Shi S. Dual-emissive carbon dots for dual-channel ratiometric fluorometric determination of pH and mercury ion and intracellular imaging. Mikrochim Acta 2020; 187:307. [PMID: 32356117 DOI: 10.1007/s00604-020-04287-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/19/2020] [Indexed: 11/26/2022]
Abstract
Dual-emissive carbon dots (CDs) were fabricated for dual-channel ratiometric fluorometric determination of pH and mercury ion (Hg2+) and intracellular imaging. Dual-emissive CDs were synthesized by one-pot solvothermal treatment of cabbage. The CDs exhibited two distinctive fluorescence emissions at 500 and 678 nm under single excitation at 410 nm. The green emission (500 nm) had reversible linear response to pH (7.0-12.0) due to deprotonation and protonation of surface functional groups and their non-covalent interactions. On the other hand, the red emission (678 nm) had efficient and selective fluorescence response to Hg2+ by formation of non-emission complex between CDs and Hg2+. The limit of detection (LOD) and limit of quantification (LOQ) for Hg2+ were 6.25 and 20.63 nM, respectively. The CDs have been successfully applied for label-free ratiometric fluorometric determination of pH and Hg2+ in fish and human serum samples with good recoveries (92.0-108.3%). In addition, the CDs had excellent photostability, low cytotoxicity, and good biocompatibility for intracellular imaging. All in all, the system was multi-functional in determination, high in sensitivity, and excellent in selectivity, which demonstrated wide and promising applicability for biosensing and bioimaging in the future. Graphical abstract Schematic presentation of dual-emission carbon dots (CDs) synthesized by solvothermal treatment of cabbage for dual-channel determination of pH and Hg2+.
Collapse
Affiliation(s)
- Ruiqing Long
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Cui Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 410078, Changsha, People's Republic of China
| | - Te Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Xia Tong
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Chaoying Tong
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 410078, Changsha, People's Republic of China.
| | - Qingping Gao
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China
| | - Lihui Wu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Shuyun Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
104
|
Mura S, Ludmerczki R, Stagi L, Garroni S, Carbonaro CM, Ricci PC, Casula MF, Malfatti L, Innocenzi P. Integrating sol-gel and carbon dots chemistry for the fabrication of fluorescent hybrid organic-inorganic films. Sci Rep 2020; 10:4770. [PMID: 32179839 PMCID: PMC7075866 DOI: 10.1038/s41598-020-61517-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 02/27/2020] [Indexed: 01/06/2023] Open
Abstract
Highly fluorescent blue and green-emitting carbon dots have been designed to be integrated into sol-gel processing of hybrid organic-inorganic materials through surface modification with an organosilane, 3-(aminopropyl)triethoxysilane (APTES). The carbon dots have been synthesised using citric acid and urea as precursors; the intense fluorescence exhibited by the nanoparticles, among the highest reported in the scientific literature, has been stabilised against quenching by APTES. When the modification is carried out in an aqueous solution, it leads to the formation of silica around the C-dots and an increase of luminescence, but also to the formation of large clusters which do not allow the deposition of optically transparent films. On the contrary, when the C-dots are modified in ethanol, the APTES improves the stability in the precursor sol even if any passivating thin silica shell does not form. Hybrid films containing APTES-functionalized C-dots are transparent with no traces of C-dots aggregation and show an intense luminescence in the blue and green range.
Collapse
Affiliation(s)
- Stefania Mura
- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Róbert Ludmerczki
- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Luigi Stagi
- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Sebastiano Garroni
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Carlo Maria Carbonaro
- Department of Physics, University of Cagliari, Campus of Monserrato, sp n.8, km 0.700, 09042, Monserrato, Italy
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, Campus of Monserrato, sp n.8, km 0.700, 09042, Monserrato, Italy
| | - Maria Francesca Casula
- DIMCM-Department of Mechanical, Chemical, and Materials Engineering INSTM and University of Cagliari Via Marengo 2, I, 09123, Cagliari, Italy
| | - Luca Malfatti
- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Plinio Innocenzi
- Laboratory of Materials Science and Nanotechnology, CR-INSTM, Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| |
Collapse
|
105
|
Bogireddy NKR, Cruz Silva R, Valenzuela MA, Agarwal V. 4-nitrophenol optical sensing with N doped oxidized carbon dots. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121643. [PMID: 31780290 DOI: 10.1016/j.jhazmat.2019.121643] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/27/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
In this work, we report a facile strategy for 4-nitrophenol (4-NP) sensing using highly luminescent nitrogen-doped oxidized carbon dots. The quenching of fluorescence (turn OFF), with the addition of trace amounts of organic pollutant (4-NP) in NOCDs, has been attributed to the complete reduction of nitrogen-doped oxidized carbon dots (NOCDs) to reduced nitrogen-doped oxidized carbon dots (rNOCDs) and its formation was confirmed by infrared, X-ray diffraction and X-ray photoelectron spectroscopy measurements. The chemical changes in oxygen-containing functional groups of NOCDs, in the presence of 4-NP, are elucidated and corresponding characterization through XPS reveals the changes in the peak intensities of CC (284.5 eV) and OCO (288.6 eV), indicating a decrement in hydroxyl groups that hinder its complete reduction to NOCDs. The sensitivity of NOCDs towards 4-NP has been tested in spiked tap water in the concentration range 2 μM to 2 mM with the minimum detection limit of 2 μM (linear detection range from 2 to 100 μM with regression coefficient R2 =0.99). The proposed simple sensing platform can be used to reduce NOCDs and simultaneously sense low concentrations of 4-NP. Finally, an effective treatment to improve the reduction of nitrogen-doped graphene oxide is proposed.
Collapse
Affiliation(s)
- N K R Bogireddy
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico
| | - R Cruz Silva
- Global Aqua Innovation Center, Shinshu University, Institute of Carbon Science and Technology, Faculty of Engineering, Shinshu University, Nagano City, 380-8553 Japan
| | - Miguel A Valenzuela
- Lab. Catálisis y Materiales, ESIQIE-Instituto Politécnico Nacional, Zacatenco, 07738 CDMX, Mexico
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
106
|
Abstract
The tunable photoluminescent and photocatalytic properties of carbon dots (CDs) via chemical surface modification have drawn increased attention to this emerging class of carbon nanomaterials. Herein, we summarize the advances in CD synthesis and modification, with a focus on surface functionalization, element doping, passivation, and nanocomposite formation with metal oxides, transition metal chalcogenides, or graphitic carbon nitrides. The effects of CD size and functionalization on photocatalytic properties are discussed, along with the photocatalytic applications of CDs in energy conversion, water splitting, hydrogen evolution, water treatment, and chemical degradation. In particular, the enzyme-mimetic and photodynamic applications of CDs for bio-related uses are thoroughly reviewed.
Collapse
|
107
|
Anjali Devi JS, Aparna RS, Anjana RR, Vijila NS, Jayakrishna J, George S. Amplified luminescence quenching effect upon binding of nitrogen doped carbon nanodots to transition metal ions. Photochem Photobiol Sci 2020; 19:207-216. [PMID: 31960873 DOI: 10.1039/c9pp00420c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a significant drive to identify a unified emission mechanism hidden behind carbon nanodots (CDs) to attain reliable control over their photoluminescence properties. This issue is addressed here by investigating the fluorescence response of citric acid and urea-based nitrogen doped carbon nanodots (NCDs) towards transition metal ions in solutions of different polarities/viscosities/hydrogen bonding strengths. The photoluminescence from NCDs upon excitation at 400 nm is quenched by metal ions such as chromium(vi), ruthenium(iii) and iron(iii) in two different polar solvents, protic water and aprotic dimethylsulphoxide (DMSO). This amplified luminescence quenching in polar solutions showed significant static quenching contributions. The quenching phenomenon highly depends on the excitation wavelength and solvent environment. The fluorescence quenching sequence reveals that pyridinic nitrogen-bases have a dominant influence on J-like emissive aggregates of NCDs. Similarly, oxygen-containing functional groups play a significant role in constructing H-aggregates of NCDs. The most intense emission is contributed by the J-like assembly of H-aggregates.
Collapse
Affiliation(s)
- J S Anjali Devi
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram-695581, Kerala, India.
| | | | | | | | | | | |
Collapse
|
108
|
Li Y, Ban Y, Wang R, Wang Z, Li Z, Fang C, Yu M. FRET-based ratiometric fluorescent detection of arginine in mitochondrion with a hybrid nanoprobe. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
109
|
Christé S, Esteves da Silva JC, Pinto da Silva L. Evaluation of the Environmental Impact and Efficiency of N-Doping Strategies in the Synthesis of Carbon Dots. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E504. [PMID: 31973126 PMCID: PMC7040597 DOI: 10.3390/ma13030504] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
The efficiency and associated environmental impacts of different N-doping strategies of carbon dots (CDs) were evaluated. More specifically, N-doped CDs were prepared from citric acid via two main synthesis routes: Microwave-assisted hydrothermal treatment with addition of N-containing small organic molecules (urea and ethylenediamine (EDA)); and microwave-assisted solvothermal treatment in N-containing organic solvents (n,n-dimethylformamide (DMF), acetonitrile and pyridine). These syntheses produced CDs with similar blue emission. However, XPS analysis revealed that CDs synthesized via both hydrothermal routes presented a better N-doping efficiency (~15 at.%) than all three solvothermal-based strategies (0.6-7 at.%). However, from the former two hydrothermal strategies, only the one involving EDA as a nitrogen-source provided a non-negligible synthesis yield, which indicates that this should be the preferred strategy. This conclusion was supported by a subsequent life cycle assessment (LCA) study, which revealed that this strategy is clearly the most sustainable one from all five studied synthesis routes.
Collapse
Affiliation(s)
- Suzanne Christé
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.C.); (J.C.G.E.d.S.)
| | - Joaquim C.G. Esteves da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.C.); (J.C.G.E.d.S.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.C.); (J.C.G.E.d.S.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| |
Collapse
|
110
|
Stepanidenko EA, Arefina IA, Khavlyuk PD, Dubavik A, Bogdanov KV, Bondarenko DP, Cherevkov SA, Kundelev EV, Fedorov AV, Baranov AV, Maslov VG, Ushakova EV, Rogach AL. Influence of the solvent environment on luminescent centers within carbon dots. NANOSCALE 2020; 12:602-609. [PMID: 31828268 DOI: 10.1039/c9nr08663c] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbon dots (CDs) are luminescent nanomaterials, with potential use in bioimaging and sensorics. Here, the influence of the surrounding solvent media on the optical properties of CDs synthesized from the most commonly employed precursors, namely citric acid and ethylenediamine, is investigated. The position of optical transitions of CDs can be tuned by the change of pH and solvent polarity. The most striking observation is related to the interaction of CDs with chlorine containing solvents, which results in resolving a set of narrow peaks within both the absorption and PL bands, similar to those observed for polycyclic aromatic hydrocarbons or organic dyes. We assume that the chlorine containing molecules penetrate the surface layers of CDs, which results in an increase of the distance between the luminescent centers; this correlates well with an enhanced D-band in their Raman spectra. A model of CDs composed of a matrix of hydrogenated amorphous carbon with the inclusions of sp2-domains formed by polycyclic aromatic hydrocarbons and their derivatives is suggested; the latter are stacked ensembles of the luminophores and are considered as the origin of the emission of CDs.
Collapse
Affiliation(s)
- Evgeniia A Stepanidenko
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Facile hydrothermal synthesis of nitrogen rich blue fluorescent carbon dots for cell bio-imaging of Candida albicans. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
112
|
Hagiwara K, Uchida H, Suzuki Y, Hayashita T, Torigoe K, Kida T, Horikoshi S. Role of alkan-1-ol solvents in the synthesis of yellow luminescent carbon quantum dots (CQDs): van der Waals force-caused aggregation and agglomeration. RSC Adv 2020; 10:14396-14402. [PMID: 35498445 PMCID: PMC9051929 DOI: 10.1039/d0ra01349h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 11/21/2022] Open
Abstract
Carbon quantum dots (CQDs; luminescent carbon nanoparticles, size < 10 nm) have attracted much attention with respect to their eco-friendliness and multi-functionality. The solvent-dependent photoluminescence of CQDs has been well investigated to optimize the synthesis process and homogeneous dispersion. Although some alkan-1-ol solvents, such as ethanol, have been well utilized empirically as good solvents when synthesizing highly photoluminescent CQDs, the role of alkan-1-ol solvents, particularly long-chain alkan-1-ols (e.g., 1-nonanol, 1-decanol), has not yet been clarified. Herein, we demonstrate a method for the synthesis of strongly yellow emitting CQDs using solvothermal treatment and elucidate the role of alkan-1-ol solvents in the photoluminescence of CQDs. These CQDs have been characterized using theoretical calculations, ex situ morphological observations using transmission electron microscopy (TEM) and dynamic light scattering (DLS), and 500 MHz 1H nuclear magnetic resonance (NMR) and 13C NMR spectroscopy. A comparative study of alkan-1-ol solvents suggests a mechanism for the agglomeration and aggregation of carbon precursors, intermediates, and CQDs, which is expected to lead to further synthesis studies on highly luminescent CQDs. Carbon quantum dots (CQDs; luminescent carbon nanoparticles, size < 10 nm) have attracted much attention with respect to their eco-friendliness and multi-functionality.![]()
Collapse
Affiliation(s)
- Kenta Hagiwara
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Hiroshi Uchida
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Yumiko Suzuki
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Kanjiro Torigoe
- Department of Pure and Applied Chemistry
- Faculty of Science and Technology
- Tokyo University of Science
- Chiba 278-8510
- Japan
| | - Tetsuya Kida
- Division of Materials Science
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Satoshi Horikoshi
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| |
Collapse
|
113
|
Xia C, Zhu S, Feng T, Yang M, Yang B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901316. [PMID: 31832313 PMCID: PMC6891914 DOI: 10.1002/advs.201901316] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Indexed: 05/02/2023]
Abstract
Despite the various synthesis methods to obtain carbon dots (CDs), the bottom-up methods are still the most widely administrated route to afford large-scale and low-cost synthesis. However, as CDs are developed with increasing reports involved in producing many CDs, the structure and property features have changed enormously compared with the first generation of CDs, raising classification concerns. To this end, a new classification of CDs, named carbonized polymer dots (CPDs), is summarized according to the analysis of structure and property features. Here, CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties. Furthermore, deep insights into the effects of synthesis on the structure/property features of CDs are provided. Herein, the synthesis methods of CDs are also summarized in detail, and the effects of synthesis conditions of the bottom-up methods in terms of the structures and properties of CPDs are discussed and analyzed comprehensively. Insights into formation process and nucleation mechanism of CPDs are also offered. Finally, a perspective of the future development of CDs is proposed with critical insights into facilitating their potential in various application fields.
Collapse
Affiliation(s)
- Chunlei Xia
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health35 Convent DrBethesda20892MDUSA
| | - Tanglue Feng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- State Key Laboratory of Applied OpticsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| |
Collapse
|
114
|
On the Emission Properties of Carbon Dots: Reviewing Data and Discussing Models. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040060] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The emission properties of carbon dots (CDs) have already found many potential applications, from bio-imaging and cell labelling, to optical imaging and drug delivery, and are largely investigated in technological fields, such as lighting and photonics. Besides their high efficiency emission, CDs are also virtually nontoxic and can be prepared through many green chemistry routes. Despite these important features, the very origin of their luminescence is still debated. In this paper, we present an overview of sounding data and the main models proposed to explain the emission properties of CDs and their tunability.
Collapse
|
115
|
Sendão RMS, Crista DMA, Afonso ACP, Martínez de Yuso MDV, Algarra M, Esteves da Silva JCG, Pinto da Silva L. Insight into the hybrid luminescence showed by carbon dots and molecular fluorophores in solution. Phys Chem Chem Phys 2019; 21:20919-20926. [PMID: 31517344 DOI: 10.1039/c9cp03730f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbon dots have attracted great attention from the research community given their very attractive luminescent properties. However, the recent discovery that some of these properties may result from fluorescent impurities originating from the synthesis process, and not from the carbon dots themselves, constitute a significant setback to our knowledge of these materials. Herein, we proceeded to the study of carbon dots generated from citric acid and urea via a microwave-assisted synthesis, focusing on their analysis by AFM, HR-TEM, XPS, FT-IR, ESI-MS, UV-Vis and fluorescence spectroscopy. We have found that this synthesis process does generate molecular fluorophores that can mask the luminescence of the carbon dots. More importantly, our data demonstrates that when present in the same solution, the carbon dots and these fluorophores do not behave as separated species with individual emission. Instead, they interact to produce a hybrid luminescence, which excited state properties and reactivity are different from the properties of the individual species. These results indicate the possibility for the development of hybrid materials composed by carbon dots and related molecular fluorophores with new and improved properties.
Collapse
Affiliation(s)
- Ricardo M S Sendão
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| | - Diana M A Crista
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| | - Ana Carolina P Afonso
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| | - Maria Del Valle Martínez de Yuso
- X-Ray Photoelectron Spectroscopy Lab, Central Service to Support Research Bulding (SCAI), University of Málaga, 29071 Málaga, Spain
| | - Manuel Algarra
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal and LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal.
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal and LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal.
| |
Collapse
|
116
|
Ludmerczki R, Mura S, Carbonaro CM, Mandity IM, Carraro M, Senes N, Garroni S, Granozzi G, Calvillo L, Marras S, Malfatti L, Innocenzi P. Carbon Dots from Citric Acid and its Intermediates Formed by Thermal Decomposition. Chemistry 2019; 25:11963-11974. [PMID: 31254368 DOI: 10.1002/chem.201902497] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 01/04/2023]
Abstract
Thermal decomposition of citric acid is one of the most common synthesis methods for fluorescent carbon dots; the reaction pathway is, however, quite complex and the details are still far from being understood. For instance, several intermediates form during the process and they also give rise to fluorescent species. In the present work, the formation of fluorescent C-dots from citric acid has been studied as a function of reaction time by coupling infrared analysis, X-ray photoelectron spectroscopy, liquid chromatography/mass spectroscopy (LC/MS) with the change of the optical properties, absorption and emission. The reaction intermediates, which have been identified at different stages, produce two main emissive species, in the green and blue, as also indicated by the decay time analysis. C-dots formed from the intermediates have also been synthesised by thermal decomposition, which gave an emission maximum around 450 nm. The citric acid C-dots in water show short temporal stability, but their functionalisation with 3-aminopropyltriethoxysilane reduces the quenching. The understanding of the citric acid thermal decomposition reaction is expected to improve the control and reproducibility of C-dots synthesis.
Collapse
Affiliation(s)
- Robert Ludmerczki
- Department of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, CR-INSTM, Via Vienna 2., 07100, Sassari, Italy
| | - Stefania Mura
- Department of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, CR-INSTM, Via Vienna 2., 07100, Sassari, Italy
| | - Carlo Maria Carbonaro
- Department of Physics, University of Cagliari, Campus of Monserrato, sp n.8, km 0.700, 09042, Monserrato, Italy
| | - Istvan M Mandity
- Department of Organic Chemistry, Semmelweis University, 1092, Budapest, Hogyes Endre St. 7., Hungary.,MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Magyar Tudósok krt. 2., Hungary
| | - Massimo Carraro
- Department of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, CR-INSTM, Via Vienna 2., 07100, Sassari, Italy
| | - Nina Senes
- Department of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, CR-INSTM, Via Vienna 2., 07100, Sassari, Italy
| | - Sebastiano Garroni
- Department of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, CR-INSTM, Via Vienna 2., 07100, Sassari, Italy
| | - Gaetano Granozzi
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego, 30., 16163, Genova, Italy
| | - Laura Calvillo
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131, Padova, Italy
| | - Sergio Marras
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131, Padova, Italy
| | - Luca Malfatti
- Department of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, CR-INSTM, Via Vienna 2., 07100, Sassari, Italy
| | - Plinio Innocenzi
- Department of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, CR-INSTM, Via Vienna 2., 07100, Sassari, Italy
| |
Collapse
|
117
|
Anjali Devi JS, Aparna RS, Anjana RR, Nebu J, Anju SM, George S. Solvent Effects: A Signature of J- and H-Aggregate of Carbon Nanodots in Polar Solvents. J Phys Chem A 2019; 123:7420-7429. [PMID: 31373812 DOI: 10.1021/acs.jpca.9b04568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The secret behind excitation-dependent/-independent photoluminescence of carbon nanodots (CDs) is not yet revealed completely. To address this issue, a detailed investigation on solvent polarity-dependent optical properties of citric acid-urea co-derived nitrogen-doped carbon nanodots (NCDs) was carried out. The interpretation on UV-visible spectral data reveals the presence of H-aggregates formed through hydrogen bonding. In addition, dipole-dipole interaction-mediated J-aggregates are clearly evident. The broad and intense excitation band of NCDs is mostly contributed by highly emissive J-like self-assembly of H-aggregates in polar solvents. Time-resolved fluorescence spectra of NCDs show triexponential decay kinetics. The three lifetime components correspond to long-lived H-aggregates, short-lived J-aggregates, and JH-aggregates of intermediate lifetime. Moreover, fluorescence of NCD is influenced by concentration and storage time. Accordingly, mismatch in spectral shapes of excitation and absorption spectra of NCD can be successfully correlated to aggregate species of NCDs that exist even in very dilute solutions.
Collapse
Affiliation(s)
- J S Anjali Devi
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| | - R S Aparna
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| | - R R Anjana
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| | - John Nebu
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| | - S Madanan Anju
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| |
Collapse
|
118
|
Zhou Y, Mintz KJ, Sharma SK, Leblanc RM. Carbon Dots: Diverse Preparation, Application, and Perspective in Surface Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9115-9132. [PMID: 31267753 DOI: 10.1021/acs.langmuir.9b00595] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon dots (CDs) are a novel class of nanoparticles with excellent properties. The development of CDs involves versatile synthesis, characterization, and various applications. However, the importance of surface chemistry of CDs, especially in applications, is often underestimated. In fact, the study of the surface chemistry of CDs is of great significance in the explanation of the unique properties of CDs as well as the pursuit of potential applications. In this feature article, we do not only introduce the development of CDs in our group but also highlight their applications where surface chemistry plays a critical role.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Keenan J Mintz
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Shiv K Sharma
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Roger M Leblanc
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| |
Collapse
|
119
|
Fan Y, Yang X, Yin C, Ma C, Zhou X. Blue- and green-emitting hydrophobic carbon dots: preparation, optical transition, and carbon dot-loading. NANOTECHNOLOGY 2019; 30:265704. [PMID: 30812022 DOI: 10.1088/1361-6528/ab0b14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the past decade, hydrophobic fluorescent carbon dots (OCDs) have received little attention, and its potential application and light transition mechanism is seldom explored. Here we report a novel one-step approach for synthesizing blue- and green-emitting hydrophobic fluorescent carbon dots (OCDb and OCDg) by calcinating with the uses of citric acid and hexadecylamine as initial reactants. The optimal conditions for preparing OCDb and OCDg were obtained by using the Taguchi L25 (35) orthogonal array. The highest quantum yield and product yield of OCDs reached 80.2% and 57.1%, respectively, larger than those from most of all the known reports. The fluorescent stability of OCDb and OCDg was excellent under UV irradiation (30 W) for days. The luminescent color of OCDs showed a great dependence on reaction conditions. It is easier to get OCDg via a reaction kept at a high temperature for a long time. The optical transition mechanism was studied for the two kinds of color OCDs, and therefore proposed in combination with their optical properties and surface groups. The reason for light transition is probably related to an appropriate critical ratio and surface density of the C=O and N-H bond in the surface structure of the product. For the OCDg, the concentration matching ratio of N-H and C=O bonds in the surface structure of the green-emitting product is approximately between d/2 and 3d/2, where d is a fixed constant. Lower than or higher than this critical ratio range, the product emits blue light. Based on their high fluorescence quantum efficiency and the advantages mentioned above, these OCDs were then respectively used for preparing hydrophobic fluorescent carbon dot-loading liposomes and acrylate films, both exhibiting a perfect performance with no fluorescence quenching.
Collapse
Affiliation(s)
- Yujuan Fan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | | | | | | | | |
Collapse
|
120
|
Hinterberger V, Damm C, Haines P, Guldi DM, Peukert W. Purification and structural elucidation of carbon dots by column chromatography. NANOSCALE 2019; 11:8464-8474. [PMID: 30990494 DOI: 10.1039/c9nr01029g] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon dots (CDs) are an astonishing class of fluorescent materials with many applications in bioimaging, drug delivery, photovoltaics and photocatalysis due to their outstanding luminescence properties and low toxicity. However, the internal CD structure of bottom-up synthesized CDs is still the subject of considerable debate. Unambiguous analysis of the internal CD composition is hampered by the fact that reaction products usually contain mixtures of several CD fractions as well as molecular intermediate and side products. Therefore, purification and careful separation of the various CD fractions is vital for structural analysis and isolation of pure CDs possessing optimized optical properties. In this study, CD solutions were synthesized from citric acid and cysteine via a one-pot hydrothermal synthesis. A simple column chromatography unit was used to systematically study the influence of the molar precursor ratios and synthesis conditions (temperature, reaction time) on the CD solution composition. By investigating the structural and optical properties of the chromatographically separated fractions, three different fluorescent species could be identified. Freely floating molecular fluorophores left the column first, followed by highly fluorescent CDs with fluorophores bound to the carbon core, finally followed by low-fluorescent carbon particles without fluorophores. We demonstrate that the CD solution composition and the internal structure of the individual fluorescent components can be clarified via chromatographic separation. This information can be further applied to isolate pure CDs with optimized optical properties.
Collapse
Affiliation(s)
- Vanessa Hinterberger
- Friedrich-Alexander University Erlangen-Nürnberg, Institute of Particle Technology, Cauerstrasse 4, 91058 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
121
|
Liu X, Wang T, Wang W, Zhou Z, Yan Y. A tailored molecular imprinting ratiometric fluorescent sensor based on red/blue carbon dots for ultrasensitive tetracycline detection. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
122
|
Mishra K, Koley S, Ghosh S. Ground-State Heterogeneity along with Fluorescent Byproducts Causes Excitation-Dependent Fluorescence and Time-Dependent Spectral Migration in Citric Acid-Derived Carbon Dots. J Phys Chem Lett 2019; 10:335-345. [PMID: 30607959 DOI: 10.1021/acs.jpclett.8b03803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The integrity of fluorescent carbon dot (FCD) emission deserves its highest appreciation when sample purification is performed with extreme care. Several controversial phenomena of FCD fluorescence including excitation-dependent emission, spectral migration with time, and thereby violation of the Kasha-Vavilov rule, which sparked intense debate during recent reports, disappeared when we rigorously purified the as-synthesized FCD sample. Purification was performed by first visual silica column chromatography (observing the emissions under UV illumination) and subsequently prolonged membrane dialysis. Most of the surprising phenomena of FCD fluorescence reported earlier apparently arose from ground-state spectral heterogeneity of FCD sample containing a large amount of fluorescent impurities (mostly polymeric or oligomeric in nature). Observation of our ensemble spectroscopic measurements, albeit nicely matched with recent reports based on single-particle experiments, differed largely from that of other ensemble measurements. Our results reconciled a number of long-standing controversies on FCD emission mostly by emphasizing the urgency of sample purification with more scientific rigor.
Collapse
Affiliation(s)
- Krishna Mishra
- School of Chemical Sciences , National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI) , Khurda 752050 , Odisha India
| | - Somnath Koley
- School of Chemical Sciences , National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI) , Khurda 752050 , Odisha India
| | - Subhadip Ghosh
- School of Chemical Sciences , National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI) , Khurda 752050 , Odisha India
| |
Collapse
|