101
|
Xue W, Pesce L, Bellamkonda A, Ronson TK, Wu K, Zhang D, Vanthuyne N, Brotin T, Martinez A, Pavan GM, Nitschke JR. Subtle Stereochemical Effects Influence Binding and Purification Abilities of an Fe II4L 4 Cage. J Am Chem Soc 2023; 145:5570-5577. [PMID: 36848676 PMCID: PMC9999408 DOI: 10.1021/jacs.3c00294] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A tetrahedral FeII4L4 cage assembled from the coordination of triangular chiral, face-capping ligands to iron(II). This cage exists as two diastereomers in solution, which differ in the stereochemistry of their metal vertices, but share the same point chirality of the ligand. The equilibrium between these cage diastereomers was subtly perturbed by guest binding. This perturbation from equilibrium correlated with the size and shape fit of the guest within the host; insight as to the interplay between stereochemistry and fit was provided by atomistic well-tempered metadynamics simulations. The understanding thus gained as to the stereochemical impact on guest binding enabled the design of a straightforward process for the resolution of the enantiomers of a racemic guest.
Collapse
Affiliation(s)
- Weichao Xue
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
| | | | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Thierry Brotin
- Laboratoire de Chimie, Université Lyon, Ens de Lyon, CNRS UMR 5182, Lyon F69342, France
| | - Alexandre Martinez
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland.,Department of Applied Science and Techology, Politecnico di Torino, 10129 Torino, Italy
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
102
|
Zhang X, Hai L, Gao Y, Yu G, Sun Y. Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharm Sin B 2023; 13:903-915. [PMID: 36970213 PMCID: PMC10031258 DOI: 10.1016/j.apsb.2022.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/04/2022] [Accepted: 09/18/2022] [Indexed: 11/01/2022] Open
Abstract
We summarize the most important advances in RNA delivery and nanomedicine. We describe lipid nanoparticle-based RNA therapeutics and the impacts on the development of novel drugs. The fundamental properties of the key RNA members are described. We introduced recent advances in the nanoparticles to deliver RNA to defined targets, with a focus on lipid nanoparticles (LNPs). We review recent advances in biomedical therapy based on RNA drug delivery and state-of-the-art RNA application platforms, including the treatment of different types of cancer. This review presents an overview of current LNPs based RNA therapies in cancer treatment and provides deep insight into the development of future nanomedicines sophisticatedly combining the unparalleled functions of RNA therapeutics and nanotechnology.
Collapse
Affiliation(s)
- Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, MA, USA
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yibo Gao
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingli Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
103
|
Liu L, Pan Y, Zhao C, Huang P, Chen X, Rao L. Boosting Checkpoint Immunotherapy with Biomaterials. ACS NANO 2023; 17:3225-3258. [PMID: 36746639 DOI: 10.1021/acsnano.2c11691] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The immune checkpoint blockade (ICB) therapy has revolutionized the field of cancer treatment, while low response rates and systemic toxicity limit its clinical outcomes. With the rapid advances in nanotechnology and materials science, various types of biomaterials have been developed to maximize therapeutic efficacy while minimizing side effects by increasing tumor antigenicity, reversing immunosuppressive microenvironment, amplifying antitumor immune response, and reducing extratumoral distribution of checkpoint inhibitors as well as enhancing their retention within target sites. In this review, we reviewed current design strategies for different types of biomaterials to augment ICB therapy effectively and then discussed present representative biomaterial-assisted immune modulation and targeted delivery of checkpoint inhibitors to boost ICB therapy. Current challenges and future development prospects for expanding the ICB with biomaterials were also summarized. We anticipate this review will be helpful for developing emerging biomaterials for ICB therapy and promoting the clinical application of ICB therapy.
Collapse
Affiliation(s)
- Lujie Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074
| | - Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
104
|
Li K, Tian GY, Ahmed J. Emissivity Correction and Thermal Pattern Reconstruction in Eddy Current Pulsed Thermography. SENSORS (BASEL, SWITZERLAND) 2023; 23:2646. [PMID: 36904849 PMCID: PMC10007600 DOI: 10.3390/s23052646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Emissivity variations are one of the most critical challenges in thermography technologies; this is due to the temperature calculation strongly depending on emissivity settings for infrared signal extraction and evaluation. This paper describes an emissivity correction and thermal pattern reconstruction technique based on physical process modelling and thermal feature extraction, for eddy current pulsed thermography. An emissivity correction algorithm is proposed to address the pattern observation issues of thermography in both spatial and time domains. The main novelty of this method is that the thermal pattern can be corrected based on the averaged normalization of thermal features. In practice, the proposed method brings benefits in enhancing the detectability of the faults and characterization of the materials without the interference of the emissivity variation problem at the object's surfaces. The proposed technique is verified in several experimental studies, such as the case-depth evaluation of heat-treatment steels, failures, and fatigues of gears made of the heat-treated steels that are used for rolling stock applications. The proposed technique can improve the detectability of the thermography-based inspection methods and would improve the inspection efficiency for high-speed NDT&E applications, such as rolling stock applications.
Collapse
Affiliation(s)
- Kongjing Li
- Research and Development Centre, Dynex Semiconductor, Lincoln LN6 3LF, UK
| | - Gui Yun Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Junaid Ahmed
- Computer Systems Engineering Department, Sukkur IBA University, PRG9+PM, Sukkur 65200, Pakistan
| |
Collapse
|
105
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
106
|
Ugalde-Arbizu M, Aguilera-Correa JJ, García-Almodóvar V, Ovejero-Paredes K, Díaz-García D, Esteban J, Páez PL, Prashar S, San Sebastian E, Filice M, Gómez-Ruiz S. Dual Anticancer and Antibacterial Properties of Silica-Based Theranostic Nanomaterials Functionalized with Coumarin343, Folic Acid and a Cytotoxic Organotin(IV) Metallodrug. Pharmaceutics 2023; 15:pharmaceutics15020560. [PMID: 36839883 PMCID: PMC9962538 DOI: 10.3390/pharmaceutics15020560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.
Collapse
Affiliation(s)
- Maider Ugalde-Arbizu
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Victoria García-Almodóvar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Paulina L. Páez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| |
Collapse
|
107
|
Yan M, Zhou J. Pillararene-Based Supramolecular Polymers for Cancer Therapy. Molecules 2023; 28:molecules28031470. [PMID: 36771136 PMCID: PMC9919256 DOI: 10.3390/molecules28031470] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Supramolecular polymers have attracted considerable interest due to their intriguing features and functions. The dynamic reversibility of noncovalent interactions endows supramolecular polymers with tunable physicochemical properties, self-healing, and externally stimulated responses. Among them, pillararene-based supramolecular polymers show great potential for biomedical applications due to their fascinating host-guest interactions and easy modification. Herein, we summarize the state of the art of pillararene-based supramolecular polymers for cancer therapy and illustrate its developmental trend and future perspective.
Collapse
|
108
|
Cation controlled rotation in anionic pillar[5]arenes and its application for fluorescence switch. Nat Commun 2023; 14:590. [PMID: 36737437 PMCID: PMC9898256 DOI: 10.1038/s41467-023-36131-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Controlling molecular motion is one of hot topics in the field of chemistry. Molecular rotors have wide applications in building nanomachines and functional materials, due to their controllable rotations. Hence, the development of novel rotor systems, controlled by external stimuli, is desirable. Pillar[n]arenes, a class of macrocycles, have a unique planar chirality, in which two stable conformational isomers pR and pS would interconvert by oxygen-through-the-annulus rotations of their hydroquinone rings. We observe the differential kinetic traits of planar chirality transformation in sodium carboxylate pillar[5]arene (WP5-Na) and ammonium carboxylate pillar[5]arene (WP5-NH4), which inspire us to construct a promising rotary platform in anionic pillar[5]arenes (WP5) skeletons. Herein, we demonstrate the non-negligible effect of counter cations on rotational barriers of hydroquinone rings in WP5, which enables a cation grease/brake rotor system. Applications of this tunable rotor system as fluorescence switch and anti-counterfeiting ink are further explored.
Collapse
|
109
|
Jin M, Zhao Y, Guan ZJ, Fang Y. Porous Framework Materials for Bioimaging and Cancer Therapy. Molecules 2023; 28:1360. [PMID: 36771027 PMCID: PMC9921779 DOI: 10.3390/molecules28031360] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most pressing diseases in the world. Traditional treatments, including surgery, chemotherapy, and radiotherapy still show certain limitations. Recently, numerous cancer treatments have been proposed in combination with novel materials, such as photothermal therapy, chemodynamic therapy, immunotherapy, and a combination of therapeutic approaches. These new methods have shown significant advantages in reducing side effects and synergistically enhancing anti-cancer efficacy. In addition to the above approaches, early diagnosis and in situ monitoring of lesion areas are also important for reducing side effects and improving the success rate of cancer therapy. This depends on the decent use of bioimaging technology. In this review, we mainly summarize the recent advances in porous framework materials for bioimaging and cancer therapy. In addition, we present future challenges relating to bioimaging and cancer therapy based on porous framework materials.
Collapse
Affiliation(s)
- Meng Jin
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingying Zhao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zong-Jie Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yu Fang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Innovation Institute of Industrial Design and Machine Intelligence, Quanzhou-Hunan University, Quanzhou 362801, China
| |
Collapse
|
110
|
Uroro EO, Bright R, Hayles A, Vasilev K. Lipase-Responsive Amphotericin B Loaded PCL Nanoparticles for Antifungal Therapies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:155. [PMID: 36616065 PMCID: PMC9823996 DOI: 10.3390/nano13010155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Amphotericin B is an antifungal drug used for the treatment of invasive fungal infections. However, its clinical use is limited due to its serious side effects, such as renal and cardiovascular toxicity. Furthermore, amphotericin B is administered in high doses due to its poor water solubility. Hence, it is necessary to develop an on-demand release strategy for the delivery of amphotericin B to reduce cytotoxicity. The present report describes a novel encapsulation of amphotericin B into lipase-sensitive polycaprolactone to form a nanocomposite. Nanocomposites were produced by the oil-in-water method and their physicochemical properties such as size, hydrodynamic diameter, drug loading, and zeta potential were determined. The in vitro release of amphotericin B was characterized in the presence and absence of lipase. The antifungal activity of the nanocomposites was verified against lipase-secreting Candida albicans, and cytotoxicity was tested against primary human dermal fibroblasts. In the absence of lipase, the release of amphotericin B from the nanocomposites was minimal. However, in the presence of lipase, an enzyme that is abundant at infection sites, a fungicidal concentration of amphotericin B was released from the nanocomposites. The antifungal activity of the nanocomposites showed an enhanced effect against the lipase-secreting fungus, Candida albicans, in comparison to the free drug at the same concentration. Furthermore, nanoencapsulation significantly reduced amphotericin B-related cytotoxicity compared to the free drug. The synthesized nanocomposites can serve as a potent carrier for the responsive delivery of amphotericin B in antifungal applications.
Collapse
Affiliation(s)
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Krasimir Vasilev
- UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
111
|
Suprasomes: an emerging platform for cancer theranostics. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
112
|
Yang K, Hua B, Qi S, Bai B, Yu C, Huang F, Yu G. Suprasomes Based on Host-Guest Molecular Recognition: An Excellent Alternative to Liposomes in Cancer Theranostics. Angew Chem Int Ed Engl 2022; 61:e202213572. [PMID: 36261392 DOI: 10.1002/anie.202213572] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 11/07/2022]
Abstract
Liposomes and polymersomes, typical vesicular drug delivery systems (DDSs), have faced some limitations in cancer theranostics. Suprasomes, supramolecular vesicles assembled from amphiphiles linked by noncovalent interactions, show potential as new generation of vesicular DDSs. We construct suprasomes based on host-guest recognition, by which the desired functions can be integrated into carriers without tedious synthesis. Photothermally active host-guest complex is formed between a functional guest and pillar[5]arene, which further self-assembles into hollow suprasomes. A supramolecular nanomedicine is developed by encapsulating cisplatin in the suprasomes. The obtained cisplatin@Suprasomes achieve excellent anticancer efficacy and anti-metastasis combining chemotherapy and photothermal therapy, which ablate the tumors without relapse and metastasis. This work demonstrates the facile functionalization of suprasomes, holding promise as alternatives to liposomes and polymersomes.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
113
|
Chen J, Hooley RJ, Zhong W. Applications of Synthetic Receptors in Bioanalysis and Drug Transport. Bioconjug Chem 2022; 33:2245-2253. [PMID: 35362963 DOI: 10.1021/acs.bioconjchem.2c00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synthetic receptors are powerful tools for molecular recognition. They can bind to guests with high selectivity and affinity, and their structures are tunable and diversified. These features, plus the relatively low cost and high simplicity in synthesis and modification, support the feasibility of array-based molecular analysis with synthetic receptors for improved selectivity in the recognition of a wide range of targets. More attractively, host-guest interaction is reversible and guest displacement allows biocompatible and gentle release of the host-bound molecules, simplifying the stimulation designs needed to control analyte sensing, enrichment, and transportation. Here, we highlight a few recent advancements in using synthetic receptors for molecular analysis and manipulation, with the focus on macrocyclic receptors and their applications in displacement sensing, separation, imaging, and drug transport.
Collapse
|
114
|
Song E, Wu Q, Gao R, Lan X, Zhang Y, Geng H, Liu C, Xu F, Li Y, Liu C. Supramolecular catalytic nanomedicines based on coordination self-assembly of amino acids for cascade-activated and -amplified synergetic cancer therapy. J Mater Chem B 2022; 10:9838-9847. [PMID: 36448199 DOI: 10.1039/d2tb02326a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Simple biomolecule-based supramolecular nanomedicines hold great promise in cancer therapy, but their clinical translation is greatly hindered by low tumor-specificity and unsatisfactory antitumor performance. Herein, we developed an amino acid basedsupramolecular nanomedicine that could be co-activated by multiple stimuli in tumor tissue to trigger cascade catalytic reactions in situ for synergetic therapy. The supramolecular nanomedicine was developed based on a combination of coordination and hydrophobic noncovalent interactions among amphiphilic amino acids, glucose oxidase (GOx), copper ions, as well as doxorubicin (DOX)-camptothecin (CPT) prodrugs. The cascade reactions including the catalytic oxidation of glucose to generate H2O2, GSH reducing Cu2+ to Cu+, a Fenton-like reaction between H2O2 and Cu+ to produce hydroxyl radicals (˙OH), and ˙OH-triggered rapid release of dual parent drugs were specifically activated in tumor cells. With these cascade reactions, the catalytic-chemo synergetic therapy was realized for high-efficiency tumor suppression.
Collapse
Affiliation(s)
- Enhui Song
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Qiong Wu
- Department of Laboratory, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao 266033, China
| | - Ren Gao
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xiaopeng Lan
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yanhui Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Hao Geng
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Chunlei Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Feijie Xu
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Yongxin Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Chunzhao Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
115
|
Huang X, Chen L, Jin J, Kim H, Chen L, Zhang Z, Yu L, Li S, Stang PJ. Host–Guest Encapsulation to Promote the Formation of a Multicomponent Trigonal-Prismatic Metallacage. Inorg Chem 2022; 61:20237-20242. [DOI: 10.1021/acs.inorgchem.2c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Xuechun Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Luyi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jianan Jin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hyunuk Kim
- Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea
| | - Luyao Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zibin Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ling Yu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shijun Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
116
|
Rong X, Liu C, Li X, Zhu H, Wang K, Zhu B. Recent advances in chemotherapy-based organic small molecule theranostic reagents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
117
|
Verma N, Sutariya P, Patel T, Shukla M, Pandya A. Tailored calix[4]arene-gold nanoconjugate as a ultra-sensitive immunosensing nanolabel. Biomed Microdevices 2022; 25:1. [PMID: 36449135 DOI: 10.1007/s10544-022-00640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/03/2022]
Abstract
The construction of highly sensitive and specific immunosensing nanolabels have attracted tremendous attention in the development of reliable point-of-care disease diagnostics. However, there are still challenges with traditional immunoassays, such as complicated and time-consuming procedure, the use of enzyme label, non-specificity, and require readers for detection. Therefore, we have designed and developed site-directed antibody-immobilized calix[4]arene-gold nanoconjugate based colorimetric immunosensing nanolabel to offer high sensitivity. The prepared nanolabel enabled oriented binding of the antibodies by providing full accessibility of Fab domain for antigen binding. The improved sensitivity of the developed nanolabel was evaluated using vertical flow immunoassay (VFIA) for detecting C-reactive protein (CRP) with a lower detection limit up to 1 ng/ml. Our developed nanolabel was found to be highly specific, easy, quick, and appropriate for onsite detection. The nanolabel is validated with spiked blood samples which exhibited ~90% recovery having a relative error of ~2%. Furthermore, the nanolabel was also used for screening of human blood real samples which showed relative error of ~0.6%. The developed nanolabel can be utilized as a potential nanolabel for the quantitative detection of various biomolecules in clinical samples.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Pinkesh Sutariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388120, India
| | - Tvarit Patel
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Malvika Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Alok Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
118
|
Zhang Y, Ma M, Chen L, Du X, Meng Z, Zhang H, Zheng Z, Chen J, Meng Q. A Biocompatible Liquid Pillar[n]arene-Based Drug Reservoir for Topical Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122621. [PMID: 36559115 PMCID: PMC9783689 DOI: 10.3390/pharmaceutics14122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Advanced external preparations that possess a sustained-release effect and integrate few irritant elements are urgently needed to satisfy the special requirements of topical administration in the clinic. Here, a series of liquid pillar[n]arene-bearing varying-length oligoethylene oxide chains (OEPns) were designed and synthesized. Following rheological property and biocompatibility investigations, pillar[6]arene with triethylene oxide substituents (TEP6) with satisfactory cavity size were screened as optimal candidate compounds. Then, a supramolecular liquid reservoir was constructed from host-guest complexes between TEP6 and econazole nitrate (ECN), an external antimicrobial agent without additional solvents. In vitro drug-release studies revealed that complexation by TEP6 could regulate the release rate of ECN and afford effective cumulative amounts. In vivo pharmacodynamic studies confirmed the formation of a supramolecular liquid reservoir contributed to the accelerated healing rate of a S. aureus-infected mouse wound model. Overall, these findings have provided the first insights into the construction of a supramolecular liquid reservoir for topical administration.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.Z.); (J.C.); (Q.M.)
| |
Collapse
|
119
|
Zhou H, Meng Q, Li B, Liu Y, Li Z, Li X, Sun Z, Chen Y. Supramolecular Combination Chemotherapy: Cucurbit[8]uril Complex Enhanced Platinum Drug Infiltration and Modified Nanomechanical Property of Colorectal Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14326-14334. [PMID: 36355865 DOI: 10.1021/acs.langmuir.2c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Combination chemotherapy is recognized as a vital medical treatment for cancer, but it has not achieved clinical ideal effects of combination therapy. Herein, we designed a supramolecular combination chemotherapy strategy based on cucurbit[8]uril (CB[8]), which can be facilely assembled into dual platinum drugs. Interestingly, employing the CB[8] carrier led to a greater than 10-fold intracellular Pt content compared to that of dual drugs at 4 h, and the CB[8] complex (CLE) can enhance the infiltration of platinum drugs in colorectal tumor cells tremendously. The platinum drugs can be released from CLE through consuming more tumor biomarker spermidine. Through analyzing the nanomechanical property of the colorectal tumor cellular surface by bioscope AFM, it was revealed that CLE modified the property by decreasing the adhesion and increasing the stiffness. This study provided a facile and sensitive strategy for improving combination chemotherapy by supramolecular materials.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Qingtao Meng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Bin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Yikai Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Zhaoxiang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Xiaobo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
120
|
Kajiya T, Sawayama H, Arima E, Okamoto M, Baba M, Toyama M, Okuya K, Ozawa M, Atsuchi N, Nishi J, Suda Y. Novel RT-PCR Using Sugar Chain-Immobilized Gold-Nanoparticles Correlates Patients' Symptoms: The Follow-Up Study of COVID-19 Hospitalized Patients. Viruses 2022; 14:v14112577. [PMID: 36423185 PMCID: PMC9692348 DOI: 10.3390/v14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Background: The transmissible capacity and toxicity of SARS-CoV-2 variants are continually changing. We report here the follow-up study of hospitalized COVID-19 patients from 2020 to 2022. It is known that the PCR diagnosis for hospitalized patients sometimes causes confusion because of the incompatibility between their diagnosis and symptoms. We applied our sugar chain-immobilized gold-nanoparticles for the extraction and partial purification of RNA from specimens for quantitative RT-PCR assay and evaluated whether the results correlate with patients' symptoms. Methods and Results: Saliva specimens were taken from hospitalized patients with mild or moderate symptoms every early morning. At the time of RT-PCR diagnosis, two methods for the extraction and partial purification of RNA from the specimen were performed: a commonly used Boom (Qiagen) method and our original sugar chain-immobilized gold nanoparticle (SGNP) method. For symptoms, body temperature and oxygen saturation (SpO2) of patients were monitored every 4 h. Conclusions: It was clear that patients infected with the Delta variant needed more time to recover than those with the Omicron variant, and that the SGNP method showed more realistic correlation with the symptoms of patients compared with the common Qiagen method.
Collapse
Affiliation(s)
- Takashi Kajiya
- Clinical Research Center, Tenyoukai Central Hospital, 6-7 Izumi-cho, Kagoshima 892-0822, Japan
- Correspondence: (T.K.); (Y.S.); Tel./Fax: +81-99-226-8181 (T.K.); +81-99-285-8369 (Y.S.)
| | - Hayate Sawayama
- Laboratory of Collaborational Research for Glyco-Nanotechnology, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Eriko Arima
- Laboratory of Collaborational Research for Glyco-Nanotechnology, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Mika Okamoto
- Center for Advanced Science Research and Promotion, Kagoshima University, Kagoshima 890-0065, Japan
| | - Masanori Baba
- Center for Advanced Science Research and Promotion, Kagoshima University, Kagoshima 890-0065, Japan
| | - Masaaki Toyama
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| | - Kosuke Okuya
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Makoto Ozawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Nobuhiko Atsuchi
- Clinical Research Center, Tenyoukai Central Hospital, 6-7 Izumi-cho, Kagoshima 892-0822, Japan
| | - Junichiro Nishi
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yasuo Suda
- Laboratory of Collaborational Research for Glyco-Nanotechnology, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
- Correspondence: (T.K.); (Y.S.); Tel./Fax: +81-99-226-8181 (T.K.); +81-99-285-8369 (Y.S.)
| |
Collapse
|
121
|
Macrocyclic Ionic Liquids with Amino Acid Residues: Synthesis and Influence of Thiacalix[4]arene Conformation on Thermal Stability. Molecules 2022; 27:molecules27228006. [PMID: 36432113 PMCID: PMC9698724 DOI: 10.3390/molecules27228006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Novel thiacalix[4]arene based ammonium ionic liquids (ILs) containing amino acid residues (glycine and L-phenylalanine) in cone, partial cone, and 1,3-alternate conformations were synthesized by alkylation of macrocyclic tertiary amines with N-bromoacetyl-amino acids ethyl ester followed by replacing bromide anions with bis(trifluoromethylsulfonyl)imide ions. The melting temperature of the obtained ILs was found in the range of 50−75 °C. The effect of macrocyclic core conformation on the synthesized ILs’ melting points was shown, i.e., the ILs in partial cone conformation have the lowest melting points. Thermal stability of the obtained macrocyclic ILs was determined via thermogravimetry and differential scanning calorimetry. The onset of decomposition of the synthesized compounds was established at 305−327 °C. The compounds with L-phenylalanine residues are less thermally stable by 3−19 °C than the same glycine-containing derivatives.
Collapse
|
122
|
Stereoisomeric engineering of aggregation-induced emission photosensitizers towards fungal killing. Nat Commun 2022; 13:7046. [PMID: 36396937 PMCID: PMC9672067 DOI: 10.1038/s41467-022-34358-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Fungal infection poses and increased risk to human health. Photodynamic therapy (PDT) as an alternative antifungal approach garners much interest due to its minimal side effects and negligible antifungal drug resistance. Herein, we develop stereoisomeric photosensitizers ((Z)- and (E)-TPE-EPy) by harnessing different spatial configurations of one molecule. They possess aggregation-induced emission characteristics and ROS, viz. 1O2 and O2-• generation capabilities that enable image-guided PDT. Also, the cationization of the photosensitizers realizes the targeting of fungal mitochondria for antifungal PDT killing. Particularly, stereoisomeric engineering assisted by supramolecular assembly leads to enhanced fluorescence intensity and ROS generation efficiency of the stereoisomers due to the excited state energy flow from nonradiative decay to the fluorescence pathway and intersystem (ISC) process. As a result, the supramolecular assemblies based on (Z)- and (E)-TPE-EPy show dramatically lowered dark toxicity without sacrificing their significant phototoxicity in the photodynamic antifungal experiments. This study is a demonstration of stereoisomeric engineering of aggregation-induced emission photosensitizers based on (Z)- and (E)-configurations.
Collapse
|
123
|
Rijal H, Goggin L, Muriph R, Evans J, Hamad-Schifferli K. The Influence of Preforming Protein Coronas on the Performance of Dengue NS1 Immunoassays. Pharmaceutics 2022; 14:2439. [PMID: 36432630 PMCID: PMC9694804 DOI: 10.3390/pharmaceutics14112439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The effect of preformed protein coronas on immunoassays for Dengue nonstructural protein 1 (NS1) immunoassays was investigated. The composition of the protein corona that forms around nanoparticle-antibody conjugates in human serum was characterized, and selected proteins from the corona were used for preformed coronas (human serum albumin and apolipoprotein A1). Coronas were formed and characterized by dynamic light scattering (DLS), and the nanoparticle-conjugate was probed by optical absorption spectroscopy. Immunoassays were run, and performance was quantified by analyzing the strip intensity as a function of NS1 concentration. The preformed coronas influenced the limit of detection (LOD) of the assay and the affinity for the NS1 target (KD). The resulting KD and LODs for the NP-Ab-ApoA1 immunoprobes were 0.83 nM and 1.24 nM, respectively. For the NP-Ab -HSA coronas, the test line intensity was lower by 33% at a given NS1 concentration than for the NP-Ab immunoprobes, and KD was 0.14 nM, a slightly higher affinity. Due to the relatively large error of the negative control, a meaningful LOD for the NP-Ab with HSA coronas could not be determined.
Collapse
Affiliation(s)
- Hom Rijal
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Laura Goggin
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Rachel Muriph
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jason Evans
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA 02125, USA
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
124
|
Alafnan A, Seetharam AA, Hussain T, Gupta MS, Rizvi SMD, Moin A, Alamri A, Unnisa A, Awadelkareem AM, Elkhalifa AO, Jayahanumaiah P, Khalid M, Balashanmugam N. Development and Characterization of PEGDA Microneedles for Localized Drug Delivery of Gemcitabine to Treat Inflammatory Breast Cancer. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217693. [PMID: 36363283 PMCID: PMC9658843 DOI: 10.3390/ma15217693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 05/14/2023]
Abstract
Inflammatory breast cancer (IBC) is one of the most belligerent types of breast cancer. While various modalities exist in managing/treating IBC, drug delivery using microneedles (MNs) is considered to be the most innovative method of localized delivery of anti-cancer agents. Localized drug delivery helps to treat IBC could limit their adverse reactions. MNs are nothing but small needle like structures that cause little or no pain at the site of administration for drug delivery via layers of the skin. The polyethylene glycol diacrylate (PEGDA) based MNs were fabricated by using three dimensional (3D) technology called Projection Micro-Stereo Lithography (PµSL). The fabricated microneedle patches (MNPs) were characterized and coated with a coating formulation comprising of gemcitabine and sodium carboxymethyl cellulose by a novel and inventive screen plate method. The drug coated MNPs were characterized by various instrumental methods of analysis and release profile studies were carried out using Franz diffusion cell. Coat-and-poke strategy was employed in administering the drug coated MNPs. Overall, the methods employed in the present study not only help in obtaining MNPs with accurate dimensions but also help in obtaining uniformly drug coated MNPs of gemcitabine for treatment of IBC. Most importantly, 100% drug release was achieved within the first one hour only.
Collapse
Affiliation(s)
- Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.A.); (A.A.)
| | - Aravindram Attiguppe Seetharam
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India;
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.A.); (A.A.)
- Correspondence: (T.H.); (M.S.G.)
| | - Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India;
- Correspondence: (T.H.); (M.S.G.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (S.M.D.R.); (A.M.)
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (S.M.D.R.); (A.M.)
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.A.); (A.A.)
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.M.A.); (A.O.E.)
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.M.A.); (A.O.E.)
| | - Pradyumna Jayahanumaiah
- Central Manufacturing Technology Institute (CMTI), Tumkur Road, Bangaluru 560022, India; (P.J.); (N.B.)
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Natchimuthu Balashanmugam
- Central Manufacturing Technology Institute (CMTI), Tumkur Road, Bangaluru 560022, India; (P.J.); (N.B.)
| |
Collapse
|
125
|
Reduction-triggered polycyclodextrin supramolecular nanocage induces immunogenic cell death for improved chemotherapy. Carbohydr Polym 2022; 301:120365. [DOI: 10.1016/j.carbpol.2022.120365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
126
|
Wu S, Liu C, Bai S, Lu Z, Liu G. Broadening the Horizons of RNA Delivery Strategies in Cancer Therapy. Bioengineering (Basel) 2022; 9:bioengineering9100576. [PMID: 36290544 PMCID: PMC9598637 DOI: 10.3390/bioengineering9100576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
RNA-based therapy is a promising and innovative strategy for cancer treatment. However, poor stability, immunogenicity, low cellular uptake rate, and difficulty in endosomal escape are considered the major obstacles in the cancer therapy process, severely limiting the development of clinical translation and application. For efficient and safe transport of RNA into cancer cells, it usually needs to be packaged in appropriate carriers so that it can be taken up by the target cells and then be released to the specific location to perform its function. In this review, we will focus on up-to-date insights of the RNA-based delivery carrier and comprehensively describe its application in cancer therapy. We briefly discuss delivery obstacles in RNA-mediated cancer therapy and summarize the advantages and disadvantages of different carriers (cationic polymers, inorganic nanoparticles, lipids, etc.). In addition, we further summarize and discuss the current RNA therapeutic strategies approved for clinical use. A comprehensive overview of various carriers and emerging delivery strategies for RNA delivery, as well as the current status of clinical applications and practice of RNA medicines are classified and integrated to inspire fresh ideas and breakthroughs.
Collapse
Affiliation(s)
- Shuaiying Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Correspondence: (Z.L.); (G.L.)
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (Z.L.); (G.L.)
| |
Collapse
|
127
|
Wan D, Zhu Q, Zhang J, Chen X, Li F, Liu Y, Pan J. Intracellular and extracellular enzymatic responsive micelle for intelligent therapy of cancer. NANO RESEARCH 2022; 16:2851-2858. [PMID: 36258757 PMCID: PMC9561310 DOI: 10.1007/s12274-022-4967-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/07/2023]
Abstract
Recently, the incidence of cancer keeps increasing, seriously endangers human health, and has evolved into the main culprit of human death. Conventional chemotherapeutic drugs, such as paclitaxel and doxorubicin (DOX), have some disadvantages, including low therapeutic effect, poor water solubility, high toxic side effects, short blood circulation time in the body, and so on. To improve the anti-tumor effect of the drug in vivo and reduce its side effects on the body, researchers have designed and developed a variety of responsive nanocarriers. In this work, we synthesized D-α-tocopherol polyethylene glycol 3350 succinate (TPGS3350)-Gly-Pro-Leu-Gly-Val-Arg (GPLGVR)-DOX (TPD) prodrugs in response to extracellular enzymes of matrix metalloproteinase (MMP-9) in the tumor microenvironment and FA-Asp-Glu-Val-Asp (DEVD)-DOX (FPD) prodrugs responsive to intracellular enzymes of caspase-3. Then, intracellular and extracellular enzyme-responsive TPD&FPD micelles with DOX (TPD&FPD&D) were successfully prepared through dialysis method. The outer layer of TPGS3350 can prolong the blood circulation time of micelles in vivo, followed by accumulation of micelles at tumor tissue through enhanced permeability and retention (EPR) effect. The peptide of GPLGVR can be cleaved by MMP-9 enzymes to remove the outer layer of TPGS3350, exposing the targeting molecule of folate, and then the micelles are engulfed by tumor cells through folate receptor-mediated endocytosis. After entering the tumor cells, the free DOX loaded in the micelles is released, which induces tumor cell apoptosis to activate caspase-3 in the cells, cutting the peptide DEVD to accelerate the intracellular release of the DOX, which further enhances cytotoxicity to improve antitumor effect. Electronic Supplementary Material Supplementary material () is available in the online version of this article at 10.1007/s12274-022-4967-1.
Collapse
Affiliation(s)
- Dong Wan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387 China
| | - Qinan Zhu
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387 China
| | - Jianxin Zhang
- School of Chemistry, Tiangong University, Tianjin, 300387 China
| | - Xi Chen
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387 China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Yi Liu
- School of Chemistry, Tiangong University, Tianjin, 300387 China
| | - Jie Pan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387 China
| |
Collapse
|
128
|
Shariare MH, Khan MA, Al-Masum A, Khan JH, Uddin J, Kazi M. Development of Stable Liposomal Drug Delivery System of Thymoquinone and Its In Vitro Anticancer Studies Using Breast Cancer and Cervical Cancer Cell Lines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196744. [PMID: 36235288 PMCID: PMC9571792 DOI: 10.3390/molecules27196744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022]
Abstract
Thymoquinone, a well-known phytoconstituent derived from the seeds of Nigella sativa, exhibits unique pharmacological activities However, despite the various medicinal properties of thymoquinone, its administration in vivo remains challenging due to poor aqueous solubility, bioavailability, and stability. Therefore, an advanced drugdelivery system is required to improve the therapeutic outcome of thymoquinone by enhancing its solubility and stability in biological systems. Therefore, this study is mainly focused on preparing thymoquinone-loaded liposomes to improve its physicochemical stability in gastric media and its performance in different cancer cell line studies. Liposomes were prepared using phospholipid extracted from egg yolk. The liposomal nano preparations were evaluated in terms of hydrodynamic diameter, zeta potential, microscopic analysis, and entrapment efficiency. Cell-viability measurements were conducted using breast and cervical cancer cell lines. Optimized liposomal preparation exhibited polygonal, globule-like shape with a hydrodynamic diameter of less than 260 nm, PDI of 0.6, and zeta potential values of -23.0 mV. Solid-state characterizations performed using DSC and XRPD showed that the freeze-dried liposomal preparations were amorphous in nature. Gastric pH stability data showed no physical changes (precipitation, degradation) or significant growth in the average size of blank and thymoquinone-loaded liposomes after 24 h. Cell line studies exhibited better performance for thymoquinone-loaded liposomal drug delivery system compared with the thymoquinone-only solution; this finding can play a critical role in improving breast and cervical cancer treatment management.
Collapse
Affiliation(s)
- Mohammad Hossain Shariare
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
- Correspondence: (M.H.S.); (M.K.); Tel.: +880-1716620012 (M.H.S.); 966-114-677-372 (M.K.)
| | - Md Asaduzzaman Khan
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Abdullah Al-Masum
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Junayet Hossain Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, MD 21216, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (M.H.S.); (M.K.); Tel.: +880-1716620012 (M.H.S.); 966-114-677-372 (M.K.)
| |
Collapse
|
129
|
Emerging photodynamic/sonodynamic therapies for urological cancers: progress and challenges. J Nanobiotechnology 2022; 20:437. [PMID: 36195918 PMCID: PMC9531473 DOI: 10.1186/s12951-022-01637-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/14/2022] [Indexed: 12/01/2022] Open
Abstract
Photodynamic therapy (PDT), and sonodynamic therapy (SDT) that developed from PDT, have been studied for decades to treat solid tumors. Compared with other deep tumors, the accessibility of urological tumors (e.g., bladder tumor and prostate tumor) makes them more suitable for PDT/SDT that requires exogenous stimulation. Due to the introduction of nanobiotechnology, emerging photo/sonosensitizers modified with different functional components and improved physicochemical properties have many outstanding advantages in cancer treatment compared with traditional photo/sonosensitizers, such as alleviating hypoxia to improve quantum yield, passive/active tumor targeting to increase drug accumulation, and combination with other therapeutic modalities (e.g., chemotherapy, immunotherapy and targeted therapy) to achieve synergistic therapy. As WST11 (TOOKAD® soluble) is currently clinically approved for the treatment of prostate cancer, emerging photo/sonosensitizers have great potential for clinical translation, which requires multidisciplinary participation and extensive clinical trials. Herein, the latest research advances of newly developed photo/sonosensitizers for the treatment of urological cancers, and the efficacy, as well as potential biological effects, are highlighted. In addition, the clinical status of PDT/SDT for urological cancers is presented, and the optimization of the photo/sonosensitizer development procedure for clinical translation is discussed.
Collapse
|
130
|
Liman R, Kursunlu AN, Ozmen M, Arslan S, Mutlu D, Istifli ES, Acikbas Y. Synthesis of water soluble symmetric and asymmetric pillar[5]arene derivatives: Cytotoxicity, apoptosis and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
131
|
Nanoparticles Design for Theranostic Approach in Cancer Disease. Cancers (Basel) 2022; 14:cancers14194654. [PMID: 36230578 PMCID: PMC9564040 DOI: 10.3390/cancers14194654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Presently, there are no conclusive treatments for many types of cancer, mainly due to the advanced phase of the disease at the time of diagnosis and to the side effects of existing therapies. Present diagnostic and therapeutic procedures need to be improved to supply early detection abilities and perform a more specific therapy with reduced systemic toxicity. In this review, improvements in nanotechnology allowing the design of multifunctional nanoparticles for cancer detection, therapy, and monitoring are reported. Nanoparticles, thanks to the nanomaterials they are made of, can be used as contrast agents for various diagnostic techniques such as MRI, optical imaging, and photoacoustic imaging. Furthermore, when used as drug carriers, they can accumulate in tumor tissues through the passive or/and active targeting, protect encapsulated drugs from degradation, raise tumor exposure to chemotherapeutic agents improving treatment effects. In addition, nanocarriers can simultaneously deliver more than one therapeutic agent enhancing the effectiveness of therapy and can co-deliver imaging and therapy agents to provide integration of diagnostics, therapy, and follow-up. Furthermore, the use of nanocarriers allows to use different therapeutic approaches, such as chemotherapy and hyperthermia to exploit synergistic effects. Theranostic approach to diagnose and treat cancer show a great potential to improve human health, however, despite technological advances in this field, the transfer into clinical practice is still a long way off.
Collapse
|
132
|
Wu Y, Chen S, Zhu J. Hydrogen Bond-Mediated Supramolecular Polymeric Nanomedicine with pH/Light-Responsive Methotrexate Release and Synergistic Chemo-/Photothermal Therapy. Biomacromolecules 2022; 23:4230-4240. [PMID: 36074998 DOI: 10.1021/acs.biomac.2c00717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complete cancer cure and healing are still difficult, owing to its complexity and heterogeneity. Integration of supramolecular forces, for example, hydrogen bonds (H-bonds), to anti-cancer nanomedicine affords new scaffolds for biomedical material decoration, featuring the advantages of dynamic property and easier processability. Here, we target the construction of H-bond-mediated supramolecular polymer micelles, loaded with a chemotherapeutic drug along with a photothermal agent for synergistic chemo-/photothermal therapies (CT/PTT). To do so, we design and synthesize an amphiphilic ABA-type triblock copolymer, bearing H-bonding moiety (barbiturate, Ba) within the middle hydrophobic B block. The presence of pendant Ba moieties within the hydrophobic core promotes the loading capability of methotrexate (MTX) and transportation stability, benefitting from the formation of specific Ba/MTX H-bonding interactions. IR780, a photothermal agent, concomitantly encapsulated via hydrophobic interactions, facilitates the development of a synergistic CT/PTT modalities, where MTX can be released on demand owing to the dissociation of Ba/MTX H-bonding interactions induced by elevated temperature. Such H-bonding nanomedicine possesses enhanced drug loading capacity and transport performance and can also trigger stimuli-responsive drug release in the tumor zone. We believe that H-bonded nanomedicines provide a fine toolbox that is conducive to attaining biomedical requirements with remarkable values in theranostics that are highly promising in clinical applications.
Collapse
Affiliation(s)
- Yanggui Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
133
|
Tramacere F, Lancellotta V, Casà C, Fionda B, Cornacchione P, Mazzarella C, De Vincenzo RP, Macchia G, Ferioli M, Rovirosa A, Gambacorta MA, Colosimo C, Valentini V, Iezzi R, Tagliaferri L. Assessment of Sexual Dysfunction in Cervical Cancer Patients after Different Treatment Modality: A Systematic Review. Medicina (B Aires) 2022; 58:medicina58091223. [PMID: 36143900 PMCID: PMC9504584 DOI: 10.3390/medicina58091223] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 10/27/2022] Open
Abstract
Background and Objectives: Cervical cancer is a leading cause of mortality among women. Chemo-radiation followed by interventional radiotherapy (IRT) is the standard of care for stage IB–IVA FIGO. Several studies have shown that image-guided adaptive IRT resulted in excellent local and pelvic control, but it is associated with vaginal toxicity and intercourse problems. The purpose of this review is to evaluate the dysfunctions of the sexual sphere in patients with cervical cancer undergoing different cervix cancer treatments. Materials and Methods: We performed a comprehensive literature search using Pub med, Scopus and Cochrane to identify all the full articles evaluating the dysfunctions of the sexual sphere. ClinicalTrials.gov was searched for ongoing or recently completed trials, and PROSPERO was searched for ongoing or recently completed systematic reviews. Results: One thousand three hundred fifty-six women included in five studies published from 2016 to 2022 were analyzed. The median age was 50 years (range 46–56 years). The median follow-up was 12 months (range 0–60). Cervical cancer diagnosis and treatment (radiotherapy, chemotherapy and surgery) negatively affected sexual intercourse. Sexual symptoms such as fibrosis, strictures, decreased elasticity and depth and mucosal atrophy promote sexual dysfunction by causing frigidity, lack of lubrication, arousal, orgasm and libido and dyspareunia. Conclusions: Physical, physiological and social factors all contribute to the modification of the sexual sphere. Cervical cancer survivors who were irradiated have lower sexual and vaginal function than the normal population. Although there are cures for reducing discomfort, effective communication about sexual dysfunctions following treatment is essential.
Collapse
Affiliation(s)
- Francesco Tramacere
- S.C. Radioterapia, ASLBR Ospedale “A. Perrino” Brindisi, 72100 Brindisi, Italy
| | - Valentina Lancellotta
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00128 Rome, Italy
| | - Calogero Casà
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00128 Rome, Italy
| | - Bruno Fionda
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00128 Rome, Italy
- Correspondence: ; Tel.: +39-0630153754
| | - Patrizia Cornacchione
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00128 Rome, Italy
| | - Ciro Mazzarella
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00128 Rome, Italy
| | - Rosa Pasqualina De Vincenzo
- Department of Woman and Child Health and Public Health, Woman Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00128 Rome, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit, Gemelli Molise Hospital, Università Cattolica del Sacro Cuore, 86100 Campobasso, Italy
| | - Martina Ferioli
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, 40138 Bologna, Italy
| | - Angeles Rovirosa
- Department of Radiation Oncology, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Fonaments Clinics Department, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Maria Antonietta Gambacorta
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00128 Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00128 Rome, Italy
| | - Cesare Colosimo
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00128 Rome, Italy
- Department of Radiological Sciences, School of Medicine, Catholic University, 00128 Rome, Italy
| | - Vincenzo Valentini
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00128 Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00128 Rome, Italy
| | - Roberto Iezzi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00128 Rome, Italy
- Department of Radiological Sciences, School of Medicine, Catholic University, 00128 Rome, Italy
| | - Luca Tagliaferri
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00128 Rome, Italy
| |
Collapse
|
134
|
Islam F, Mitra S, Emran TB, Khan Z, Nath N, Das R, Sharma R, Awadh AAA, Park MN, Kim B. Natural Small Molecules in Gastrointestinal Tract and Associated Cancers: Molecular Insights and Targeted Therapies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175686. [PMID: 36080453 PMCID: PMC9457641 DOI: 10.3390/molecules27175686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most common cancers of the gastrointestinal tract. Although surgery is the primary treatment, serious maladies that dissipate to other parts of the body may require chemotherapy. As there is no effective procedure to treat stomach cancer, natural small molecules are a current focus of research interest for the development of better therapeutics. Chemotherapy is usually used as a last resort for people with advanced stomach cancer. Anti-colon cancer chemotherapy has become increasingly effective due to drug resistance and sensitivity across a wide spectrum of drugs. Naturally-occurring substances have been widely acknowledged as an important project for discovering innovative medications, and many therapeutic pharmaceuticals are made from natural small molecules. Although the beneficial effects of natural products are as yet unknown, emerging data suggest that several natural small molecules could suppress the progression of stomach cancer. Therefore, the underlying mechanism of natural small molecules for pathways that are directly involved in the pathogenesis of cancerous diseases is reviewed in this article. Chemotherapy and molecularly-targeted drugs can provide hope to colon cancer patients. New discoveries could help in the fight against cancer, and future stomach cancer therapies will probably include molecularly formulated drugs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (T.B.E.); (B.K.)
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
| | - Bonglee Kim
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
- Correspondence: (T.B.E.); (B.K.)
| |
Collapse
|
135
|
Ahmadian E, Janas D, Eftekhari A, Zare N. Application of carbon nanotubes in sensing/monitoring of pancreas and liver cancer. CHEMOSPHERE 2022; 302:134826. [PMID: 35525455 DOI: 10.1016/j.chemosphere.2022.134826] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Liver and pancreatic tumors are among the third leading causes of cancer-associated death worldwide. In addition to poor prognosis, both cancer types are diagnosed at advanced and metastatic stages without typical prior symptoms. Unfortunately, the existing theranostic approaches are inefficient in cancer diagnosis and treatment. Carbon nanotubes (CNTs) have attracted increasing attention in this context due to their distinct properties, including variable functionalization capability, biocompatibility, and excellent thermodynamic and optical features. As a consequence, they are now regarded as one of the most promising materials for this application. The current review aims to summarize and discuss the role of CNT in pancreatic and liver cancer theranostics. Accordingly, the breakthroughs achieved so far are classified based on the cancer type and analyzed in detail. The most feasible tactics utilizing CNT-based solutions for both cancer diagnosis and treatment are presented from the biomedical point of view. Finally, a future outlook is provided, which anticipates how the R&D community can build on the already developed methodologies and the subsequent biological responses of the pancreatic and liver cancer cells to the directed procedures.
Collapse
Affiliation(s)
- Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Aziz Eftekhari
- Department of Pharmacology & Toxicology, Tabriz University of Medical Sciences, Tabriz, Iran; Health Innovation & Acceleration Centre, Tabriz University of Medical Sciences, Tabriz, 51664, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan.
| | - Najme Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
136
|
Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022; 27:molecules27175436. [PMID: 36080203 PMCID: PMC9457551 DOI: 10.3390/molecules27175436] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
In past decades, anticancer research has led to remarkable results despite many of the approved drugs still being characterized by high systemic toxicity mainly due to the lack of tumor selectivity and present pharmacokinetic drawbacks, including low water solubility, that negatively affect the drug circulation time and bioavailability. The stability studies, performed in mild conditions during their development or under stressing exposure to high temperature, hydrolytic medium or light source, have demonstrated the sensitivity of anticancer drugs to many parameters. For this reason, the formation of degradation products is assessed both in pharmaceutical formulations and in the environment as hospital waste. To date, numerous formulations have been developed for achieving tissue-specific drug targeting and reducing toxic side effects, as well as for improving drug stability. The development of prodrugs represents a promising strategy in targeted cancer therapy for improving the selectivity, efficacy and stability of active compounds. Recent studies show that the incorporation of anticancer drugs into vesicular systems, such as polymeric micelles or cyclodextrins, or the use of nanocarriers containing chemotherapeutics that conjugate to monoclonal antibodies can improve solubility, pharmacokinetics, cellular absorption and stability. In this study, we summarize the latest advances in knowledge regarding the development of effective highly stable anticancer drugs formulated as stable prodrugs or entrapped in nanosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fedora Grande
- Correspondence: (G.I.); (F.G.); Tel.: +39-0984-493268 (G.I.)
| |
Collapse
|
137
|
Sun J, Cheng N, Yin K, Wang R, Zhu T, Gao J, Dong X, Dong C, Gu X, Zhao C. Activatable photothermal agents with target-initiated large spectral separation for highly effective reduction of side effects. Chem Sci 2022; 13:9525-9530. [PMID: 36128038 PMCID: PMC9400798 DOI: 10.1039/d2sc02467e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Photothermal agents (PTAs) with minimized side effects are critical for transforming cancer photothermal therapy (PTT) into clinical applications. However, most currently available PTAs lack true selective activation to reduce side effects because of heavy spectral overlap between photothermal agents and their corresponding products. This study reports the construction of activatable PTAs with target-initiated large spectral separation for highly effective reduction of side effects. Such designed probes involve two H2O2-activatable PTAs, aza-BOD-B1 (single activatable site) and aza-BOD-B2 (multiple activatable site). After interacting with H2O2, aza-BOD-B1 only displays a mild absorption redshift (60 nm) from 750 nm to 810 nm with serious spectral overlap, resulting in a mild photothermal effect on normal tissues upon 808 nm light irradiation. In contrast, aza-BOD-B2 displays a large absorption spectral separation (150 nm) from 660 nm to 810 nm, achieving true selective activation to minimize side effects during PTT of cancer. Besides, in vitro and in vivo investigations demonstrated that aza-BOD-B2 can specifically induce photothermal ablation of cancer cells and tumors while leaving normal sites undamaged, whereas aza-BOD-B1 exhibits undesirable side effects on normal cells. Our study provides a practical solution to the problem of undesired side effects of phototherapy, an advance in precision medicine.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ning Cheng
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Kai Yin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University Shanghai 201203 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University Shanghai 201203 P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
138
|
Yang J, Wang H, Yin Z, Zhang S, Xu JF, Zhang X. Emulsion interfacial polymerization of anticancer peptides: fabricating polypeptide nanospheres with high drug-loading efficiency and enhanced anticancer activity. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
139
|
Li S, Ma R, Hu XY, Li HB, Geng WC, Kong X, Zhang C, Guo DS. Drug in Drug: A Host-Guest Formulation of Azocalixarene with Hydroxychloroquine for Synergistic Anti-Inflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203765. [PMID: 35680644 DOI: 10.1002/adma.202203765] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Macrocyclic delivery and therapeutics are two significant topics in supramolecular biomedicine. The functional integration of these topics would open new avenues for treating diseases synergistically. However, these two individual topics have only been occasionally merged, probably because of the lack of functionalized design of macrocyclic host and the lack of efficient recognition between host and guest drugs. Herein, a "drug-in-drug" strategy is proposed, in which an active drug is encapsulated by a macrocycle possessing therapeutic activity to form a multifunctional supramolecular active pharmaceutical ingredient. As a proof-of-concept, a complex of hydroxychloroquine (HCQ) with sulfonated azocalix[4]arene (HCQ@SAC4A) is prepared to treat rheumatoid arthritis (RA) in a combined fashion. SAC4A is a therapeutic agent that exhibits scavenging capacity for reactive oxygen species and exerts an anti-inflammatory effect. It is also a hypoxia-responsive carrier that can deliver HCQ directly to the inflammatory articular cavity. Consequently, HCQ@SAC4A achieves the synergistic anti-inflammatory effect on both inflamed RAW 264.7 cells and RA rats. This effect is attributed to the temporal and spatial consistency of the two active ingredients of the complex. As a new paradigm for combinational therapy, the drug-in-drug strategy advances in easy preparation, mix-and-match combination, and precise ratiometric control.
Collapse
Affiliation(s)
- Shihui Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Rong Ma
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Chao Geng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xianglei Kong
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
140
|
Tu L, Li C, Liu C, Bai S, Yang J, Zhang X, Xu L, Xiong X, Sun Y. Rationally designed Ru(II) metallacycles with tunable imidazole ligands for synergistical chemo-phototherapy of cancer. Chem Commun (Camb) 2022; 58:9068-9071. [PMID: 35894452 DOI: 10.1039/d2cc03118c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we construct a series of Ru(II) metallacycles with multimodal chemo-phototherapeutic properties, which exhibited much higher anticancer activity and better cancer-cell selectivity than cisplatin. The antitumor mechanism could be ascribed to the activation of caspase 3/7 and the resulting apoptosis. These results open new possibilities for Ru(II) metallacycles in biomedicine.
Collapse
Affiliation(s)
- Le Tu
- Department of Neurosurgery, Remin Hospital of Wuhan University, Wuhan 430079, P. R. China. .,Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Chonglu Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Chang Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Suya Bai
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jingfang Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xian Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Liying Xu
- Zhongnan Hospital of Wuhan University, Wuhan 430062, P. R. China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Remin Hospital of Wuhan University, Wuhan 430079, P. R. China.
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
141
|
Bansal A, Saleh-E-In MM, Kar P, Roy A, Sharma NR. Synthesis of Carvacrol Derivatives as Potential New Anticancer Agent against Lung Cancer. Molecules 2022; 27:molecules27144597. [PMID: 35889476 PMCID: PMC9323284 DOI: 10.3390/molecules27144597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Lung cancer remains a major public health concern among all cancer diseases due to the toxicity and side-effects of the available commercially synthesized drugs. Natural product-derived synthesized anticancer drugs are now of promising interest to fight against cancer death. Carvacrol is a major component of most essential oil-bearing plants with potential pharmacological activity, especially against various cancer cell lines. Among the other organometallic compounds, copper complexes have been reported to be effective anticancer agents against various cancer cell lines, especially lung and leukemia cancers, due to the nontoxic nature of copper in normal cells since it is an endogenic metal. In this study, we synthesized three carvacrol derivatives, i.e., carvacrol aldehyde, Schiff base, and copper–Schiff base complex, through an established synthesis protocol and characterized the synthesized product using various spectroscopic techniques. The synthesized derivatives were evaluated for in vitro cytotoxic activity against different cancer cell lines, including human lung cancer (A549) and human fibroblast (BALB-3T3). Our findings showed that the copper–Schiff base complex derived from carvacrol inhibited the proliferation and migration of the A549 cell lines in a dose-dependent manner. This activity might be due to the inhibition of cell proliferation and migration at the G2/M cell-cycle phase, as well as apoptosis, possibly through the activation of the mitochondrial apoptotic pathway. To our knowledge, this is the first report on the activity of the copper–Schiff base complex of carvacrol against A549 cell lines. Our result highlights that a new synthesized copper complex from carvacrol could be a novel potential drug in the treatment of lung cancer.
Collapse
Affiliation(s)
- Anu Bansal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Md. Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon 200701, Korea;
| | - Pallab Kar
- B.S. Diagnostic and Pathology Laboratory, Siliguri 734001, India;
| | - Ayan Roy
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
- Correspondence: ; Tel.: +91-828-3921-144
| |
Collapse
|
142
|
Hollstein S, Shyshov O, Hanževački M, Zhao J, Rudolf T, Jäger CM, von Delius M. Dynamic Covalent Self-Assembly of Chloride- and Ion-Pair-Templated Cryptates. Angew Chem Int Ed Engl 2022; 61:e202201831. [PMID: 35384202 PMCID: PMC9400851 DOI: 10.1002/anie.202201831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/17/2022]
Abstract
While supramolecular hosts capable of binding and transporting anions and ion pairs are now widely available, self-assembled architectures are still rare, even though they offer an inherent mechanism for the release of the guest ion(s). In this work, we report the dynamic covalent self-assembly of tripodal, urea-based anion cryptates that are held together by two orthoester bridgeheads. These hosts exhibit affinity for anions such as Cl- , Br- or I- in the moderate range that is typically advantageous for applications in membrane transport. In unprecedented experiments, we were able to dissociate the Cs⋅Cl ion pair by simultaneously assembling suitably sized orthoester hosts around the Cs+ and the Cl- ion.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Oleksandr Shyshov
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marko Hanževački
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Jie Zhao
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tamara Rudolf
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Christof M. Jäger
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
143
|
Qin Y, Chen X, Gui Y, Wang H, Tang BZ, Wang D. Self-Assembled Metallacage with Second Near-Infrared Aggregation-Induced Emission for Enhanced Multimodal Theranostics. J Am Chem Soc 2022; 144:12825-12833. [PMID: 35786928 DOI: 10.1021/jacs.2c03895] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The construction of supramolecular coordination complexes (SCCs) featuring prominent cancer theranostic functions is an appealing yet significantly challenging task. In this study, we rationally designed and facilely constructed a prism-like metallacage C-DTTP with efficient fluorescence emission in the second near-infrared (NIR-II) region through the assembly of an aggregation-induced emission-active four-arm ligand with 90° Pt acceptors Pt(PEt3)2(OTf)2. C-DTTP held the longest maximum emission wavelength (1005 nm) compared with those previously reported SCCs up to now and exhibited both a high photothermal conversion efficiency (39.3%) and significantly superior reactive oxygen species generation behavior to the precursor ligand. In vitro and in vivo assessments demonstrated that the metallacage-loaded nanoparticles with excellent biocompatibility and stability were capable of simultaneously affording precise tumor diagnosis and complete tumor elimination by means of NIR-II fluorescence/photothermal dual imaging-guided photodynamic/photothermal synergistic therapy.
Collapse
Affiliation(s)
- Yi Qin
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaohui Chen
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yixiong Gui
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
144
|
Yang K, Qi S, Yu X, Bai B, Zhang X, Mao Z, Huang F, Yu G. A Hybrid Supramolecular Polymeric Nanomedicine for Cascade-Amplified Synergetic Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202203786. [PMID: 35384193 DOI: 10.1002/anie.202203786] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 01/17/2023]
Abstract
Supramolecular nanomedicines have shown great merits in cancer therapy, but their clinical translation is hampered by monotonous therapeutic modality and unsatisfactory antitumor performance. Herein, a hybrid supramolecular polymeric nanomedicine (SNPs) is developed based on β-cyclodextrin/camptothecin (CPT) host-guest molecular recognition and iron-carboxylate coordination. Iron ions stabilizing SNPs catalyze the conversion of intracellular hydrogen peroxide into highly toxic hydroxyl radical through a Fenton reaction, which further cleaves the thioketal linker of the supramolecular monomer to release potent CPT, thus amplifying the therapeutic efficacy by combining chemodynamic therapy and chemotherapy. The combination therapy stimulates antitumor immunity and promotes intratumoral infiltration of cytotoxic T lymphocytes by triggering immunogenic cell death. In synergy with PD-L1 checkpoint blockade, SNPs enables enhanced immune therapy and a long-term tumor remission.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xueyan Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
145
|
Yuan Y, Bulte JWM. Enzyme-mediated intratumoral self-assembly of nanotheranostics for enhanced imaging and tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1786. [PMID: 35229485 PMCID: PMC9437863 DOI: 10.1002/wnan.1786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/09/2023]
Abstract
Enzyme-mediated intratumoral self-assembled (EMISA) nanotheranostics represent a new class of smart agents for combined imaging and therapy of cancer. Cancer cells overexpress various enzymes that are essential for high metabolism, fast proliferation, and tissue invasion and metastasis. By conjugating small molecules that contain an enzyme-specific cleavage site to appropriate chemical linkers, it is possible to induce self-assembly of nanostructures in tumor cells having the target enzyme. This approach of injecting small theranostic molecules that eventually become larger nanotheranostics in situ avoids some of the major limitations that are encountered when injecting larger, pre-assembled nanotheranostics. The advantage of EMISA nanotheranostics include the avoidance of nonspecific uptake and rapid clearance by phagocytic cells, increased cellular accumulation, reduced drug efflux and prolonged cellular exposure time, all of which lead to an amplified imaging signal and therapeutic efficacy. We review here the different approaches that can be used for preparing EMISA-based organic, inorganic, or organic/inorganic hybrid nanotheranostics based on noncovalent interactions and/or covalent bonding. Imaging examples are shown for fluorescence imaging, nuclear imaging, photoacoustic imaging, Raman imaging, computed tomography imaging, bioluminescent imaging, and magnetic resonance imaging. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Biology-Inspired Nanomaterials > Peptide-Based Structures.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
146
|
Lou XY, Zhang G, Song N, Yang YW. Supramolecular materials based on AIEgens for photo-assisted therapy. Biomaterials 2022; 286:121595. [DOI: 10.1016/j.biomaterials.2022.121595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022]
|
147
|
Wang J, Yang W, He X, Zhang Z, Zheng X. Assembling p53 Activating Peptide With CeO2 Nanoparticle to Construct a Metallo-Organic Supermolecule Toward the Synergistic Ferroptosis of Tumor. Front Bioeng Biotechnol 2022; 10:929536. [PMID: 35837547 PMCID: PMC9273839 DOI: 10.3389/fbioe.2022.929536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Inducing lipid peroxidation and subsequent ferroptosis in cancer cells provides a potential approach for anticancer therapy. However, the clinical translation of such therapeutic agents is often hampered by ferroptosis resistance and acquired drug tolerance in host cells. Emerging nanoplatform-based cascade engineering and ferroptosis sensitization by p53 provides a viable rescue strategy. Herein, a metallo-organic supramolecular (Nano-PMI@CeO2) toward p53 restoration and subsequent synergistic ferroptosis is constructed, in which the radical generating module-CeO2 nanoparticles act as the core, and p53-activator peptide (PMI)-gold precursor polymer is in situ reduced and assembled on the CeO2 surface as the shell. As expected, Nano-PMI@CeO2 effectively reactivated the p53 signaling pathway in vitro and in vivo, thereby downregulating its downstream gene GPX4. As a result, Nano-PMI@CeO2 significantly inhibited tumor progression in the lung cancer allograft model through p53 restoration and sensitized ferroptosis, while maintaining favorable biosafety. Collectively, this work develops a tumor therapeutic with dual functions of inducing ferroptosis and activating p53, demonstrating a potentially viable therapeutic paradigm for sensitizing ferroptosis via p53 activation. It also suggests that metallo-organic supramolecule holds great promise in transforming nanomedicine and treating human diseases.
Collapse
Affiliation(s)
- Jingmei Wang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenguang Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Xinyuan He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhang Zhang
- General Surgery Department, Tang Du Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zhang Zhang, ; Xiaoqiang Zheng,
| | - Xiaoqiang Zheng
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Zhang Zhang, ; Xiaoqiang Zheng,
| |
Collapse
|
148
|
Guo S, He Y, Zhu Y, Tang Y, Yu B. Combatting Antibiotic Resistance Using Supramolecular Assemblies. Pharmaceuticals (Basel) 2022; 15:ph15070804. [PMID: 35890105 PMCID: PMC9322166 DOI: 10.3390/ph15070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance has posed a great threat to human health. The emergence of antibiotic resistance has always outpaced the development of new antibiotics, and the investment in the development of new antibiotics is diminishing. Supramolecular self-assembly of the conventional antibacterial agents has been proved to be a promising and versatile strategy to tackle the serious problem of antibiotic resistance. In this review, the recent development of antibacterial agents based on supramolecular self-assembly strategies will be introduced.
Collapse
Affiliation(s)
- Shuwen Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| | - Yuling He
- Institute of Basic and Translational Medicine, Xi’an Medical University, No. 1 Xinwang Road, Xi’an 710021, China;
| | - Yuanyuan Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing 100029, China
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| |
Collapse
|
149
|
Bożyk A, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Tumor Microenvironment—A Short Review of Cellular and Interaction Diversity. BIOLOGY 2022; 11:biology11060929. [PMID: 35741450 PMCID: PMC9220289 DOI: 10.3390/biology11060929] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/26/2022]
Abstract
The tumor microenvironment is a complex network of various interactions between immune cells and non-cellular components such as the extracellular matrix, exosomes and interleukins. Moreover, tumor heterogeneity and its constant modification may alter the immunophenotype and become responsible for its resistance regarding the therapies applied However, it should be remembered that in a strongly immunosuppressive neoplastic microenvironment, the immune system cells undergo reprogramming and most often cease to fulfill their original function. Therefore, understanding what happens within the tumor microenvironment, and which mechanisms are responsible for tumor development and progression should let us know how cancer could protect itself against the immune system. The presented review summarizes the latest information on the interactions between the tumor microenvironment and the cellular and non-cellular components, as well as their impact on cancer development, progression and immune system exhaustion.
Collapse
|
150
|
Mansur AAP, Paiva MRB, Cotta OAL, Silva LM, Carvalho IC, Capanema NSV, Carvalho SM, Costa ÉA, Martin NR, Ecco R, Santos BS, Fialho SL, Lobato ZIP, Mansur HS. Carboxymethylcellulose biofunctionalized ternary quantum dots for subcellular-targeted brain cancer nanotheranostics. Int J Biol Macromol 2022; 210:530-544. [PMID: 35513094 DOI: 10.1016/j.ijbiomac.2022.04.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Among the most lethal forms of cancer, malignant brain tumors persist as one of the greatest challenges faced by oncologists, where nanotechnology-driven theranostics can play a critical role in developing novel polymer-based supramolecular nanoarchitectures with multifunctional and multi-modal characteristics to fight cancer. However, it is virtually a consensus that, besides the complexity of active delivering anticancer drugs by the nanocarriers to the tumor site, the current evaluation methods primarily relying on in vitro assays and in vivo animal models have been accounted for the low translational effectiveness to clinical applications. In this view, the chick chorioallantoic membrane (CAM) assay has been increasingly recognized as one of the best preclinical models to study the effects of anticancer drugs on the tumor microenvironment (TME). Thus, in this study, we designed, characterized, and developed novel hybrid nanostructures encompassing chemically functionalized carboxymethylcellulose (CMC) with mitochondria-targeting pro-apoptotic peptide (KLA) and cell-penetrating moiety (cysteine, CYS) with fluorescent inorganic semiconductor (Ag-In-S, AIS) for simultaneously bioimaging and inducing glioblastoma cancer cell (U-87 MG, GBM) death. The results demonstrated that the CMC-peptide macromolecules produced supramolecular vesicle-like nanostructures with aqueous colloidal stability suitable as nanocarriers for passive and active targeting of cancer tumors. The optical properties and physicochemical features of the nanoconjugates confirmed their suitability as photoluminescent nanoprobes for cell bioimaging and intracellular tracking. Moreover, the results in vitro demonstrated a notable killing activity towards GBM cells of cysteine-bearing CMC conjugates coupled with pro-apoptotic KLA peptides. More importantly, compared to doxorubicin (DOX), a model anticancer drug in chemotherapy that is highly toxic, these innovative nanohybrids nanoconjugates displayed higher lethality against U-87 MG cancer cells. In vivo CAM assays validated these findings where the nanohybrids demonstrated a significant reduction of GBM tumor progression (41% area) and evidenced an antiangiogenic activity. These results pave the way for developing polymer-based hybrid nanoarchitectonics applied as targeted multifunctional theranostics for simultaneous imaging and therapy against glioblastoma while possibly reducing the systemic toxicity and side-effects of conventional anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano(2)I, Federal University of Minas Gerais/UFMG, Belo Horizonte, MG, Brazil
| | - Mayara R B Paiva
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Oliver A L Cotta
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Luciana M Silva
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Isadora C Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano(2)I, Federal University of Minas Gerais/UFMG, Belo Horizonte, MG, Brazil
| | - Nádia S V Capanema
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano(2)I, Federal University of Minas Gerais/UFMG, Belo Horizonte, MG, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano(2)I, Federal University of Minas Gerais/UFMG, Belo Horizonte, MG, Brazil
| | - Érica A Costa
- Veterinary School, Universidade Federal de Minas Gerais-UFMG, Brazil
| | - Nelson R Martin
- Veterinary School, Universidade Federal de Minas Gerais-UFMG, Brazil
| | - Roselene Ecco
- Veterinary School, Universidade Federal de Minas Gerais-UFMG, Brazil
| | - Beatriz S Santos
- Veterinary School, Universidade Federal de Minas Gerais-UFMG, Brazil
| | - Silvia L Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil.
| | - Zélia I P Lobato
- Veterinary School, Universidade Federal de Minas Gerais-UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano(2)I, Federal University of Minas Gerais/UFMG, Belo Horizonte, MG, Brazil.
| |
Collapse
|