101
|
Zallot R, Agrimi G, Lerma-Ortiz C, Teresinski HJ, Frelin O, Ellens KW, Castegna A, Russo A, de Crécy-Lagard V, Mullen RT, Palmieri F, Hanson AD. Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis. PLANT PHYSIOLOGY 2013; 162:581-8. [PMID: 23590975 PMCID: PMC3668054 DOI: 10.1104/pp.113.218081] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/15/2013] [Indexed: 05/22/2023]
Abstract
Plants make coenzyme A (CoA) in the cytoplasm but use it for reactions in mitochondria, chloroplasts, and peroxisomes, implying that these organelles have CoA transporters. A plant peroxisomal CoA transporter is already known, but plant mitochondrial or chloroplastic CoA transporters are not. Mitochondrial CoA transporters belonging to the mitochondrial carrier family, however, have been identified in yeast (Saccharomyces cerevisiae; Leu-5p) and mammals (SLC25A42). Comparative genomic analysis indicated that angiosperms have two distinct homologs of these mitochondrial CoA transporters, whereas nonflowering plants have only one. The homologs from maize (Zea mays; GRMZM2G161299 and GRMZM2G420119) and Arabidopsis (Arabidopsis thaliana; At1g14560 and At4g26180) all complemented the growth defect of the yeast leu5Δ mitochondrial CoA carrier mutant and substantially restored its mitochondrial CoA level, confirming that these proteins have CoA transport activity. Dual-import assays with purified pea (Pisum sativum) mitochondria and chloroplasts, and subcellular localization of green fluorescent protein fusions in transiently transformed tobacco (Nicotiana tabacum) Bright Yellow-2 cells, showed that the maize and Arabidopsis proteins are targeted to mitochondria. Consistent with the ubiquitous importance of CoA, the maize and Arabidopsis mitochondrial CoA transporter genes are expressed at similar levels throughout the plant. These data show that representatives of both monocotyledons and eudicotyledons have twin, mitochondrially located mitochondrial carrier family carriers for CoA. The highly conserved nature of these carriers makes possible their reliable annotation in other angiosperm genomes.
Collapse
Affiliation(s)
| | | | - Claudia Lerma-Ortiz
- Microbiology and Cell Science Department (R.Z., C.L.-O., V.d.C.-L.) and Horticultural Sciences Department (O.F., K.W.E., A.D.H.), University of Florida, Gainesville, Florida 32611
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy (G.A., A.C., A.R., F.P.); and
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (H.J.T., R.T.M.)
| | - Howard J. Teresinski
- Microbiology and Cell Science Department (R.Z., C.L.-O., V.d.C.-L.) and Horticultural Sciences Department (O.F., K.W.E., A.D.H.), University of Florida, Gainesville, Florida 32611
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy (G.A., A.C., A.R., F.P.); and
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (H.J.T., R.T.M.)
| | - Océane Frelin
- Microbiology and Cell Science Department (R.Z., C.L.-O., V.d.C.-L.) and Horticultural Sciences Department (O.F., K.W.E., A.D.H.), University of Florida, Gainesville, Florida 32611
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy (G.A., A.C., A.R., F.P.); and
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (H.J.T., R.T.M.)
| | - Kenneth W. Ellens
- Microbiology and Cell Science Department (R.Z., C.L.-O., V.d.C.-L.) and Horticultural Sciences Department (O.F., K.W.E., A.D.H.), University of Florida, Gainesville, Florida 32611
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy (G.A., A.C., A.R., F.P.); and
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (H.J.T., R.T.M.)
| | - Alessandra Castegna
- Microbiology and Cell Science Department (R.Z., C.L.-O., V.d.C.-L.) and Horticultural Sciences Department (O.F., K.W.E., A.D.H.), University of Florida, Gainesville, Florida 32611
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy (G.A., A.C., A.R., F.P.); and
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (H.J.T., R.T.M.)
| | - Annamaria Russo
- Microbiology and Cell Science Department (R.Z., C.L.-O., V.d.C.-L.) and Horticultural Sciences Department (O.F., K.W.E., A.D.H.), University of Florida, Gainesville, Florida 32611
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy (G.A., A.C., A.R., F.P.); and
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (H.J.T., R.T.M.)
| | - Valérie de Crécy-Lagard
- Microbiology and Cell Science Department (R.Z., C.L.-O., V.d.C.-L.) and Horticultural Sciences Department (O.F., K.W.E., A.D.H.), University of Florida, Gainesville, Florida 32611
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy (G.A., A.C., A.R., F.P.); and
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (H.J.T., R.T.M.)
| | - Robert T. Mullen
- Microbiology and Cell Science Department (R.Z., C.L.-O., V.d.C.-L.) and Horticultural Sciences Department (O.F., K.W.E., A.D.H.), University of Florida, Gainesville, Florida 32611
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy (G.A., A.C., A.R., F.P.); and
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (H.J.T., R.T.M.)
| | - Ferdinando Palmieri
- Microbiology and Cell Science Department (R.Z., C.L.-O., V.d.C.-L.) and Horticultural Sciences Department (O.F., K.W.E., A.D.H.), University of Florida, Gainesville, Florida 32611
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy (G.A., A.C., A.R., F.P.); and
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (H.J.T., R.T.M.)
| | | |
Collapse
|
103
|
Wiesinger C, Kunze M, Regelsberger G, Forss-Petter S, Berger J. Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem 2013; 288:19269-79. [PMID: 23671276 DOI: 10.1074/jbc.m112.445445] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.
Collapse
Affiliation(s)
- Christoph Wiesinger
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
104
|
Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 2012; 34:465-84. [PMID: 23266187 DOI: 10.1016/j.mam.2012.05.005] [Citation(s) in RCA: 438] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/06/2012] [Indexed: 11/30/2022]
Abstract
SLC25 is a large family of nuclear-encoded transporters embedded in the inner mitochondrial membrane and in a few cases other organelle membranes. The members of this superfamily are widespread in eukaryotes and involved in numerous metabolic pathways and cell functions. They can be easily recognized by their striking sequence features, i.e., a tripartite structure, six transmembrane α-helices and a 3-fold repeated signature motifs. SLC25 members vary greatly in the nature and size of their transported substrates, modes of transport (i.e., uniport, symport or antiport) and driving forces, although the molecular mechanism of substrate translocation may be basically the same. Based on substrate specificity, 24 subfamilies, well conserved throughout evolution, have been functionally characterized mainly by transport assays upon heterologous gene expression, purification and reconstitution into liposomes. Several other SLC25 family members remain to be characterized. In recent years mutations in the SLC25 genes have been shown to be responsible for 11 diseases, highlighting the important role of SLC25 in metabolism.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnology and Pharmacological Sciences, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
105
|
Monné M, Palmieri F, Kunji ERS. The substrate specificity of mitochondrial carriers: mutagenesis revisited. Mol Membr Biol 2012; 30:149-59. [PMID: 23121155 DOI: 10.3109/09687688.2012.737936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofactors across the mitochondrial inner membrane. Structurally they consist of three domains, each containing two transmembrane α-helices linked by a short α-helix and loop. The substrate binds to three major contact points in the central cavity. The class of substrate (e.g., adenine nucleotides) is determined by contact point II on transmembrane α-helix H4 and the type of substrate within the class (e.g., ADP, coenzyme A) by contact point I in H2, whereas contact point III on H6 is most usually a positively charged residue, irrespective of the type or class. Two salt bridge networks, consisting of conserved and symmetric residues, are located on the matrix and cytoplasmic side of the cavity. These residues are part of the gates that are involved in opening and closing of the carrier during the transport cycle, exposing the central substrate binding site to either side of the membrane in an alternating way. Here we revisit the plethora of mutagenesis data that have been collected over the last two decades to see if the residues in the proposed binding site and salt bridge networks are indeed important for function. The analysis shows that the major contact points of the substrate binding site are indeed crucial for function and in defining the specificity. The matrix salt bridge network is more critical for function than the cytoplasmic salt bridge network in agreement with its central position, but neither is likely to be involved in substrate recognition directly.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnology and Pharmacological Sciences, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | |
Collapse
|
109
|
Agrimi G, Russo A, Pierri CL, Palmieri F. The peroxisomal NAD+ carrier of Arabidopsis thaliana transports coenzyme A and its derivatives. J Bioenerg Biomembr 2012; 44:333-40. [PMID: 22555559 DOI: 10.1007/s10863-012-9445-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/19/2012] [Indexed: 12/31/2022]
Abstract
The peroxisomal protein PXN encoded by the Arabidopsis gene At2g39970 has very recently been found to transport NAD+, NADH, AMP and ADP. In this work we have reinvestigated the substrate specificity and the transport properties of PXN by using a wide range of potential substrates. Heterologous expression in bacteria followed by purification, reconstitution in liposomes, and uptake and efflux experiments revealed that PNX transports coenzyme A (CoA), dephospho-CoA, acetyl-CoA and adenosine 3', 5'-phosphate (PAP), besides NAD+, NADH, AMP and ADP. PXN catalyzed fast counter-exchange of substrates and much slower uniport and was strongly inhibited by pyridoxal 5'-phosphate, bathophenanthroline and tannic acid. Transport was saturable with a submillimolar affinity for NAD+, CoA and other substrates. The physiological role of PXN is probably to provide the peroxisomes with the essential coenzymes NAD+ and CoA.
Collapse
Affiliation(s)
- Gennaro Agrimi
- Department of Biosciences, Biotechnology and Pharmacological Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | |
Collapse
|